JP4404191B2 - Glyoxal manufacturing method - Google Patents
Glyoxal manufacturing method Download PDFInfo
- Publication number
- JP4404191B2 JP4404191B2 JP2003280631A JP2003280631A JP4404191B2 JP 4404191 B2 JP4404191 B2 JP 4404191B2 JP 2003280631 A JP2003280631 A JP 2003280631A JP 2003280631 A JP2003280631 A JP 2003280631A JP 4404191 B2 JP4404191 B2 JP 4404191B2
- Authority
- JP
- Japan
- Prior art keywords
- ethylene glycol
- glyoxal
- reaction
- catalyst
- silver catalyst
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Landscapes
- Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
- Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)
Description
本発明は、長時間連続製造を行ってもエチレングリコールの高転化率を保持でき、かつグリオキザールの高収率も保持できるグリオキザールの製造方法に関する。 The present invention relates to a method for producing glyoxal that can maintain a high conversion rate of ethylene glycol and can maintain a high yield of glyoxal even if it is continuously produced for a long time.
エチレングリコールを銀触媒の存在下に酸化してグリオキザールを製造する方法は公知で、かかる銀触媒は他の触媒に比べてエチレングリコールの転化率(酸化される割合)が比較的良好であり、工業的規模での実施には最も実用的な酸化方法の1つである。しかしながら、エチレングリコールが残存すると精製に多大の労力を要するので、エチレングリコールの転化率を更に上げようとして高温で反応を行うと、グリオキザールの収率が低くなることがあり、また触媒の寿命が短くなるという問題があった。 A method for producing glyoxal by oxidizing ethylene glycol in the presence of a silver catalyst is known, and such a silver catalyst has a relatively good ethylene glycol conversion rate (ratio of oxidation) compared to other catalysts. It is one of the most practical oxidation methods for practical implementation. However, since a large amount of labor is required for purification if ethylene glycol remains, if the reaction is carried out at a high temperature to further increase the conversion rate of ethylene glycol, the yield of glyoxal may be lowered and the life of the catalyst may be shortened. There was a problem of becoming.
かかる問題を解決するために、粒大が0.1〜2.5mmの銀触媒の存在中で温度、滞留時間及び不活性ガス濃度の一定条件下に、エチレングリコールを酸化する方法(例えば、特許文献1参照。)やエチレングリコール及び酸素を含有するガスをリン又はリン化合物、銀触媒の存在下で酸化する方法(例えば、特許文献2参照。)が提案されている。
しかしながら、上記の特許文献1の技術では、エチレングリコールの転化率がそれほど高くないので反応当初はグリオキザールの収率は良好であり、銀触媒表面への炭素化物の付着や溶融による団塊化等が起こらないものの、反応を長期間つづけると団塊化が起こり始め、エチレングリコールの転化率やグリオキザールの収率が低下するという問題点があった。また、特許文献2の技術では、運転当初のエチレングリコールの転化率やグリオキザールの収率は良いものの、反応を長期間つづけると団塊化が起こりはじめ、エチレングリコールの転化率やグリオキザールの収率が反応初期に比べて大幅に低下するという問題点があった。 However, in the technique of the above-mentioned Patent Document 1, since the conversion rate of ethylene glycol is not so high, the yield of glyoxal is good at the beginning of the reaction, and adhesion of carbonized products to the silver catalyst surface or agglomeration due to melting occurs. Although there was no reaction, agglomeration started to occur when the reaction was continued for a long time, and there was a problem that the conversion rate of ethylene glycol and the yield of glyoxal were lowered. In the technique of Patent Document 2, the ethylene glycol conversion rate and glyoxal yield at the beginning of operation are good, but when the reaction is continued for a long period of time, agglomeration begins to occur, and the ethylene glycol conversion rate and glyoxal yield react. There was a problem that it was significantly reduced compared to the initial period.
そこで、本発明者等は、かかる事情を鑑みて鋭意研究を重ねた結果、エチレングリコールを気相酸化してグリオキザールを製造するに当り、かさ密度が3g/cm3 以下の銀触媒と接触させて気相酸化を行うことにより上記の課題を解決することを見いだし本発明を完成するに至った。 Accordingly, the present inventors have conducted extensive studies in view of such circumstances, and as a result, in producing glyoxal by vapor-phase oxidation of ethylene glycol, the inventors made contact with a silver catalyst having a bulk density of 3 g / cm 3 or less. It has been found that the above problems can be solved by performing gas phase oxidation, and the present invention has been completed.
本発明のグリオキザールの製造方法は、長時間連続製造を行ってもエチレングリコールの高転化率を保持でき、かつグリオキザールの高収率も保持できる。 The method for producing glyoxal of the present invention can maintain a high conversion rate of ethylene glycol and can maintain a high yield of glyoxal even when continuous production is performed for a long time.
以下、本発明について詳述する。
本発明は、エチレングリコールを気相酸化してグリオキザールを製造するものであり、かかる気相酸化は、通常不活性ガス中で実施され、酸素又は空気が酸化剤として使用される。
かかる不活性ガスとしては、窒素、アルゴン、ヘリウム、二酸化炭素等が使用され、かかる不活性ガスの使用量は、酸化反応系中の酸素に対して1倍モル以上、好ましくは1〜50倍モル程度である。かかる使用量が1倍モル未満では反応系が酸素による爆発限界値内となることがあるので好ましくない。
Hereinafter, the present invention will be described in detail.
In the present invention, glyoxal is produced by gas-phase oxidation of ethylene glycol. Such gas-phase oxidation is usually carried out in an inert gas, and oxygen or air is used as an oxidizing agent.
Nitrogen, argon, helium, carbon dioxide or the like is used as the inert gas, and the amount of the inert gas used is 1 time mol or more, preferably 1 to 50 times mol with respect to oxygen in the oxidation reaction system. Degree. If the amount used is less than 1 mole, the reaction system may be within the explosion limit value due to oxygen, which is not preferable.
また、かかる酸化剤の使用量は、理論当量以上つまりエチレングリコールに対して1.0倍モル以上が好ましく、更には1〜2倍モル、特には1.0〜1.5倍モルである。かかる量が1.0倍モル未満では未反応原料が多く残ることがあり好ましくない。
さらに、気相酸化時には反応生成ガスの後処理を容易にするためや上記の不活性なガスと同様に酸素による爆発限界値を制御するために水を併用してもよく、かかる水の使用量はエチレングリコールに対して、通常1.5倍重量未満が好ましく、1.5倍重量を越えると得られるグリオキザール(水溶液)の濃度が低下し、製品とするために濃縮工程が必要となり好ましくない。
Further, the amount of the oxidizing agent used is preferably the theoretical equivalent or more, that is, 1.0 times mole or more, more preferably 1 to 2 times mole, particularly 1.0 to 1.5 times mole with respect to ethylene glycol. If the amount is less than 1.0 times mol, a large amount of unreacted raw material may remain, which is not preferable.
Furthermore, water may be used in combination with water in order to facilitate the post-treatment of the reaction product gas during vapor phase oxidation or to control the explosion limit value due to oxygen as in the case of the inert gas described above. Is preferably less than 1.5 times the weight of ethylene glycol, and if it exceeds 1.5 times the concentration of glyoxal (aqueous solution), the concentration step is required to produce a product, which is not preferred.
本発明ではエチレングリコールをかさ密度が3g/cm3 以下の銀触媒と接触させて気相酸化することが最大の特徴であり、かかるかさ密度は0.5〜3g/cm3が好ましく、さらには1〜2g/cm3である。
かさ密度が3g/cm3より大きいと銀触媒同士の距離が短くなり溶融や炭素化物の付着によりその隙間が埋められて系の圧損上昇を招き、短期間でエチレングルコールの転化率やグリオキザールの収率が低下して本発明の目的を達成することができない。
In the present invention, the greatest feature is that vapor phase oxidation is performed by contacting ethylene glycol with a silver catalyst having a bulk density of 3 g / cm 3 or less, and the bulk density is preferably 0.5 to 3 g / cm 3 , 1 to 2 g / cm 3 .
If the bulk density is greater than 3 g / cm 3, the distance between the silver catalysts will be shortened, and the gaps will be filled by melting and adhering carbonization, leading to an increase in pressure loss of the system, and the conversion rate of ethylene glycol and glyoxal in a short period of time. The yield is lowered and the object of the present invention cannot be achieved.
銀触媒のかさ密度をかかる範囲にするためには銀触媒の形状を工夫すればよく、例えば、ツリー、繊維状、針状、ウール状、鱗片状等の形状をもつものを用いればよく、また通常の球形のものでも中空部や溝部が存在しているものであればよいが、これらの中でもツリー状や針状が好ましく、かかる形状の銀触媒を調整するには、銀を電気分解法において製造する時に、酸溶液濃度や電流量、電極の種類などを調整することにより可能である。例えば上記の電気分解法において、酸溶液濃度を薄くして時間をかけて結晶を成長させたり、微小の電流を流しながら、あるいは微小の電流値を一定時間ごとに変化させながら銀結晶を成長させる方法が挙げられる。
ツリー状や針状の銀触媒の場合、触媒の最も長いサイズ(長辺)が0.5〜2mm程度のものが好ましく、0.5mm未満では触媒の寿命が低下することがあり、2mmを越えると未反応の原料が残存することがあり好ましくない。
又本発明では、上記のかさ密度をもつ銀触媒単独のみならず、必要に応じて銅触媒を併用することも出来る。
In order to make the bulk density of the silver catalyst within such a range, the shape of the silver catalyst may be devised, for example, a shape having a tree shape, a fiber shape, a needle shape, a wool shape, a scale shape, or the like may be used. Even if it is a normal spherical one having a hollow part or groove part, it is preferable to use a tree shape or a needle shape, and in order to prepare a silver catalyst having such a shape, silver is electrolyzed. This can be achieved by adjusting the acid solution concentration, the amount of current, the type of electrode, and the like during production. For example, in the above electrolysis method, the crystal is grown over time by reducing the concentration of the acid solution, or the silver crystal is grown while passing a minute current or changing the minute current value at regular intervals. A method is mentioned.
In the case of a tree-like or needle-like silver catalyst, the catalyst having the longest size (long side) of about 0.5 to 2 mm is preferable, and if it is less than 0.5 mm, the life of the catalyst may be reduced and may exceed 2 mm. And unreacted raw materials may remain, which is not preferable.
In the present invention, not only a silver catalyst having the above bulk density but also a copper catalyst can be used in combination as required.
さらに、一酸化炭素、二酸化炭素のような酸化生成物及びホルムアルデヒドのような分解生成物の生成を抑制するために、リン又はリン化合物(好ましくはリン化合物)等の助触媒を共存させるのが好ましい。
リン化合物としては、モノ、ジ又はトリメチルホスフィン等の第一ないし第三ホスフィン、リン酸メチル、リン酸エチルなどのリン酸エステル、亜リン酸メチル、亜リン酸ジメチル、亜リン酸トリメチル、亜リン酸エチル、亜リン酸ジエチル、亜リン酸トリエチルなどの亜リン酸エステル、メチルホスホン酸ジメチルエステル、エチルホスホン酸ジエチルエステルなどが挙げられ、装置中に滞留して分解、蓄積することにより腐食を生じさせることが少ない比較的低沸点の有機リン化合物、例えば、亜リン酸メチル、亜リン酸エチル、亜リン酸ジエチル、亜リン酸トリエチル、リン酸メチル、リン酸エチルが好ましい。
Furthermore, in order to suppress the formation of oxidation products such as carbon monoxide and carbon dioxide and decomposition products such as formaldehyde, it is preferable that a cocatalyst such as phosphorus or a phosphorus compound (preferably a phosphorus compound) coexist. .
Phosphorus compounds include mono-, di- or trimethylphosphine and other primary to tertiary phosphines, phosphoric acid esters such as methyl phosphate and ethyl phosphate, methyl phosphite, dimethyl phosphite, trimethyl phosphite, phosphorous acid Examples include phosphoric acid esters such as ethyl acid, diethyl phosphite, triethyl phosphite, methylphosphonic acid dimethyl ester, ethylphosphonic acid diethyl ester, etc., which cause corrosion by staying in the equipment and decomposing and accumulating. A relatively low boiling point organic phosphorus compound such as methyl phosphite, ethyl phosphite, diethyl phosphite, triethyl phosphite, methyl phosphate and ethyl phosphate is preferred.
リン又はリン化合物の共存量はエチレングリコールに対して、リン換算で1〜100ppmが好ましく、共存量が1ppm未満では共存効果に乏しいことがあり、100ppmを越えると未反応原料が多く残ることがあり好ましくない。
かかるリン又はリン化合物はあらかじめ原料に混合しておいて反応に供してもよいし、原料とは別に単独あるいは水溶液として反応系に添加してもよい。
The coexistence amount of phosphorus or phosphorus compound is preferably 1 to 100 ppm in terms of phosphorus with respect to ethylene glycol. If the coexistence amount is less than 1 ppm, the coexistence effect may be poor, and if it exceeds 100 ppm, a large amount of unreacted raw materials may remain. It is not preferable.
Such phosphorus or phosphorus compound may be mixed with the raw material in advance and used for the reaction, or may be added to the reaction system alone or as an aqueous solution separately from the raw material.
本発明においては上記のかさ密度を有する銀触媒を充填した充填層にエチレングリコールを通過させて気相酸化を行うのであるが、かかる充填層としてかさ密度の異なる銀触媒を充填した複数の充填層を用いることにより、銀触媒の寿命が長くなるので好ましい。
複数の充填層を設置する場合は、エチレングリコールを通過させるに従って順次充填層のかさ蜜度が小さくなるような層構成とすればよい。
各層の銀触媒の充填量は特に限定されないが、通常最も少ない重量の層に対して1〜10倍重量程度となるように各層を配置すればよい。
In the present invention, ethylene glycol is passed through a packed bed filled with a silver catalyst having the above-described bulk density to perform gas phase oxidation. As such packed layers, a plurality of packed beds filled with silver catalysts having different bulk densities are used. Is preferable because the life of the silver catalyst is prolonged.
In the case where a plurality of packed beds are provided, the layer configuration may be such that the bulkiness of the packed layers decreases sequentially as ethylene glycol is passed through.
The filling amount of the silver catalyst in each layer is not particularly limited, but each layer may be disposed so as to be about 1 to 10 times the weight of the layer having the smallest weight.
上記の充填層中で気相酸化を行うにあたっては、予めエチレングリコールと上記の不活性なガス及び酸化剤、必要に応じて水を上記で述べた割合で蒸発器や予熱器に供給して100〜200℃程度に加熱してから充填層に供給される。 In performing the gas phase oxidation in the packed bed, ethylene glycol, the inert gas and the oxidizing agent, and water as necessary are supplied to the evaporator and the preheater in the above-described proportions. It is supplied to the packed bed after being heated to about ~ 200 ° C.
この時の供給量は、0℃、0.1MPaの条件下、1時間当たりの供給量(L・hr-1)/触媒量(L)で定義されるNSv値が、3,600〜360,000hr-1となるようにするのが好ましく、さらには12,000〜360,000hr-1である。かかるNSv値が3,600hr-1未満ではグリオキザールの分解反応が進行することがあり、360,000hr-1を越えると未反応原料が残存することがあり好ましくない。 The supply amount at this time is such that the NSv value defined by supply amount per hour (L · hr −1 ) / catalyst amount (L) is 3,600 to 360, 0 ° C. and 0.1 MPa. 000 hr −1 is preferable, and 12,000 to 360,000 hr −1 is more preferable. If the NSv value is less than 3,600 hr −1 , the decomposition reaction of glyoxal may proceed, and if it exceeds 360,000 hr −1 , unreacted raw materials may remain, such being undesirable.
気相反応温度は300〜700℃が好ましく、特に530〜650℃である。気相反応温度が300℃未満では未反応原料が多く残り、700℃を越えるとグリオキザールの分解反応が進行することがあり好ましくない。
気相反応時の圧力は常圧近傍であって、通常、原料のエチレングリコールの分圧は50,000Pa以下になるように供給され、好ましくは1,000〜10,000Paである。かかる分圧が50,000Pa以上では未反応原料が多く残ることがあり好ましくない。
The gas phase reaction temperature is preferably 300 to 700 ° C, particularly 530 to 650 ° C. If the gas phase reaction temperature is less than 300 ° C., a large amount of unreacted raw material remains, and if it exceeds 700 ° C., the decomposition reaction of glyoxal may proceed, which is not preferable.
The pressure during the gas phase reaction is close to normal pressure, and the partial pressure of ethylene glycol as a raw material is usually supplied so as to be 50,000 Pa or less, and preferably 1,000 to 10,000 Pa. When the partial pressure is 50,000 Pa or more, a large amount of unreacted raw material may remain, which is not preferable.
充填層を出た反応ガスはできるだけすみやかに冷却すればよく、特に反応ガスの温度が500℃を越える場合0.05秒以下で500℃以下に冷却するのが好ましい。0.05秒を越えるとグリオキザールの分解が進むことがあり好ましくない。
冷却されたガスは必要に応じ、分縮し、未反応のエチレングリコールの回収が行われる。このときエチレングリコールを含まないかあるいは製品として問題にならない程度の微量のエチレングリコールを含む場合は熱交換器で冷却凝縮させたのち、通常の水による吸収操作によりガス成分と分離される。こうして得られたグリオキザールの水溶液には不純物としてギ酸や酢酸などの有機酸や微量のホルマリンが含まれているが、かかるホルマリンは、通常の水蒸気吹き込みによるストリッピング法により簡単に除去され、この際、上記の有機酸の一部も除去される。その後必要に応じて脱色処理、イオン交換樹脂による処理等も行われる。
The reaction gas exiting the packed bed may be cooled as quickly as possible. In particular, when the temperature of the reaction gas exceeds 500 ° C., it is preferably cooled to 500 ° C. or less in 0.05 seconds or less. If it exceeds 0.05 seconds, decomposition of glyoxal may proceed, which is not preferable.
The cooled gas is shrunk as necessary, and unreacted ethylene glycol is recovered. At this time, when ethylene glycol is not contained or a trace amount of ethylene glycol that does not cause a problem as a product is contained, it is cooled and condensed by a heat exchanger, and then separated from a gas component by a normal water absorption operation. The aqueous solution of glyoxal thus obtained contains organic acids such as formic acid and acetic acid and a small amount of formalin as impurities, but such formalin is easily removed by the stripping method by normal steam blowing, Part of the organic acid is also removed. Thereafter, a decoloring process, a process using an ion exchange resin, and the like are performed as necessary.
本発明の製造方法では、連続運転しても触媒の長期間圧力損失の上昇が見られないが、3,000〜5,000mmH2O(29×103〜49×105Pa)程度の圧損がみられてから運転を続けると収率が低下することがあるのでこれを目安として銀触媒を交換するのが好ましく、触媒層が複数層からなる場合は触媒のかさ密度の大きい層のみを交換して連続運転を続けることも可能である。 In the production method of the present invention, no increase in the pressure loss of the catalyst is observed for a long time even when continuously operated, but the pressure loss is about 3,000 to 5,000 mmH 2 O (29 × 10 3 to 49 × 10 5 Pa). If the operation is continued after the occurrence of the catalyst, the yield may decrease. Therefore, it is preferable to replace the silver catalyst with this as a guideline. If the catalyst layer is composed of multiple layers, replace only the layer with the higher bulk density of the catalyst. It is also possible to continue continuous operation.
以下、本発明について実施例を挙げて更に詳しく説明する。尚、特に断りのない限り、「%」とあるのは、重量基準を示す。
実施例1
直径24mmのステンレス製反応器の下層にかさ密度1.6g/cm3の銀触媒(ツリー状結晶、長辺が1.4〜2.0mm、NanoChem社製)を10g、中間層にかさ密度1.7g/cm3の銀触媒(ツリー状結晶、長辺が1.0〜1.4mm、NanoChem社製)を20g、上層にかさ密度1.8g/cm3の銀触媒(ツリー状結晶、長辺が0.5〜1.0mm、NanoChem社製)を14g順次充填した(銀触媒の充填層の高さは54.6mmであった)。
次に、エチレングリコール150g(2.4モル)/hr、水150g(8.3モル)/hr及び空気312L(13.9モル)/hr、窒素618L(27.8モル)/hr、エチレングリコールに対してリン換算で50ppmの亜リン酸トリエチルを140℃の蒸発器、予熱器で加熱してから、反応器の上部からNSv30,000hr-1で供給し反応温度590℃で反応(エチレングリコールの分圧5,000Pa)させた。反応開始1時間後反応器の下部から排出される反応ガスをすみやかに冷却(0.02秒で500℃以下に冷却)した後生成物を水に溶解させて捕集した。この水層を分析したところエチレングリコールの転化率99.99%でグリオキサールの収率は88%であった。
この触媒を用いて反応を継続したところ180日目に系の圧損が3,000mmH2O(29×103Pa)になったが、この時点まで反応開始1時間後の転化率及び収率を維持していた。
Hereinafter, the present invention will be described in more detail with reference to examples. Unless otherwise specified, “%” indicates a weight standard.
Example 1
10 g of silver catalyst (tree-like crystal, long side: 1.4 to 2.0 mm, manufactured by NanoChem) having a bulk density of 1.6 g / cm 3 in the lower layer of a stainless steel reactor having a diameter of 24 mm, and a bulk density of 1 in the intermediate layer .7g / cm 3 of a silver catalyst (tree-like crystals, long side 1.0 to 1.4 mm, manufactured by NanoChem Co.) 20g, silver catalyst bulk density 1.8 g / cm 3 in an upper layer (tree-like crystals, the length 14 g of sides having a side of 0.5 to 1.0 mm (manufactured by NanoChem) were sequentially filled (the height of the packed bed of silver catalyst was 54.6 mm).
Next, ethylene glycol 150 g (2.4 mol) / hr, water 150 g (8.3 mol) / hr and air 312 L (13.9 mol) / hr, nitrogen 618 L (27.8 mol) / hr, ethylene glycol Then, 50 ppm of triethyl phosphite in terms of phosphorus was heated with an evaporator and preheater at 140 ° C., then supplied from the top of the reactor at NSv 30,000 hr −1 and reacted at a reaction temperature of 590 ° C. (ethylene glycol (Partial pressure 5,000 Pa). One hour after the start of the reaction, the reaction gas discharged from the lower part of the reactor was immediately cooled (cooled to 500 ° C. or less in 0.02 seconds), and then the product was dissolved in water and collected. When this aqueous layer was analyzed, the conversion of ethylene glycol was 99.99% and the yield of glyoxal was 88%.
When the reaction was continued using this catalyst, the pressure loss of the system became 3,000 mmH 2 O (29 × 10 3 Pa) on the 180th day. The conversion rate and yield after 1 hour from the start of the reaction up to this point Was maintained.
実施例2
実施例1において、上層、中間層、下層のいずれにもかさ密度1.6g/cm3の銀触媒(ツリー状結晶、長辺が1.4〜2.0mm、NanoChem社製)を用いた以外は実施例1と同様に行った。
反応開始1時間後に排出されるガスを水に溶解させて捕集した水層を分析したところエチレングリコールの転化率99.96%でグリオキサールの収率は85%であった。この触媒を用いて反応を継続したところ140日目に系の圧損が3,000mmH2O(29×103Pa)になったが、この時点まで反応開始1時間後の転化率及び収率を維持していた。
Example 2
In Example 1, a silver catalyst having a bulk density of 1.6 g / cm 3 (tree-like crystal, long side of 1.4 to 2.0 mm, manufactured by NanoChem) was used for any of the upper layer, the intermediate layer, and the lower layer. Was carried out in the same manner as in Example 1.
Analysis of the aqueous layer collected by dissolving the gas discharged 1 hour after the start of the reaction in water revealed that the conversion of ethylene glycol was 99.96% and the yield of glyoxal was 85%. When the reaction was continued using this catalyst, the pressure loss of the system became 3,000 mmH 2 O (29 × 10 3 Pa) on the 140th day. The conversion and yield after 1 hour from the start of the reaction up to this point Was maintained.
比較例1
実施例1において、上層、中間層、下層のすべてにかさ密度3.5g/cm3 (粒子径が1mmの球形結晶)の銀触媒を配置した以外は実施例1と同様に行った。
反応開始1時間後に排出されるガスを水に溶解させて捕集した水層を分析したところエチレングリコールの転換率99.95%でグリオキサールの収率は80%であった。この触媒を用いて反応を継続したところ10日目で系の圧損が3,000mmH2O(29×103Pa)になり、この時点まで反応成績は反応開始1時間後の転化率、収率を維持していたが、そのまま反応を継続して反応開始から15日目には系の圧損が6,000mmH2O(58×103Pa)になり、この時点での転化率は92.85%、収率は65%に低下した。
Comparative Example 1
In Example 1, it carried out like Example 1 except having arrange | positioned the silver catalyst of bulk density 3.5g / cm < 3 > (spherical crystal whose particle diameter is 1 mm) to all the upper layer, the intermediate | middle layer, and the lower layer.
Analysis of an aqueous layer collected by dissolving the gas discharged 1 hour after the start of the reaction in water revealed that the conversion of ethylene glycol was 99.95% and the yield of glyoxal was 80%. When the reaction was continued using this catalyst, the pressure loss of the system reached 3,000 mmH 2 O (29 × 10 3 Pa) on the 10th day, and the reaction results up to this point were the conversion rate and yield 1 hour after the start of the reaction. However, the reaction was continued as it was, and on the 15th day from the start of the reaction, the pressure loss of the system became 6,000 mmH 2 O (58 × 10 3 Pa), and the conversion rate at this point was 92.85. %, The yield dropped to 65%.
本発明は、本発明は、長時間連続製造を行ってもエチレングリコールの高転化率を保持でき、かつグリオキザールの高収率も保持できるグリオキザールの製造方法に関する。
The present invention relates to a method for producing glyoxal that can maintain a high conversion rate of ethylene glycol and can maintain a high yield of glyoxal even if it is continuously produced for a long time.
Claims (2)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2003280631A JP4404191B2 (en) | 2003-07-28 | 2003-07-28 | Glyoxal manufacturing method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2003280631A JP4404191B2 (en) | 2003-07-28 | 2003-07-28 | Glyoxal manufacturing method |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2005047845A JP2005047845A (en) | 2005-02-24 |
JP4404191B2 true JP4404191B2 (en) | 2010-01-27 |
Family
ID=34266392
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2003280631A Expired - Fee Related JP4404191B2 (en) | 2003-07-28 | 2003-07-28 | Glyoxal manufacturing method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4404191B2 (en) |
-
2003
- 2003-07-28 JP JP2003280631A patent/JP4404191B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP2005047845A (en) | 2005-02-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6434873B2 (en) | Low water content methanol carbonylation process for efficient production of acetic acid and control of water balance | |
US3689533A (en) | Production of carboxylic acids and esters | |
JP4994549B2 (en) | Rhodium / inorganic iodide catalyst system for methanol carbonylation process with improved impurity properties | |
JPS617222A (en) | Manufacture of ethanol | |
JP3500150B2 (en) | Acetic anhydride or method for producing acetic anhydride and acetic acid | |
KR20060135889A (en) | Liquid phase oxidation of p-xylene to terephthalic acid in the presence of a catalyst system containing nickel, manganese, and bromine atoms | |
KR101586512B1 (en) | Improved process to co-manufacture acrylonitrile and hydrogen cyanide | |
JPH10279516A (en) | Production of acetic acid | |
JP4404191B2 (en) | Glyoxal manufacturing method | |
JP5048342B2 (en) | Purification of 1,1,1,3,3,3-hexafluoroisopropanol | |
JP2010209010A (en) | Method for producing acetonitrile | |
WO2006072766A1 (en) | Process for the manufacture of ethylene oxide | |
CN117229136A (en) | Preparation method of azelaic acid | |
JP6396246B2 (en) | Carbon monoxide production method | |
JP2912443B2 (en) | Glioxizal manufacturing method | |
JP4534274B2 (en) | Method for producing hexafluoroacetone or hydrate thereof | |
US20060062719A1 (en) | Process for preparing so2f2 and so2clf | |
CN105308016B (en) | Method for Joint Production acetic acid and acetic anhydride | |
JPH04500496A (en) | Oxidative hydrolysis of iodoalkanes | |
JP3659038B2 (en) | Method for producing ethylene glycol | |
JPS5939843A (en) | Preparation of glyoxal | |
JPS60100533A (en) | Preparation of glyoxal | |
CN109304190B (en) | Catalyst for preparing acrolein from glycerol | |
KR102044428B1 (en) | Process for preparing acrylic acid from glycerin | |
JPS6344759B2 (en) |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20060620 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20090803 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20090820 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20090930 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20091022 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20091027 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20121113 Year of fee payment: 3 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20121113 Year of fee payment: 3 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20121113 Year of fee payment: 3 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20121113 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20121113 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20131113 Year of fee payment: 4 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
LAPS | Cancellation because of no payment of annual fees |