JP4403279B2 - Method for producing positive electrode material for lithium ion battery - Google Patents

Method for producing positive electrode material for lithium ion battery Download PDF

Info

Publication number
JP4403279B2
JP4403279B2 JP2006067784A JP2006067784A JP4403279B2 JP 4403279 B2 JP4403279 B2 JP 4403279B2 JP 2006067784 A JP2006067784 A JP 2006067784A JP 2006067784 A JP2006067784 A JP 2006067784A JP 4403279 B2 JP4403279 B2 JP 4403279B2
Authority
JP
Japan
Prior art keywords
positive electrode
electrode material
lithium ion
ion battery
fepo
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2006067784A
Other languages
Japanese (ja)
Other versions
JP2007250203A (en
Inventor
浩一 大川
順平 矢吹
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Akita University NUC
Original Assignee
Akita University NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Akita University NUC filed Critical Akita University NUC
Priority to JP2006067784A priority Critical patent/JP4403279B2/en
Publication of JP2007250203A publication Critical patent/JP2007250203A/en
Application granted granted Critical
Publication of JP4403279B2 publication Critical patent/JP4403279B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Description

本発明は、電池用正極材料に関し、特にリチウムイオン電池用正極材料の製造方法に関するものである。   The present invention relates to a positive electrode material for a battery, and more particularly to a method for producing a positive electrode material for a lithium ion battery.

リチウムイオン電池の正極活物質としては、LiCoO2が主に用いられ、その優れた性能から携帯電話、パーソナルコンピューター等の小型電子機器の発展に貢献してきた。
しかしながら、最近では中国とのリチウム電池の価格競争、また、携帯電話等の高機能化から、より高性能で低価格のリチウムイオン電池が望まれている。
そこでCoより価格の安価なMnを用いた、LiMn24がLiCoO2と同様に実用化され始めている。
しかしながら、リチウムイオン電池は今後より大きな形態へと変化する可能性がある。
それはハイブリットカー用や風車、太陽光といった自然エネルギー発電の負荷平準化システムがあげられる。
工場における大型タービン駆動用電池としても、大型なリチウムイオン電池の誕生は望ましい。
現在これら大型電池にはニッケル水素電池が主に用いられている。
非水系のリチウムイオン二次電池に比べ安全であるからという理由もあるが、主な理由は価格にあると思われる。
ニッケル水素電池は、頻繁に使用したSOC付近での電圧降下がおこるという、メモリー降下と呼ばれる欠点を持つ。
そのため、電圧による正確な残存容量等が把握しづらい。
リチウムイオン二次電池にはその欠点がない。
また電圧が1本あたり約3.6Vとニッケル水素電池の3倍であるため、大きな仕事をなすために、直列に連結される電池の個数が少なくて済む。
リチウムイオン二次電池の大型化の課題は低価格で高性能な正極材料の誕生である。
注目されている材料がLiFePO4,FePO4であり、鉄を種元素としており、価格面で優位である。
また、電圧も現在のLiCoO2と匹敵する3.4V(v.s.Li+)を有し、理論容量も170mAh/gと大きい。
問題は、LiFePO4は水熱合成、FePO4酸化還元剤、Fe3PO7は高温長時間焼成を必要とし、いずれも手間がかかる。
鉄系正極材料(LiFePO4,FePO4,Fe3PO7,Li3Fe2(PO4)3等)は合成主原料が安価であるが、水熱合成法、酸化還元剤の添加、高温長時間焼成といった合成方法では手間および製造コストがかかってしまう。
出来るだけ簡単な装置で、低温短時間で合成できることが必要である。
LiCoO 2 is mainly used as a positive electrode active material for lithium ion batteries, and its excellent performance has contributed to the development of small electronic devices such as mobile phones and personal computers.
However, recently, due to price competition of lithium batteries with China and higher functionality of mobile phones and the like, higher performance and lower cost lithium ion batteries are desired.
Therefore, LiMn 2 O 4 using Mn, which is less expensive than Co, has begun to be put to practical use in the same way as LiCoO 2 .
However, the lithium ion battery may change to a larger form in the future.
Examples include load leveling systems for natural energy generation such as hybrid cars, windmills, and sunlight.
As a battery for driving a large turbine in a factory, the birth of a large lithium ion battery is desirable.
Currently, nickel metal hydride batteries are mainly used for these large batteries.
There is a reason that it is safer than non-aqueous lithium ion secondary batteries, but the main reason seems to be the price.
Nickel metal hydride batteries have a drawback called memory drop, in which a voltage drop occurs in the vicinity of a frequently used SOC.
Therefore, it is difficult to grasp the accurate remaining capacity due to the voltage.
Lithium ion secondary batteries do not have this drawback.
Moreover, since the voltage is about 3.6 V per battery, which is three times that of a nickel metal hydride battery, the number of batteries connected in series is small in order to perform a large work.
The issue of increasing the size of lithium ion secondary batteries is the birth of low-cost, high-performance cathode materials.
The materials that are attracting attention are LiFePO 4 and FePO 4 , which use iron as a seed element, which is advantageous in terms of price.
In addition, the voltage is 3.4 V (vs. Li + ) comparable to current LiCoO 2, and the theoretical capacity is as large as 170 mAh / g.
The problem is that LiFePO 4 requires hydrothermal synthesis, FePO 4 requires a redox agent , and Fe 3 PO 7 requires firing at a high temperature for a long time.
Iron-based positive electrode materials (LiFePO 4 , FePO 4 , Fe 3 PO 7 , Li 3 Fe 2 (PO 4 ) 3, etc.) are inexpensive to synthesize, but hydrothermal synthesis, addition of redox agent , high temperature length Synthetic methods such as time firing require labor and manufacturing costs.
It is necessary to be able to synthesize at a low temperature and in a short time with a device as simple as possible.

特開2005−38772号公報JP-A-2005-38772 Wang, X. :Yang, X. :Zheng, H. :Jin, J.: Zhang, Z. Synthesis and electrochemical performance of amorphous hydrated iron phosphate nanoparticles. J.Crystal Growth. 274(2005) 214-217Wang, X.:Yang, X.:Zheng, H.:Jin, J .: Zhang, Z. Synthesis and electrochemical performance of amorphous hydrated iron phosphate nanoparticles.J.Crystal Growth.274 (2005) 214-217 Scaccia, S. :Carewska, M. :Wisniewski, P. :Prosini, P. P. Morphological investigation of sub-micron FePO4 and LiFePO4 particles for rechargeable lithium batteries. Materials Research Bulletin. 38(2003)1155-1163Scaccia, S.:Carewska, M.:Wisniewski, P.:Prosini, P. P. Morphological investigation of sub-micron FePO4 and LiFePO4 particles for rechargeable lithium batteries.Materials Research Bulletin. 38 (2003) 1155-1163 Hong, Y. :Park, Y. P. :Ryu, K. S. :Chang, S. H. Crystalline Fe3PO7 as an electrode material for lithium secondary batteries. Solid State Ionics. 136(2003)27-33Hong, Y.:Park, Y.P.:Ryu, K.S.:Chang, S. H.Crystalline Fe3PO7 as an electrode material for lithium secondary batteries.Solid State Ionics.136 (2003) 27-33

本発明は、出発原料に超音波を照射し、化学反応させて鉄含有正極活物質を得るリチウム電池用正極材料の製造方法を提供するものである。   This invention provides the manufacturing method of the positive electrode material for lithium batteries which irradiates an ultrasonic wave to a starting material, and makes it chemically react and obtains an iron-containing positive electrode active material.

本発明のリチウム電池用正極材料の製造方法は、鉄化合物と燐酸化合物及びリチウム化合物、又は鉄化合物と燐酸化合物を出発原料とし、イオン交換水又は純水に前記出発原料を投入し、200kHz−600kHzの超音波を照射することによって特異反応場を生成することにより、LiFePO 4 ,FePO 4 ,Fe 3 PO 7 ,Li 3 Fe 2 (PO 4 3 から選ばれた正極材料を合成するものである。
本発明のリチウムイオン電池は、超音波によるリチウムイオン電池用正極材料の製造方法により合成されたLiFePO4,FePO4,Fe3PO7,Li3Fe2(PO43から選ばれた正極材料を用いたものである。
The method for producing a positive electrode material for a lithium battery according to the present invention includes an iron compound and a phosphoric acid compound and a lithium compound, or an iron compound and a phosphoric acid compound as starting materials, and the starting materials are charged into ion-exchanged water or pure water. The positive electrode material selected from LiFePO 4 , FePO 4 , Fe 3 PO 7 , and Li 3 Fe 2 (PO 4 ) 3 is synthesized by generating a specific reaction field by irradiating the ultrasonic wave.
The lithium ion battery of the present invention is a positive electrode material selected from LiFePO 4 , FePO 4 , Fe 3 PO 7 , and Li 3 Fe 2 (PO 4 ) 3 synthesized by a method for producing a positive electrode material for a lithium ion battery using ultrasonic waves. Is used.

本発明のリチウム電池用正極材料の製造方法は、大掛かりな装置が必要なく、容易に正極材料の合成が可能である。
本発明のリチウム電池用正極材料の製造方法は、合成において時間や手順が短縮でき、反応酸化・還元剤の添加が不必要である。
また、均一で微細な結晶が得られる為、放電容量に優れたリチウム2次電池を提供できる。
The method for producing a positive electrode material for a lithium battery according to the present invention does not require a large-scale apparatus and can easily synthesize the positive electrode material.
The method for producing a positive electrode material for a lithium battery of the present invention can shorten the time and procedure in the synthesis, and does not require the addition of a reactive oxidizing / reducing agent.
In addition, since uniform and fine crystals can be obtained, a lithium secondary battery excellent in discharge capacity can be provided.

以下、本発明のリチウム電池用正極材料の製造方法の実施例について説明するが、本発明はこれらの記述により限定されるものではない。
また、以下の実施例に記載された活物質の出発原料、原料の混合比率、製造方法、正極、負極、電解質、セパレータおよび電池形状などに限定されるものではない。
本実施例は、本発明により合成した活物質を正極に用い、負極には金属リチウムを用いた。
リチウム含有材料、炭素材料を負極に用いてもかまわない。
また、電解質、セパレータの代わりに固体電解質を用いてもかまわない。
本発明のリチウム電池用正極材料は、組成式に鉄Feを含む化合物で、超音波により合成されるものである。
出発原料に超音波を照射し、化学反応させて鉄含有正極活物質を得るものである。
本発明は超音波による電極材料合成手法それにより合成された電極材料、それを用いたリチウムイオン電池である。
超音波発生装置は200kHz−600kHzの高周波で、出力は200W程度を用いる。
定常波を発生させ、その力は溶液を媒体として伝え、原料に照射することにより合成する。
主に3価の鉄を含有する材料を合成するときは大気下で行い、2価の鉄を有する材料はAr等の雰囲気下で合成する。
このように合成された本発明の正極活物質は、均一な微粒子をしており、表面積の増大による電池特性の向上が期待できる。
これは、FePO4等合成に酸化剤が必要なものに関しては、超音波の照射により水がOHラジカルとHラジカルに分かれることから生ずる過酸化水素がゆっくりと発生することにより、局所的な反応を避けられ、偏らない反応がおこり、粒子の均一化につながると考えられる。
超音波を用いることで酸化剤は不要となる。
また、LiFePO4はアルゴン雰囲気下で行い、超音波照射による定常波から水の疎、密部が生まれ、急激な圧力変化による特異反応場のため水溶系で生成が可能となったと考えられる。
Fe3PO7の合成は一般には、まず溶液法でFePO4を合成した後、Fe23を混合し固相法で合成する2段ステップが主であるが、超音波ではFeSO4・7H2O,Fe23,(NH4)2HPO4を出発原料とすることで1ステップの合成が可能である。
この理由もLiFePO4の場合と同様、強力な定常波による高温高圧な特異反応場のためと考えられる。
Examples of the method for producing a positive electrode material for a lithium battery according to the present invention will be described below, but the present invention is not limited to these descriptions.
Moreover, it is not limited to the starting material of the active material, the mixing ratio of the raw materials, the production method, the positive electrode, the negative electrode, the electrolyte, the separator, and the battery shape described in the following examples.
In this example, the active material synthesized according to the present invention was used for the positive electrode, and metallic lithium was used for the negative electrode.
A lithium-containing material or a carbon material may be used for the negative electrode.
A solid electrolyte may be used instead of the electrolyte and separator.
The positive electrode material for a lithium battery according to the present invention is a compound containing iron Fe in the composition formula, and is synthesized by ultrasonic waves.
The starting material is irradiated with ultrasonic waves and chemically reacted to obtain an iron-containing positive electrode active material.
The present invention relates to an electrode material synthesis method using ultrasonic waves, and an electrode material synthesized thereby, and a lithium ion battery using the electrode material.
The ultrasonic generator uses a high frequency of 200 kHz to 600 kHz, and an output of about 200 W is used.
A standing wave is generated and the force is transmitted as a medium and synthesized by irradiating the raw material.
When a material mainly containing trivalent iron is synthesized, the material is synthesized in the atmosphere, and a material having divalent iron is synthesized in an atmosphere such as Ar.
The positive electrode active material of the present invention thus synthesized has uniform fine particles, and an improvement in battery characteristics due to an increase in surface area can be expected.
This is because, for those that require an oxidant for synthesis, such as FePO 4 , hydrogen peroxide generated from the separation of water into OH radicals and H radicals by irradiation with ultrasonic waves is generated slowly, causing local reactions. It is thought that reactions that are avoided and non-uniform occur, leading to the homogenization of particles.
The use of ultrasonic waves eliminates the need for an oxidizing agent.
In addition, LiFePO 4 is performed in an argon atmosphere, and the sparse and dense portions of water are born from a standing wave generated by ultrasonic irradiation, and it is considered that it can be generated in an aqueous system due to a specific reaction field caused by a rapid pressure change.
Fe 3 Synthesis of PO 7 are generally following the synthesis of FePO 4 at first a solution method, two-stage step of combining the solid phase method by mixing Fe 2 O 3 is in the main, in the ultrasonic FeSO 4 · 7H One-step synthesis is possible by using 2 O, Fe 2 O 3 , (NH 4 ) 2 HPO 4 as starting materials.
The reason for this is also considered to be due to the high-temperature and high-pressure specific reaction field caused by a strong standing wave as in the case of LiFePO 4 .

図1は超音波合成装置の概略図を示し、1は多周波超音波発生装置、2は振動子、3はナス型フラスコ、4は撹拌器、5はガス注入口、6は水槽である。
図2は、本実験条件で純水に超音波を照射した時の、時間に対するpH変化と過酸化水素発生量を示したグラフ図である。
FePO4の超音波合成は出発原料にFeSO4・7H2O,(NH4)2HPO4を用い、モル比が1:1になるよう秤量し、ナス型フラスコ3に入れ純水を40ml加えた後、ガス注入口5から空気を注入し、また撹拌器4で攪拌しながら、多周波超音波発生装置1の振動子2により200kHz,200Wの超音波を3時間照射し空気中350度で乾燥させることでアモルファス型のFePO4を得た。
また、空気中700度で3時間乾燥させることで結晶型のFePO4を得た。
図3は、超音波照射により合成したFePO4の各温度、(a)700℃、3時間乾燥、(b)350℃、3時間乾燥、(c)25℃、12時間乾燥におけるX線チャートである。
測定されたX線回折パターン、図3より、結晶の単一相が得られていることがわかった。
FIG. 1 is a schematic diagram of an ultrasonic synthesizer. 1 is a multi-frequency ultrasonic generator, 2 is a vibrator, 3 is an eggplant flask, 4 is a stirrer, 5 is a gas inlet, and 6 is a water tank.
FIG. 2 is a graph showing the change in pH and the amount of hydrogen peroxide generated with time when pure water is irradiated with ultrasonic waves under the present experimental conditions.
For ultrasonic synthesis of FePO 4 , FeSO 4 .7H 2 O, (NH 4 ) 2 HPO 4 was used as a starting material, weighed so that the molar ratio was 1: 1, put into eggplant-shaped flask 3 and added with 40 ml of pure water. After that, air is injected from the gas inlet 5 and stirred with the stirrer 4, 200 kHz and 200 W ultrasonic waves are irradiated for 3 hours by the vibrator 2 of the multi-frequency ultrasonic generator 1 at 350 degrees in the air. Amorphous FePO 4 was obtained by drying.
In addition, crystal-type FePO 4 was obtained by drying in air at 700 ° C. for 3 hours.
FIG. 3 is an X-ray chart at each temperature of FePO 4 synthesized by ultrasonic irradiation, (a) drying at 700 ° C. for 3 hours, (b) drying at 350 ° C. for 3 hours, and (c) drying at 25 ° C. for 12 hours. is there.
From the measured X-ray diffraction pattern, FIG. 3, it was found that a single phase of the crystal was obtained.

本発明により得られた活物質を粉砕した粉末、導電助剤、及び結着剤を重量比70:25:5で混合して断面積1cm2の円形型ペレットに成形したものを正極材料とする。
充放電特性の測定は、活物質を測定するために用いた電気化学セルを図4に示す、コインタイプセル法を用いる。
充放電特性を行う際に、電流密度が一定になるように断面積を加工した正極材料(Cathode material)に、集電材としてニッケルメッシュ(Ni mesh)を、この正極材料(Cathode material)と同じ面積に切りとり、正極材料(Cathode material)と重なるようにのせ、加圧し、正極材料(Cathode material)とニッケルメッシュ(Ni mesh)を完全に密着させる。
負極には、金属リチウム箔(Anode of Li metal foil)を正極と同じ面積に切り取って加工したものを用いる。
電解液(Electrolyte)は、炭酸プロピレン(PC)とジメトキシエタン(DME)を体積比で1:1で混合したものに対してLiClO4を1mol/lで溶解させたものを用いる。
図5は、350℃、3時間加熱により合成したアモルファスFePO4を電気化学セルを用いて測定した結果である。
図6は、700℃、3時間加熱により合成した結晶性FePO4を電気化学セルを用いて測定した結果である。
充放電測定は、二端子法にて、2.0−3.9Vの範囲で電流レート2C(電流密度0.5−1mA/cm2)で行う。
また充放電容量は、2.0Vから3.9Vまでにかかる時間(h)に電流(A)をかけた値から求められる。
図7は、本発明により合成した活物質を任意温度で3時間加熱して得た化合物の表面積をBET測定器により測定した結果で、(a)本発明法、(b)従来法による結果を示した。
表1は、本発明と従来法の結晶性FePO4の放電容量を比較したものである。
A positive electrode material is obtained by mixing a powder obtained by pulverizing an active material obtained in accordance with the present invention, a conductive additive, and a binder in a weight ratio of 70: 25: 5 and forming a circular pellet having a cross-sectional area of 1 cm 2. .
The charge / discharge characteristics are measured using a coin-type cell method in which an electrochemical cell used for measuring an active material is shown in FIG.
When performing charge / discharge characteristics, the positive electrode material (Cathode material) whose cross-sectional area is processed so that the current density is constant, and Ni mesh as the current collector are the same area as this positive electrode material (Cathode material). Then, it is placed on top of the cathode material (Cathode material) and pressed, and the cathode material (Cathode material) and nickel mesh (Ni mesh) are completely brought into close contact with each other.
For the negative electrode, a metal lithium foil (Anode of Li metal foil) cut into the same area as the positive electrode is used.
The electrolytic solution (Electrolyte) is prepared by dissolving LiClO 4 at 1 mol / l with respect to a mixture of propylene carbonate (PC) and dimethoxyethane (DME) at a volume ratio of 1: 1.
FIG. 5 shows the results of measurement of amorphous FePO 4 synthesized by heating at 350 ° C. for 3 hours using an electrochemical cell.
FIG. 6 shows the result of measuring crystalline FePO 4 synthesized by heating at 700 ° C. for 3 hours using an electrochemical cell.
The charge / discharge measurement is performed at a current rate of 2C (current density: 0.5-1 mA / cm 2 ) in the range of 2.0-3.9 V by the two-terminal method.
The charge / discharge capacity is determined from a value obtained by multiplying the time (h) from 2.0 V to 3.9 V by the current (A).
FIG. 7 shows the results obtained by measuring the surface area of a compound obtained by heating the active material synthesized according to the present invention at an arbitrary temperature for 3 hours using a BET measuring device. The results of (a) the method of the present invention and (b) the results of the conventional method are shown. Indicated.
Table 1 compares the discharge capacities of the present invention and the conventional crystalline FePO 4 .

Figure 0004403279
Figure 0004403279

図1は超音波合成装置の概略図を示し、1は多周波超音波発生装置、2は振動子、3はナス型フラスコ、4は撹拌器、5はガス注入口、6は水槽である。
LiFePO4の超音波合成は出発原料にLiOH・H2O,FeSO4・7H2O,(NH4)2HPO4を用い、モル比が2.5:1:1になるよう秤量し、ナス型フラスコ3に入れ、あらかじめ脱気した純水を40ml加えた後、ガス注入口5からアルゴンガスを注入し、多周波超音波発生装置1の振動子2により200kHz,200Wの超音波を3時間照射したあと、アルゴンガス中700度で乾燥させることでLiFePO4を得た。
図8は、超音波照射により合成したLiFePO4のアルゴンガス中700℃加熱後のX線チャートである。
測定されたX線回折パターンより、図8より、単一相であるLiFePO4の生成を確認した。
FIG. 1 is a schematic diagram of an ultrasonic synthesizer. 1 is a multi-frequency ultrasonic generator, 2 is a vibrator, 3 is an eggplant flask, 4 is a stirrer, 5 is a gas inlet, and 6 is a water tank.
For ultrasonic synthesis of LiFePO 4 , LiOH.H 2 O, FeSO 4 .7H 2 O, (NH 4 ) 2 HPO 4 were used as starting materials, and weighed so that the molar ratio was 2.5: 1: 1. 40 ml of pure water degassed in advance is added to the flask 3, and then argon gas is injected from the gas inlet 5, and 200 kHz and 200 W ultrasonic waves are applied for 3 hours by the vibrator 2 of the multifrequency ultrasonic generator 1. After irradiation, LiFePO 4 was obtained by drying at 700 ° C. in argon gas.
FIG. 8 is an X-ray chart of LiFePO 4 synthesized by ultrasonic irradiation after heating at 700 ° C. in an argon gas.
From the measured X-ray diffraction pattern, it was confirmed from FIG. 8 that single-phase LiFePO 4 was formed.

図1は超音波合成装置の概略図を示し、1は多周波超音波発生装置、2は振動子、3はナス型フラスコ、4は撹拌器、5はガス注入口、6は水槽である。
Fe3PO7の超音波合成は出発原料にFeSO4・7H2O,(NH4)2HPO4,Fe23を用い、モル比が1:1:0.8になるように秤量し、ナス型フラスコ3に入れ純水を40ml加えた後、ガス注入口5から空気を注入し、多周波超音波発生装置1の振動子2により200kHz,200Wの超音波を3時間照射したあと、空気中950度で1時間乾燥させたあと、1050℃10時間焼成することでFe3PO7を得た。
測定されたX線回折パターンより、図9より、単一相であるFe3PO7の生成を確認した。
FIG. 1 is a schematic diagram of an ultrasonic synthesizer. 1 is a multi-frequency ultrasonic generator, 2 is a vibrator, 3 is an eggplant flask, 4 is a stirrer, 5 is a gas inlet, and 6 is a water tank.
For ultrasonic synthesis of Fe 3 PO 7 , FeSO 4 .7H 2 O, (NH 4 ) 2 HPO 4 and Fe 2 O 3 are used as starting materials and weighed so that the molar ratio is 1: 1: 0.8. After adding 40 ml of pure water into the eggplant-shaped flask 3, air was injected from the gas inlet 5, and 200 kHz , 200 W ultrasonic waves were irradiated for 3 hours by the vibrator 2 of the multi-frequency ultrasonic generator 1. After drying in air at 950 ° C. for 1 hour, Fe 3 PO 7 was obtained by firing at 1050 ° C. for 10 hours.
From the measured X-ray diffraction pattern, the formation of Fe 3 PO 7 as a single phase was confirmed from FIG.

本発明は超音波の力により発生する特異反応場を利用したソフトケミストリーで、均一微粒子の合成が可能である。
そのため、高性能な電池材料の合成だけではなく、他の分野の材料開発、LiMnPOなどの合成にも利用が可能である。
また本発明で生成した活物質の粒径は1μm以下であったのでナノテクノロジー分野においても新しい手法として利用できると考えられる。
超音波照射により、水のHラジカルとOHラジカルへの分解により酸化還元剤(主にH22)が生成するので、酸化還元剤が必須な合成に関してはその添加量を0もしくは減量できるため、コストや手間の削減につながる。
雰囲気制御により、水溶液中に硝酸、亜硝酸を容易に生成できる為、硝酸添加が必要な反応にも効果的である。
The present invention is a soft chemistry utilizing a specific reaction field generated by the force of ultrasonic waves, and can synthesize uniform fine particles.
Therefore, it can be used not only for the synthesis of high-performance battery materials, but also for the development of materials in other fields, the synthesis of LiMnPO 4 and the like.
In addition, since the particle size of the active material produced in the present invention is 1 μm or less, it can be used as a new technique in the nanotechnology field.
Since the oxidation / reduction agent (mainly H 2 O 2 ) is generated by the decomposition of water into H radicals and OH radicals by ultrasonic irradiation, the amount of addition can be reduced or reduced for synthesis in which the oxidation / reduction agent is essential. , Leading to cost and effort savings.
By controlling the atmosphere, nitric acid and nitrous acid can be easily generated in an aqueous solution, which is effective for reactions that require addition of nitric acid.

本実験で用いた超音波合成装置の概略図である。It is the schematic of the ultrasonic synthesizer used in this experiment. 本実験条件で純水に超音波を照射したときの、時間に対するpH変化と過酸化水素発生量を示したグラフ図である。It is the graph which showed the pH change with respect to time, and the hydrogen peroxide generation amount when an ultrasonic wave was irradiated to pure water on these experimental conditions. 超音波照射により合成したFePO4の各乾燥温度(a)700℃3時間乾燥(b)350℃3時間乾燥(c)25℃12時間乾燥におけるX線チャート図である。Is an X-ray chart of the synthesized each drying temperature (a) Drying 700 ° C. 3 hours of FePO 4 (b) 350 3 hours drying (c) 25 ℃ 12 hours drying by ultrasonic irradiation. 本発明により合成した活物質を測定する為に用いた電気化学セルの構成図である。It is a block diagram of the electrochemical cell used in order to measure the active material synthesize | combined by this invention. 本発明により合成したアモルファスFePO4を電気化学セルを用いて測定した結果であるグラフ図である。Amorphous FePO 4 were synthesized by the present invention is a graphical view is a result of measurement using an electrochemical cell. 本発明により合成した結晶性FePO4を電気化学セルを用いて測定した結果であるグラフ図である。The crystalline FePO 4 were synthesized by the present invention is a graphical view is a result of measurement using an electrochemical cell. 本発明により合成した活物質を任意温度で3時間過熱して得た化合物の表面積をBET測定器により測定した結果であるグラフ図である。It is a graph which is the result of having measured the surface area of the compound obtained by heating the active material synthesize | combined by this invention at arbitrary temperature for 3 hours with the BET measuring device. 超音波照射により合成したLiFePO4のアルゴンガス中700℃加熱後のX線チャート図である。Is an X-ray chart after argon gas 700 ° C. heating LiFePO 4 synthesized by ultrasonic irradiation. 超音波照射により合成したFe3PO7のアルゴンガス中700℃加熱後のX線チャート図である。It is an X-ray chart of post-synthesized Fe 3 argon gas 700 ° C. heating the PO 7 by ultrasonic irradiation.

符号の説明Explanation of symbols

1 多周波超音波発生装置
2 振動子
3 ナス型フラスコ
4 攪拌器
5 ガス注入口
6 水槽
1 Multi-frequency ultrasonic generator 2 Vibrator 3 Eggplant type flask 4 Stirrer 5 Gas inlet 6 Water tank

Claims (2)

鉄化合物と燐酸化合物及びリチウム化合物、又は鉄化合物と燐酸化合物を出発原料とし、イオン交換水又は純水に前記出発原料を投入し、200kHz−600kHzの超音波を照射することによって特異反応場を生成することにより、LiFePO 4 ,FePO 4 ,Fe 3 PO 7 ,Li 3 Fe 2 (PO 4 3 から選ばれた正極材料を合成することを特徴とするリチウムイオン電池用正極材料の製造方法。 Using iron compound and phosphoric acid compound and lithium compound, or iron compound and phosphoric acid compound as starting materials , introducing the starting materials into ion-exchanged water or pure water, and generating a specific reaction field by irradiating 200kHz-600kHz ultrasonic waves A method for producing a positive electrode material for a lithium ion battery, comprising synthesizing a positive electrode material selected from LiFePO 4 , FePO 4 , Fe 3 PO 7 , and Li 3 Fe 2 (PO 4 ) 3 . 超音波による請求項1記載のリチウムイオン電池用正極材料の製造方法により合成されたLiFePO4,FePO4,Fe3PO7,Li3Fe2(PO43から選ばれた正極材料を用いたことを特徴とするリチウムイオン電池。 A positive electrode material selected from LiFePO 4 , FePO 4 , Fe 3 PO 7 , and Li 3 Fe 2 (PO 4 ) 3 synthesized by the method for producing a positive electrode material for a lithium ion battery according to claim 1 using ultrasonic waves is used. The lithium ion battery characterized by the above-mentioned.
JP2006067784A 2006-03-13 2006-03-13 Method for producing positive electrode material for lithium ion battery Active JP4403279B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006067784A JP4403279B2 (en) 2006-03-13 2006-03-13 Method for producing positive electrode material for lithium ion battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006067784A JP4403279B2 (en) 2006-03-13 2006-03-13 Method for producing positive electrode material for lithium ion battery

Publications (2)

Publication Number Publication Date
JP2007250203A JP2007250203A (en) 2007-09-27
JP4403279B2 true JP4403279B2 (en) 2010-01-27

Family

ID=38594277

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006067784A Active JP4403279B2 (en) 2006-03-13 2006-03-13 Method for producing positive electrode material for lithium ion battery

Country Status (1)

Country Link
JP (1) JP4403279B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102082265A (en) * 2010-12-27 2011-06-01 东莞市丰远电器有限公司 Method for automatically preparing lithium iron phosphate

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011508378A (en) * 2007-12-22 2011-03-10 プリメット プレシジョン マテリアルズ, インコーポレイテッド Small particle electrode material composition and method for forming small particle electrode material composition
JP2011071019A (en) * 2009-09-28 2011-04-07 Sumitomo Osaka Cement Co Ltd Manufacturing method for lithium ion battery positive active material, and positive active material for lithium ion battery
JP5729802B2 (en) * 2009-12-25 2015-06-03 三菱マテリアル株式会社 Cathode active material for Li-ion battery and method for producing the same
CN116040598B (en) * 2023-03-31 2023-06-16 沧州彩客锂能有限公司 Preparation device of ferric phosphate and application method thereof

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102082265A (en) * 2010-12-27 2011-06-01 东莞市丰远电器有限公司 Method for automatically preparing lithium iron phosphate
CN102082265B (en) * 2010-12-27 2012-09-05 东莞市丰远电器有限公司 Method for automatically preparing lithium iron phosphate

Also Published As

Publication number Publication date
JP2007250203A (en) 2007-09-27

Similar Documents

Publication Publication Date Title
JP5544934B2 (en) Method for producing positive electrode active material for lithium ion battery
Ji et al. General synthesis and morphology control of LiMnPO4 nanocrystals via microwave-hydrothermal route
KR100449073B1 (en) Cathode material for lithium secondary batteries and method for manufacturing the Same
CN102460786B (en) Composite nano porous electrode material, process for production thereof, and lithium ion secondary battery
JP5531532B2 (en) Method for producing lithium ion battery positive electrode active material
Li et al. Facile synthesis of carbon-LiMnPO4 nanorods with hierarchical architecture as a cathode for high-performance Li-ion batteries
JP2010059041A (en) Transition metal oxide/multi-walled carbon nanotube nanocomposite and method for manufacturing the same
JP5765798B2 (en) Cathode active material for Li-ion battery and method for producing the same
KR20130040252A (en) Method for producing lithium metal phosphate
CN103022457A (en) High-performance nano granular vanadium pentoxide lithium ion battery cathode material and preparation method thereof
JP5459668B2 (en) Cathode active material for Li-ion battery and method for producing the same
JP5673275B2 (en) Positive electrode active material for lithium ion battery, method for producing the same, electrode for lithium ion battery, and lithium ion battery
JP2005135723A (en) Compound powder for electrode and its manufacturing method
JP4403279B2 (en) Method for producing positive electrode material for lithium ion battery
Zhao et al. Enhanced electrochemical properties of LiNiO2-based cathode materials by nanoscale manganese carbonate treatment
KR20140073720A (en) Transition metal oxide/graphene nanocomposite and manufacturing method thereof
JP2010232091A (en) Method for manufacturing positive active material for lithium ion battery, positive active material for lithium ion battery, electrode for lithium ion battery, and lithium ion battery
Hao et al. Boosting the cycle and rate performance of Li1. 2Mn0. 54Ni0. 13Co0. 13O2 via single-crystal structure design
Zhu et al. Effect of the stirring rate on physical and electrochemical properties of LiMnPO4 nanoplates prepared in a polyol process
CN107195884B (en) A kind of lithium metasilicate doped graphene lithium ion battery negative material and preparation method thereof
Zhou et al. Capacitive nanosized spinel α-LiFe5O8 as high performance cathodes for lithium-ion batteries
WO2013099409A1 (en) Method for producing iron phosphate, lithium iron phosphate, electrode active material, and secondary battery
JP5544981B2 (en) Method for producing electrode active material
JP5729802B2 (en) Cathode active material for Li-ion battery and method for producing the same
Li et al. Polyoxovanadate (NH4) 7 [MnV13O38] as cathode material for lithium ion battery and improved electrochemical performance

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090127

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20090127

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20090224

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20090406

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20090414

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090420

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090605

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090721

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090907

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090930

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150