JP4403968B2 - Disconnection detector for high voltage distribution lines - Google Patents

Disconnection detector for high voltage distribution lines Download PDF

Info

Publication number
JP4403968B2
JP4403968B2 JP2005002151A JP2005002151A JP4403968B2 JP 4403968 B2 JP4403968 B2 JP 4403968B2 JP 2005002151 A JP2005002151 A JP 2005002151A JP 2005002151 A JP2005002151 A JP 2005002151A JP 4403968 B2 JP4403968 B2 JP 4403968B2
Authority
JP
Japan
Prior art keywords
voltage
phase
low
power supply
supply side
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005002151A
Other languages
Japanese (ja)
Other versions
JP2006189356A (en
Inventor
孝志 笠島
裕一 和田
武 宮下
滋之 柳田
祥一 立谷
均 金輪
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Electric Power Co Inc
Original Assignee
Tokyo Electric Power Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Electric Power Co Inc filed Critical Tokyo Electric Power Co Inc
Priority to JP2005002151A priority Critical patent/JP4403968B2/en
Publication of JP2006189356A publication Critical patent/JP2006189356A/en
Application granted granted Critical
Publication of JP4403968B2 publication Critical patent/JP4403968B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Testing Of Short-Circuits, Discontinuities, Leakage, Or Incorrect Line Connections (AREA)

Description

本発明は、三相の高圧配電線の断線を検出する高圧配電線の断線検出装置に関する。   The present invention relates to a disconnection detection device for a high-voltage distribution line that detects disconnection of a three-phase high-voltage distribution line.

一般に、高圧配電系統は高圧配電線の途中に複数個の開閉器を設け、開閉器で区分された区間で地絡事故等の故障が発生した場合に、開閉器で故障区間を切り離し、健全区間に電力を供給できるようにしている。その際、故障区間下流の健全区間には他の高圧配電系統から電力を供給するようにしている。   Generally, a high-voltage distribution system has a plurality of switches in the middle of a high-voltage distribution line, and when a fault such as a ground fault occurs in a section divided by the switch, the failure section is separated by a switch and a healthy section Can be supplied with power. At that time, power is supplied from another high-voltage distribution system to the healthy section downstream of the failure section.

すなわち、自系統の開閉器は常時は閉状態で電力を供給しており、他系統との連系のための開閉器は常時は開状態で運用されている。そして、自系統のある区間に故障が発生した場合には再閉路により故障区間を特定し、その故障区間を切り離すと共に、故障区間下流の健全区間に対して他系統から電力を供給するようにしている。この場合の開閉器の開閉操作は、開閉器の近傍に設置された遠方制御器により操作される。遠方制御器は中央制御装置からの指令に基づき開閉器の開閉操作を行う(例えば、特許文献1参照)。   That is, the switch of its own system supplies power in a normally closed state, and the switch for connection with another system is normally operated in an open state. When a failure occurs in a section of the own system, the failure section is identified by reclosing, and the failure section is separated and power is supplied from another system to the healthy section downstream of the failure section. Yes. The opening / closing operation of the switch in this case is operated by a remote controller installed in the vicinity of the switch. The remote controller performs an opening / closing operation of the switch based on a command from the central controller (see, for example, Patent Document 1).

ここで、高圧配電線の三相電圧を検出し電圧の大きさの比率の判定で高圧配電線の断線を検出するようにしたものがある。すなわち、高圧配電線に接続された複数の柱上単相変圧器に子局を併設し、この子局において変圧器二次側電圧を監視し、高圧配電系統の三相負荷が著しく不平衡の状態で断線区間や断線候補を確実に検出できるようにしたものがある(例えば、特許文献2参照)。
特公平1−59820号公報 特開平7−113838号公報
Here, there is one in which the three-phase voltage of the high-voltage distribution line is detected and the disconnection of the high-voltage distribution line is detected by determining the ratio of the magnitudes of the voltages. In other words, a slave station is added to a plurality of pole-mounted single-phase transformers connected to a high-voltage distribution line, and the secondary voltage of the transformer is monitored at this slave station, and the three-phase load of the high-voltage distribution system is significantly unbalanced. In some cases, a disconnection section and a disconnection candidate can be reliably detected in a state (see, for example, Patent Document 2).
Japanese Patent Publication No. 1-59820 JP-A-7-113838

しかし、特許文献1のものでは地絡事故若しくは短絡事故を想定しており、断線検出を想定したものではない。すなわち、事故を検出する保護継電器は高圧配電線の上流側に設けられ、例えば、保護継電器が地絡を検出した場合に地絡事故の発生と判定し遮断器を開き、その後に再閉路して故障区間を特定するようにしたものである。従って、地絡を伴わない断線が発生した場合には地絡事故発生が検出できないので断線の検出ができない。   However, the thing of patent document 1 assumes a ground fault accident or a short circuit accident, and does not assume disconnection detection. In other words, the protective relay that detects the accident is provided upstream of the high-voltage distribution line.For example, when the protective relay detects a ground fault, it is determined that a ground fault has occurred, the circuit breaker is opened, and then the circuit is reclosed. The failure section is specified. Therefore, when a disconnection without a ground fault occurs, the occurrence of a ground fault cannot be detected, so that the disconnection cannot be detected.

また、特許文献2のものでは、柱上変圧器から三相分の電圧を検出し、その三相電圧の大きさの比率により断線検出を行うようにしているので、三相電圧を検出する電圧検出器を新たに設ける必要がある。また、電圧値で断線検出を行うものであるので、電圧検出器にある程度の検出精度が必要となる。   Moreover, in the thing of patent document 2, since the voltage for three phases is detected from a pole transformer, and disconnection detection is performed by the ratio of the magnitude | size of the three-phase voltage, the voltage which detects a three-phase voltage It is necessary to provide a new detector. In addition, since disconnection is detected by the voltage value, the voltage detector needs a certain degree of detection accuracy.

本発明の目的は、新たに電圧検出器を設けることなく既存の検出精度の電圧検出器で検出された電圧を用いて断線検出を行うことができる高圧配電線の断線検出装置を提供することである。   An object of the present invention is to provide a disconnection detecting device for a high-voltage distribution line that can perform disconnection detection using a voltage detected by a voltage detector having an existing detection accuracy without providing a new voltage detector. is there.

請求項1の発明に係わる高圧配電線の断線検出装置は、高圧配電線に接続された開閉器の電源側三相電圧及び負荷側三相電圧から各々一相の高圧単相電圧を入力する高圧電圧入力手段と、前記高圧配電線の電源側三相電圧及び負荷側三相電圧から前記高圧単相電圧の一相とそれぞれ異なる他の二相をそれぞれ単相変圧器で降圧して低圧配電線の低圧単相電圧として入力する低圧電圧入力手段と、前記高圧電圧入力手段で入力した高圧単相電圧及び前記低圧電圧入力手段で入力した低圧単相電圧の位相関係に基づいて前記高圧配電線の断線を検出する断線判定手段とを備えたことを特徴とする。   The disconnection detecting device for a high-voltage distribution line according to the invention of claim 1 is a high-voltage single-phase voltage input from a power supply-side three-phase voltage and a load-side three-phase voltage of a switch connected to the high-voltage distribution line. The voltage input means and the low voltage distribution line by stepping down the other two phases different from one phase of the high voltage single phase voltage from the power supply side three phase voltage and the load side three phase voltage of the high voltage distribution line by a single phase transformer, respectively. The low-voltage voltage input means for inputting the low-voltage single-phase voltage, the high-voltage single-phase voltage input by the high-voltage voltage input means, and the low-voltage single-phase voltage input by the low-voltage voltage input means A disconnection determining means for detecting disconnection is provided.

請求項2の発明に係わる高圧配電線の断線検出装置は、請求項1の発明において、前記低圧電圧入力手段で入力した各々の低圧単相電圧が前記高圧単相電圧の一相とそれぞれ異なる他の二相であることを判定する低圧線接続相確認手段を備えたことを特徴とする。   The disconnection detecting device for a high-voltage distribution line according to the invention of claim 2 is characterized in that, in the invention of claim 1, each low-voltage single-phase voltage input by the low-voltage voltage input means is different from one phase of the high-voltage single-phase voltage. It is characterized by comprising a low-voltage line connection phase confirmation means for judging that the two-phase.

請求項3の発明に係わる高圧配電線の断線検出装置は、請求項1または2の発明において、前記高圧電圧入力手段で入力する高圧単相電圧は、中央制御装置からの指令に基づき前記開閉器を開閉操作する遠方制御器に入力される検相用及び充停電判定用の電圧であり、前記低圧電圧入力手段で入力する低圧単相電圧は、前記遠方制御器の電源用の電圧であることを特徴とする。   According to a third aspect of the present invention, there is provided a disconnection detecting device for a high-voltage distribution line according to the first or second aspect, wherein the high-voltage single-phase voltage input by the high-voltage voltage input means is based on a command from a central controller. Is a voltage for phase detection and charge / power failure judgment input to a remote controller that opens and closes, and the low-voltage single-phase voltage input by the low-voltage voltage input means is a voltage for the power supply of the remote controller It is characterized by.

請求項4の発明に係わる高圧配電線の断線検出装置は、請求項1ないし3のいずれか一の発明において、前記断線判定手段は、以下のいずれかの条件が成立したときに断線と判定することを特徴とする。   The disconnection detecting device for a high voltage distribution line according to the invention of claim 4 is the invention according to any one of claims 1 to 3, wherein the disconnection determining means determines that the disconnection occurs when any of the following conditions is satisfied. It is characterized by that.

(1)高圧単相電圧と低圧単相電圧とが同相または逆相のとき。 (1) When the high-voltage single-phase voltage and the low-voltage single-phase voltage are in phase or reverse phase.

(2)開閉器が閉で、電源側及び負荷側の双方の高圧単相電圧と低圧単相電圧との検相不明、かつ電源側及び負荷側の双方の低圧単相電圧が有りのとき。 (2) When the switch is closed, the phase of the high-voltage single-phase voltage on both the power supply side and the load side is unknown and the low-voltage single-phase voltage on both the power supply side and the load side is present.

(3)開閉器が開で、電源側または負荷側の高圧単相電圧と低圧単相電圧との検相不明、かつ検相不明側の低圧単相電圧が有りのとき。 (3) When the switch is open and the phase detection is unknown between the high-voltage single-phase voltage and the low-voltage single-phase voltage on the power supply side or load side, and the low-voltage single-phase voltage on the phase detection unknown side is present.

(4)開閉器が開で、電源側または負荷側の高圧単相電圧と低圧単相電圧との検相不明、かつ電源側の高圧単相電圧と負荷側の高圧単相電圧とが異相であるとき。 (4) The switch is open, the phase of the high-voltage single-phase voltage on the power supply side or load side and the low-voltage single-phase voltage is unknown, and the high-voltage single-phase voltage on the power-supply side and the high-voltage single-phase voltage on the load side are out of phase. One day.

請求項5の発明に係わる高圧配電線の断線検出装置は、低圧線接続相確認手段は、以下の条件のときに、正常、異常、判定不能の判定をすることを特徴とする。   The disconnection detecting device for a high-voltage distribution line according to the invention of claim 5 is characterized in that the low-voltage line connection phase confirmation means determines whether it is normal, abnormal or indeterminate under the following conditions.

(1)電源側及び負荷側の高圧単相電圧と低圧単相電圧とが異相、かつ電源側の低圧単相電圧と負荷側の低圧単相電圧とが異相、かつ電源側の高圧単相電圧と負荷側の高圧単相電圧とが同相であるときに、正常と判定する。 (1) The high-voltage single-phase voltage and the low-voltage single-phase voltage on the power supply side and the load side are different from each other, and the low-voltage single-phase voltage on the power-supply side and the low-voltage single-phase voltage on the load side are different from each other. Is determined to be normal when the load and the high-voltage single-phase voltage on the load side are in phase.

(2)電源側の高圧単相電圧と負荷側の高圧単相電圧とが同相かつ電源側または負荷側の高圧単相電圧と電源側または負荷側のいずれかの低圧単相電圧とが同相であるとき、または、電源側の高圧単相電圧と負荷側の高圧単相電圧とが同相かつ電源側の低圧単相電圧と負荷側の単相電圧とが同相であるときに、異常と判定する。 (2) The high-voltage single-phase voltage on the power supply side and the high-voltage single-phase voltage on the load side are in phase, and the high-voltage single-phase voltage on the power supply side or load side and the low-voltage single-phase voltage on either the power supply side or load side are in phase It is determined that there is an abnormality when the high-voltage single-phase voltage on the power supply side and the high-voltage single-phase voltage on the load side are in phase, and the low-voltage single-phase voltage on the power supply side and the single-phase voltage on the load side are in phase. .

(3)電源側または負荷側の高圧単相電圧のいずれかが不明、または電源側または負荷側の低圧単相電圧のいずれかが不明、または電源側の高圧単相電圧と負荷側の高圧単相電圧とが異相であるときに、判定不能と判定する。 (3) Either the high-voltage single-phase voltage on the power supply side or the load side is unknown, or the low-voltage single-phase voltage on the power supply side or the load side is unknown, or the high-voltage single-phase voltage on the power supply side and the high-voltage single-phase voltage on the load side When the phase voltage is out of phase, it is determined that the determination is impossible.

本発明によれば、高圧三相電圧のうちのいずれか一相の高圧単相電圧と、その高圧単相電圧の一相とそれぞれ異なる他の二相の低圧単相電圧に基づいて、高圧配電線の断線を検出するので、高圧三相電圧は既存の遠方制御器に入力される検相用の電圧検出器からの電圧を使用でき、また、低圧単相電圧は前記遠方制御器の電源用の単相変圧器からの電圧を使用できるので、新たに電圧検出器を設ける必要がない。また、高圧単相電圧及び低圧単相電圧の位相関係に基づいて高圧配電線の断線を検出するので、高い電圧検出精度も必要としない。   According to the present invention, the high-voltage distribution is based on the high-voltage single-phase voltage of any one of the high-voltage three-phase voltages and the other two-phase low-voltage single-phase voltages different from one phase of the high-voltage single-phase voltage. Since wire breakage is detected, the voltage from the voltage detector for phase detection input to the existing remote controller can be used for the high-voltage three-phase voltage, and the low-voltage single-phase voltage is used for the power supply of the remote controller. Therefore, it is not necessary to provide a new voltage detector. Moreover, since the disconnection of a high voltage distribution line is detected based on the phase relationship between a high voltage single phase voltage and a low voltage single phase voltage, high voltage detection accuracy is not required.

また、単相変圧器から取り出す低圧単相電圧が高圧単相電圧の一相とそれぞれ異なる他の二相であることを判定するようにしているので、単相変圧器の接続の誤りを防止できる。   In addition, since it is determined that the low-voltage single-phase voltage extracted from the single-phase transformer is another two-phase different from one phase of the high-voltage single-phase voltage, an error in connection of the single-phase transformer can be prevented. .

以下、本発明の実施の形態を説明する。図1は本発明の第1の実施の形態に係わる高圧配電線の断線検出装置11のブロック構成図であり、図1では高圧配電線に設置された遠方制御器12に断線検出装置11を組み込んで構成した場合を示している。遠方制御器12は、図示省略の中央制御装置からの指令に基づき開閉器14を開閉操作するものである。高圧配電線13は三相(U相、V相、W相)の配電線であり、開閉器14が接続されている。いま、開閉器14の左側から右側に電力が供給されるとし、開閉器14の左側を電源側、右側を負荷側と呼ぶことにする。   Embodiments of the present invention will be described below. FIG. 1 is a block diagram of a disconnection detecting device 11 for a high voltage distribution line according to the first embodiment of the present invention. In FIG. 1, the disconnection detecting device 11 is incorporated in a remote controller 12 installed in the high voltage distribution line. The case where it comprises is shown. The remote controller 12 opens and closes the switch 14 based on a command from a central controller (not shown). The high-voltage distribution line 13 is a three-phase (U-phase, V-phase, W-phase) distribution line, and a switch 14 is connected thereto. Now, suppose that electric power is supplied from the left side to the right side of the switch 14, and the left side of the switch 14 is called a power source side and the right side is called a load side.

開閉器14とともに遠方制御器12が設けられており、開閉器14には、電源側及び負荷側の電圧を検出する電圧検出器(PD)15a、15bが設けられている。これは、遠方制御器12の遠方制御に必要な情報(位相情報及び充停電情報)を得るためである。すなわち、電圧検出器15a、15bは三相電圧中の二相(例えば、U相とW相)から高圧単相電圧を取り出し、遠方制御器12の検相部16により電源側と負荷側の高圧電圧の位相が同相であるか否かを判定している。開閉器14を閉じる場合に電源側と負荷側との位相が合っていないと、大きな電圧変動を生じるのでこれを防止するためである。また、三相電圧中の二相(例えば、U相とW相)から高圧単相電圧を取り出すようにしているのは、位相の判定を行うには三相分をとる必要はなく単相分で十分であるからである。   A remote controller 12 is provided together with the switch 14, and the switch 14 is provided with voltage detectors (PD) 15 a and 15 b for detecting voltages on the power supply side and the load side. This is to obtain information (phase information and charging / discharging information) necessary for remote control of the remote controller 12. That is, the voltage detectors 15a and 15b take out a high-voltage single-phase voltage from two phases (for example, the U phase and the W phase) in the three-phase voltage, and the high voltage on the power source side and the load side is detected by the phase detector 16 of the remote controller 12. It is determined whether or not the phase of the voltage is in phase. This is because, when the switch 14 is closed, if the phases of the power supply side and the load side do not match, a large voltage fluctuation occurs, which is prevented. In addition, the high-voltage single-phase voltage is taken out from two phases (for example, the U phase and the W phase) in the three-phase voltage. This is because it is sufficient.

一方、遠方制御器12には高圧配電線13に接続された開閉器14の電源側及び負荷側の単相変圧器17a、17bから電源が供給されるように構成されている。つまり、単相変圧器17a、17bで高圧配電線13の電圧を降圧して低圧の単相電圧を得て遠方制御器12の電源部18に供給するようにしている。   On the other hand, the remote controller 12 is configured to be supplied with power from the single-phase transformers 17a and 17b on the power supply side and load side of the switch 14 connected to the high-voltage distribution line 13. That is, the voltage of the high-voltage distribution line 13 is stepped down by the single-phase transformers 17 a and 17 b to obtain a low-voltage single-phase voltage and supplied to the power supply unit 18 of the remote controller 12.

本発明の第1の実施の形態では、検相のために電圧検出器15a、15bで検出している高圧単相電圧と、遠方制御器12の電源として取り込まれている単相変圧器17a、17bで得られた低圧単相電圧とを用いて高圧配電線13の断線検出を行うので、高圧単相電圧がU−Wであるときは、単相変圧器17a、17bの接続相をV−W、U−Vから取り出す。これにより、高圧配電線13の三相線間電圧であるU−W、V−W、U−Vを得ることができる。このように、高圧単相電圧の一相(U−W)とそれぞれ異なる他の二相(V−W、U−V)をそれぞれ単相変圧器17a、17bで降圧して低圧配電線の低圧単相電圧とし、遠方制御器12の電源部18に供給する。   In the first embodiment of the present invention, the high-voltage single-phase voltage detected by the voltage detectors 15a and 15b for phase detection, and the single-phase transformer 17a taken in as the power source of the remote controller 12 are provided. Since the disconnection of the high-voltage distribution line 13 is detected using the low-voltage single-phase voltage obtained in 17b, when the high-voltage single-phase voltage is U-W, the connection phase of the single-phase transformers 17a and 17b is V- Remove from W, U-V. Thereby, UW, VW, and UV which are the voltage between the three-phase lines of the high voltage distribution line 13 can be obtained. In this way, one phase (U-W) of the high-voltage single-phase voltage and the other two phases (V-W, U-V) respectively different from each other are stepped down by the single-phase transformers 17a, 17b, respectively, and the low-voltage distribution line A single phase voltage is supplied to the power supply unit 18 of the remote controller 12.

また、高圧配電線13の電源側及び負荷側に接続された高圧結合器19a、19bを介して、遠方制御器12の搬送部20は、高圧配電線13に搬送された搬送信号を送受信し、図示省略の中央制御装置からの指令を制御演算部21に出力するとともに、制御演算部21での開閉器14の開閉状態等を含む情報を中央制御装置に送信する。   In addition, the transport unit 20 of the remote controller 12 transmits and receives the transport signal transported to the high-voltage distribution line 13 via the high-voltage couplers 19a and 19b connected to the power supply side and the load side of the high-voltage distribution line 13. A command from a central control device (not shown) is output to the control calculation unit 21 and information including the open / close state of the switch 14 in the control calculation unit 21 is transmitted to the central control device.

断線検出装置11は、電圧検出器15a、15bにより検出された開閉器14の電源側及び負荷側の各々一相の高圧単相電圧を高圧電圧入力手段22により入力すると共に、単相変圧器17a、17bで降圧された高圧単相電圧の一相とそれぞれ異なる他の二相の低圧単相電圧を低圧電圧入力手段23により入力する。断線判定手段24は、高圧電圧入力手段22で入力した高圧単相電圧及び低圧電圧入力手段23で入力した低圧単相電圧の位相関係に基づいて高圧配電線13の断線を検出する。断線判定手段24での断線の判定結果は搬送部20を通じて中央制御装置へ伝送される。なお、断線の判定結果を表示部25に表示出力しても良い。この表示部25には遠方制御器の異常の有無やその他必要な情報が表示される。   The disconnection detecting device 11 inputs a high-voltage single-phase voltage of one phase on each of the power source side and the load side of the switch 14 detected by the voltage detectors 15a and 15b by the high-voltage voltage input means 22, and a single-phase transformer 17a. , 17b, the other two-phase low-voltage single-phase voltages different from one phase of the high-voltage single-phase voltage stepped down by 17b are input by the low-voltage voltage input means 23. The disconnection determination unit 24 detects disconnection of the high-voltage distribution line 13 based on the phase relationship between the high-voltage single-phase voltage input by the high-voltage voltage input unit 22 and the low-voltage single-phase voltage input by the low-voltage voltage input unit 23. The determination result of the disconnection in the disconnection determination means 24 is transmitted to the central controller through the transport unit 20. Note that the disconnection determination result may be displayed on the display unit 25. The display unit 25 displays whether or not the remote controller is abnormal and other necessary information.

図2は断線判定手段24での断線判定ロジックのブロック図である。断線判定手段24には、高圧電圧入力手段22によりU−W電圧(高圧電源側)及びU−W電圧(高圧負荷側)が入力され、低圧電圧入力手段23によりV−W電圧(低圧電源側)及びU−V電圧(低圧負荷側)が入力される。断線判定手段24は、U−W電圧(高圧電源側)、U−W電圧(高圧負荷側)、V−W電圧(低圧電源側)及びU−V電圧(低圧負荷側)の位相関係に基づいて、高圧配電線の断線を判定する。断線判定手段24は、以下の条件(1)〜(4)のいずれかが成立したときに断線と判定する。   FIG. 2 is a block diagram of the disconnection determination logic in the disconnection determination means 24. The disconnection determination means 24 receives the U-W voltage (high-voltage power supply side) and the U-W voltage (high-voltage load side) from the high-voltage voltage input means 22, and the V-W voltage (low-voltage power supply side) from the low-voltage voltage input means 23. ) And U-V voltage (low voltage load side) are input. The disconnection determination means 24 is based on the phase relationship between the U-W voltage (high-voltage power supply side), the U-W voltage (high-voltage load side), the V-W voltage (low-voltage power supply side), and the U-V voltage (low-voltage load side). The disconnection of the high-voltage distribution line is determined. The disconnection determination means 24 determines that a disconnection occurs when any of the following conditions (1) to (4) is satisfied.

(1)高圧単相電圧と低圧単相電圧とが同相または逆相のとき。 (1) When the high-voltage single-phase voltage and the low-voltage single-phase voltage are in phase or reverse phase.

断線判定手段24は、電源側の高圧単相電圧(U−W電圧)と電源側の低圧単相電圧(V−W電圧)とが逆相のとき、または負荷側の高圧単相電圧(U−W電圧)と負荷側の低圧単相電圧(U−V電圧)とが同相のときは断線と判定する。   The disconnection determination means 24 is used when the high-voltage single-phase voltage (U-W voltage) on the power supply side and the low-voltage single-phase voltage (V-W voltage) on the power supply side are in reverse phase, or on the high-voltage single-phase voltage (U -W voltage) and low-voltage single-phase voltage (U-V voltage) on the load side are in phase, it is determined that the wire is disconnected.

図3は、断線時に高圧単相電圧と低圧単相電圧とが同相または逆相となる電源側及び負荷側の電圧ベクトル図であり、図3(a)は健全時の電源側及び負荷側の電圧ベクトル図、図3(b)はU相に断線が発生した場合の電源側及び負荷側の電圧ベクトル図である。   FIG. 3 is a voltage vector diagram on the power supply side and the load side in which the high-voltage single-phase voltage and the low-voltage single-phase voltage are in phase or reverse phase at the time of disconnection, and FIG. FIG. 3B is a voltage vector diagram, and FIG. 3B is a voltage vector diagram on the power supply side and the load side when a disconnection occurs in the U phase.

健全時においては、図3(a)に示すように、電源側では、高圧単相電圧(U−W電圧)に対し低圧単相電圧(V−W電圧)は位相角120°であり、負荷側では、高圧単相電圧(U−W電圧)に対し低圧単相電圧(U−V電圧)は位相角240°である。   In a healthy state, as shown in FIG. 3A, on the power source side, the low-voltage single-phase voltage (V-W voltage) has a phase angle of 120 ° with respect to the high-voltage single-phase voltage (U-W voltage), and the load On the side, the low-voltage single-phase voltage (U-V voltage) has a phase angle of 240 ° with respect to the high-voltage single-phase voltage (U-W voltage).

一方、U相に断線が発生すると、U相がV−W電圧上に移行する。従って、図3(b)に示すように、電源側では、高圧単相電圧(U−W電圧)に対し低圧単相電圧(V−W電圧)は位相角180°(逆相)となる。負荷側では、高圧単相電圧(U−W電圧)に対し低圧単相電圧(U−V電圧)は位相角0°(同相)となる。   On the other hand, when disconnection occurs in the U phase, the U phase shifts to the V-W voltage. Therefore, as shown in FIG. 3B, on the power supply side, the low-voltage single-phase voltage (V-W voltage) has a phase angle of 180 ° (reverse phase) with respect to the high-voltage single-phase voltage (U-W voltage). On the load side, the low-voltage single-phase voltage (U-V voltage) has a phase angle of 0 ° (in phase) with respect to the high-voltage single-phase voltage (U-W voltage).

このように、断線が発生すると断線相(U相)に関係する2つの線間電圧(U−W電圧、U−V電圧)は健全相の線間電圧(V−W電圧)と同方向もしくは逆方向となる。すなわち、高圧単相電圧(U−W電圧)と低圧単相電圧(U−V電圧及びV−W電圧)の位相差を比較し、同相または逆相となれば断線と判定できる。このとき、負荷がアンバランスで断線相(U相)に関係する2つの線間電圧(U−W電圧、U−V電圧)の内,U−W電圧が極端に小さくなる場合は高圧単相電圧(U−W電圧)と低圧単相電圧(U−V電圧及びV−W電圧)の位相差比較ができないが,その場合は次項(2)の方法により断線検出が可能である。また、開閉器が開(切)及び閉(入)にいずれの場合にも適用できる。すなわち、電源側及び負荷側の高圧単相電圧(W−U電圧)と電源側及び負荷側の低圧単相電圧(U−V電圧またはV−W電圧)との位相比較U−Vであり、電源側及び負荷側それぞれの高圧単相電圧と低圧単相電圧を交錯して位相比較を行っているので、開閉器14の開閉状態は問わずに判定できる。すなわち、開閉器が開(切)及び閉(入)にいずれの場合にも適用でき、常時開の開閉器14及び常時閉の開閉器の双方に対して判定可能である。   Thus, when a disconnection occurs, two line voltages (U-W voltage, U-V voltage) related to the disconnection phase (U phase) are in the same direction as the line voltage (V-W voltage) of the healthy phase or The reverse direction. That is, the phase difference between the high-voltage single-phase voltage (U-W voltage) and the low-voltage single-phase voltage (U-V voltage and V-W voltage) is compared. At this time, if the load is unbalanced and the U-W voltage is extremely small of the two line voltages (U-W voltage, U-V voltage) related to the disconnection phase (U-phase), the high-voltage single phase The phase difference between the voltage (U-W voltage) and the low-voltage single-phase voltage (U-V voltage and V-W voltage) cannot be compared. In that case, the disconnection can be detected by the method of the next item (2). Further, the present invention can be applied to any case where the switch is opened (off) and closed (on). That is, the phase comparison UV between the high-voltage single-phase voltage (W-U voltage) on the power supply side and the load side and the low-voltage single-phase voltage (U-V voltage or V-W voltage) on the power supply side and the load side, Since the phase comparison is performed by crossing the high-voltage single-phase voltage and the low-voltage single-phase voltage on each of the power supply side and the load side, the open / close state of the switch 14 can be determined regardless. That is, the present invention can be applied to any case where the switch is opened (off) and closed (on), and can be determined for both the normally open switch 14 and the normally closed switch.

(2)開閉器14が閉(入)で、電源側及び負荷側の双方の高圧単相電圧と低圧単相電圧との検相不明、かつ電源側及び負荷側の双方の低圧単相電圧が有りのとき。 (2) When the switch 14 is closed (on), the phase detection of the high-voltage single-phase voltage on both the power supply side and the load side and the low-voltage single-phase voltage is unknown, and the low-voltage single-phase voltage on both the power supply side and the load side is When there is.

断線判定手段24は、開閉器14が閉(入)状態のときに、電源側及び負荷側の双方の高圧単相電圧(W−U電圧)の値が小さく、電源側及び負荷側の高圧単相電圧(W−U電圧)と電源側及び負荷側の低圧単相電圧(V−WU−V電圧及びV−W電圧)との検相(位相判定)U−Vができないとき(検相不明であるとき)は、電源側の低圧単相電圧(V−W電圧)及び負荷側の低圧単相電圧(U−V電圧)が「有」で断線が発生したと判定する。   When the switch 14 is in the closed (on) state, the disconnection determining means 24 has a small value of the high-voltage single-phase voltage (W-U voltage) on both the power supply side and the load side, and the high-voltage single unit on the power supply side and the load side. When phase detection (phase determination) U-V between phase voltage (W-U voltage) and low-voltage single-phase voltage (V-WU-V voltage and V-W voltage) on the power supply side and load side is not possible (phase detection unknown) ), The low-voltage single-phase voltage (V-W voltage) on the power supply side and the low-voltage single-phase voltage (U-V voltage) on the load side are “present”, and it is determined that a disconnection has occurred.

図4は、開閉器14が閉(入)で、断線時に高圧単相電圧が「無」で低圧単相電圧が「有」となる電源側及び負荷側の電圧ベクトル図であり、図4(a)は健全時の電源側及び負荷側の電圧ベクトル図、図4(b)はU相に断線が発生した場合の電源側及び負荷側の電圧ベクトル図である。   FIG. 4 is a voltage vector diagram on the power supply side and the load side in which the switch 14 is closed (on), the high-voltage single-phase voltage is “none” and the low-voltage single-phase voltage is “present” when disconnected. FIG. 4A is a voltage vector diagram on the power supply side and the load side in a healthy state, and FIG. 4B is a voltage vector diagram on the power supply side and the load side when a disconnection occurs in the U phase.

健全時においては、図4(a)に示すように、電源側では、高圧単相電圧(U−W電圧)に対し低圧単相電圧(V−W電圧)は位相角120°であり、負荷側では、高圧単相電圧(U−W電圧)に対し低圧単相電圧(U−V電圧)は位相角240°である。   In a healthy state, as shown in FIG. 4 (a), on the power supply side, the low-voltage single-phase voltage (V-W voltage) has a phase angle of 120 ° with respect to the high-voltage single-phase voltage (U-W voltage), and the load On the side, the low-voltage single-phase voltage (U-V voltage) has a phase angle of 240 ° with respect to the high-voltage single-phase voltage (U-W voltage).

一方、開閉器14が閉(入)状態のときに、U相に断線が発生すると、図4(b)に示すように、U相がV−W電圧上に移行するが、負荷状態によっては高圧単相電圧(U−W電圧)の値が小さく、電源側及び負荷側の高圧単相電圧(U−W電圧)と電源側及び負荷側の低圧単相電圧(V−WU−V−V電圧及びV−W電圧)との検相U−Vができないことがある。   On the other hand, if the disconnection occurs in the U phase when the switch 14 is in the closed (on) state, the U phase shifts to the V-W voltage as shown in FIG. High-voltage single-phase voltage (U-W voltage) is small, high-voltage single-phase voltage (U-W voltage) on the power supply side and load side, and low-voltage single-phase voltage (V-WU-V-V) on the power supply side and load side Voltage and V-W voltage) may not be performed.

このように、負荷のアンバランスにより断線時に高圧単相電圧(U−W電圧)が非常に小さい電圧となった場合には、高低圧の検相を行うことができず、断線を検知できない。そこで、2つの低圧単相電圧(V−W電圧、U−V電圧)が有効である状態を以て断線と判定する。つまり、電源側の低圧単相電圧(V−W電圧)及び負荷側の低圧単相電圧(U−V電圧)が「有」であるので、断線が発生したと判定する。   Thus, when the high-voltage single-phase voltage (U-W voltage) becomes a very small voltage at the time of disconnection due to load imbalance, phase detection at high and low pressure cannot be performed, and disconnection cannot be detected. Therefore, it is determined that the wire is disconnected when the two low-voltage single-phase voltages (V-W voltage, U-V voltage) are valid. That is, since the low-voltage single-phase voltage (V-W voltage) on the power supply side and the low-voltage single-phase voltage (U-V voltage) on the load side are “present”, it is determined that a disconnection has occurred.

(3)開閉器が開(切)で、電源側または負荷側の高圧単相電圧と低圧単相電圧との検相不明、かつ検相不明側の低圧単相電圧が有りのとき。 (3) When the switch is open (off), the phase detection between the high-voltage single-phase voltage on the power supply side or the load side and the low-voltage single-phase voltage is unknown, and the low-voltage single-phase voltage on the phase detection unknown side is present.

断線判定手段24は、開閉器14が開(切)状態のときに、電源側及び負荷側の高圧単相電圧(W−U電圧)と電源側及び負荷側の低圧単相電圧(U−V電圧及びV−W電圧)との検相不明U−Vで、かつ検相不明側の低圧単相電圧が有りのときは、断線が発生したと判定する。   When the switch 14 is in an open (off) state, the disconnection determination means 24 is configured to supply a high-voltage single-phase voltage (W-U voltage) on the power supply side and the load side and a low-voltage single-phase voltage (U-V) on the power supply side and the load side. Voltage and V-W voltage), and when there is a low-voltage single-phase voltage on the phase detection unknown side, it is determined that a disconnection has occurred.

図5は、開閉器が開(切)で、断線時に電源側の高圧単相電圧が「無」で低圧単相電圧が「有」となる電源側及び負荷側の電圧ベクトル図であり、図5(a)は健全時の電源側及び負荷側の電圧ベクトル図、図5(b)は電源側のU相に断線が発生した場合の電源側及び負荷側の電圧ベクトル図である。   FIG. 5 is a voltage vector diagram on the power supply side and the load side when the switch is open (off), the high-voltage single-phase voltage on the power-supply side is “none” and the low-voltage single-phase voltage is “present” when the switch is disconnected. FIG. 5A is a voltage vector diagram on the power supply side and the load side in a healthy state, and FIG. 5B is a voltage vector diagram on the power supply side and the load side when a disconnection occurs in the U phase on the power supply side.

健全時においては、図5(a)に示すように、電源側では、高圧単相電圧(U−W電圧)に対し低圧単相電圧(V−W電圧)は位相角120°であり、負荷側では、高圧単相電圧(U−W電圧)に対し低圧単相電圧(U−V電圧)は位相角240°である。   In a healthy state, as shown in FIG. 5 (a), on the power supply side, the low-voltage single-phase voltage (V-W voltage) has a phase angle of 120 ° with respect to the high-voltage single-phase voltage (U-W voltage), and the load On the side, the low-voltage single-phase voltage (U-V voltage) has a phase angle of 240 ° with respect to the high-voltage single-phase voltage (U-W voltage).

一方、開閉器14が開(切)状態のときには、電源側と負荷側は独立して運用されているので、断線時に電源側の高圧単相電圧(U−W電圧)と負荷側の高圧単相電圧(U−W電圧)とが同じ状態とならない。   On the other hand, when the switch 14 is in the open (off) state, the power supply side and the load side are operated independently, so that when the disconnection is disconnected, the high-voltage single-phase voltage (U-W voltage) on the power supply side and the high-voltage single on the load side are The phase voltage (U-W voltage) is not the same.

いま、電源側のU相に断線が発生したとすると、図5(b)に示すように、負荷側では健全時の電圧ベクトルを維持しており、電源側ではU相に断線が発生したことに伴い電源側のU相電圧がV−W電圧上に移行するが、負荷状態によっては電源側の高圧単相電圧(U−W電圧)の値が小さく、電源側の高圧単相電圧(U−W電圧)と電源側の低圧単相電圧(V−W電圧)との検相ができないことがある。この場合には、検相ができない電源側の低圧単相電圧(V−W電圧)が「有」で断線が発生したと判定する。   Assuming that a disconnection has occurred in the U phase on the power supply side, as shown in FIG. 5B, the voltage vector at the time of soundness is maintained on the load side, and a disconnection has occurred in the U phase on the power supply side. Accordingly, the U-phase voltage on the power supply side shifts to the V-W voltage, but depending on the load state, the value of the high-voltage single-phase voltage (U-W voltage) on the power supply side is small, and the high-voltage single-phase voltage (U -W voltage) and low-voltage single-phase voltage (V-W voltage) on the power source side may not be detected. In this case, it is determined that a disconnection has occurred because the low-voltage single-phase voltage (V-W voltage) on the power source side that cannot perform phase detection is “present”.

なお、負荷側のU相に断線が発生した場合も同様に、検相ができない負荷側の低圧単相電圧(U−V電圧)が「有」で断線が発生したと判定する。   Similarly, when a disconnection occurs in the U phase on the load side, it is similarly determined that a disconnection has occurred because the load-side low-voltage single-phase voltage (U-V voltage) that cannot be phase-detected is “present”.

(4)開閉器が開で、電源側または負荷側の高圧単相電圧と低圧単相電圧との検相不明、かつ電源側の高圧単相電圧と負荷側の高圧単相電圧とが異相であるとき。 (4) The switch is open, the phase of the high-voltage single-phase voltage on the power supply side or load side and the low-voltage single-phase voltage is unknown, and the high-voltage single-phase voltage on the power-supply side and the high-voltage single-phase voltage on the load side are out of phase. One day.

断線判定手段24は、開閉器14が開(切)状態のときに、電源側の高圧単相電圧(U−W電圧)と電源側の低圧単相電圧(V−W電圧)との検相不明または負荷側の高圧単相電圧(U−W電圧)と負荷側の低圧単相電圧(U−V電圧)との検相不明で、かつ電源側の高圧単相電圧(U−W電圧)と負荷側の高圧単相電圧(U−W電圧)とが60°の位相差を成すときは断線が発生したと判定する。   The disconnection determining means 24 detects the phase of the high-voltage single-phase voltage (U-W voltage) on the power source side and the low-voltage single-phase voltage (V-W voltage) on the power source side when the switch 14 is open (cut). Unknown or phase detection unknown between high-voltage single-phase voltage (U-W voltage) on load side and low-voltage single-phase voltage (U-V voltage) on load side, and high-voltage single-phase voltage (U-W voltage) on power supply side And a high-voltage single-phase voltage (U-W voltage) on the load side make a phase difference of 60 °, it is determined that a disconnection has occurred.

図6は、開閉器が開(切)で、断線時に電源側の低圧単相電圧が「無」で高圧単相電圧が「有」となる電源側及び負荷側の電圧ベクトル図であり、図6(a)は健全時の電源側及び負荷側の電圧ベクトル図、図6(b)は電源側のU相に断線が発生した場合の電源側及び負荷側の電圧ベクトル図である。   FIG. 6 is a voltage vector diagram on the power supply side and the load side when the switch is open (off), the low-voltage single-phase voltage on the power-supply side is “none”, and the high-voltage single-phase voltage is “present” at the time of disconnection. FIG. 6A is a voltage vector diagram on the power supply side and the load side in a healthy state, and FIG. 6B is a voltage vector diagram on the power supply side and the load side when a disconnection occurs in the U phase on the power supply side.

健全時においては、図6(a)に示すように、電源側では、高圧単相電圧(U−W電圧)に対し低圧単相電圧(V−W電圧)は位相角120°であり、負荷側では、高圧単相電圧(U−W電圧)に対し低圧単相電圧(U−V電圧)は位相角240°である。   In a healthy state, as shown in FIG. 6A, on the power source side, the low-voltage single-phase voltage (V-W voltage) has a phase angle of 120 ° with respect to the high-voltage single-phase voltage (U-W voltage), and the load On the side, the low-voltage single-phase voltage (U-V voltage) has a phase angle of 240 ° with respect to the high-voltage single-phase voltage (U-W voltage).

一方、開閉器14が開(切)状態のときには、電源側と負荷側は独立して運用されているので、断線時に電源側の高圧単相電圧(U−W電圧)と負荷側の高圧単相電圧(U−W電圧)とが同じ状態とならない。   On the other hand, when the switch 14 is in the open (off) state, the power supply side and the load side are operated independently, so that when the disconnection is disconnected, the high-voltage single-phase voltage (U-W voltage) on the power supply side and the high-voltage single on the load side are The phase voltage (U-W voltage) is not the same.

いま、電源側のU相に断線が発生したとすると、図6(b)に示すように、負荷側では健全時の電圧ベクトルを維持しており、電源側のU相に断線が発生したことに伴い電源側のU相がV−W電圧上に移行するが、負荷状態によっては電源側の低圧単相電圧(U−V電圧)の値が小さく、電源側の高圧単相電圧(U−W電圧)と電源側の低圧単相電圧(V−W電圧)との検相ができないことがある。   Assuming that a disconnection occurs in the U phase on the power supply side, as shown in FIG. 6B, the voltage vector in the healthy state is maintained on the load side, and the disconnection occurs in the U phase on the power supply side. As a result, the U phase on the power supply side shifts to the V-W voltage. However, depending on the load state, the value of the low voltage single phase voltage (UV voltage) on the power supply side is small, and the high voltage single phase voltage (U- (W voltage) and low-voltage single-phase voltage (V-W voltage) on the power supply side may not be detected.

この場合には、電源側の高圧単相電圧(U−W電圧)が「有」であるので、電源側の高圧単相電圧(U−W電圧)と負荷側の高圧単相電圧(U−W電圧)とが60°の位相差を成すときは断線が発生したと判定する。すなわち、断線が発生した電源側の高圧単相電圧(U−W電圧)は、健全時の高圧単相電圧(U−W電圧)に対し、位相角が60°進むので、健全である負荷側の高圧単相電圧(U−W電圧)と位相比較して断線を判定することになる。   In this case, since the high-voltage single-phase voltage (U-W voltage) on the power supply side is “present”, the high-voltage single-phase voltage (U-W voltage) on the power-supply side and the high-voltage single-phase voltage (U-W on the load side) When the W voltage has a phase difference of 60 °, it is determined that a disconnection has occurred. In other words, the high-voltage single-phase voltage (U-W voltage) on the power source side where the disconnection has occurred is advanced by 60 ° in phase angle with respect to the high-voltage single-phase voltage (U-W voltage) at the time of sound, so The disconnection is determined by phase comparison with the high-voltage single-phase voltage (U-W voltage).

以上の説明では、U相に断線が発生した場合について説明したが、V相やW相に断線が発生した場合にも同様に適用できる。なお、開閉器14が閉(入)の場合に、遠方制御器12に電源を供給する(V−W電圧、U−V電圧)に共通のV相の断線で負荷が完全にバランスしている場合には、遠方制御器12へ供給する低圧電圧が半分となるので、遠方制御器12が停止する場合があるが、その際にはその装置停止を以て断線を検知することができる。   In the above description, the case where the disconnection occurs in the U phase has been described. However, the present invention can be similarly applied to the case where a disconnection occurs in the V phase and the W phase. When the switch 14 is closed (turned on), the load is completely balanced by the disconnection of the V phase common to the power supply to the remote controller 12 (VW voltage, UV voltage). In this case, since the low voltage supplied to the remote controller 12 is halved, the remote controller 12 may stop. In this case, the disconnection can be detected by stopping the apparatus.

また、常時開(切)の開閉器14の片側のV相断線で負荷の極端なアンバランスにより低圧単相電圧が極めて小さくなってしまった場合には、検相により断線を判定できないが、高圧単相電圧が有るのに低圧単相電圧がない状態となる。そのような状態は、遠方制御装置12の持つ自己診断ロジックで異常と判定することになるので、その自己診断ロジックが働くことにより断線を検知することができる。   In addition, if the low-voltage single-phase voltage becomes extremely small due to the extreme imbalance of the load due to the V-phase disconnection on one side of the normally open (off) switch 14, the disconnection cannot be determined by phase detection. Although there is a single-phase voltage, there is no low-voltage single-phase voltage. Such a state is determined to be abnormal by the self-diagnosis logic of the remote control device 12, so that the disconnection can be detected by the action of the self-diagnosis logic.

第1の実施の形態によれば、断線判定手段24は、遠方制御器12の検相用として設けられた高圧配電線13の高圧単相電圧を検出する電圧検出器15a、15bからの高圧単相電圧及び遠方制御器12の電源用として取り込まれる電源側及び負荷側の低圧単相電圧を用いるので、断線検出のために新たに電圧検出器を設ける必要がなく、断線検出を行うことができる。また、高圧単相電圧及び低圧単相電圧の位相関係に基づいて断線検出するので、電圧検出の感度も高精度のものは要求されないので、既存の電圧検出器をそのまま使用できる。   According to the first embodiment, the disconnection determination means 24 is a high-voltage unit from the voltage detectors 15a and 15b that detects the high-voltage single-phase voltage of the high-voltage distribution line 13 provided for phase detection of the remote controller 12. Since the low-voltage single-phase voltage on the power supply side and the load side taken in for the phase voltage and the power supply of the remote controller 12 is used, it is not necessary to newly provide a voltage detector for disconnection detection, and disconnection detection can be performed. . In addition, since disconnection detection is performed based on the phase relationship between the high-voltage single-phase voltage and the low-voltage single-phase voltage, it is not necessary to have high-sensitivity voltage detection, so that an existing voltage detector can be used as it is.

次に、本発明の第2の実施の形態を説明する。図7は本発明の第2の実施の形態に係わる高圧配電線の断線検出装置11のブロック構成図であり、図7では高圧配電線に設置された遠方制御器12に断線検出装置11を組み込んで構成した場合を示している。この第2の実施の形態は、図1に示した第1の実施の形態に対し、低圧電圧入力手段23で入力した各々の低圧単相電圧が高圧単相電圧の一相とそれぞれ異なる他の二相であることを判定する低圧線接続相確認手段26を追加して設けたものである。図1と同一要素には同一符号を付し重複する説明は省略する。   Next, a second embodiment of the present invention will be described. FIG. 7 is a block diagram of a high voltage distribution line disconnection detection apparatus 11 according to the second embodiment of the present invention. In FIG. 7, the disconnection detection apparatus 11 is incorporated in the remote controller 12 installed in the high voltage distribution line. The case where it comprises is shown. This second embodiment is different from the first embodiment shown in FIG. 1 in that each low-voltage single-phase voltage input by the low-voltage voltage input means 23 is different from one phase of the high-voltage single-phase voltage. A low-voltage line connection phase confirmation means 26 for determining that the two phases are present is additionally provided. The same elements as those in FIG. 1 are denoted by the same reference numerals, and redundant description is omitted.

図7において、断線検出装置11には低圧線接続相確認手段26が追加して設けられている。低圧線接続相確認手段26は電源側の単相変圧器17aからの低圧単相電圧及び負荷側の単相変圧器17bからの低圧単相電圧を低圧電圧入力手段23を介して入力し、また高圧単相電圧の一相(U−W)を高圧電圧入力手段22を介して入力し、各々の低圧単相電圧が高圧単相電圧の一相(U−W)とそれぞれ異なる他の二相(V−W、U−V)であるか否かの判定をする。   In FIG. 7, the disconnection detection device 11 is additionally provided with a low-voltage line connection phase confirmation means 26. The low-voltage line connection phase confirmation means 26 inputs the low-voltage single-phase voltage from the power-supply-side single-phase transformer 17a and the low-voltage single-phase voltage from the load-side single-phase transformer 17b via the low-voltage input means 23. One phase (U-W) of the high-voltage single-phase voltage is input via the high-voltage voltage input means 22, and each of the low-voltage single-phase voltages is different from the one-phase (U-W) of the high-voltage single-phase voltage. It is determined whether or not (V-W, U-V).

すなわち、断線の判定を行うにあたっては、高圧配電線13の三相線間電圧であるU−W、V−W、U−Vが必要であるので、電源側の単相変圧器17a、負荷側の単相変圧器17bで取り出す低圧単相電圧の相順が重要であり、高圧配電線13の三相線間電圧であるV−W、U−Vが取り出されているかどうか、その接続確認を行う。   That is, in determining the disconnection, U-W, V-W, and U-V, which are the three-phase line voltages of the high-voltage distribution line 13, are necessary. The phase sequence of the low-voltage single-phase voltage taken out by the single-phase transformer 17b is important, and whether or not the V-W and U-V that are the three-phase line voltages of the high-voltage distribution line 13 are taken out is checked. Do.

低圧線接続相確認手段26は、以下の条件(1)のときに正常と判定し、条件(2)のときに異常と判定し、条件(3)のときに判定不能の判定をする。   The low-voltage line connection phase confirmation means 26 determines that it is normal when the following condition (1) is satisfied, determines that it is abnormal when it is the condition (2), and determines that determination is impossible when it is the condition (3).

(1)電源側及び負荷側の高圧単相電圧と低圧単相電圧とが異相、かつ電源側の低圧単相電圧と負荷側の低圧単相電圧とが異相、かつ電源側の高圧単相電圧と負荷側の高圧単相電圧とが同相であるときに、正常と判定する。 (1) The high-voltage single-phase voltage and the low-voltage single-phase voltage on the power supply side and the load side are different from each other, and the low-voltage single-phase voltage on the power-supply side and the low-voltage single-phase voltage on the load side are different from each other. Is determined to be normal when the load and the high-voltage single-phase voltage on the load side are in phase.

図8は、低圧線接続相確認手段26により正常と判断される場合の電源側及び負荷側の電圧ベクトル図である。正常に接続された場合は、図3(a)に示した電圧ベクトルと同じであり、電源側では、高圧単相電圧(U−W電圧)に対し低圧単相電圧(V−W電圧)は位相角120°であり、負荷側では、高圧単相電圧(U−W電圧)に対し低圧単相電圧(U−V電圧)は位相角240°である。   FIG. 8 is a voltage vector diagram on the power supply side and the load side when it is determined normal by the low-voltage line connection phase confirmation means 26. When normally connected, the voltage vector is the same as that shown in FIG. 3A. On the power supply side, the low-voltage single-phase voltage (V-W voltage) is higher than the high-voltage single-phase voltage (U-W voltage). The phase angle is 120 °. On the load side, the low-voltage single-phase voltage (U-V voltage) is 240 ° with respect to the high-voltage single-phase voltage (U-W voltage).

(2)電源側の高圧単相電圧と負荷側の高圧単相電圧とが同相かつ電源側または負荷側の高圧単相電圧と電源側または負荷側のいずれかの低圧単相電圧とが同相であるとき、または、電源側の高圧単相電圧と負荷側の高圧単相電圧とが同相かつ電源側の低圧単相電圧と負荷側の単相電圧とが同相であるときに、異常と判定する。 (2) The high-voltage single-phase voltage on the power supply side and the high-voltage single-phase voltage on the load side are in phase, and the high-voltage single-phase voltage on the power supply side or load side and the low-voltage single-phase voltage on either the power supply side or load side are in phase It is determined that there is an abnormality when the high-voltage single-phase voltage on the power supply side and the high-voltage single-phase voltage on the load side are in phase, and the low-voltage single-phase voltage on the power supply side and the single-phase voltage on the load side are in phase. .

図9は、低圧線接続相確認手段26により異常と判断される場合の電源側及び負荷側の電圧ベクトル図である。図9(a)に示すように、例えば、電源側の高圧単相電圧と負荷側の高圧単相電圧とが同相、かつ負荷側の高圧単相電圧と負荷側の低圧単相電圧とが同相であるときは異常と判定する。これは、電源側の高圧単相電圧と負荷側の高圧単相電圧とが同相である場合に、その高圧単相電圧と同相の低圧単相電圧があることは、いずれかの低圧単相電圧の入力が欠落していることになるからである。同様に、電源側の高圧単相電圧と負荷側の高圧単相電圧とが同相、かつ電源側の高圧単相電圧と電源側の低圧単相電圧とが同相であるときも異常と判定する。   FIG. 9 is a voltage vector diagram on the power source side and the load side when the low voltage line connection phase confirmation means 26 determines that an abnormality has occurred. As shown in FIG. 9A, for example, the high-voltage single-phase voltage on the power supply side and the high-voltage single-phase voltage on the load side are in phase, and the high-voltage single-phase voltage on the load side and low-voltage single-phase voltage on the load side are in phase. Is determined as abnormal. This is because when a high-voltage single-phase voltage on the power supply side and a high-voltage single-phase voltage on the load side are in phase, there is a low-voltage single-phase voltage that is in phase with the high-voltage single-phase voltage. This is because the input is missing. Similarly, an abnormality is also determined when the high-voltage single-phase voltage on the power supply side and the high-voltage single-phase voltage on the load side are in phase, and the high-voltage single-phase voltage on the power supply side and the low-voltage single-phase voltage on the power supply side are in phase.

図9(b)に示すように、電源側の高圧単相電圧と負荷側の高圧単相電圧とが同相、かつ電源側の低圧単相電圧と負荷側の単相電圧とが同相であるときには、異常と判定する。これは、電源側の高圧単相電圧と負荷側の高圧単相電圧とが同相である場合に、互いに同相の低圧単相電圧があることは、いずれかの低圧単相電圧の入力が欠落していることになるからである。   As shown in FIG. 9B, when the high-voltage single-phase voltage on the power source side and the high-voltage single-phase voltage on the load side are in phase, and the low-voltage single-phase voltage on the power source side and the single-phase voltage on the load side are in phase Determined as abnormal. This is because when the high-voltage single-phase voltage on the power supply side and the high-voltage single-phase voltage on the load side are in phase, there is a low-voltage single-phase voltage that is in phase with each other. Because it will be.

(3)電源側または負荷側の高圧単相電圧のいずれかが不明、または電源側または負荷側の低圧単相電圧のいずれかが不明、または電源側の高圧単相電圧と負荷側の高圧単相電圧とが異相であるときに、判定不能と判定する。 (3) Either the high-voltage single-phase voltage on the power supply side or the load side is unknown, or the low-voltage single-phase voltage on the power supply side or the load side is unknown, or the high-voltage single-phase voltage on the power supply side and the high-voltage single-phase voltage on the load side When the phase voltage is out of phase, it is determined that the determination is impossible.

図10は、低圧線接続相確認手段26により判定不能と判断される場合の電源側及び負荷側の電圧ベクトル図である。図10(a)に示すように、例えば、電源側の高圧単相電圧及び低圧単相電圧が無い状態で、負荷側の高圧単相電圧及び低圧単相電圧がある状態のときは、電源側の高圧単相電圧または低圧単相電圧が不明に相当するので、判定不能と判定する。これは、電源側の配電線において保守工事が行われている場合には、保守区間を切り離すことがあり、その場合には、電圧の発生がなく単相変圧器の接続状態の判定ができないからである。   FIG. 10 is a voltage vector diagram on the power supply side and the load side when it is determined by the low voltage line connection phase confirmation means 26 that determination is impossible. As shown in FIG. 10 (a), for example, when there is no high-voltage single-phase voltage and low-voltage single-phase voltage on the power supply side, Since the high-voltage single-phase voltage or the low-voltage single-phase voltage corresponds to unknown, it is determined that the determination is impossible. This is because when maintenance work is being performed on the distribution line on the power supply side, the maintenance section may be disconnected, and in that case, there is no voltage generation and the connection status of the single-phase transformer cannot be determined. It is.

また、図10(b)に示すように、電源側の高圧単相電圧と負荷側の高圧単相電圧とが異相であるときに、判定不能と判定する。開閉器14が常時開(切)の場合には、単相変圧器17a、17bの接続が正常であったとしても、隣接配電線の位相差が大きくずれている場合(異相)があり、この場合には、断線検出装置11の断線判定手段24により断線誤検出してしまう場合があるので、異相状態の際は断線検出手段24が働かないようにするためである。   Further, as shown in FIG. 10B, when the high-voltage single-phase voltage on the power supply side and the high-voltage single-phase voltage on the load side are different from each other, it is determined that the determination is impossible. When the switch 14 is normally open (off), even if the connection of the single-phase transformers 17a and 17b is normal, the phase difference between adjacent distribution lines may be greatly shifted (different phase). In such a case, the disconnection detection unit 24 of the disconnection detection device 11 may erroneously detect disconnection, so that the disconnection detection unit 24 does not work in a different phase state.

なお、低圧相接続確認手段26での単相変圧器17a、17bの接続状態判定結果は表示部25へ表示出力される。   The connection state determination result of the single-phase transformers 17a and 17b in the low-voltage phase connection confirmation unit 26 is displayed and output to the display unit 25.

第2の実施の形態によれば、第1の実施の形態の効果に加え、単相変圧器17a、17bの二次側の低圧配電線の接続状態を接続相確認手段26により確認判定するので、単相変圧器17a、17bの誤接続による断線判定手段24の誤判定を防止できる。   According to the second embodiment, in addition to the effects of the first embodiment, the connection state of the low-voltage distribution lines on the secondary side of the single-phase transformers 17a and 17b is confirmed and determined by the connection phase confirmation means 26. Further, it is possible to prevent erroneous determination of the disconnection determination means 24 due to erroneous connection of the single-phase transformers 17a and 17b.

本発明の第1の実施の形態に係わる高圧配電線の断線検出装置のブロック構成図。The block block diagram of the disconnection detection apparatus of the high voltage distribution line concerning the 1st Embodiment of this invention. 本発明の第1の実施の形態における断線判定手段での断線判定ロジックのブロック図。The block diagram of the disconnection determination logic in the disconnection determination means in the 1st Embodiment of this invention. 本発明の第1の実施の形態において、断線時に高圧単相電圧と低圧単相電圧とが同相または逆相となる電源側及び負荷側の電圧ベクトル図。In the 1st Embodiment of this invention, the voltage vector figure of the power source side and load side from which a high voltage | pressure single phase voltage and a low voltage | pressure single phase voltage become an in-phase or a reverse phase at the time of a disconnection. 本発明の第1の実施の形態において、開閉器が閉(入)で、断線時に高圧単相電圧が「無」で低圧単相電圧が「有」となる電源側及び負荷側の電圧ベクトル図。In the first embodiment of the present invention, the voltage vector diagram on the power supply side and the load side when the switch is closed (on), the high-voltage single-phase voltage is “none”, and the low-voltage single-phase voltage is “present” at the time of disconnection . 本発明の第1の実施の形態において、開閉器が開(切)で、断線時に電源側の高圧単相電圧が「無」で低圧単相電圧が「有」となる電源側及び負荷側の電圧ベクトル図。In the first embodiment of the present invention, when the switch is open (off), the high-voltage single-phase voltage on the power-supply side is “none” and the low-voltage single-phase voltage is “present” at the time of disconnection. Voltage vector illustration. 本発明の第1の実施の形態において、開閉器が開(切)で、断線時に電源側の低圧単相電圧が「無」で高圧単相電圧が「有」となる電源側及び負荷側の電圧ベクトル図。In the first embodiment of the present invention, when the switch is open (off), the low-voltage single-phase voltage on the power supply side is “none” and the high-voltage single-phase voltage is “present” and the load-side Voltage vector illustration. 本発明の第2の実施の形態に係わる高圧配電線の断線検出装置のブロック構成図。The block block diagram of the disconnection detection apparatus of the high voltage distribution line concerning the 2nd Embodiment of this invention. 本発明の第2の実施の形態における低圧線接続相確認手段により正常と判断される場合の電源側及び負荷側の電圧ベクトル図。The voltage vector figure of the power supply side and load side in the case of being judged normal by the low voltage | pressure line connection phase confirmation means in the 2nd Embodiment of this invention. 本発明の第2の実施の形態における低圧線接続相確認手段により異常と判断される場合の電源側及び負荷側の電圧ベクトル図。The voltage vector figure of the power supply side and load side in case it is judged that it is abnormal by the low voltage | pressure line connection phase confirmation means in the 2nd Embodiment of this invention. 本発明の第2の実施の形態における低圧線接続相確認手段により判定不能と判断される場合の電源側及び負荷側の電圧ベクトル図。The voltage vector figure of the power supply side and load side in the case of determining with the low voltage line connection phase confirmation means in the 2nd Embodiment of this invention being undecidable.

符号の説明Explanation of symbols

11…断線検出装置、12…遠方制御器、13…高圧配電線、14…開閉器、15…電圧検出器、16…検相部、17…単相変圧器、18…電源部、19…高圧結合器、20…搬送部、21…制御演算部、22…高圧電圧入力手段、23…低圧電圧入力手段、24…断線判定手段、25…表示部、26…低圧線接続相確認手段

DESCRIPTION OF SYMBOLS 11 ... Disconnection detection apparatus, 12 ... Remote controller, 13 ... High voltage distribution line, 14 ... Switch, 15 ... Voltage detector, 16 ... Phase detection part, 17 ... Single phase transformer, 18 ... Power supply part, 19 ... High voltage Coupler, 20 ... Conveying section, 21 ... Control operation section, 22 ... High voltage input means, 23 ... Low voltage input means, 24 ... Disconnection determination means, 25 ... Display section, 26 ... Low voltage line connection phase confirmation means

Claims (5)

高圧配電線に接続された開閉器の電源側三相電圧及び負荷側三相電圧から各々一相の高圧単相電圧を入力する高圧電圧入力手段と、前記高圧配電線の電源側三相電圧及び負荷側三相電圧から前記高圧単相電圧の一相とそれぞれ異なる他の二相をそれぞれ単相変圧器で降圧して低圧配電線の低圧単相電圧として入力する低圧電圧入力手段と、前記高圧電圧入力手段で入力した高圧単相電圧及び前記低圧電圧入力手段で入力した低圧単相電圧の位相関係に基づいて前記高圧配電線の断線を検出する断線判定手段とを備えたことを特徴とする高圧配電線の断線検出装置。 High-voltage voltage input means for inputting one-phase high-voltage single-phase voltage from the power-supply-side three-phase voltage and load-side three-phase voltage of the switch connected to the high-voltage distribution line; Low-voltage voltage input means for stepping down the other two phases different from one phase of the high-voltage single-phase voltage from the load-side three-phase voltage by a single-phase transformer and inputting the low-voltage single-line voltage of the low-voltage distribution line, and the high voltage A disconnection determining means for detecting disconnection of the high-voltage distribution line based on a phase relationship between the high-voltage single-phase voltage input by the voltage input means and the low-voltage single-phase voltage input by the low-voltage voltage input means. Disconnection detector for high voltage distribution lines. 前記低圧電圧入力手段で入力した各々の低圧単相電圧が前記高圧単相電圧の一相とそれぞれ異なる他の二相であることを判定する低圧線接続相確認手段を備えたことを特徴とする請求項1記載の高圧配電線の断線検出装置。 Low voltage line connection phase confirmation means for judging that each low voltage single phase voltage input by the low voltage voltage input means is another two phase different from one phase of the high voltage single phase voltage is provided. The disconnection detecting device for a high-voltage distribution line according to claim 1. 前記高圧電圧入力手段で入力する高圧単相電圧は、中央制御装置からの指令に基づき前記開閉器を開閉操作する遠方制御器に入力される検相用及び充停電判定用の電圧であり、前記低圧電圧入力手段で入力する低圧単相電圧は、前記遠方制御器の電源用の電圧であることを特徴とする請求項1または2記載の高圧配電線の断線検出装置。 The high-voltage single-phase voltage input by the high-voltage voltage input means is a voltage for phase detection and charge / power failure determination input to a remote controller that opens and closes the switch based on a command from a central controller, 3. The disconnection detecting device for a high-voltage distribution line according to claim 1, wherein the low-voltage single-phase voltage input by the low-voltage voltage input means is a voltage for a power source of the remote controller. 前記断線判定手段は、以下のいずれかの条件が成立したときに断線と判定することを特徴とする請求項1ないし3のいずれか一に記載の高圧配電線の断線検出装置。
(1)高圧単相電圧と低圧単相電圧とが同相または逆相のとき。
(2)開閉器が閉で、電源側及び負荷側の双方の高圧単相電圧と低圧単相電圧との検相不明、かつ電源側及び負荷側の双方の低圧単相電圧が有りのとき。
(3)開閉器が開で、電源側または負荷側の高圧単相電圧と低圧単相電圧との検相不明、かつ検相不明側の低圧単相電圧が有りのとき。
(4)開閉器が開で、電源側または負荷側の高圧単相電圧と低圧単相電圧との検相不明、かつ電源側の高圧単相電圧と負荷側の高圧単相電圧とが異相であるとき。
The disconnection detection device for a high-voltage distribution line according to any one of claims 1 to 3, wherein the disconnection determination means determines that the disconnection occurs when any of the following conditions is satisfied.
(1) When the high-voltage single-phase voltage and the low-voltage single-phase voltage are in phase or reverse phase.
(2) When the switch is closed, the phase of the high-voltage single-phase voltage on both the power supply side and the load side is unknown and the low-voltage single-phase voltage on both the power supply side and the load side is present.
(3) When the switch is open and the phase of the high-voltage single-phase voltage and the low-voltage single-phase voltage on the power supply side or load side is unknown and the low-voltage single-phase voltage on the phase unknown side is present.
(4) The switch is open, the phase of the high-voltage single-phase voltage on the power supply side or load side is unknown, and the high-voltage single-phase voltage on the power supply side is different from the high-voltage single-phase voltage on the load side. One day.
低圧線接続相確認手段は、以下の条件のときに、正常、異常、判定不能の判定をすることを特徴とする請求項2ないし4のいずれか一に記載の高圧配電線の断線検出装置。
(1)電源側及び負荷側の高圧単相電圧と低圧単相電圧とが異相、かつ電源側の低圧単相電圧と負荷側の低圧単相電圧とが異相、かつ電源側の高圧単相電圧と負荷側の高圧単相電圧とが同相であるときに、正常と判定する。
(2)電源側の高圧単相電圧と負荷側の高圧単相電圧とが同相かつ電源側または負荷側の高圧単相電圧と電源側または負荷側のいずれかの低圧単相電圧とが同相であるとき、または、電源側の高圧単相電圧と負荷側の高圧単相電圧とが同相かつ電源側の低圧単相電圧と負荷側の単相電圧とが同相であるときに、異常と判定する。
(3)電源側または負荷側の高圧単相電圧のいずれかが不明、または電源側または負荷側の低圧単相電圧のいずれかが不明、または電源側の高圧単相電圧と負荷側の高圧単相電圧とが異相であるときに、判定不能と判定する。

5. The disconnection detecting device for a high-voltage distribution line according to claim 2, wherein the low-voltage line connection phase confirmation means makes a determination as normal, abnormal, or impossible to determine under the following conditions.
(1) The high-voltage single-phase voltage and the low-voltage single-phase voltage on the power supply side and the load side are different from each other, and the low-voltage single-phase voltage on the power-supply side and the low-voltage single-phase voltage on the load side are different from each other. Is determined to be normal when the load and the high-voltage single-phase voltage on the load side are in phase.
(2) The high-voltage single-phase voltage on the power supply side and the high-voltage single-phase voltage on the load side are in phase, and the high-voltage single-phase voltage on the power supply side or load side and the low-voltage single-phase voltage on either the power supply side or load side are in phase It is determined that there is an abnormality when the high-voltage single-phase voltage on the power supply side and the high-voltage single-phase voltage on the load side are in phase, and the low-voltage single-phase voltage on the power supply side and the single-phase voltage on the load side are in phase. .
(3) Either the high-voltage single-phase voltage on the power supply side or the load side is unknown, or the low-voltage single-phase voltage on the power supply side or the load side is unknown, or the high-voltage single-phase voltage on the power supply side and the high-voltage single-phase voltage on the load side When the phase voltage is out of phase, it is determined that the determination is impossible.

JP2005002151A 2005-01-07 2005-01-07 Disconnection detector for high voltage distribution lines Expired - Fee Related JP4403968B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005002151A JP4403968B2 (en) 2005-01-07 2005-01-07 Disconnection detector for high voltage distribution lines

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005002151A JP4403968B2 (en) 2005-01-07 2005-01-07 Disconnection detector for high voltage distribution lines

Publications (2)

Publication Number Publication Date
JP2006189356A JP2006189356A (en) 2006-07-20
JP4403968B2 true JP4403968B2 (en) 2010-01-27

Family

ID=36796711

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005002151A Expired - Fee Related JP4403968B2 (en) 2005-01-07 2005-01-07 Disconnection detector for high voltage distribution lines

Country Status (1)

Country Link
JP (1) JP4403968B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5119976B2 (en) * 2008-02-27 2013-01-16 東京電力株式会社 High voltage distribution line disconnection detection system, method and program
CN111650542A (en) * 2020-07-07 2020-09-11 国电大渡河瀑布沟发电有限公司 Detection device and method for preventing slow fusing of generator set terminal voltage transformer fuse

Also Published As

Publication number Publication date
JP2006189356A (en) 2006-07-20

Similar Documents

Publication Publication Date Title
US9413164B2 (en) Protection system for electrical power distribution system using directional current detection and logic within protective relays
US8866487B2 (en) Directional fault sectionalizing system
KR101571213B1 (en) fault clearing system and its method for microgrid
KR100920113B1 (en) OCGR protection algorithm for preventing mal-operation by Reverse power
JP4403968B2 (en) Disconnection detector for high voltage distribution lines
JP2009005565A (en) Distribution line accident zone selecting and blocking device and distribution line accident zone selecting and blocking method
JP5530404B2 (en) Switch control device and distribution automation system
KR20170124817A (en) Digital triple protection relay system
JP5317797B2 (en) Distributed power shutoff system and supervisory control device
KR100955806B1 (en) The automatic power transfer device for selection connection of the normal power and photovoltaic power supply to load detecting power state of the load
JP4568324B2 (en) Uninterruptible power supply system
US11469611B2 (en) Power supply system
JP2004125688A (en) Field test method for differential relay using excitation inrush current
JP4684153B2 (en) Power supply line monitoring system
CN111052526B (en) Dual input circuit breaker system for power plant power systems
JP6604882B2 (en) Transformer high voltage side phase loss detection system
JP2008278662A (en) Bus protective relaying device
JP2022052372A (en) Relay device and power receiving system
US8896977B2 (en) Method for operating an electrical power supply network
JP2005229694A (en) Ups system
Thompson Integrated Protection and Control Systems with Continuous Self-Testing
JP3869841B2 (en) Normally open loop power distribution ground fault detection protection system
JP5956956B2 (en) Multi-system control system
JP2023150832A (en) Protection coordination system in micro grid
JP2023072236A (en) Protection system for electric railroad dc substation

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071105

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091005

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20091013

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20091026

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121113

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees