JP4401555B2 - A novel chymotrypsin-like protease, a method for producing the same, and a method for producing a protein degradation product containing a novel chymotrypsin-like protease. - Google Patents

A novel chymotrypsin-like protease, a method for producing the same, and a method for producing a protein degradation product containing a novel chymotrypsin-like protease. Download PDF

Info

Publication number
JP4401555B2
JP4401555B2 JP2000329032A JP2000329032A JP4401555B2 JP 4401555 B2 JP4401555 B2 JP 4401555B2 JP 2000329032 A JP2000329032 A JP 2000329032A JP 2000329032 A JP2000329032 A JP 2000329032A JP 4401555 B2 JP4401555 B2 JP 4401555B2
Authority
JP
Japan
Prior art keywords
protease
chymotrypsin
pna
ala
protein
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000329032A
Other languages
Japanese (ja)
Other versions
JP2002125665A (en
Inventor
信 金田
哲也 内木場
信正 横井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Amano Enzyme Inc
Original Assignee
Amano Enzyme Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Amano Enzyme Inc filed Critical Amano Enzyme Inc
Priority to JP2000329032A priority Critical patent/JP4401555B2/en
Publication of JP2002125665A publication Critical patent/JP2002125665A/en
Application granted granted Critical
Publication of JP4401555B2 publication Critical patent/JP4401555B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Coloring Foods And Improving Nutritive Qualities (AREA)
  • Meat, Egg Or Seafood Products (AREA)
  • Seasonings (AREA)
  • Enzymes And Modification Thereof (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、新規なキモトリプシン様プロテア−ゼ及びその製造法並びに新規なキモトリプシン様プロテアーゼを作用させるタンパク質分解物含有物の製造法に関するものである。
【0002】
【従来の技術】
キモトリプシンは脊椎動物に由来するセリンプロテアーゼであり、エンドペプチダーゼ活性を有するため、食品工業分野においてはこのキモトリプシンの性質を利用した食品の改質等が行われておりキモトリプシンの需要は今後益々増大することが予想される。
【0003】
しかし、キモトリプシンの供給源となる動物臓器の供給量には制限があり、また狂牛病等のプリオン病への懸念もあるため、キモトリプシンの需要の増大に十分対応できない虞があり、キモトリプシンと同等の基質特異性を有する量産性のある酵素の出現が強く望まれていた。
【0004】
一方、キモトリプシンと同様に食品の改質等に利用できる微生物由来の量産性のあるプロテアーゼが提供されている。例えば、バチルス・ズブチリス(Bacillus・subtilis)由来のズブチリシン(subtilisin)が工業的に広く利用されているが、ズブチリシンは基質特異性が低く特定のペプチド結合部位を特異的に切断できないため、食品を所望の特性に改質し難いという問題点があった。また、トリコデルマ(Trichoderma)属の微生物由来で塩基性アミノ酸のC末端を特異的に加水分解するトリプシン様のプロテアーゼが本出願人により報告されている(特開2000−116377号参照)が、トリプシンの基質特異性はキモトリプシンのそれとは全く異なり、改質される食品の特性も異なるため、トリプシン様プロテアーゼをキモトリプシンの代替物として利用することができなかった。
【0005】
【発明が解決しようとする課題】
本発明は、上記従来の問題点を解決するためになされたものであり、量産性のある新規なキモトリプシン様プロテアーゼ及びその製造法を提供すること並びに新規なキモトリプシン様プロテアーゼを作用させるタンパク質分解物含有物の製造法を提供することを課題とする。
【0006】
【課題を解決するための手段】
そこで、本発明者らは、上記課題を解決すべく鋭意検討した結果、トリコデルマ(Trichoderma)属由来の菌株がキモトリプシン様プロテアーゼをも生産することを見出し、本発明を完成するに至った。
【0007】
すなわち、本発明は、グリシニンに下記(1)〜(8)の理化学的性質を有するキモトリプシン様プロテアーゼを作用させることを特徴とする抗酸化性ペプチドの製造法を提供するものである。
(1)作用・基質特異性:キモトリプシン様のプロテアーゼ活性を有する。
アミノ酸配列がAsn―Arg−Val―Tyr−Val−His−Pro―Phe―His−Leuであるヒト[Asn1,Val5]−アンギオテンシンIに作用してチロシンとフェニルアラニンのC末端側を加水分解し、合成基質Suc−Ala―Ala―Pro―Phe―pNAに作用するが、N―t−Boc−Leu―Gly−Arg−pNA及びN−t−Boc―O―Bz―Ser−Gly−Arg―pNAには作用しない。
(Suc−:スクシニル(Succinyl)−、N−t−Boc−:N−t−ブチルオキシカルボニル(N−t−Butyloxycarbonyl)−、−pNA:−p−ニトロアニリド(p−Nitroanilide))
(2)至適pH:pH8である。
(3)至適温度:40℃である。
(4)pH安定性:pH5.0〜11.5の範囲で安定である。
(5)温度安定性:40℃まで安定である。
(6)阻害剤:セリンプロテアーゼ阻害剤のDFP(ジイソプロピルフルオロホスフェート)、PMSF(フェニルメタンスルフォニルフルオライド)及びキモトリプシン阻害剤でもあるキモスタチン(Chymostatin)で阻害される。
(7)分子量:31,000(SDS−ポリアクリルアミドゲル電気泳動)
(8)等電点:8.5である。
【0009】
さらに本発明は、タンパク質又はタンパク質含有物に、上記の理化学的性質を有するキモトリプシン様プロテアーゼを作用させ当該タンパク質を分解させることを特徴とするタンパク質分解物含有物の製造法を提供するものである。ここで、タンパク質分解物含有物とは、動物由来、植物由来を問わずタンパク質又はタンパク質を含む素材に本発明のキモトリプシン様プロテアーゼを作用させてタンパク質の一部又は全部を酵素分解させて得られる物をいう。
【0010】
【発明の実施の形態】
本発明のキモトリプシン様プロテアーゼはトリコデルマ(Trichoderma)属に属する菌株から得ることができる。トリコデルマ(Trichoderma)属に属する菌株としては、キモトリプシン様プロテアーゼ生産能を有するものであればいかなる菌株でも使用することができ、これらの菌株の変異株でも使用することができる。トリコデルマ(Trichoderma)属に属するキモトリプシン様プロテアーゼ生産能を有する菌株の具体例としては、例えば、トリコデルマ・エスピーNo.9064(Trichoderma sp.No.9064)菌株が挙げられる.本菌株の菌学的性質は次の通りである。
【0011】
1.形態
菌糸 :無色。隔壁を有す。直径1.0〜6.0μm。
分生子柄 :不規則に分岐し、各分岐にフィアライドを形成する。直径4.5〜5.5μm。
フィアライド:びん形。8〜12×3.5〜4.5μm。無色。
分生子 :フィアロ型分生子。楕円形あるいは卵形。3.5〜5.0×2.0〜3.0μm。濃緑色。フィアライドの頂端で塊状になる。
厚膜胞子 :亜球形〜洋梨形。10〜12×6〜9μm。
【0012】
2.生育状態
麦芽・イーストエキス寒天培地
形成は全面に起こる場合と不規則に点状もしくは斑状になる場合がある;裏面は白色で水溶性の黄色色素を生成する。
ポテトデキストロース寒天培地
生育は麦芽・イーストエキス寒天培地に比べやや悪いが、培養性状は殆ど同様である。
【0013】
本菌株は有性胞子を欠き、栄養体が隔壁を有する菌糸体であるから不完全菌であること、菌糸はよく発達し、出芽細胞を欠き、裸出した分生子を形成するので不完全糸状菌類である。生育は速やかで、分生子の形成により濃緑色になり、分生子柄は分岐し、びん形のフィアライドを形成し、分生子はフィアロ型、フィアライドの頂端で塊状になることから、トリコデルマ(Trichoderma)属に分類される。
【0014】
以上の性質から、この菌株をトリコデルマ(Trichoderma)属に属する菌株と同定し、トリコデルマ・エスピーNo.9064(Trichoderma sp.No.9064)と命名した。
本菌株に最も類似した性質を示すものとしてトリコデルマ ビリデ(Trichoderma viride)が挙げられる。本菌株は通商産業省工業技術院生命工学工業技術研究所に平成10年9月24日付でFERM P−17003として寄託されている。
【0015】
次に、本発明のキモトリプシン様プロテアーゼの製造法について説明する。本製造法には、トリコデルマ(Trichoderma)属に属するいずれの菌株も使用することができるが、例えば、トリコデルマ・エスピー(Trichoderma sp.)FERM P−17003が挙げられる。
【0016】
トリコデルマ(Trichoderma)属に属する菌株を用いて本製造法のキモトリプシン様プロテアーゼを生産蓄積させる培養方法としては、液体培養法、固体培養法の何れでもよい。固体培養法の培地としては、小麦ふすま単独あるいは小麦ふすまに種々の添加物、例えばきな粉、大豆粉、アンモニウム塩、硝酸塩、尿素、グルタミン酸、アスパラギン酸、ポリペプトン、コーンスティープリカー、肉エキス、酵母エキス、タンパク質加水分解物などの有機および無機の窒素化合物などを添加して用いることができ、また、適当な無機塩類を加えることもできる。
【0017】
また、液体培養法の培地としては、当該菌株が良好に生育し、当該酵素を順調に生産するために必要な炭素源、窒素源、無機塩類、必要な栄養源等を含有する合成培地または天然培地があげられる。例えば、炭素源としては、澱粉またはその組成画分、焙焼デキストリン、加工澱粉、澱粉誘導体、物理処理澱粉及びα―澱粉等の炭水化物が使用できる。具体例としては、可溶性澱粉、トウモロコシ澱粉、馬鈴薯澱粉、甘藷澱粉、デキストリン、アミロペクチン、アミロース等があげられる。
【0018】
窒素源としては、ポリペプトン、カゼイン、肉エキス、酵母エキス、コーンスティープリカーあるいは大豆または大豆粕などの抽出物等の有機窒素源物質、硫酸アンモニウム、リン酸アンモニウム等の無機塩窒素化合物、グルタミン酸等のアミノ酸類が挙げられる。
【0019】
そして、無機塩類としては、リン酸1カリウム、リン酸2カリウム等のリン酸塩、硫酸マグネシウム等のマグネシウム塩、塩化カルシウム等のカルシウム塩、炭酸ナトリウム等のナトリウム塩等が用いられる。
【0020】
固体培養の場合には、静置培養で行い、培地のpHを3〜7に調整したものに本菌株を摂取し、10〜40℃で1〜10日間培養を行う。培養後その培養抽出物からキモトリプシン様プロテアーゼをエタノール沈降などの手段により粗酵素沈殿物として得ることができる。
【0021】
そして、液体培養の場合には、培養は、振盪培養もしくは、通気攪拌培養等の好気的条件下において行い、培地をpH4〜10の範囲,好ましくはpH5〜8の範囲に調製し、温度10〜40℃の範囲、好ましくは25〜37℃で、24〜96時間培養する。培養後菌体を除去し、粗酵素液を得る。
【0022】
次に、これらの粗酵素液に公知の硫安塩析、ゲルろ過、遠心分離、疎水クロマトグラフィー、イオン交換クロマトグラフィーなどの処理を適宜組み合わせることにより、精製された高純度のキモトリプシン様プロテアーゼが得られる。
【0023】
次に、上記性質を有するキモトリプシン様プロテアーゼをタンパク質又はタンパク質含有物に作用させることにより、当該タンパク質を分解させてタンパク質分解物含有物を製造する方法について説明する。
【0024】
タンパク質とは、例えば牛、豚、馬、めん羊、山羊、家兎、家禽等の動物由来又は米、麦、トウモロコシ、大豆等の植物由来のポリペプチドをいう。タンパク質含有物とは、動物由来、植物由来の別を問わず、少なくともタンパク質を含有している物であって、タンパク質の含有量の多少に拘らず本発明のキモトリプシン様プロテアーゼを作用させることができる物をいう。従って、この条件を満たすものは全て本発明におけるタンパク質含有物に含まれるが、例えば、穀類、乳、食肉、貝類、骨ガラ等又はこれらの処理物が挙げられる。穀類には、米、麦、トウモロコシ、大豆等が含まれるが、米、大豆が好適である。乳には、牛、めん羊、山羊等の乳が含まれるが、牛乳が好適である。食肉には、牛肉、豚肉、馬肉、めん羊肉、山羊肉、家兎肉、家禽肉等が含まれるが、牛肉が好適である。貝類には、アサリ、ハマグリ、カキ、アワビ、ホタテ貝等が含まれるが、ホタテ貝が好適である。骨ガラには、牛、豚、馬、めん羊、山羊、鶏等の骨ガラが挙げられるが、鶏の骨ガラが好ましい。上記の処理物としては、ホタテ貝について言えば、その中腸腺が好ましく、牛乳について言えば、そのホエーが好ましい。これらのタンパク質含有物として好適なものは、食品素材として広範な用途を有する点で利用価値が高い。タンパク質含有物の形態は特に限定される必要はなく、固形状、半固形状、流動状、液状のいずれの形態をとるものでもよい。
【0025】
これらのタンパク質又はタンパク質含有物に本発明のキモトリプシン様プロテアーゼを作用させる際は、当該プロテアーゼの作用形態は特に制限されないが、粉末等の固形状の他、懸濁状、溶液状等の形態を、タンパク含有物の性質・形態等を考慮し、使用することができる。
【0026】
pHは、少なくとも5〜11の範囲が好ましいが、更に効率的にタンパク質の加水分解を目的とする場合はpH7〜9の範囲がより好ましい。作用温度は、タンパク質を含有する物質の性質等を考慮して適宜定めることができるが、効率的なタンパク質の加水分解が可能な点で約40℃が好ましい。
【0027】
作用時間は通常1〜48時間であるが、所望する分解の程度を考慮し適宜定めることができる。本発明のキモトリプシン様プロテアーゼの使用量は、通常、タンパク質含有物1g当たり10〜20,000単位であるが、タンパク質含有物中に含まれるタンパク質の量・性質等を考慮して適宜定めることができる。さらに、食品素材の改質に多様性を求める場合には、本発明のキモトリプシン様プロテアーゼに加えて、他のプロテアーゼを作用させることもできる。他のプロテアーゼとしては、アミノペプチダーゼ、カルボキシペプチダーゼ等が挙げられるが、酵母起源のカルボキシペプチダーゼや糸状菌起源のアミノペプチダーゼが好ましく、ペプチダーゼR(天野エンザイム株式会社製)等は市販品を容易に入手できる。アミノペプチダーゼの添加量は食品素材の材質、所望する改質等を考慮し適宜定めることができるが、通常、タンパク質含有物1g当たり40〜100,000単位である。本発明のキモトリプシン様プロテアーゼ及び/又は他のプロテアーゼの作用を終了させるためには、必要に応じ当該プロテアーゼを加熱等により失活させることができる。
【0028】
本発明のキモトリプシン様プロテアーゼを作用させて得られるタンパク質分解物含有物は、実施例に示すように、抗酸化性、呈味性の向上、低抗原性、低切断応力等の多様な特性を有し、食品素材として広範な用途が期待できるが、該タンパク質分解物含有物のこれらの特性は公知の測定手段、例えば、抗酸化性については、Active Oxygen法(油脂化学便覧:日本油化学協会編、515頁 )等、呈味性については、パネリストによる官能試験、フォルモール滴定法によるアミノ酸定量、ケルダール法による総タンパク量の定量等、抗原性については、Inhibition Elisa法(日本小児アレルギー学会誌、1,36,1987)等、切断応力については、ミートシェアー(ワーナーブラッツラー社製)を用いる方法等により確認できる。
【0029】
以上のように、本発明により得られるキモトリプシン様プロテアーゼは、蛋白質も含めて、ポリペプチドの鎖中の芳香族アミノ酸残基のカルボキシル側を切断する性質を有し、該キモトリプシン様プロテアーゼにより改質された食品素材には、自動酸化に対する抗酸化性、呈味性の向上、抗原性の低減、切断応力の低減等の効果が認められるため、各種の蛋白質を含有する食品の製造に利用することができ、例えばヨーグルト、チーズ、発酵ハム等の品質の安定化、風味の向上が図れ、また低アレルゲン食品等の製造が可能となり、食品分野においてタンパク質の性質の改変に広範に資することができる。以下に、実施例により本発明をより具体的に説明するが、本発明はこれらの実施例に限定されるものではない。
【0030】
【実施例】
実施例1(キモトリプシン様プロテアーゼの培養
ポテトデキストロース寒天培地(極東製薬製)に30℃、5日間培養したトリコデルマ・エスピーNo.9064(Trichoderma sp.No.9064)(FERM P−17003)を、滅菌した8(w/v)%の小麦ふすま懸濁液250mLを入れた培養フラスコに接種し、30℃、40時間、140rpmの条件下振盪培養し、種培養とした。
【0031】
これを小麦ふすま850gと黄な粉150gに560mLの水を散水し滅菌した固体培地に全量接種し、30℃に68時間、静置培養してプロテアーゼを産生させた。培養後、小麦ふすまに水4200mLを加え、産生した酵素を抽出し、粗酵素液3000mLを得た。分画分子量6000の限外ろ過膜で600mLまで濃縮し、デキストリン40gを溶解させた後、冷エタノール2000mLを添加し粗酵素沈殿物を得た。粗酵素沈殿物を濾別後、減圧下(665Pa)、40℃で22時間乾燥し、60gの粗酵素粉末を得た。
【0032】
実施例2(キモトリプシン様プロテアーゼの精製
実施例1で得られた粗酵素粉末1gを緩衝液(20mmol/Lの酢酸緩衝液、pH5.0)100mLに溶解後、遠心分離(7,000×g、5分間)を行いその上清をCM−トヨパール650Mカラムに添加した。吸着したタンパク質を60mmol/Lの酢酸緩衝液(pH5.0)のリニアグラジエントで溶出した。溶出した酵素活性画分を回収し、30%飽和となるように硫酸アンモニウム粉末を加え、30%飽和硫酸アンモニウムを含む60mmol/Lの酢酸緩衝液(pH5.0)で平衡化したフェニルセファロースファーストフロー(phenyl−Sepharose fast flow、ファルマシア製)カラムに添加した。吸着したタンパク質を30%飽和硫酸アンモニウムを含む60mmol/Lの酢酸緩衝液(pH5.0)から60mmol/Lの酢酸緩衝液(pH5.0)のリニアグラジエントで溶出した。溶出した酵素活性画分を精製酵素標品(以下、「本酵素液」という。)とした。本酵素液は、図1に示すようにSDS−PAGEで単一バンドを示した。
【0033】
酵素活性測定法(カゼイン基質)
本酵素液1mLと同量の1(w/v)%カゼイン溶液(67mmol/Lのリン酸緩衝液、pH7.0)を混合し、37℃において20分間反応する。反応後、5(w/v)%トリクロロ酢酸溶液3mLを加え、反応を停止し、30分放置後、東洋濾紙No.131で濾過し、得られた濾液の280nmの吸光度を測定した。上記反応条件下、1分間あたり280nmの吸光度を0.001上昇させる酵素量を1単位とした。
【0034】
実施例3(キモトリプシン様プロテアーゼの理化学的性質
(1)作用・基質特異性:キモトリプシン様のプロテアーゼ活性を有する。
【0035】
ヒトアンギオテンシンIに対する基質特異性
ヒトアンギオテンシンIに対する基質特異性を以下のように検討した。
本酵素液25μLにヒトアンギオテンシンI25μLを加え、pH7.0、30℃、24時間インキュベートさせた。生じたペプチド断片を逆相HPLCによって分取し、それをPICO−TAG法によるアミノ酸組成分析を行うことにより、切断部位の推定を行った結果、ヒトアンギオテンシンIのN末端から4番目のチロシンと8番目のフェニルアラニンのC末端側を加水分解していることが分かった。この結果より、本酵素はキモトリプシン様プロテアーゼであることが推定された。
【0036】
合成基質に対する基質特異性
合成基質として、Suc−Ala―Ala―Pro―Phe―pNA、Suc−Ala―Ala―Val―Ala―pNA、Glt−Ala―Ala―Pro―Leu―pNA、t−Boc−Ala―Ala―Pro−Ala―pNA、Pyr−Phe―Leu―pNA、N−t−Boc―Leu−Gly−Arg―pNA、N−t−Boc―O―Bz―Ser−Gly−Arg―pNA、Suc−Ala―Ala―Pro―Asp―pNA、Suc−Ala―Pro−Ala―pNA、Suc−Ala―Ala−Ala―pNA、Suc−Ala−Ala―pNA、Z−Gly−Gly―Leu―pNAを用い、実施例2で得られたキモトリプシン様プロテアーゼの基質特異性を以下のように測定した。即ち、10mmol/Lの上記各ペプチジルパラニトロアニリド(peptidyl―pNA)のジメチルスルホキシド(以下、「DMSO」という。)溶液10μLと、67mmol/L、pH7.0のリン酸緩衝液700μLを混ぜ、これに本酵素液100μLを加えた。25℃で10分間反応後、1mol/L酢酸200μLを加え反応停止後、405nmの吸光度を測定した。遊離するパラニトロアニリンの吸光係数を9920/((mol/L)・cm)(25℃)として基質分解速度を算出した。本酵素液の代わりに、67mmol/L、pH7.0のリン酸緩衝液100μLで同様の操作を行ったものをコントロールとして、酵素サンプルとの差をとり活性を測定した。Suc−Ala−Ala−Pro−Phe−pNAに対する活性を100%として、相対値で表した。その結果、表1に示すように、実施例2で得られた本酵素液はSuc−Ala−Ala−Pro−Phe−pNAのパラニトロアニリドに隣接するフェニルアラニンのC末端側を良く加水分解し、特異的なキモトリプシン様のプロテアーゼ活性を示した。一方、本酵素液はパラニトロアニリドに隣接するアミノ酸残基がアルギニン残基であるN−t−Boc―Leu−Gly−Arg―pNA及びN−t−Boc―O―Bz―Ser−Gly−Arg―pNAを加水分解せず、トリプシン様プロテアーゼ活性は示さなかった。パラニトロアニリドに隣接するアミノ酸残基がアスパラギン酸残基であるSuc−Ala―Ala―Pro―Asp―pNAでは加水分解は認められなかった。パラニトロアニリドに隣接するアミノ酸残基がアラニン残基及びロイシン残基については、本酵素液による加水分解率が0〜25%であり低い活性を示すに留まった。上記結果から、本発明のプロテアーゼはキモトリプシン様プロテアーゼであって、トリプシン様活性を有するプロテアーゼと異なることが推定される。
【0037】
【表1】

Figure 0004401555
【0038】
Suc:Succinyl
pNA:p―Nitroanilide
Z :Carbobenzoxy
Glt:Glutaryl
Bz :Benzoyl
t−Boc:t−Butyloxycarbonyl
Pyr:Pyroglutamyl
【0039】
(2)至適pH:pH2〜8.4の67mmol/Lクエン酸緩衝液、pH8.4〜12の67mmol/Lグリシン−水酸化ナトリウム緩衝液を用意し、各pHの緩衝液700μLと10mmol/L濃度に溶解したSuc−Ala−Ala−Pro−Phe−pNAのDMSO溶液10μLに、本酵素液100μLを加え25℃で10分間インキュベートし、1mol/L酢酸200μLを加え、反応停止後、405nmの吸光度を測定した。最も活性の高い所を基準(100%)として、各pHで相対活性を求め、至適pHを求めた。図2に示すように、至適pHは8を中心に存在した。
【0040】
(3)至適温度:pH7.0、67mmol/Lリン酸緩衝液700μLに10mmol/L濃度に溶解したSuc−Ala―Ala―Pro―Phe―pNAのDMSO溶液10μLを20〜70℃の各温度で20分のプレインキュベーションを行った後、本酵素液100μLを加え各温度で10分間反応させた。1mol/L酢酸200μLを加え、反応停止後、405nmの吸光度を測定した。図3に示すように至適温度は40℃であった。
【0041】
(4)pH安定性:67mmol/Lのクエン酸緩衝液(pH2〜8.4)及び67mmol/Lのグリシンー水酸化ナトリウム緩衝液(pH8.4〜12.0)を用い、各pHの緩衝液200μLと本酵素液100μLを混合し、40℃に1時間放置後、pHを7.0にした後、その100μLを67mmol/Lのリン酸緩衝液(pH7.0)700μLと10mmol/L濃度に溶解したSuc−Ala―Ala―Pro―Phe―pNAのDMSO溶液10μLに加え25℃、10分間反応させた。反応後1mol/L酢酸200μLを加え反応を停止後、405nmの吸光度を測定した。その結果、図4に示すようにpH5.0〜11.5の範囲で元の活性の8割を維持していた。
【0042】
(5)温度安定性:67mmol/Lリン酸緩衝液(pH7.0)700μLに本酵素液100μLを加え各温度で20分プレインキュベートした後、25℃まで冷却し、10mmol/L濃度に溶解したSuc−Ala―Ala―Pro―Phe―pNAのDMSO溶液を加え25℃、10分間反応させた。反応後1mol/L酢酸200μLを加え反応を停止後、405nmの吸光度を測定した。その結果、図5に示すように、40℃まで安定性がみられたものの40℃を過ぎると急激な低下が認められた。
【0043】
(6)阻害剤:シグマアルドリッチジャパン株式会社製のセリンプロテアーゼ阻害剤であるDFP(ジイソプロピルフルオロホスフェート)、PMSF(フェニルメタンスルホニルフルオライド)及びSTI(大豆由来トリプシンインヒビター)、システインプロテアーゼ阻害剤であるPCMPS(パラクロロマーキュリフェニルスルホン酸)及びMIA(モノヨード酢酸)、セリンプロテアーゼ及びシステインプロテアーゼの阻害剤であるロイペプチン(Leupeptin)、アンチパイン(Antipain)及びキモトリプシン阻害剤でもあるキモスタチン(chymostatin)、アスパラギン酸プロテアーゼ阻害剤であるペプスタチン(Pepstatin)及び含金属プロテアーゼ阻害剤であるEDTA(エチレンジアミン四酢酸)を用いて実施例2で得られた本酵素液に対する阻害効果を次のように測定した。即ち、本酵素液100μLに阻害剤溶液(67mmol/Lリン酸緩衝液、pH7.0)100μLを加え30℃にて1時間プレインキュベートした後、更にSuc−Ala−Ala−Pro−Phe−pNAのDMSO溶液10μLと67mmol/Lのリン酸緩衝液(pH7.0)600μLを加えて25℃にて10分インキュベートし、1mol/L酢酸200μLを加え反応を停止した後、405nmの吸光度を測定した。基質の自己分解をコントロールとしてサンプルとの差をとり活性を定量した。阻害剤を含まない時の活性を100%として表2に示した。その結果、キモトリプシン様プロテアーゼはDFP、PMSF、キモスタチンで完全に阻害され、STI、PCMPS、MIAおよびPepstatinでは阻害されなかった。またAntipainは強度の阻害、EDTAは中等度の阻害、Leupeptinは弱い阻害をそれぞれ示した。基質特異性及び各阻害剤の阻害効果から判断して、本発明のプロテアーゼはキモトリプシン様プロテアーゼであると共にセリンプロテアーゼに属すると推定され、本出願人が既に報告(特開2000−116377号参照)したトリプシン様プロテアーゼとは異なる性質を示すことが分かった。
【0044】
【表2】
Figure 0004401555
【0045】
(7)分子量:SDS−ポリアクリルアミド電気泳動(15%ゲル)はLaemmliの方法に準じて行った。標準タンパク質としては、ファルマシア製のフォスフォリラーゼb(Phosphorylase b(94,000)))、牛血清アルブミン(bovine serum albumin(67,000))、オボアルブミン(ovalalbumin(43,000))、カルボニックアンハイドラーゼ(carbonic anhydrase(30,000))、大豆トリプシンインヒビター(soybean trypsin inhibitor(20,100))、α―ラクトアルブミン(α―lactalbumin(14,400))を使用し、ゲル染色はCoomassie Brilliant Blue R−250(ファルマシア製)を用いたCBB染色を用いた。その結果、本発明のキモトリプシン様プロテアーゼの分子量は31,000と推定された。
【0046】
(8)等電点:等電点電気泳動(15%ゲル)は、スラブゲルを用いた。pH勾配の作成にはアンフォライン(Ampholine、ファルマシア製、pH3〜10)を用い、泳動は35V、6mAで行った。その結果、本発明のキモトリプシン様プロテアーゼの等電点は8.5と推定された。
【0047】
実施例4 抗酸化性ペプチドの製造法
市販大豆から単離したグリシニン3gに、水100mLを加えpH7.0に調製後、本発明の酵素をミルクカゼイン活性で500単位加え、40℃に1時間反応させた後、85℃で10分間保ち酵素を失活させた。本グリシニン分解物と、未分解グリシニンとをリノール酸の自動酸化に対する抗酸化性をActive oxygen法で測定(油脂化学便覧:日本油化学協会編、515頁)したところ、未分解グリシニンに比し8倍の抗酸化能が上昇した。本グルシニン分解物は食品の酸化防止又は酸化遅延作用を有する食品素材として利用することができる。
【0048】
実施例5 調味液の製造
5%市販脱脂大豆懸濁液1Lを、pH7.0に調整後、本発明の酵素をタンパク質1g当たり100単位と、ペプチダーゼR(天野エンザイム株式会社製)1g(420単位)を添加し、40℃に20時間攪拌しつつ反応させた。反応後、80℃に15分保ち、酵素を失活させ、遠心分離により清澄なタンパク分解液を得た。この分解液をカフェイン溶液を指標に呈味性試験をしたところ、苦みは無く、旨みが感じられた。分解液の分析値は、総窒素2.5mg/ mL、タンパク質1.5%、遊離アミノ酸0.62%、フォルモール態窒素 /総窒素 ×100は43.5%であった。本タンパク分解液は肉エキス配合調味液やスープのベースとして利用することができる。
ペプチダーゼ活性測定法
50mmol/L、pH7.0のリン酸緩衝液にロイシルグリシルグリシン(Leucyl−Glycyl−Glycine)を0.2mol/L濃度に溶解した基質液1mLに、酵素液0.1mLを加え37℃で60分間反応した。反応後、沸騰水中に5分間保ち、冷却した後、2mLのニンヒドリン溶液と0.1mLの塩化第一スズ溶液を加える。沸騰水中に20分間保った後、冷却、10mLの50(w/v)%のn−プロパノールを加え、570nmで吸光度を測定する。上記条件下、1分間当たり1マイクロモルのアミノ酸を遊離する酵素量を1単位とした。
【0049】
実施例6 低アレルゲン化ホエー蛋白分解物の製造
ホエー蛋白の水溶液2Lに、本発明の酵素を蛋白質1g当たり400単位加え、pHを7.0に調整後、40℃に10時間反応した。反応後、85℃に10分間保ち酵素を失活させ遠心分離により、不溶物を除去後、上清を常法により濃縮後、乾燥し115gの粉末を得た。得られたホエー分解物の抗原性を、Inhibition Elisa法(日本小児アレルギー学会誌、1,36,1987)に従い、β―ラクトアルブミンを対照として測定したところ、ホエー分解物の抗原性 はβ―ラクトアルブミンの抗原性の1/ 10,000未満であった。本ホエー分解物は、各種の食物アレルギー、アトピー性皮膚炎その他のアレルギー体質の消費者を対象とする食品素材として、広範に使用され得るものである。
【0050】
実施例7 低蛋白米の製造法
精白度90%の精白米3kgを、常法により洗米後、0.05%の本発明の酵素液に浸漬した。
pHを7.0に調整し、40℃に10時間処理した後、白米を分離し水洗により酵素を除去した。本発明の酵素で処理することにより、原料精白米のタンパク質を54%除去した低タンパク米を製造した。低アレルゲン化したこの低タンパク米は、各種の食物アレルギー、アトピー性皮膚炎その他のアレルギー体質の消費者を対象とする食品素材として、広範に使用され得るものである。
【0051】
実施例8 食肉の軟化
市販輸入牛のもも肉を10mm厚にスライスした。その肉質の均一な部分を20g程に成形後、本発明の酵素を振り掛け、ラップで覆った後、5℃の冷蔵庫に5時間放置した。酵素添加量は、肉1g当たり30単位である。その後、200℃のホットプレートで片面1分づつ焼成し、2cm幅の帯状にカットした後、ミートシェアー(ワーナーブラッツラー3000型、ワーナーブラッツラー社製)で切断応力を測定した。その結果、酵素無処理に比べ、酵素処理した肉の切断応力は55%低下しており、本発明の酵素が食肉の軟化に有用であることが明らかとなった。軟化した食肉は、食肉の食感に変化を与えると共に咀嚼能力の低下した高齢者に適するため、高齢化社会の進展につれて今後ますます需要の増大が期待される。
【0052】
実施例9 貝類エキスの製造
帆立貝中腸腺100gを300mLの水にケンダク後、ホモジナイザーで均質化した後、10分間95℃に保った。40℃に冷却後本発明の酵素を基質1g当たり2000単位加え、同温度に3時間分解した。反応後、85℃で15分間加熱し、酵素を失活させ、遠心分離後、限外ろ過膜(分画分子量10,000)でろ過、蛋白濃度 1.30(w/v)%、遊離アミノ酸0.71(w/v)%のエキス230mLを得た。当該エキスは、各種のスープのベース、調味液のベースとして広範に利用され得るものである。
【0053】
実施例10 チキンエキスの製造
ブロイラー首部骨ガラ100gをミンチ後、水200mLを添加し、95℃で1時間エキス抽出した。60メッシュの篩(飯田製作所製)でろ過後、残査に200mLの水と本発明の酵素500単位を加え、40℃で4時間反応後、15分間煮沸、遠心分離し、上澄をエキスとして得た。更にエバポレーター濃縮し、水分50(w/v)%、蛋白質38(w/v)%を含む呈味性に優れた、チキンエキスを得た。当該エキスは、上記貝殻エキスと同様、各種のスープのベース、調味液のベースとして広範に利用され得る。
【0054】
【発明の効果】
本発明の微生物由来のキモトリプシン様活性を有するプロテアーゼは新規であり、かつ動物由来のキモトリプシンと同様の高い基質特異性を有しており、キモトリプシンの代替プロテアーゼとなることができ有用である。
【0055】
本発明のタンパク質分解物含有物の製造法は、キモトリプシン様プロテアーゼの高い基質特異性により各種タンパク質又はタンパク質含有物の分解に使用することが可能であり、広く食品分野に適用することができる。
【図面の簡単な説明】
【図1】 本発明のキモトリプシン様プロテアーゼの分子量を測定したSDS−PAGEを示す図である。
【図2】 本発明のキモトリプシン様プロテアーゼのpH特性を示す図である。
【図3】 本発明のキモトリプシン様プロテアーゼの温度特性を示す図である。
【図4】 本発明のキモトリプシン様プロテアーゼのpH安定性を示す図である。
【図5】 本発明のキモトリプシン様プロテアーゼの温度安定性を示す図である。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a novel chymotrypsin-like protease, a method for producing the same, and a method for producing a protein degradation product containing a novel chymotrypsin-like protease.
[0002]
[Prior art]
Chymotrypsin is a vertebrate-derived serine protease and has endopeptidase activity. In the food industry, foods are being modified using the properties of chymotrypsin, and demand for chymotrypsin will increase in the future. Is expected.
[0003]
However, there is a limit to the amount of animal organs that supply chymotrypsin, and there are concerns about prion diseases such as mad cow disease. The emergence of a mass-productive enzyme having a substrate specificity of 5% was strongly desired.
[0004]
On the other hand, there is provided a mass-produced protease derived from microorganisms that can be used for modification of foods as in the case of chymotrypsin. For example, although subtilisin derived from Bacillus subtilis is widely used industrially, subtilisin has low substrate specificity and cannot specifically cleave a specific peptide binding site, so a food is desired. There was a problem that it was difficult to modify the characteristics of the above. In addition, a trypsin-like protease derived from a microorganism belonging to the genus Trichoderma that specifically hydrolyzes the C-terminus of a basic amino acid has been reported by the present applicant (see Japanese Patent Application Laid-Open No. 2000-116377). Since the substrate specificity is quite different from that of chymotrypsin and the properties of the modified food are also different, trypsin-like proteases could not be used as a substitute for chymotrypsin.
[0005]
[Problems to be solved by the invention]
The present invention has been made to solve the above-mentioned conventional problems, and provides a mass-produced novel chymotrypsin-like protease and a method for producing the same, and contains a proteolysate that acts on the novel chymotrypsin-like protease. It is an object to provide a method for manufacturing a product.
[0006]
[Means for Solving the Problems]
Thus, as a result of intensive studies to solve the above problems, the present inventors have found that a strain derived from the genus Trichoderma also produces a chymotrypsin-like protease, and have completed the present invention.
[0007]
  That is, the present inventionThe following (1) to (8) in glycininA chymotrypsin-like protease with the physicochemical properties ofMethod for producing antioxidant peptide characterized by actingIs to provide.
(1) Action / Substrate specificity: Has chymotrypsin-like protease activity.
  Human whose amino acid sequence is Asn-Arg-Val-Tyr-Val-His-Pro-Phe-His-Leu [Asn1, ValFiveIt acts on angiotensin I to hydrolyze the C-terminal side of tyrosine and phenylalanine and acts on the synthetic substrate Suc-Ala-Ala-Pro-Phe-pNA, but Nt-Boc-Leu-Gly-Arg- It does not act on pNA and Nt-Boc-O-Bz-Ser-Gly-Arg-pNA.
(Suc-: Succinyl-, Nt-Boc-: Nt-Butyloxycarbonyl-, -pNA: -p-nitroanilide)
(2) Optimum pH: PH8.
(3) Optimal temperature: 40 ° C.
(4) pH stability: PIt is stable in the range of H5.0 to 11.5.
(5) Temperature stability: 4Stable up to 0 ° C.
(6) Inhibitors: Inhibited by serine protease inhibitors DFP (diisopropylfluorophosphate), PMSF (phenylmethanesulfonyl fluoride) and chymostatin (Chymostatin) which is also a chymotrypsin inhibitor.
(7) Molecular weight: 31,000 (SDS-polyacrylamide gel electrophoresis)
(8) Isoelectric point: 8. 5.
[0009]
Furthermore, the present invention provides a method for producing a protein-degraded product-containing product characterized by causing the protein or protein-containing product to act on the chymotrypsin-like protease having the above physicochemical properties to degrade the protein. Here, the protein-degraded product-containing product is a product obtained by causing the chymotrypsin-like protease of the present invention to act on a protein or a material containing a protein, regardless of whether it is derived from animals or plants, and enzymatically decomposing part or all of the protein. Say.
[0010]
DETAILED DESCRIPTION OF THE INVENTION
The chymotrypsin-like protease of the present invention can be obtained from a strain belonging to the genus Trichoderma. As a strain belonging to the genus Trichoderma, any strain can be used as long as it has an ability to produce chymotrypsin-like protease, and mutant strains of these strains can also be used. Specific examples of strains having the ability to produce chymotrypsin-like protease belonging to the genus Trichoderma include, for example, Trichoderma sp. 9064 (Trichoderma sp. No. 9064) strain. The bacteriological properties of this strain are as follows.
[0011]
1. Form
Mycelium: Colorless. Has a septum. Diameter 1.0-6.0 μm.
Conidial pattern: Branches irregularly and forms a phialide at each branch. Diameter 4.5-5.5 μm.
Fear Ride: Bottle shape. 8-12 × 3.5-4.5 μm. colorless.
Conidia: Fiaro-type conidia. Oval or oval. 3.5-5.0 * 2.0-3.0 micrometers. Dark green. It becomes clumpy at the top of the phialide.
Thick film spores: Subspherical to pear-shaped. 10-12 × 6-9 μm.
[0012]
2. Growth state
Malt / yeast extract agar
Formation may occur on the entire surface or may be irregularly spotted or patchy; the back side is white and produces a water-soluble yellow pigment.
Potato dextrose agar medium
The growth is slightly worse than the malt / yeast extract agar medium, but the culture properties are almost the same.
[0013]
This strain lacks sexual spores and is an incomplete fungus because the vegetative body is a mycelium with a septum, and the mycelium develops well, lacks budding cells, and forms conidia that are naked, resulting in an incomplete filamentous form. It is a fungus. It grows quickly and becomes dark green due to the formation of conidia, the conidia pattern diverges and forms a bottle-shaped phialide, and the conidia is a fiaro-type and agglomerates at the top of the phialide, so Trichoderma Classified as a genus.
[0014]
Based on the above properties, this strain was identified as a strain belonging to the genus Trichoderma, and Trichoderma sp. It was named 9064 (Trichoderma sp. No. 9064).
An example of the most similar property to this strain is Trichoderma viride. This strain was deposited as FERM P-17003 on September 24, 1998 at the Institute of Biotechnology, Ministry of International Trade and Industry.
[0015]
Next, a method for producing the chymotrypsin-like protease of the present invention will be described. Any strain belonging to the genus Trichoderma can be used in this production method, and examples thereof include Trichoderma sp. FERM P-17003.
[0016]
The culture method for producing and accumulating the chymotrypsin-like protease of this production method using a strain belonging to the genus Trichoderma may be either a liquid culture method or a solid culture method. As a culture medium of solid culture method, wheat bran alone or various additives such as wheat flour, soybean flour, ammonium salt, nitrate, urea, glutamic acid, aspartic acid, polypeptone, corn steep liquor, meat extract, yeast extract, Organic and inorganic nitrogen compounds such as protein hydrolysates can be added and used, and appropriate inorganic salts can also be added.
[0017]
In addition, as a medium for the liquid culture method, a synthetic medium or a natural medium containing a carbon source, a nitrogen source, inorganic salts, a necessary nutrient source and the like necessary for the strain to grow well and produce the enzyme smoothly. Medium. For example, as the carbon source, carbohydrates such as starch or a composition fraction thereof, roasted dextrin, modified starch, starch derivative, physically treated starch and α-starch can be used. Specific examples include soluble starch, corn starch, potato starch, sweet potato starch, dextrin, amylopectin, and amylose.
[0018]
Examples of nitrogen sources include polypeptone, casein, meat extract, yeast extract, corn steep liquor, organic nitrogen source materials such as extracts such as soybean or soybean cake, inorganic salt nitrogen compounds such as ammonium sulfate and ammonium phosphate, and amino acids such as glutamic acid. Kind.
[0019]
As inorganic salts, phosphates such as monopotassium phosphate and dipotassium phosphate, magnesium salts such as magnesium sulfate, calcium salts such as calcium chloride, sodium salts such as sodium carbonate, and the like are used.
[0020]
In the case of solid culture, the culture is performed by static culture, the strain is ingested into a medium whose pH is adjusted to 3 to 7, and cultured at 10 to 40 ° C. for 1 to 10 days. After culturing, chymotrypsin-like protease can be obtained from the culture extract as a crude enzyme precipitate by means such as ethanol precipitation.
[0021]
In the case of liquid culture, the culture is performed under aerobic conditions such as shaking culture or aeration and agitation culture, and the medium is prepared in the range of pH 4 to 10, preferably in the range of pH 5 to 8. Culturing is performed in the range of -40 ° C, preferably 25-37 ° C, for 24-96 hours. After culturing, the cells are removed to obtain a crude enzyme solution.
[0022]
Next, purified crude chymotrypsin-like protease can be obtained by appropriately combining these crude enzyme solutions with known ammonium sulfate salting out, gel filtration, centrifugation, hydrophobic chromatography, ion exchange chromatography and the like. .
[0023]
Next, a method for producing a protein hydrolyzate-containing product by degrading the protein by causing the chymotrypsin-like protease having the above properties to act on the protein or the protein-containing product will be described.
[0024]
Protein refers to polypeptides derived from animals such as cows, pigs, horses, sheep, goats, rabbits, poultry, or plants such as rice, wheat, corn, and soybeans. The protein-containing material is a material containing at least a protein regardless of whether it is of animal origin or plant origin, and can act on the chymotrypsin-like protease of the present invention regardless of the content of the protein. Say things. Accordingly, anything satisfying this condition is included in the protein-containing material of the present invention, and examples thereof include cereals, milk, meat, shellfish, bones and the like, and processed products thereof. Cereals include rice, wheat, corn, soybean, etc., and rice and soybean are preferred. Milk includes milk such as cows, sheep and goats, with milk being preferred. The meat includes beef, pork, horse meat, noodles, goat meat, rabbit meat, poultry meat, etc., but beef is preferred. Shellfish include clams, clams, oysters, abalone, scallops and the like, with scallops being preferred. Examples of the bone rattle include bone rattles such as cows, pigs, horses, sheep, goats, and chickens, but chicken bone rattles are preferred. As the above-mentioned processed product, the midgut gland is preferable for scallops, and the whey is preferable for milk. Those suitable as protein-containing materials have a high utility value in that they have a wide range of uses as food materials. The form of the protein-containing material is not particularly limited, and may take any form of solid, semi-solid, fluid, and liquid.
[0025]
When the chymotrypsin-like protease of the present invention is allowed to act on these proteins or protein-containing materials, the mode of action of the protease is not particularly limited, but in addition to solid forms such as powders, forms such as suspensions and solutions, It can be used in consideration of the nature and form of the protein-containing material.
[0026]
The pH is preferably in the range of at least 5 to 11, but more preferably in the range of pH 7 to 9 for the purpose of more efficient protein hydrolysis. The action temperature can be appropriately determined in consideration of the nature of the substance containing the protein, etc., but is preferably about 40 ° C. from the viewpoint that efficient protein hydrolysis is possible.
[0027]
The action time is usually 1 to 48 hours, but can be determined appropriately in consideration of the desired degree of decomposition. The amount of the chymotrypsin-like protease of the present invention is usually 10 to 20,000 units per gram of protein-containing material, but can be appropriately determined in consideration of the amount and properties of the protein contained in the protein-containing material. . Furthermore, when diversity is required for the modification of food materials, other proteases can be allowed to act in addition to the chymotrypsin-like protease of the present invention. Examples of other proteases include aminopeptidases and carboxypeptidases, but yeast-derived carboxypeptidases and filamentous fungal-derived aminopeptidases are preferred, and commercially available products such as peptidase R (manufactured by Amano Enzyme Co., Ltd.) can be easily obtained. . The amount of aminopeptidase added can be appropriately determined in consideration of the material of the food material, the desired modification, etc., but is usually 40 to 100,000 units per gram of protein-containing material. In order to terminate the action of the chymotrypsin-like protease and / or other proteases of the present invention, the protease can be inactivated by heating or the like, if necessary.
[0028]
The proteolysate-containing product obtained by allowing the chymotrypsin-like protease of the present invention to act has various characteristics such as antioxidant properties, improved taste, low antigenicity, and low cutting stress as shown in the Examples. However, these properties of the proteolysate-containing product can be expected to be widely used as a food material. For example, the antioxidant property is described in the Active Oxygen method (Oil and Fat Chemical Handbook: edited by Japan Oil Chemistry Association). 515, etc.) for taste, sensory test by panelists, amino acid quantification by formol titration method, quantification of total protein amount by Kjeldahl method, etc. For antigenicity, the Inhibition Elisa method (Japanese Journal of Pediatric Allergy, 1, 36, 1987), etc. For the cutting stress, those who use meat shear (Warner Bratzler) It can be confirmed by the like.
[0029]
As described above, the chymotrypsin-like protease obtained by the present invention has the property of cleaving the carboxyl side of an aromatic amino acid residue in a polypeptide chain, including proteins, and is modified by the chymotrypsin-like protease. The food materials have the effects of anti-oxidation against auto-oxidation, improved taste, reduced antigenicity, reduced cutting stress, etc., so they can be used for the production of foods containing various proteins. For example, the quality of yogurt, cheese, fermented ham and the like can be stabilized and the flavor can be improved, and a low allergen food can be produced, which can contribute extensively to modification of protein properties in the food field. Hereinafter, the present invention will be described more specifically by way of examples. However, the present invention is not limited to these examples.
[0030]
【Example】
Example 1 (Culture of chymotrypsin-like protease)
Trichoderma sp. No. cultivated on potato dextrose agar medium (manufactured by Kyokuto Pharmaceutical) at 30 ° C. for 5 days. 9064 (Trichoderma sp. No. 9064) (FERM P-17003) was inoculated into a culture flask containing 250 mL of a sterilized 8 (w / v)% wheat bran suspension at 30 ° C. for 40 hours at 140 rpm. The culture was shaken under the conditions to prepare a seed culture.
[0031]
The whole amount of this was inoculated into 850 g of wheat bran and 150 g of yellow flour with a solid medium sprinkled with 560 mL of water and statically cultured at 30 ° C. for 68 hours to produce protease. After cultivation, 4200 mL of water was added to wheat bran, and the produced enzyme was extracted to obtain 3000 mL of a crude enzyme solution. After concentrating to 600 mL with an ultrafiltration membrane having a molecular weight cut off of 6000 to dissolve 40 g of dextrin, 2000 mL of cold ethanol was added to obtain a crude enzyme precipitate. The crude enzyme precipitate was separated by filtration and dried under reduced pressure (665 Pa) at 40 ° C. for 22 hours to obtain 60 g of crude enzyme powder.
[0032]
Example 2 (Purification of chymotrypsin-like protease)
1 g of the crude enzyme powder obtained in Example 1 was dissolved in 100 mL of a buffer solution (20 mmol / L acetate buffer solution, pH 5.0), and then centrifuged (7,000 × g, 5 minutes) to obtain the supernatant. Added to a CM-Toyopearl 650M column. The adsorbed protein was eluted with a linear gradient of 60 mmol / L acetate buffer (pH 5.0). The eluted enzyme active fraction was collected, ammonium sulfate powder was added so as to be 30% saturated, and phenyl sepharose fast flow (phenyl) equilibrated with 60 mmol / L acetate buffer (pH 5.0) containing 30% saturated ammonium sulfate. -Sepharose fast flow (Pharmacia). The adsorbed protein was eluted with a linear gradient from 60 mmol / L acetate buffer (pH 5.0) containing 30% saturated ammonium sulfate to 60 mmol / L acetate buffer (pH 5.0). The eluted enzyme active fraction was used as a purified enzyme preparation (hereinafter referred to as “the present enzyme solution”). This enzyme solution showed a single band by SDS-PAGE as shown in FIG.
[0033]
Enzyme activity measurement method (casein substrate)
A 1 (w / v)% casein solution (67 mmol / L phosphate buffer, pH 7.0) in the same amount as 1 mL of the enzyme solution is mixed and reacted at 37 ° C. for 20 minutes. After the reaction, 3 mL of 5 (w / v)% trichloroacetic acid solution was added to stop the reaction, and after standing for 30 minutes, Toyo Filter Paper No. After filtration through 131, the absorbance at 280 nm of the obtained filtrate was measured. Under the above reaction conditions, the amount of enzyme that increases the absorbance at 280 nm per minute by 0.001 was defined as 1 unit.
[0034]
Example 3 (Physicochemical properties of chymotrypsin-like protease)
(1) Action / Substrate specificity: Has chymotrypsin-like protease activity.
[0035]
Substrate specificity for human angiotensin I
Substrate specificity for human angiotensin I was examined as follows.
To 25 μL of this enzyme solution, 25 μL of human angiotensin I was added and incubated at pH 7.0, 30 ° C. for 24 hours. The resulting peptide fragment was fractionated by reverse-phase HPLC and analyzed for amino acid composition by the PICO-TAG method to estimate the cleavage site. As a result, the fourth tyrosine and 8th from the N-terminus of human angiotensin I were detected. It was found that the C-terminal side of the second phenylalanine was hydrolyzed. From this result, it was estimated that this enzyme is a chymotrypsin-like protease.
[0036]
Substrate specificity for synthetic substrates
As synthetic substrates, Suc-Ala-Ala-Pro-Phe-pNA, Suc-Ala-Ala-Val-Ala-pNA, Glt-Ala-Ala-Pro-Leu-pNA, t-Boc-Ala-Ala-Pro- Ala-pNA, Pyr-Phe-Leu-pNA, Nt-Boc-Leu-Gly-Arg-pNA, Nt-Boc-O-Bz-Ser-Gly-Arg-pNA, Suc-Ala-Ala- Example 2 using Pro-Asp-pNA, Suc-Ala-Pro-Ala-pNA, Suc-Ala-Ala-Ala-pNA, Suc-Ala-Ala-pNA, Z-Gly-Gly-Leu-pNA The substrate specificity of the obtained chymotrypsin-like protease was measured as follows. Specifically, 10 μL of 10 mmol / L of each of the above peptidyl-paranitroanilide (peptidyl-pNA) in dimethyl sulfoxide (hereinafter referred to as “DMSO”) and 700 μL of 67 mmol / L, pH 7.0 phosphate buffer were mixed. 100 μL of this enzyme solution was added. After reacting at 25 ° C. for 10 minutes, 200 μL of 1 mol / L acetic acid was added to stop the reaction, and the absorbance at 405 nm was measured. The substrate decomposition rate was calculated by setting the extinction coefficient of paranitroaniline to be 9920 / ((mol / L) · cm) (25 ° C.). Instead of this enzyme solution, 67 μl / L, pH 7.0 phosphate buffer solution 100 μL was used as a control, and the activity was measured by taking the difference from the enzyme sample. The activity with respect to Suc-Ala-Ala-Pro-Phe-pNA was defined as 100% and expressed as a relative value. As a result, as shown in Table 1, the enzyme solution obtained in Example 2 well hydrolyzes the C-terminal side of phenylalanine adjacent to the paranitroanilide of Suc-Ala-Ala-Pro-Phe-pNA, It showed specific chymotrypsin-like protease activity. On the other hand, this enzyme solution is composed of Nt-Boc-Leu-Gly-Arg-pNA and Nt-Boc-O-Bz-Ser-Gly-Arg whose amino acid residues adjacent to paranitroanilide are arginine residues. -PNA was not hydrolyzed and showed no trypsin-like protease activity. Hydrolysis was not observed with Suc-Ala-Ala-Pro-Asp-pNA in which the amino acid residue adjacent to paranitroanilide is an aspartic acid residue. When the amino acid residue adjacent to paranitroanilide is an alanine residue or a leucine residue, the hydrolysis rate by this enzyme solution is 0 to 25%, and the activity is low. From the above results, it is presumed that the protease of the present invention is a chymotrypsin-like protease and is different from a protease having trypsin-like activity.
[0037]
[Table 1]
Figure 0004401555
[0038]
Suc: Succinyl
pNA: p-Nitroanilide
Z: Carbobenzoxy
Glt: Glutaryl
Bz: Benzoyl
t-Boc: t-Butyloxycarbonyl
Pyr: Pyroglutamyl
[0039]
(2) Optimum pH: 67 mmol / L citrate buffer solution of pH 2 to 8.4 and 67 mmol / L glycine-sodium hydroxide buffer solution of pH 8.4 to 12 were prepared. 100 μL of this enzyme solution was added to 10 μL of Suc-Ala-Ala-Pro-Phe-pNA DMSO solution dissolved in L concentration, incubated at 25 ° C. for 10 minutes, 200 μL of 1 mol / L acetic acid was added, and after stopping the reaction, 405 nm Absorbance was measured. The relative activity was determined at each pH with the highest activity as the standard (100%), and the optimum pH was determined. As shown in FIG. 2, the optimum pH was around 8.
[0040]
(3) Optimum temperature: 10 μL of DMSO solution of Suc-Ala-Ala-Pro-Phe-pNA dissolved in 700 μL of pH 7.0, 67 mmol / L phosphate buffer at a concentration of 10 mmol / L at 20 to 70 ° C. After 20 minutes of pre-incubation, 100 μL of the enzyme solution was added and reacted at each temperature for 10 minutes. After adding 200 μL of 1 mol / L acetic acid and stopping the reaction, absorbance at 405 nm was measured. As shown in FIG. 3, the optimum temperature was 40 ° C.
[0041]
(4) pH stability: 67 mmol / L citrate buffer (pH 2 to 8.4) and 67 mmol / L glycine-sodium hydroxide buffer (pH 8.4 to 12.0) are used. 200 μL and 100 μL of this enzyme solution were mixed and allowed to stand at 40 ° C. for 1 hour, after which the pH was adjusted to 7.0, and then 100 μL was adjusted to a concentration of 700 mmol of 67 mmol / L phosphate buffer (pH 7.0) and 10 mmol / L. The solution was added to 10 μL of dissolved Suc-Ala-Ala-Pro-Phe-pNA in DMSO and reacted at 25 ° C. for 10 minutes. After the reaction, 200 μL of 1 mol / L acetic acid was added to stop the reaction, and the absorbance at 405 nm was measured. As a result, as shown in FIG. 4, 80% of the original activity was maintained in the range of pH 5.0 to 11.5.
[0042]
(5) Temperature stability: After adding 100 μL of this enzyme solution to 700 μL of 67 mmol / L phosphate buffer (pH 7.0) and preincubating for 20 minutes at each temperature, the solution was cooled to 25 ° C. and dissolved at a concentration of 10 mmol / L. A DMSO solution of Suc-Ala-Ala-Pro-Phe-pNA was added and reacted at 25 ° C. for 10 minutes. After the reaction, 200 μL of 1 mol / L acetic acid was added to stop the reaction, and the absorbance at 405 nm was measured. As a result, as shown in FIG. 5, although a stability was observed up to 40 ° C., a rapid decrease was observed after 40 ° C.
[0043]
(6) Inhibitors: DFP (diisopropyl fluorophosphate), PMSF (phenylmethanesulfonyl fluoride) and STI (soybean-derived trypsin inhibitor), serine protease inhibitors manufactured by Sigma Aldrich Japan Co., Ltd., PCMPS, a cysteine protease inhibitor (Parachloromercuriphenyl sulfonic acid) and MIA (monoiodoacetic acid), serine protease and cysteine protease inhibitors leupeptin (Leupeptin), antipain (Antipain) and chymotrypsin inhibitor also chymostatin (chymostatin), aspartic acid protease inhibitor inhibition Pepstatin (Pepstatin) and EDTA (ethylenediamine), a metalloproteinase inhibitor It was measured inhibitory effect on the enzyme solution obtained in Example 2 using tetraacetic acid) as follows. Specifically, 100 μL of the inhibitor solution (67 mmol / L phosphate buffer, pH 7.0) was added to 100 μL of this enzyme solution, pre-incubated at 30 ° C. for 1 hour, and then Suc-Ala-Ala-Pro-Phe-pNA. 10 μL of DMSO solution and 600 μL of 67 mmol / L phosphate buffer (pH 7.0) were added, incubated at 25 ° C. for 10 minutes, 200 μL of 1 mol / L acetic acid was added to stop the reaction, and the absorbance at 405 nm was measured. The activity was quantified by taking the difference from the sample using the autolysis of the substrate as a control. The activity when no inhibitor is contained is shown in Table 2 as 100%. As a result, chymotrypsin-like protease was completely inhibited by DFP, PMSF, and chymostatin, but not by STI, PCMPS, MIA, and Pepstatin. Antipain showed strong inhibition, EDTA showed moderate inhibition, and Leupeptin showed weak inhibition. Judging from the substrate specificity and the inhibitory effect of each inhibitor, the protease of the present invention is presumed to be a chymotrypsin-like protease and a serine protease, and the present applicant has already reported (see Japanese Patent Application Laid-Open No. 2000-116377). It was found to exhibit different properties from trypsin-like protease.
[0044]
[Table 2]
Figure 0004401555
[0045]
(7) Molecular weight: SDS-polyacrylamide electrophoresis (15% gel) was performed according to the Laemmli method. As standard proteins, phosphorylase b (Phosphorylase b (94,000)), bovine serum albumin (bovine serum albumin (67,000)), ovalbumin (ovavalbumin (43,000)), carbonic ann Hydolase (carbonic anhydrase (30,000)), soybean trypsin inhibitor (soybean trypsin inhibitor (20, 100)), α-lactalbumin (α-lactalbumin (14,400)) was used, and gel staining was Coomassie Brilliant CBB staining using R-250 (Pharmacia) was used. As a result, the molecular weight of the chymotrypsin-like protease of the present invention was estimated to be 31,000.
[0046]
(8) Isoelectric point: Slab gel was used for isoelectric focusing (15% gel). For the preparation of the pH gradient, ampholine (Amphorine, Pharmacia, pH 3 to 10) was used, and electrophoresis was performed at 35 V and 6 mA. As a result, the isoelectric point of the chymotrypsin-like protease of the present invention was estimated to be 8.5.
[0047]
Example 4Method for producing antioxidant peptide
100 g of water was added to 3 g of glycinin isolated from commercially available soybeans to adjust the pH to 7.0, then 500 units of the enzyme of the present invention was added with milk casein activity, reacted at 40 ° C. for 1 hour, and then kept at 85 ° C. for 10 minutes. The enzyme was deactivated. When this glycinin degradation product and undegraded glycinin were measured for their antioxidative properties against the auto-oxidation of linoleic acid by the Active oxygen method (Orea Chemical Handbook: edited by Japan Oil Chemistry Association, page 515), it was 8 in comparison with undegraded glycinin. Double the antioxidant capacity. The present glucinine degradation product can be used as a food material having an antioxidant or oxidative delay action of food.
[0048]
Example 5Seasoning production
After adjusting 1L of 5% commercial defatted soybean suspension to pH 7.0, 100 units of the enzyme of the present invention per 1 g of protein and 1 g of peptidase R (manufactured by Amano Enzyme Co., Ltd.) (420 units) were added, and 40 ° C. For 20 hours with stirring. After the reaction, the temperature was kept at 80 ° C. for 15 minutes to deactivate the enzyme, and a clear proteolytic solution was obtained by centrifugation. When this decomposed solution was subjected to a taste test using a caffeine solution as an index, there was no bitterness and a taste was felt. The analysis values of the decomposition solution were 2.5 mg / mL of total nitrogen, 1.5% of protein, 0.62% of free amino acid, formol nitrogen / total nitrogen × 100, and 43.5%. This proteolytic solution can be used as a meat extract-containing seasoning solution or as a base for soup.
Peptidase activity assay
To 1 mL of a substrate solution obtained by dissolving leucyl-glycylglycine (Leucyl-Glycyl-Glycine) at a concentration of 0.2 mol / L in a phosphate buffer solution of 50 mmol / L and pH 7.0, add 0.1 mL of the enzyme solution at 37 ° C. Reacted for 60 minutes. After the reaction, keep in boiling water for 5 minutes, cool, and then add 2 mL of ninhydrin solution and 0.1 mL of stannous chloride solution. After keeping in boiling water for 20 minutes, cool, add 10 mL of 50 (w / v)% n-propanol and measure absorbance at 570 nm. Under the above conditions, the amount of enzyme that liberates 1 micromole of amino acid per minute was defined as 1 unit.
[0049]
Example 6Production of hypoallergenic whey protein degradation products
400 units of the enzyme of the present invention per 400 g of protein was added to 2 L of an aqueous whey protein solution and the pH was adjusted to 7.0, followed by reaction at 40 ° C. for 10 hours. After the reaction, the enzyme was inactivated at 85 ° C. for 10 minutes, and insoluble matters were removed by centrifugation. Then, the supernatant was concentrated by a conventional method and dried to obtain 115 g of powder. The antigenicity of the obtained whey degradation product was measured according to the Inhibition Elisa method (Journal of Japanese Society of Pediatric Allergy, 1,36, 1987) using β-lactalbumin as a control. It was less than 1 / 10,000 of the antigenicity of albumin. This whey degradation product can be widely used as a food material for consumers of various food allergies, atopic dermatitis and other allergic constitutions.
[0050]
Example 7Low protein rice production method
3 kg of polished rice having a milling degree of 90% was washed by a conventional method and then immersed in 0.05% of the enzyme solution of the present invention.
After adjusting the pH to 7.0 and treating at 40 ° C. for 10 hours, the white rice was separated and the enzyme was removed by washing with water. By treating with the enzyme of the present invention, low protein rice from which 54% of the raw milled rice protein was removed was produced. This low-protein allergen low-protein rice can be widely used as a food material for consumers of various food allergies, atopic dermatitis and other allergic constitutions.
[0051]
Example 8Meat softening
Commercially imported beef thigh was sliced to a thickness of 10 mm. The uniform part of the meat quality was molded to about 20 g, sprinkled with the enzyme of the present invention, covered with wrap, and left in a refrigerator at 5 ° C. for 5 hours. The amount of enzyme added is 30 units per gram of meat. Thereafter, each side was baked on a 200 ° C. hot plate for 1 minute, cut into a 2 cm wide band, and then the cutting stress was measured with a meat share (Warner Bratzler model 3000, manufactured by Warner Bratzler). As a result, the cutting stress of the meat treated with the enzyme was reduced by 55% as compared with the case of no enzyme treatment, and it was revealed that the enzyme of the present invention is useful for softening meat. The softened meat is suitable for elderly people who change the texture of the meat and have reduced chewing ability, and therefore, it is expected that the demand will increase further as the aging society progresses.
[0052]
Example 9Manufacture of shellfish extract
100 g of scallop midgut gland was squeezed into 300 mL of water, homogenized with a homogenizer, and kept at 95 ° C. for 10 minutes. After cooling to 40 ° C., 2000 units of the enzyme of the present invention was added per 1 g of the substrate and decomposed at the same temperature for 3 hours. After the reaction, the mixture is heated at 85 ° C. for 15 minutes to inactivate the enzyme, centrifuged, and filtered through an ultrafiltration membrane (fractional molecular weight 10,000), protein concentration 1.30 (w / v)%, free amino acid 230 mL of 0.71 (w / v)% extract was obtained. The extract can be widely used as a base for various soups and a seasoning liquid.
[0053]
Example 10Manufacture of chicken extract
After mincing 100 g of broiler neck bones, 200 mL of water was added, and the extract was extracted at 95 ° C. for 1 hour. After filtering through a 60 mesh sieve (manufactured by Iida Seisakusho), add 200 mL of water and 500 units of the enzyme of the present invention to the residue, react at 40 ° C. for 4 hours, boil and centrifuge for 15 minutes, and use the supernatant as an extract Obtained. Further, the evaporator was concentrated to obtain a chicken extract containing 50% (w / v) moisture and 38% (w / v) protein and excellent in taste. The extract can be widely used as a base of various soups and a base of seasoning liquid, like the shell extract.
[0054]
【The invention's effect】
The microorganism-derived protease having chymotrypsin-like activity of the present invention is novel and has high substrate specificity similar to animal-derived chymotrypsin, and can be used as an alternative protease to chymotrypsin.
[0055]
The method for producing a protein-degraded product-containing product of the present invention can be used for degrading various proteins or protein-containing products due to the high substrate specificity of chymotrypsin-like protease, and can be widely applied to the food field.
[Brief description of the drawings]
FIG. 1 is a diagram showing SDS-PAGE in which the molecular weight of the chymotrypsin-like protease of the present invention was measured.
FIG. 2 shows the pH characteristics of the chymotrypsin-like protease of the present invention.
FIG. 3 is a graph showing temperature characteristics of the chymotrypsin-like protease of the present invention.
FIG. 4 shows the pH stability of the chymotrypsin-like protease of the present invention.
FIG. 5 shows the temperature stability of the chymotrypsin-like protease of the present invention.

Claims (1)

グリシニンに下記(1)〜(8)の理化学的性質を有するキモトリプシン様プロテアーゼを作用させることを特徴とする抗酸化性ペプチドの製造法。
(1)作用・基質特異性:キモトリプシン様のプロテアーゼ活性を有する。
アミノ酸配列がAsn―Arg−Val―Tyr−Val−His−Pro―Phe―His−Leuであるヒト[Asn1,Val5]−アンギオテンシンIに作用してチロシンとフェニルアラニンのC末端側を加水分解し、合成基質Suc−Ala―Ala―Pro―Phe―pNAに作用するが、N―t−Boc−Leu―Gly−Arg−pNA及びN−t−Boc―O―Bz―Ser−Gly−Arg―pNAには作用しない。
(Suc−:スクシニル(Succinyl)−、N−t−Boc−:N−t−ブチルオキシカルボニル(N−t−Butyloxycarbonyl)−、−pNA:−p−ニトロアニリド(p−Nitroanilide))
(2)至適pH:pH8である。
(3)至適温度:40℃である。
(4)pH安定性:pH5.0〜11.5の範囲で安定である。
(5)温度安定性:40℃まで安定である。
(6)阻害剤:セリンプロテアーゼ阻害剤のDFP(ジイソプロピルフルオロホスフェート)、PMSF(フェニルメタンスルフォニルフルオライド)及びキモトリプシン阻害剤でもあるキモスタチン(Chymostatin)で阻害される。
(7)分子量:31,000(SDS−ポリアクリルアミドゲル電気泳動)
(8)等電点:8.5である。
A method for producing an antioxidant peptide, characterized by allowing chymotrypsin-like protease having the following physicochemical properties (1) to (8) to act on glycinin:
(1) Action / Substrate specificity: Has chymotrypsin-like protease activity.
It acts on human [Asn 1 , Val 5 ] -angiotensin I having the amino acid sequence Asn-Arg-Val-Tyr-Val-His-Pro-Phe-His-Leu to hydrolyze the C-terminal side of tyrosine and phenylalanine. Acting on the synthetic substrate Suc-Ala-Ala-Pro-Phe-pNA, but Nt-Boc-Leu-Gly-Arg-pNA and Nt-Boc-O-Bz-Ser-Gly-Arg-pNA Does not work.
(Suc-: Succinyl-, Nt-Boc-: Nt-Butyloxycarbonyl-, -pNA: -p-nitroanilide)
(2) Optimal pH : pH 8
(3) Optimal temperature : 40 ° C.
(4) pH stability : stable in the range of pH 5.0 to 11.5.
(5) Temperature stability : Stable up to 40 ° C.
(6) Inhibitor: Inhibited by serine protease inhibitor DFP (diisopropylfluorophosphate), PMSF (phenylmethanesulfonyl fluoride) and chymostatin (Chymostatin) which is also a chymotrypsin inhibitor.
(7) Molecular weight: 31,000 (SDS-polyacrylamide gel electrophoresis)
(8) Isoelectric point : 8 . 5.
JP2000329032A 2000-10-27 2000-10-27 A novel chymotrypsin-like protease, a method for producing the same, and a method for producing a protein degradation product containing a novel chymotrypsin-like protease. Expired - Fee Related JP4401555B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000329032A JP4401555B2 (en) 2000-10-27 2000-10-27 A novel chymotrypsin-like protease, a method for producing the same, and a method for producing a protein degradation product containing a novel chymotrypsin-like protease.

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000329032A JP4401555B2 (en) 2000-10-27 2000-10-27 A novel chymotrypsin-like protease, a method for producing the same, and a method for producing a protein degradation product containing a novel chymotrypsin-like protease.

Publications (2)

Publication Number Publication Date
JP2002125665A JP2002125665A (en) 2002-05-08
JP4401555B2 true JP4401555B2 (en) 2010-01-20

Family

ID=18805782

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000329032A Expired - Fee Related JP4401555B2 (en) 2000-10-27 2000-10-27 A novel chymotrypsin-like protease, a method for producing the same, and a method for producing a protein degradation product containing a novel chymotrypsin-like protease.

Country Status (1)

Country Link
JP (1) JP4401555B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013047082A1 (en) 2011-09-29 2013-04-04 天野エンザイム株式会社 Exogenous opioid peptide-degrading enzyme
US9011842B2 (en) 2010-02-02 2015-04-21 Amano Enzyme Inc. Use of proteases for gluten intolerance

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009148248A (en) * 2007-11-26 2009-07-09 Univ Nihon Allergen-reducing agent
JP2011211988A (en) * 2010-04-01 2011-10-27 Ajinomoto Co Inc Decreased calorie food and drink composition
US20140295027A1 (en) * 2011-08-19 2014-10-02 Novozymes A/S Polypeptides Having Protease Activity
CN110777093A (en) * 2019-11-06 2020-02-11 华中农业大学 Bacterial enzyme synergistic solid-state fermentation agent based on combination of composite strains and chymotrypsin

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9011842B2 (en) 2010-02-02 2015-04-21 Amano Enzyme Inc. Use of proteases for gluten intolerance
US9498520B2 (en) 2010-02-02 2016-11-22 Amano Enzyme Inc. Use of proteases for gluten intolerance
WO2013047082A1 (en) 2011-09-29 2013-04-04 天野エンザイム株式会社 Exogenous opioid peptide-degrading enzyme

Also Published As

Publication number Publication date
JP2002125665A (en) 2002-05-08

Similar Documents

Publication Publication Date Title
JP3609648B2 (en) Novel protein deamidase, gene encoding it, production method thereof and use thereof
JP4202748B2 (en) Protein hydrolyzate
JP3153237B2 (en) Protein hydrolyzate
CA2401961A1 (en) Cultured protein hydrolysate
JPH08322471A (en) Method of obtaining edible hydrolysate article
WO2010009400A1 (en) Method for preparing a protein hydrolysate
Bao et al. Comparison of ACE inhibitory activity in skimmed goat and cow milk hydrolyzed by alcalase, flavourzyme, neutral protease and proteinase K
JPH10503659A (en) Production of aminopeptidase from Aspergillus niger
WO2009147103A2 (en) Method for producing a wheat protein hydrolysate
JP4401555B2 (en) A novel chymotrypsin-like protease, a method for producing the same, and a method for producing a protein degradation product containing a novel chymotrypsin-like protease.
US6767729B1 (en) Enzyme liquor and process for producing the same enzyme preparation protease preparations and protease-producing bacterium
JP3142001B2 (en) Method for removing bitterness from enzymatic hydrolysis protein
US6544791B2 (en) Nitrogenous composition resulting from the hydrolysis of maize gluten and a process for the preparation thereof
JP4278831B2 (en) Enzyme solution and its production method, enzyme agent, proteolytic enzyme agent, proteolytic enzyme producing bacterium
El Soda et al. The intracellular peptide-hydrolases of Lactobacillus plantarum. Comparison with Lactobacillus casei
JP3508370B2 (en) General purpose seasoning containing high glutamic acid
JP2022102874A (en) Elastin peptide
JP4071876B2 (en) Novel serine protease and production method thereof
JP2001178398A (en) Fermented seasoning and method of producing the same
JP4347062B2 (en) Polynucleotide, polypeptide and method for producing polypeptide
JP3403472B2 (en) Method for improving taste of protein hydrolyzate
Fiechter Enzyme Studies
JP2022102875A (en) Low molecular elastin peptide
Chunju et al. Comparison of ACE inhibitory activity in skimmed goat and cow milk hydrolyzed by alcalase, flavourzyme, neutral protease and proteinase K.
JP2001321188A (en) Aspergillus transformed in multiple manner and method for producing seasoning using the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061006

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090804

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091001

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20091001

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20091023

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20091028

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121106

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees