JP4401117B2 - Wind turbine overspeed prevention torque command circuit by PWM converter - Google Patents

Wind turbine overspeed prevention torque command circuit by PWM converter Download PDF

Info

Publication number
JP4401117B2
JP4401117B2 JP2003202341A JP2003202341A JP4401117B2 JP 4401117 B2 JP4401117 B2 JP 4401117B2 JP 2003202341 A JP2003202341 A JP 2003202341A JP 2003202341 A JP2003202341 A JP 2003202341A JP 4401117 B2 JP4401117 B2 JP 4401117B2
Authority
JP
Japan
Prior art keywords
rotational speed
torque
speed
wind turbine
generator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003202341A
Other languages
Japanese (ja)
Other versions
JP2005042603A (en
Inventor
剛 塩田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyo Electric Manufacturing Ltd
Original Assignee
Toyo Electric Manufacturing Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyo Electric Manufacturing Ltd filed Critical Toyo Electric Manufacturing Ltd
Priority to JP2003202341A priority Critical patent/JP4401117B2/en
Publication of JP2005042603A publication Critical patent/JP2005042603A/en
Application granted granted Critical
Publication of JP4401117B2 publication Critical patent/JP4401117B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/72Wind turbines with rotation axis in wind direction

Landscapes

  • Wind Motors (AREA)
  • Control Of Eletrric Generators (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、風車により駆動される発電機にPWMコンバータを接続して出力を取り出すためのトルク指令回路に係り、特に、風車における羽のピッチ制御を用いずに、風速が高い時も連続して出力を取り出す事ができる、風力発電におけるPWMコンバータによる過速度防止トルク指令回路に関する。
【0002】
【従来の技術】
本出願人は先に、風車に接続したPWMコンバータを、風車回転数に基づいたトルクパターンにより制御することにより、風速計を必要とせず、風から最大出力を取り出すことができる風力発電におけるPWMコンバータによる最大出力制御方法について【特願2002−42726号】の「風車により駆動される発電機の最大出力制御方法」にて提案している(出願特許文献1)。
【0003】
図4は、風速をパラメータとした時の、風車回転数対風車出力特性の概要を説明した図である。
風車は、風車の形状及び風速Uが決まると、風車回転数Nに対する風車出力Pが一義的に定まり、種々の風速Uに対する風車出力Pは、図4の実線のように示される。そして、風車出力Pのピークは、図4の一点鎖線で示す最大出力曲線のようになる。
【0004】
さらに図3は、この風車回転数対風車出力特性より求まる、先願技術で用いた風車回転数対風車トルク特性の概要を説明した図であり、種々の風速に対する風車トルクは、図3の実線にように示される。
この時、種々の風速において、風車出力のピークを出力する時の風車トルクは、図3の一点鎖線で示す最大出力時トルク曲線のようになる。
ここで、例えば、図4の風速Uxにおける最大出力Pxとなる風車回転数Nxと、図3の風速Uxと最大出力時トルク曲線との交点Rxにおける風車回転数Nxとは同じ風車回転数Nであることを表す。
定常的な風から常に、最大出力を取り出すためには、最大出力時トルク曲線に沿った風車回転数Nにより一義的に定まるトルクで運転すれば良い。
【0005】
以上の原理に基づいた先願技術を、図5の風力発電におけるPWMコンバータによるトルクパターン制御回路を説明するための風力発電装置接続図を参照して詳述する。
図5において、1は風車、2は回転計、3は発電機、4はPWMコンバータ、5は負荷、10はトルク指令回路である。
風車1により駆動される発電機3の交流側は、PWMコンバータ4に接続され、風車1により可変速に駆動される発電機3の交流電力は、PWMコンバータ4により直流電力に変換されて、負荷5に出力される。
トルク指令回路10は、回転計2より風車回転数Nを入力し、図3の最大出力時トルク曲線に基づいて、パターン制御時トルク指令値τを生成し、このパターン制御時トルク指令値τによりPWMコンバータ4が制御される。
【0006】
このようなパターン制御時トルク指令値τにより、PWMコンバータ4を制御した時の、風速変動時の風車回転数Nとトルクτの動作を、図3の風車回転数対風車トルク特性を説明した図により説明する。
風速がUxの時は、最大出力時トルク曲線上の交点Rxすなわちトルクτxで運転され、風速が低くなり風速Uyの時は、最大出力時トルク曲線上の交点Ryすなわちトルクτyで運転される。
このように風速が変動しても、常に風車回転数により定まる最大出力時トルク曲線上で運転されるために、結局、図4の一点鎖線で示す最大出力曲線上で運転され、風車1は最大出力運転される。
【0007】
【出願特許文献1】
特願2002−42726号(図1)
【0008】
【発明が解決しようとする課題】
風車1および発電機3には定格速度が存在するために、このような回転数Nに基づくパターン制御時トルク指令値τにより風車1を制御すると、ある一定の風速U以上の強風になると風車1および発電機3が過速度となる。
従って、この過速度を防止するために、パターン制御時トルク指令値τを逸脱して、風車回転数Nを定格回転数以内で運転しようとすると、風のエネルギーが大きいために発電機3に定格以上のトルクすなわち電流を連続的に印加しなければならなくなり、発電機3およびPWMコンバータ4の熱的な破損に至るという問題があった。
又、風のエネルギーを小さくするために、風車の羽の角度を変えて、風を逃がしてやるピッチ制御という方法があるが、アクチュエータおよび制御装置が高価であるという問題があった。
【課題を解決するための手段】
【0009】
一般に抗力型風車と異なり、揚力型風車においては、先述の図3および図4の風車回転数Nxについて説明したように、各風速における風車回転数Nに対するトルク曲線にはピークが存在する。そして、出力のピークはトルクのピークよりも風車回転数Nの高いところに存在する。
トルクパターン制御は、風車回転数Nに対するトルク曲線の右下がりの部分で運転するときは、回転数Nが増加するとトルクτが減少するので、安定点があり、制御が可能であるが、トルク曲線の右上がりの部分では、回転数Nが増加するとトルクτも増加するために安定点が無く、トルクパターン制御が不可能である。
しかし、風車1を回転数制御すると、風車1の風車回転数Nに対するトルク曲線の右上がりの部分での運転が可能となるので、強風時にも風車1の発生トルクτ及び風車回転数Nが小さい状態で運転できる。
【0010】
従って、本発明は、強風時には風車回転数Nに対するトルク曲線の右上がりの部分での回転数制御運転により、前述の課題を解決するものであり、その目的を達成するための手段は
【0011】
請求項1において、
風車により駆動される発電機に接続したPWMコンバータにおいて、前記発電機の回転数を検出する手段と、前記発電機の回転数と前記発電機の定格回転数との偏差を積分して過速度積算量を検出する手段と、前記過速度積算量と前記過速度積算量を積算している積算時間より回転数減速量を出力する手段と、前記過速度積算量より過風速状態信号を出力する手段と、前記過風速状態信号により前記回転数減速量を保持して減速保持量を出力する手段と、前記過風速状態信号と前記風車の定格回転数と前記減速保持量の偏差より風車回転数指令を出力する手段と、該風車回転数指令と前記発電機の回転数より回転数制御時トルク指令値を出力する手段と、前記発電機の回転数より前記風車の最大出力トルク曲線に基づいてパターン制御時トルク指令値を出力する手段と、前記過風速状態信号に基づいて前記回転数制御時トルク指令値または前記パターン制御時トルク指令値を前記発電機のトルク指令値として選択する手段を有することを特徴とするPWMコンバータによる風車の過速度防止トルク指令回路である。
以下、本発明の一実施例を図面に基づいて詳述する。
【0012】
【発明の実施の形態】
図1は、本発明の、風車により駆動される発電機に、PWMコンバータを接続した請求項1及び2記載のPWMコンバータによる風車の過速度防止制御回路を説明するための風力発電装置接続図である。
同図において、11は第1の加算器、12は過速度積算回路、13は風速状態信号発生回路、14は減速量演算回路、15は保持回路、16は第2の加算器、17は第3の加算器、18は回転数制御時トルク発生回路、19はパターン制御時トルク発生回路、20はトルク選択回路、21はブレーキ制御回路であり、構成部品11〜20によりトルク指令回路10を構成し、図5と同一番号は同一構成部品を表す。
以下、図1について説明する。
【0013】
第1の加算器11は発電機3の回転数Nと定格回転数Nnの過速度偏差値ΔNnを回転数積算回路12に出力する。
過速度積算回路12は過速度偏差値ΔNnを積分して、過速度偏差積算値ΣNを風速状態信号発生回路13とブレーキ制御回路21に、過速度偏差積算値ΣNと積算時間Toを減速量演算回路14に出力する。風速状態信号発生回路13は、過速度偏差積算値ΣNがある一定値を超えると過風速状態信号Sを、保持回路15、トルク選択回路20、およびブレーキ制御回路21に出力する。
減速量演算回路14は、過速度偏差積算値ΣNと積算時間Toを入力して、現在の風車回転数Nよりも減速して運転させるための風車の回転数減速量Nc1を保持回路15に出力する。
【0014】
保持回路15は、回転数減速量Nc1と過風速状態信号Sを入力して、過風速状態信号Sの立ち上がりにより回転数減速量Nc1を保持して、減速保持量Nc2として第2の加算器16に出力する。第2の加算器16は、風車定格回転数Nnと減速保持量Nc2を入力して、その偏差を風車回転数指令Nとして第3の加算器17に出力する。
第3の加算器17は、風車回転数指令Nと回転計2よりの風車回転数Nを入力して、その偏差を回転数偏差値ΔNとして回転数制御時トルク発生回路18に出力する。回転数制御時トルク発生回路18は、回転数偏差値ΔNを入力して増幅し、回転数制御時トルク指令τ1としてトルク選択回路20に出力する。
【0015】
パターン制御時トルク発生回路19は、風車回転数Nを入力して、先願技術として説明したパターン制御時トルク指令値τ2を生成してトルク選択回路20に出力する。トルク選択回路20は、過風速状態信号S、回転数制御時トルク指令τ1およびパターン制御時トルク指令値τ2を入力して、過風速状態信号SのON、OFFによりトルク指令値τを選択し、このトルク指令値τによりPWMコンバータ4が制御される。
【0016】
次ぎにその作用について説明する。
一般に揚力型風車においては、図3に示すように、回転数対風車トルク曲線上の右下がりの部分から右上がりの部分に減速するためには、風車の持つトルクのピーク値より大きい発電機トルクを印加しなければならない。
また発電機3およびPWMコンバータ4は短時間であれば過負荷耐量を持っている。
従って、本発明は、この過負荷耐量を利用して風車1および発電機3の定常的な過速度を防止する。
【0017】
過速度積算回路12は、回転計2より検出した発電機3の回転数Nと、発電機3の定格回転数Nnの差である過速度偏差値ΔNnを積算し、その積算値を過速度偏差積算値ΣNとして風速状態信号発生回路13に出力する。
また、この過速度偏差積算値ΣNが正の間の過速度を積算している時間を積算時間Toとして、減速量演算回路14に出力する。
過速度偏差積算値ΣNは、発電機3の回転数Nと定格回転数Nnの差が大きい時、すなわち風速が高い時には短い積算時間Toで、ある一定値に到達し、差が小さい時には長い積算時間Toで、ある一定値に到達する。
従って、減速量演算回路15では、過速度偏差積算値ΣNが同じ上記のある一定値に達したとしても、過速度偏差積算値ΣNを積算時間Toで割った値を回転数減速量Nc1としているので、発電機3のトルクτが大きい時、すなわち風速が高い時には大きな回転数減速量Nc1を、発電機3のトルクτが小さい時には小さな回転数減速量Nc1を保持回路15に出力する。
【0018】
風速状態信号発生回路14は、過速度偏差積算値ΣNを入力して、過速度偏差積算値ΣNが上記のある一定値に達すると過風速状態信号SをONにして保持回路15およびトルク選択回路20に出力する。
そして、過速度偏差値ΔNnが負になり、過速度偏差積算値ΣNが減少し、PWMコンバータ4の半導体素子を取り付けているヒートシンクが冷えた時、例えば過速度偏差積算値ΣNが零になると、過風速状態信号SはOFFになる。
【0019】
第2の加算器16は、風車の定格回転数Nnから保持回路15より出力される減速保持量Nc2を減じて、その偏差を風車回転数指令値Nとして第3の加算器17に出力する。この風車回転数指令Nとは、風車1を回転数対風車トルク曲線上の右上がりの部分で回転数制御するための指令値である。
従って、風車回転数指令値Nは、回転数減速量Nc1の値が大きい時には定格回転数Nnよりも十分に小さい値に設定され、回転数減速量Nc1の値が小さい時には定格回転数Nnより小さいが定格回転数Nnに近い値に設定される。
第3の加算器17で、実際の風車回転数Nと風車回転数指令Nとの回転数偏差ΔNを取り、回転数制御時トルク発生回路18により偏差増幅して、回転数制御時トルク指令τ1としてトルク選択回路20に出力する。
【0020】
回転数制御時トルク発生回路18では、例えば回転数偏差ΔNを比例積分制御して、回転数制御時トルク指令τ1を生成することにより、本発明の目的を達成できる。
すなわち、上記のように回転数減速量Nc1を設定して風車回転数指令Nを設定することにより、回転数制御時トルク発生回路18の回転数偏差ΔNの比例制御項により、過風速状態信号SがONになって回転数制御時トルク指令τ1が選択された瞬間には、風速が定格風速よりも十分に高い時は回転数偏差ΔNが大きな値なので、発電機3のトルクτは定格トルクよりも十分に大きな回転数制御時トルク指令τ1となり、風車1のトルクのピーク値を越えて発電機3のトルクτが印加されるので風車回転数Nが下がり、やがて積分制御項により設定された風車回転数指令Nと同じ風車回転数Nになる。
【0021】
又、風速が定格風速より少し高い時は回転数偏差ΔNが小さな値なので、定格トルクより少し大きな回転数制御時トルク指令τ1となり、風車1のトルクのピーク値を越えて発電機3のトルクτが印加されるので風車回転数Nが下がり、やがて積分制御項により設定された風車回転数指令Nと同じ風車回転数Nになる。
風速が高い時に風車回転数指令Nを十分に低くする理由は、回転数偏差ΔNの比例制御項の作用を大きくして、風車1のトルクのピーク値を越えて風車回転数Nを確実に下げるためであり、風速が低い時に風車回転数指令Nを定格回転数より少しだけ低くする理由は、できるだけ風車回転数Nを大きくして、取り出す出力を大きくするためである。
【0022】
回転数制御時トルク指令τ1、パターン制御時トルク指令値τ2、および過風速状態信号Sを入力するトルク選択回路20は、風車1が過速度になったということを検出して過風速状態信号SがONになると、回転数制御時トルク指令τ1をトルク指令値τとして出力して風車1の速度を低下させ、PWMコンバータ4の半導体素子を取り付けているヒートシンクが冷えたことを検出して過風速状態信号SがOFFになると、パターン制御時トルク指令値τ2をトルク指令値τとして出力する。
【0023】
ブレーキ制御回路21は、過速度偏差積算値ΣNと過風速状態信号Sを入力して、過風速状態信号SがONになったにも関わらず、過速度偏差積算値ΣNが増加し続ける場合には、制御不能の過風速状態と判断して機械式ブレーキ信号Bを図示しない機械式ブレーキに出力して風車を停止させる。
【0024】
本発明の動作を図2の本発明のトルク制御状態を説明する図により、さらに詳しく説明する。
図2において、風速Uが風速Ux一定であるとする。
先ず、風速がUxの時に最大出力時トルク曲線との交点Rxで運転されているとする。この状態が過速度だとすると、やがて過風速状態信号SがONとなり回転数制御状態になると、減速量演算回路14より出力される回転数減速量Nc1により、例えば風車回転数NがNzになるように風車回転数指令値Nが設定される。
この時、風車1は、図2の交点Rxすなわち風車回転数Nxで運転されているために、風車回転数指令値N(=Nz)との偏差による比例制御項により、瞬間的には回転数制御時トルク指令τ1はτpとなる。
従って、発電機3の動作は、図2の交点Rxを出発点として、発電機3のトルクτを増加させることにより、風車回転数Nを矢印に沿って減速させて、交点Rmにおいて風車回転数Nzで運転される。
【0025】
さらに、過速度偏差積算値ΣNが減少して、過風速状態信号SがOFFになると、トルクパターン制御状態となり、最初は交点Rzにおいてトルクτzで運転され、やがて交点Rzより交点Rxまで加速される。
風速Uが風速Uxの状態のままだと、やがて過負荷状態であると検出して、風速状態信号SがONになり、上記の制御が繰り返される。
この繰り返し動作をさせる理由は、トルク曲線の右上がりの部分で運転を続けると、取り出せる出力が減少するためである。
【0026】
しかし、風速Uが低い風速Uyになり連続して運転しても過負荷になることがない場合は、交点Ryにおいて、風車回転数Ny、トルクτyでトルクパターン制御され続けて、風速Uyでの最大出力運転される。
【0027】
このようなトルク指令値τを用いてPWMコンバータ4を制御すると、風車1が定格速度以内だとトルクパターン制御により最大出力制御され、風車1が過速度になると、風車回転数Nおよびトルクτを定格値より下げて、回転数対風車トルク曲線上の右上がりの部分で回転数制御するために、発電機3及びPWMコンバータ4の過速度を防止することができる。
【0028】
以上、本発明の実施例では、回転計2より風車回転数Nを検出する場合について説明したが、風車発電機3に接続されるPWMコンバータ4の電圧・電流によるセンサーレス方式でも、風車回転数Nを検出できるので、その値を用いても良い。
また、一般に、発電機3は電子部品を用いていないために、PWMコンバータ4よりも短時間の過負荷耐量が大きい。従って、PWMコンバータ4のみ大きめの容量を用いれば、より過負荷状態を長く保てる風力発電装置を構成できるので、過風速時も、より多くの発電が可能である。
さらに発電機3は、同期発電機だけでなく、図3の風車回転数対風車トルク特性の最大出力時トルク曲線との関係を把握すれば、誘導発電機を用いても良い。
【0029】
【発明の効果】
以上、風車により駆動される発電機に接続されるPWMコンバータを用いて、風車及び発電機が過速度になると、発電機を低回転数および低トルクで回す回転数制御を行い、PWMコンバータ4の半導体素子を取り付けているヒートシンクが冷えた時は、トルクパターン制御を行う過速度防止トルク指令回路について説明した。
この制御回路によれば、風速が高くなり、風車及び発電機が過速度になって破損の恐れがある時は、回転数対風車トルク曲線上の右上がりの部分で、風車を低い回転数で運転できるので、風を逃がして風車からの入力を下げる高価なピッチ制御を用いることなく、風車又は発電機の破損を防止できる。
又、発電機やPWMコンバータの破損の恐れが無くなった時、又は風速が低くなり連続に運転しても発電機又はPWMコンバータが定格負荷以内の時は、回転数対風車トルク曲線上の右下がりの部分で、最大出力運転を行うことができるので、実用上おおいに有用である。
【図面の簡単な説明】
【図1】本発明の、PWMコンバータによる風車の過速度防止とるく指令回路を説明するための風力発電装置接続図である。
【図2】本発明のトルク制御状態を説明する図である。
【図3】風速をパラメータとした時の、風車回転数対風車トルク特性の概要を説明する図である。
【図4】風速をパラメータとした時の、風車回転数対風車出力特性の概要を説明する図である。
【図5】先願技術のPWMコンバータによるトルクパターン制御回路を説明するための風力発電装置接続図である。
【符号の説明】
1 風車
2 回転計
3 発電機
4 PWMコンバータ
5 負荷
6 電流検出器
10 トルク指令回路
11 第1の加算器
12 過速度積算回路
13 風速状態信号発生回路
14 減速量演算回路
15 保持回路
16 第2の加算器
17 第3の加算器
18 回転数制御時トルク発生回路
19 パターン制御時トルク発生回路
20 トルク選択回路
21 ブレーキ制御回路
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a torque command circuit for connecting a PWM converter to a generator driven by a windmill to take out an output, and in particular, continuously without a pitch control of a wing in a windmill even when the wind speed is high. The present invention relates to an overspeed prevention torque command circuit using a PWM converter in wind power generation, which can extract output.
[0002]
[Prior art]
The present applicant previously controlled a PWM converter connected to a windmill by a torque pattern based on the windmill rotation speed, and thus can take out the maximum output from the wind without requiring an anemometer. The maximum output control method according to Japanese Patent Application No. 2002-42726 has been proposed (Application Patent Document 1).
[0003]
FIG. 4 is a diagram for explaining the outline of the wind turbine rotation speed versus the wind turbine output characteristic when the wind speed is used as a parameter.
When the shape of the windmill and the wind speed U are determined, the windmill output P with respect to the windmill rotational speed N is uniquely determined, and the windmill output P with respect to various wind speeds U is shown as a solid line in FIG. And the peak of windmill output P becomes like the maximum output curve shown with the dashed-dotted line of FIG.
[0004]
Further, FIG. 3 is a diagram for explaining the outline of the wind turbine rotation speed vs. wind turbine torque characteristic used in the prior application technique obtained from the wind turbine rotation speed vs. wind turbine output characteristics. The wind turbine torque for various wind speeds is indicated by the solid line in FIG. As shown.
At this time, the wind turbine torque when the peak of the wind turbine output is output at various wind speeds is as shown in a maximum output torque curve indicated by a one-dot chain line in FIG.
Here, for example, the wind turbine rotational speed Nx at which the maximum output Px at the wind speed Ux in FIG. 4 and the wind turbine rotational speed Nx at the intersection Rx between the wind speed Ux and the maximum output torque curve in FIG. Represents something.
In order to always extract the maximum output from the steady wind, it is only necessary to operate at a torque that is uniquely determined by the wind turbine rotation speed N along the maximum output torque curve.
[0005]
The prior application technique based on the above principle will be described in detail with reference to a wind power generator connection diagram for explaining a torque pattern control circuit by a PWM converter in wind power generation in FIG.
In FIG. 5, 1 is a windmill, 2 is a tachometer, 3 is a generator, 4 is a PWM converter, 5 is a load, and 10 is a torque command circuit.
The AC side of the generator 3 driven by the windmill 1 is connected to the PWM converter 4, and the AC power of the generator 3 driven at a variable speed by the windmill 1 is converted into DC power by the PWM converter 4 and loaded. 5 is output.
The torque command circuit 10 receives the wind turbine speed N from the tachometer 2, generates a pattern control torque command value τ * based on the maximum output torque curve of FIG. 3, and this pattern control torque command value τ. The PWM converter 4 is controlled by * .
[0006]
The operation of the wind turbine rotation speed N and the torque τ when the wind speed fluctuates when the PWM converter 4 is controlled by such a pattern control torque command value τ * , and the wind turbine rotation speed vs. wind turbine torque characteristics of FIG. 3 are described. This will be described with reference to the drawings.
When the wind speed is Ux, operation is performed at the intersection Rx on the maximum output torque curve, that is, torque τx, and when the wind speed is low and the wind speed Uy, operation is performed at the intersection Ry, that is, torque τy on the maximum output torque curve.
Even if the wind speed fluctuates in this way, since the engine is always operated on the maximum output torque curve determined by the wind turbine rotation speed, it is eventually operated on the maximum output curve shown by the one-dot chain line in FIG. Output operation.
[0007]
[Application 1]
Japanese Patent Application No. 2002-42726 (Fig. 1)
[0008]
[Problems to be solved by the invention]
Since the wind turbine 1 and the generator 3 have rated speeds, if the wind turbine 1 is controlled by such a pattern control torque command value τ * based on the rotational speed N, the wind turbine becomes strong when the wind speed exceeds a certain wind speed U. 1 and the generator 3 are overspeeded.
Therefore, in order to prevent this overspeed, if the wind turbine rotation speed N is deviated from the pattern control torque command value τ * and the wind turbine rotation speed N is operated within the rated rotation speed, the wind energy is large. There is a problem that a torque exceeding the rating, that is, a current must be continuously applied, and the generator 3 and the PWM converter 4 are thermally damaged.
In order to reduce the energy of the wind, there is a method of pitch control in which the wind is released by changing the angle of the blade of the windmill, but there is a problem that the actuator and the control device are expensive.
[Means for Solving the Problems]
[0009]
In general, unlike the drag type wind turbine, in the lift type wind turbine, there is a peak in the torque curve with respect to the wind turbine rotational speed N at each wind speed, as described for the wind turbine rotational speed Nx in FIGS. 3 and 4 described above. The output peak is present at a higher wind turbine speed N than the torque peak.
When the torque pattern control is operated at the lower right portion of the torque curve with respect to the wind turbine rotational speed N, the torque τ decreases as the rotational speed N increases, so that there is a stable point and control is possible. In the part to the upper right, the torque τ increases as the rotational speed N increases, so there is no stable point and torque pattern control is impossible.
However, when the rotational speed of the windmill 1 is controlled, it is possible to drive the windmill 1 at the portion of the torque curve that is rising to the right with respect to the rotational speed N of the windmill 1, so that the generated torque τ and the rotational speed N of the windmill 1 are small even during strong winds. You can drive in the state.
[0010]
Therefore, the present invention solves the above-mentioned problem by the rotational speed control operation in the portion of the torque curve that rises to the right with respect to the wind turbine rotational speed N in a strong wind. Means for achieving the object is as follows :
[0011]
In claim 1,
In a PWM converter connected to a generator driven by a windmill, the means for detecting the rotational speed of the generator, and the overspeed integration by integrating the deviation between the rotational speed of the generator and the rated rotational speed of the generator Means for detecting the amount, means for outputting the rotational speed reduction amount from the overspeed integrated amount and the integrated time during which the overspeed integrated amount is integrated, and means for outputting the overwind speed state signal from the overspeed integrated amount And a means for holding the speed reduction amount by the overwind speed state signal and outputting a deceleration hold amount, and a windmill rotational speed command from a deviation between the overwind speed state signal, the rated speed of the windmill, and the deceleration holding amount. Based on the maximum output torque curve of the wind turbine based on the rotational speed of the generator, and means for outputting a torque command value during rotational speed control from the rotational speed command of the wind turbine and the rotational speed of the generator Control torque A means for outputting a command value; and means for selecting the torque command value for rotation speed control or the torque command value for pattern control as a torque command value for the generator based on the overwind speed state signal. This is a wind turbine overspeed prevention torque command circuit using a PWM converter .
Hereinafter, an embodiment of the present invention will be described in detail with reference to the drawings.
[0012]
DETAILED DESCRIPTION OF THE INVENTION
FIG. 1 is a wind turbine generator connection diagram for explaining a wind turbine overspeed prevention control circuit using a PWM converter according to claim 1 and 2, wherein a PWM converter is connected to a generator driven by the wind turbine according to the present invention. is there.
In the figure, 11 is a first adder, 12 is an overspeed integrating circuit, 13 is a wind speed state signal generating circuit, 14 is a deceleration amount calculating circuit, 15 is a holding circuit, 16 is a second adder, and 17 is a first adder. 3 is an adder, 18 is a torque generation circuit at the time of rotational speed control, 19 is a torque generation circuit at the time of pattern control, 20 is a torque selection circuit, and 21 is a brake control circuit. 5 denote the same components.
Hereinafter, FIG. 1 will be described.
[0013]
The first adder 11 outputs an overspeed deviation value ΔNn between the rotational speed N of the generator 3 and the rated rotational speed Nn to the rotational speed integrating circuit 12.
The overspeed integration circuit 12 integrates the overspeed deviation value ΔNn, calculates the overspeed deviation integration value ΣN to the wind speed state signal generation circuit 13 and the brake control circuit 21, and calculates the overspeed deviation integration value ΣN and the integration time To to the deceleration amount. Output to the circuit 14. When the overspeed deviation integrated value ΣN exceeds a certain value, the wind speed state signal generation circuit 13 outputs the overwind speed state signal S to the holding circuit 15, the torque selection circuit 20, and the brake control circuit 21.
The deceleration amount calculation circuit 14 inputs the overspeed deviation integrated value ΣN and the integration time To, and outputs to the holding circuit 15 the rotational speed deceleration amount Nc1 of the windmill for operating at a speed lower than the current windmill rotational speed N. To do.
[0014]
The holding circuit 15 receives the rotation speed reduction amount Nc1 and the overwind speed state signal S, holds the rotation speed reduction amount Nc1 at the rising edge of the overwind speed state signal S, and the second adder 16 as the deceleration hold amount Nc2. Output to. The second adder 16 inputs the wind turbine rated rotational speed Nn and the deceleration holding amount Nc2, and outputs the deviation to the third adder 17 as the wind turbine rotational speed command N * .
The third adder 17 inputs the wind turbine rotational speed command N * and the wind turbine rotational speed N from the tachometer 2, and outputs the deviation to the rotational speed control torque generation circuit 18 as a rotational speed deviation value ΔN. The rotational speed control torque generation circuit 18 inputs and amplifies the rotational speed deviation value ΔN, and outputs the amplified rotational speed deviation value ΔN to the torque selection circuit 20 as the rotational speed control torque command τ1.
[0015]
The pattern control torque generation circuit 19 receives the wind turbine rotation speed N, generates the pattern control torque command value τ 2 described as the prior application technique, and outputs it to the torque selection circuit 20. The torque selection circuit 20 receives the overwind speed state signal S, the rotational speed control torque command τ1, and the pattern control torque command value τ2, and selects the torque command value τ * by turning the overwind speed state signal S on and off. The PWM converter 4 is controlled by the torque command value τ * .
[0016]
Next, the operation will be described.
In general, in a lift type wind turbine, as shown in FIG. 3, in order to decelerate from a lower right portion to a right upward portion on the rotational speed versus wind turbine torque curve, a generator torque larger than the peak value of the torque of the wind turbine. Must be applied.
The generator 3 and the PWM converter 4 have an overload capability for a short time.
Therefore, the present invention uses this overload capability to prevent steady overspeed of the wind turbine 1 and the generator 3.
[0017]
The overspeed integration circuit 12 integrates an overspeed deviation value ΔNn that is a difference between the rotational speed N of the generator 3 detected by the tachometer 2 and the rated rotational speed Nn of the generator 3, and the integrated value is obtained as an overspeed deviation. The integrated value ΣN is output to the wind speed state signal generation circuit 13.
Further, a time during which the overspeed deviation integrated value ΣN is positive is integrated and output to the deceleration amount calculation circuit 14 as an integration time To.
The overspeed deviation integrated value ΣN reaches a certain integration time To when the difference between the rotational speed N of the generator 3 and the rated rotational speed Nn is large, that is, when the wind speed is high, and reaches a certain value. A certain value is reached at time To.
Therefore, in the deceleration amount calculation circuit 15, even if the overspeed deviation integrated value ΣN reaches the same certain value, the value obtained by dividing the overspeed deviation integrated value ΣN by the integrated time To is set as the rotation speed reduction amount Nc1. Therefore, when the torque τ of the generator 3 is large, that is, when the wind speed is high, a large rotational speed reduction amount Nc1 is output to the holding circuit 15, and when the torque τ of the generator 3 is small, a small rotational speed reduction amount Nc1 is output.
[0018]
The wind speed state signal generation circuit 14 receives the overspeed deviation integrated value ΣN, and when the overspeed deviation integrated value ΣN reaches the above certain value, the overwind speed state signal S is turned ON, and the holding circuit 15 and the torque selection circuit. 20 is output.
Then, when the overspeed deviation integrated value ΣN becomes zero, for example, when the overspeed deviation integrated value ΣN becomes negative, the overspeed deviation integrated value ΣN decreases, and the heat sink attached with the semiconductor element of the PWM converter 4 cools down. The overwind speed state signal S is turned off.
[0019]
The second adder 16 subtracts the deceleration holding amount Nc2 output from the holding circuit 15 from the rated rotational speed Nn of the windmill, and outputs the deviation to the third adder 17 as the windmill rotational speed command value N * . . This windmill rotational speed command N * is a command value for controlling the rotational speed of the windmill 1 at the portion of the rotational speed vs. windmill torque curve that rises to the right.
Accordingly, the windmill rotational speed command value N * is set to a value sufficiently smaller than the rated rotational speed Nn when the rotational speed deceleration amount Nc1 is large, and is smaller than the rated rotational speed Nn when the rotational speed deceleration amount Nc1 is small. A small value is set close to the rated speed Nn.
The third adder 17 takes the rotational speed deviation ΔN between the actual wind turbine rotational speed N and the wind turbine rotational speed command N * , amplifies the deviation by the rotational speed control torque generation circuit 18, and outputs the rotational speed control torque command. It outputs to the torque selection circuit 20 as (tau) 1.
[0020]
The rotational speed control torque generating circuit 18 can achieve the object of the present invention by, for example, performing proportional integral control of the rotational speed deviation ΔN to generate the rotational speed control torque command τ1.
That is, by setting the rotational speed deceleration amount Nc1 and setting the wind turbine rotational speed command N * as described above, the overwind speed state signal is obtained by the proportional control term of the rotational speed deviation ΔN of the rotational speed control torque generation circuit 18. At the moment when S is turned ON and the torque command τ1 for rotational speed control is selected, the rotational speed deviation ΔN is a large value when the wind speed is sufficiently higher than the rated wind speed, so the torque τ of the generator 3 is the rated torque. The torque command τ1 for the rotational speed control is sufficiently larger than that, and the torque τ of the generator 3 is applied beyond the peak value of the torque of the windmill 1, so the windmill rotational speed N is lowered and eventually set by the integral control term. The wind turbine rotational speed N is the same as the wind turbine rotational speed command N * .
[0021]
Further, when the wind speed is slightly higher than the rated wind speed, the rotational speed deviation ΔN is a small value. Therefore, the torque command τ1 during the rotational speed control is slightly larger than the rated torque, and the torque τ of the generator 3 exceeds the peak value of the torque of the windmill 1. Is applied, the wind turbine rotational speed N decreases, and eventually becomes the same wind turbine rotational speed N as the wind turbine rotational speed command N * set by the integral control term.
The reason why the wind turbine rotational speed command N * is sufficiently low when the wind speed is high is to increase the action of the proportional control term of the rotational speed deviation ΔN to ensure that the wind turbine rotational speed N exceeds the torque peak value of the wind turbine 1. The reason why the wind turbine rotation speed command N * is slightly lower than the rated rotation speed when the wind speed is low is to increase the wind turbine rotation speed N as much as possible to increase the output to be taken out.
[0022]
The torque selection circuit 20 that receives the torque command τ1 during rotation speed control, the torque command value τ2 during pattern control, and the overwind speed state signal S detects that the windmill 1 has become overspeed and detects the overwind speed state signal S. Is turned on, the rotational speed control torque command τ1 is output as the torque command value τ * to reduce the speed of the windmill 1, and it is detected that the heat sink attached with the semiconductor element of the PWM converter 4 has cooled. When the wind speed state signal S is turned OFF, the torque command value τ2 during pattern control is output as the torque command value τ * .
[0023]
The brake control circuit 21 inputs the overspeed deviation integrated value ΣN and the overwind speed state signal S, and the overspeed deviation integrated value ΣN continues to increase despite the overwind speed state signal S being turned ON. Determines that the wind speed is uncontrollable and outputs a mechanical brake signal B to a mechanical brake (not shown) to stop the wind turbine.
[0024]
The operation of the present invention will be described in more detail with reference to FIG. 2 illustrating the torque control state of the present invention.
In FIG. 2, it is assumed that the wind speed U is constant.
First, it is assumed that the vehicle is operated at the intersection Rx with the maximum output torque curve when the wind speed is Ux. If this state is an overspeed, then the overwind speed state signal S is turned ON and the rotational speed control state is reached, so that, for example, the windmill rotational speed N becomes Nz by the rotational speed deceleration amount Nc1 output from the deceleration amount calculation circuit 14. A wind turbine rotation speed command value N * is set.
At this time, since the wind turbine 1 is operated at the intersection Rx in FIG. 2, that is, the wind turbine rotation speed Nx, the wind turbine 1 is instantaneously rotated by a proportional control term based on a deviation from the wind turbine rotation speed command value N * (= Nz). The numerical control torque command τ1 is τp.
Therefore, the operation of the generator 3 starts from the intersection Rx in FIG. 2 and increases the torque τ of the generator 3 to decelerate the windmill rotational speed N along the arrow, and the windmill rotational speed at the intersection Rm. It is operated at Nz.
[0025]
Further, when the overspeed deviation integrated value ΣN decreases and the overwind speed state signal S is turned OFF, the torque pattern control state is set, and the engine is first operated with the torque τz at the intersection Rz and eventually accelerated from the intersection Rz to the intersection Rx. .
If the wind speed U remains in the state of the wind speed Ux, it is eventually detected that the wind is overloaded, the wind speed state signal S is turned on, and the above control is repeated.
The reason for repeating this operation is that the output that can be taken out decreases if the operation is continued at the portion of the torque curve that rises to the right.
[0026]
However, if the wind speed U becomes a low wind speed Uy and does not become overloaded even when continuously operated, the torque pattern control is continued at the intersection Ry with the windmill rotational speed Ny and the torque τy, and the wind speed Uy Operates at maximum output.
[0027]
When the PWM converter 4 is controlled using such a torque command value τ * , the maximum output control is performed by the torque pattern control when the wind turbine 1 is within the rated speed, and when the wind turbine 1 is overspeed, the wind turbine rotation speed N and the torque τ are controlled. Therefore, the generator 3 and the PWM converter 4 can be prevented from being overspeeded.
[0028]
As described above, in the embodiment of the present invention, the case where the wind turbine rotation speed N is detected from the tachometer 2 has been described. However, even in the sensorless system using the voltage / current of the PWM converter 4 connected to the wind turbine generator 3, the wind turbine rotation speed is detected. Since N can be detected, the value may be used.
In general, since the generator 3 does not use electronic components, the overload capability in a short time is larger than that of the PWM converter 4. Therefore, if only the PWM converter 4 has a larger capacity, it is possible to configure a wind power generator that can keep the overload state longer, so that more power can be generated even at an overwind speed.
Furthermore, the generator 3 is not limited to a synchronous generator, and an induction generator may be used as long as the relationship between the wind speed and the torque curve at the maximum output in FIG.
[0029]
【The invention's effect】
As described above, when the wind turbine and the generator are overspeeded using the PWM converter connected to the generator driven by the wind turbine, the rotational speed control is performed so that the generator is rotated at a low rotational speed and a low torque. The overspeed prevention torque command circuit that performs torque pattern control when the heat sink attached with the semiconductor element is cooled has been described.
According to this control circuit, when the wind speed becomes high and the wind turbine and the generator are overspeeded and may be damaged, the wind turbine is moved at a lower rotational speed at the portion of the rotational speed vs. wind turbine torque curve that rises to the right. Since it can drive | operate, damage to a windmill or a generator can be prevented, without using expensive pitch control which escapes a wind and reduces the input from a windmill.
Also, when there is no risk of damage to the generator or PWM converter, or when the wind speed is low and the generator or PWM converter is within the rated load even if it is continuously operated, the speed decreases to the right on the wind turbine torque curve. Since the maximum output operation can be performed in this part, it is very useful in practice.
[Brief description of the drawings]
FIG. 1 is a wind power generator connection diagram for explaining a command circuit for preventing overspeed of a wind turbine by a PWM converter according to the present invention.
FIG. 2 is a diagram illustrating a torque control state of the present invention.
FIG. 3 is a diagram for explaining an outline of wind turbine rotation speed versus wind turbine torque characteristics when wind speed is used as a parameter.
FIG. 4 is a diagram for explaining an overview of wind turbine rotation speed versus wind turbine output characteristics when wind speed is used as a parameter.
FIG. 5 is a wind turbine generator connection diagram for explaining a torque pattern control circuit by a PWM converter of the prior application technique;
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Windmill 2 Tachometer 3 Generator 4 PWM converter 5 Load 6 Current detector 10 Torque command circuit 11 First adder 12 Overspeed integration circuit 13 Wind speed state signal generation circuit 14 Deceleration amount calculation circuit 15 Holding circuit 16 Second circuit Adder 17 Third adder 18 Torque generation circuit during rotation speed control 19 Torque generation circuit during pattern control 20 Torque selection circuit 21 Brake control circuit

Claims (1)

風車により駆動される発電機に接続したPWMコンバータにおいて、前記発電機の回転数を検出する手段と、前記発電機の回転数と前記発電機の定格回転数との偏差を積分して過速度積算量を検出する手段と、前記過速度積算量と前記過速度積算量を積算している積算時間より回転数減速量を出力する手段と、前記過速度積算量より過風速状態信号を出力する手段と、前記過風速状態信号により前記回転数減速量を保持して減速保持量を出力する手段と、前記過風速状態信号と前記風車の定格回転数と前記減速保持量の偏差より風車回転数指令を出力する手段と、該風車回転数指令と前記発電機の回転数より回転数制御時トルク指令値を出力する手段と、前記発電機の回転数より前記風車の最大出力トルク曲線に基づいてパターン制御時トルク指令値を出力する手段と、前記過風速状態信号に基づいて前記回転数制御時トルク指令値または前記パターン制御時トルク指令値前記発電機のトルク指令値として選択する手段を有することを特徴とするPWMコンバータによる風車の過速度防止トルク指令回路。In a PWM converter connected to a generator driven by a windmill, overspeed integration is performed by integrating a means for detecting the rotational speed of the generator and a deviation between the rotational speed of the generator and the rated rotational speed of the generator. Means for detecting the amount, means for outputting the rotational speed reduction amount from the integrated time over which the overspeed integrated amount and the overspeed integrated amount are integrated, and means for outputting an overwind speed state signal from the overspeed integrated amount And a means for outputting the deceleration hold amount by holding the rotation speed reduction amount by the overwind speed state signal, and a wind turbine rotation speed command from a deviation between the overwind speed state signal, the rated speed of the windmill, and the deceleration hold amount. Based on the maximum output torque curve of the wind turbine based on the rotational speed of the generator, and means for outputting a torque command value for rotational speed control from the wind turbine rotational speed command and the rotational speed of the generator Control torque And characterized in that it comprises means for outputting a command value, means for selecting the said rotation speed control when the torque command value or the pattern control when the torque command value based on over-wind condition signal as the torque command value of the generator A wind turbine overspeed prevention torque command circuit using a PWM converter.
JP2003202341A 2003-07-28 2003-07-28 Wind turbine overspeed prevention torque command circuit by PWM converter Expired - Fee Related JP4401117B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003202341A JP4401117B2 (en) 2003-07-28 2003-07-28 Wind turbine overspeed prevention torque command circuit by PWM converter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003202341A JP4401117B2 (en) 2003-07-28 2003-07-28 Wind turbine overspeed prevention torque command circuit by PWM converter

Publications (2)

Publication Number Publication Date
JP2005042603A JP2005042603A (en) 2005-02-17
JP4401117B2 true JP4401117B2 (en) 2010-01-20

Family

ID=34262087

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003202341A Expired - Fee Related JP4401117B2 (en) 2003-07-28 2003-07-28 Wind turbine overspeed prevention torque command circuit by PWM converter

Country Status (1)

Country Link
JP (1) JP4401117B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102884310A (en) * 2010-10-29 2013-01-16 三菱重工业株式会社 Control device for wind power generation device, wind farm, and control method for wind power generation device

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4835978B2 (en) * 2005-03-18 2011-12-14 株式会社安川電機 Wind turbine generator control method and apparatus
US7352075B2 (en) * 2006-03-06 2008-04-01 General Electric Company Methods and apparatus for controlling rotational speed of a rotor
US20120104753A1 (en) 2010-10-29 2012-05-03 Mitsubishi Heavy Industries, Ltd. Control system of wind power generator, wind farm, and method for controlling wind power generator
JP6071047B2 (en) * 2013-01-23 2017-02-01 東洋電機製造株式会社 Method for preventing over-rotation of wind turbine generator by PWM converter
CN110195684B (en) * 2019-05-30 2023-12-29 沈阳工程学院 Overspeed protection system and method for self-generating wind turbine generator
CN112761874B (en) * 2021-02-04 2022-09-16 湘电风能有限公司 Safe shutdown method and system and wind driven generator

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102884310A (en) * 2010-10-29 2013-01-16 三菱重工业株式会社 Control device for wind power generation device, wind farm, and control method for wind power generation device

Also Published As

Publication number Publication date
JP2005042603A (en) 2005-02-17

Similar Documents

Publication Publication Date Title
US6853094B2 (en) Variable speed wind turbine having a passive grid side rectifier with scalar power control and dependent pitch control
Lin et al. Novel voltage trajectory control for field-weakening operation of induction motor drives
JP2007195315A (en) Method and apparatus for controlling operation of wind turbine generator system
JP4756478B2 (en) Inverter device and reduction method of AC motor
JP2005295614A (en) Deceleration method of ac motor and inverter
JP4401117B2 (en) Wind turbine overspeed prevention torque command circuit by PWM converter
JPH0965689A (en) Driver of induction motor
JP2007318947A (en) Controller of stepping motor
JP2011125134A (en) Motor control apparatus
JP4407887B2 (en) Overload prevention torque command circuit by PWM converter
US6834502B2 (en) Combustion turbine power generation system and method of controlling the same
JP2011091976A (en) Motor controller and motor control system
JP2003239843A (en) Maximum output control method of generator driven by wind mill
JP3884260B2 (en) Wind power generator
JP4398440B2 (en) Wind power generator
JP4771035B2 (en) Control device for permanent magnet synchronous machine
JP2005080481A (en) Generator control method for power generation system
JP2000069797A (en) Wind power generator
Senanayaka et al. A novel soft-stall power control for a small wind turbine
JP4725841B2 (en) Generator control device and generator system.
JP4245455B2 (en) Torque command priority circuit of PWM converter in wind power generation
JP2010136583A (en) Torque controller for electric motor
JP2001204199A (en) Control unit of permanent magnet type synchronous motor
JP2003259694A (en) Method and apparatus for controlling pwm converter in wind power generation
JP5415211B2 (en) Control device for voltage source inverter

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060517

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090123

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090203

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090401

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090401

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20091027

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20091027

R150 Certificate of patent or registration of utility model

Ref document number: 4401117

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121106

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131106

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees