JP4399750B2 - 災害時の被害軽減システム - Google Patents

災害時の被害軽減システム Download PDF

Info

Publication number
JP4399750B2
JP4399750B2 JP53801698A JP53801698A JP4399750B2 JP 4399750 B2 JP4399750 B2 JP 4399750B2 JP 53801698 A JP53801698 A JP 53801698A JP 53801698 A JP53801698 A JP 53801698A JP 4399750 B2 JP4399750 B2 JP 4399750B2
Authority
JP
Japan
Prior art keywords
mode
site
input port
signal
public service
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP53801698A
Other languages
English (en)
Other versions
JP2001522484A (ja
Inventor
モハンマド バラティ レザ
Original Assignee
スマート ディザスター レスポンス テクノロジーズ インコーポレイテッド
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=25679083&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JP4399750(B2) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Priority claimed from CA002199189A external-priority patent/CA2199189C/en
Application filed by スマート ディザスター レスポンス テクノロジーズ インコーポレイテッド filed Critical スマート ディザスター レスポンス テクノロジーズ インコーポレイテッド
Publication of JP2001522484A publication Critical patent/JP2001522484A/ja
Application granted granted Critical
Publication of JP4399750B2 publication Critical patent/JP4399750B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G08SIGNALLING
    • G08BSIGNALLING OR CALLING SYSTEMS; ORDER TELEGRAPHS; ALARM SYSTEMS
    • G08B21/00Alarms responsive to a single specified undesired or abnormal condition and not otherwise provided for
    • G08B21/02Alarms for ensuring the safety of persons
    • G08B21/10Alarms for ensuring the safety of persons responsive to calamitous events, e.g. tornados or earthquakes
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H5/00Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal non-electric working conditions with or without subsequent reconnection

Description

発明の分野
本発明は、建物のようなサイトの水光熱公共サービスの接続を管理するシステムに関するものである。具体的には、地震、火災、水害のような緊急事態に対応するシステムに関する。
発明の背景
天災とは突然、予兆もなく襲ってくるものであり、緊急事態にすみやかによく合理的な対応がとれるかどうかが、生命と健康を守る上での鍵である。残念ながら、緊急事態に対応してすみやかに行動することは人間にとって難しい。正しい行動を決定する上で不可欠な状況把握すら不可能で、状況分析などは論外だ。こうした事態には技術的な解決策が望まれる。
特定の局所的な事件に対する切断装置というのはよく知られている。例えば、電流が強くなりすぎるとヒューズやブレーカーが作動して電気を切断する。ガス圧が突然落ちるとガスバルブがガス管を止めるようになっている。水道管の破裂や浸水の場合には、水道管バルブが水を止めるようになっている。
こうした装置は、それなりに有効ではあるだろうが、様々な事象がからみあう災害時の複雑な状況に対処するには不適当だ。こうした装置は自らが設置された公共サービスの単純な問題状況に反応してそのサービスの切断を行うだけだからである。ところが、災害というのは非常に複雑な事態を引き起こすもので、単純な対応こそ逆に事態を悪化させかねない。たとえば、近代的なビルが地震に見舞われた場合、建物の下敷きになって死亡するよりも、地震に続いて発生する火災や水害で地震を間接原因として死亡する人の方が多い。水道管の破裂によって水害が発生するのを防止するための水道切断装置が作動して、災害時に不可欠な防火設備を無意味なものにしてしまうこともありうる。一方、火災や爆発の危険性のない場所では、地震の際に自動的にガス管を止めてしまう装置があるばかりに、住民が認定された災害対策員がガスを再接続するまで暖房もままならない状態となろう。サービスの復旧は非常時にはどうしても後回しにされがちだ。同様に火災や爆発の危険性のない地域で破裂した水道管が放置されたら、浸水害の原因となりかねない。水があふれると、感電事故を多発させる可能性もあれば、水によって荷重が大きくなりすぎ建物が部分的に倒壊する場合すらありうる。
複数の公共サービスを切断する装置が多数考案されている。カンブリス・エレス両名義(K.H.Kambouris and Orlando Jerez)で「汎用対地震安全バルブ Universal Earthquake Safety Valve」が米国特許番号5,489,889で1996年2月6日に出ており、フリッグ・リーガン両名義(AIan Y. Flig and Paul Regan)で「対地震公共サービス切断制御装置 Earthquake Utilities Cut - Off Control System」が米国特許番号4,481,287で1989年6月20日に特許を取得している。ホーガン(Roderick D.Hogan)は、1983年11月15日に「対地震防火装置 Earthquake Fire Safety System」を米国特許番号4,414,994で提案している。これら3件は、どれもが複雑な災害事態が発生した場合にその一回に限り、特定のサイトへの複数の公共サービスを切断することを目的としている。たとえば地震がそれである。
これら3件は、趣旨としては公共サービスの供給を止めることによって被災環境をシンプルにして、公共サービスによって災害が悪化するのを防ぎ、そのサイトを守ろうとするものである。しかしながら、このような考え方は自動的なサービス復旧を考慮していないという点で単純すぎるといわざるをえない。
自動的なサービス復旧は様々な状況で利点をもっている。たとえば、あるサイトで危険性のない公共サービスがあるとすれば、それが災害対策手段として非常に有効なものとなりうる。火災の場合の水、照明のための電気、暖房のためのガスが一例だ。
また、人間によるサービス復旧作業は非常に労力のかかる仕事であることも考慮すべきである。オフィスビルや大型マンションのような複雑なサイトでは、手作業によるサービス復旧工事は何日も要する。熟練した作業員がまず引き込み管の破損やその他不備がないか点検する。目視で検査し、もれ音がないかどうか聴覚で点検する場合が大半だ。試験機材をサイトまで持ちこむ場合もある。これらからすれば、適当に配置されたセンサーによる自動復旧装置の方がよりふさわしいであろう。
災害からサイトを守るために、信じられないような複雑な方法も提示されている。バーボー(Paul E. Barbeau)は1992年4月10日付けカナダ特許申請番号2,065,786で、「火災危機状況管理システム Fire Crisis Management System」を出し、1992年3月31日付けで提出されている米国特許申請番号07/860,888に対し優先権を主張している。バーボーの趣旨は、対象となるサイトのモデル化を行い、実際の災害時にエキスパートシステムで適当な設備に消火活動を行わせるというものである。残念ながら、このような方法では、モデル化に多大な作業を必要とし、コンピュータの能力も大きくなければならず、普及型とはいえないであろう。バーボーが対象を火災に限定していることと、その上、エキスパートシステムのプログラミング上、設定するものとして一般的なファクターのリストしか特定できていないことに留意すべきであろう。
必要なのは、災害の複雑な現象に反応して、サイトの公共サービスのすべての接続を一時的に安全モードにしてサイトの状況安定を図り、その後に正常化のために安全に理性的に公共サービスを復旧してくれる実用的なシステムである。安全モードとしては切断が望ましい。
本発明はこのようなシステムを目指すものである。
発明の概要
本発明のひとつの側面は、サイト環境内の公共サービス同士の相互作用を制御するシステムである。すなわち、各公共サービスはサイトの外部を供給源とし、インプットポートを通じてサイト内部に送りこまれている。インプットポートには、アクセスモードがひとつ以上あり、アクセスモードであればサイトへサービスを送り込む。また、制限モードもひとつ以上あり、制限モードでは、サイトへの送り込みを制限し、アウトプットポートを通じてサイトから外へ送り出してしまう。アウトプットポートには、排出モードがひとつ以上あり、サイトからの排出を行い、制限モードがやはりひとつ以上あって、サイトからの排出を制限する。すなわち、システムは、サイト環境を悪化させるような状況に反応して、第一異常信号を発する手段、そして各公共サービスのインプットポートが第一異常信号に反応して、確実にあらかじめ設定しておいたアクセスモードもしくは制限モードに入るようにする手段から構成される。
このモード切替を確立する手段で、公共サービスそれぞれのインプットポートが、第一異常信号に反応してあらかじめ設定された制限モードに入るようにすることもできる。さらにまた、公共サービスの中のひとつを第一サービスとして、これに対して予備供給源をサイト内部に設置しておき、第一サービスのインプットポートが制限モードになった場合は、その供給を行うことも可能である。くわえて、第一異常信号に反応して、各公共サービスのアウトプットポートをあらかじめ設定した排出モードや制限モードに確実に変える手段をシステムに加えることもできる。
システムはまた、サイト環境を悪化させるような状況に反応して第二異常信号を発す手段、およびこの第二異常信号に反応して公共サービスのうち、第二サービスとしたもののアクセスポートを制限モードからアクセスモードに切り替える手段を盛り込むことができる。
第一異常信号の発信手段として考えられるのは、各公共サービスにインプットポートで計測して問題があるかどうかを探知する手段、アウトプットポートで計測して問題があるかどうかを探知する手段、サイト内部で計測して問題があるかどうかを探知する手段がある。
かかるシステムでは、公共サービスは、その量、質、排出される量、排出される分の質に異常があれば、問題が生じている可能性があるわけだからだ。
このシステムには、さらにあらかじめ設定した間隔で、インプットポート測定結果、アウトプットポート測定結果、サイト内部測定結果を受信する手段を盛り込み、各公共サービスの測定結果とその受信時間から集計したデータセットを作成することができる。さらにこのデータセット毎に記録し、履歴データベースを構築することができる。
システムには、エキスパートルールデータベースを搭載し、計測データセットの履歴データベースを各公共サービスのインプットポートのアクセスモードもしくは制限モードのどちらが望ましいかと、アウトプットポートの排出モードもしくは制限モードのどちらが望ましいかとの相関関係を樹立することができる。また、第一異常信号発信手段には、各公共サービスのインプットポートのアクセスモードもしくは制限モードの選定、そしてアウトプットポートの排出モードもしくは制限モードの選定を、測定データセットによる履歴データベースをエキスパートルールデータベースに比較対照して決定する手段を含めることができる。
さらにシステムには、あらかじめ設定した間隔で第一異常信号を記録する手段を搭載することができる。これによって、第一異常信号の信号データセットの履歴データベースが構築され、それゆえにエキスパートルールデータベースが信号データセットの履歴を、さらに各公共サービスのインプットポートのアクセスモードと制限モードのどちらが望ましいか、そしてアウトプットポートの排出モードと制限モードのどちらが望ましいかとの相関関係を樹立することができる。このように、第一異常信号の発信手段自体も、信号データセットの履歴データベースをエキスパートルールデータベースに比較対照させることが可能である。
システムにはさらにセンサーのセットを搭載し、サイト環境を悪化させるような条件がある組み合わせで同時発生した場合に、信号を発するようにすることができ、同時にこれらセンサーからの信号セットをあらかじめ設定した間隔で記録することができる。すなわち、環境データセットの履歴データベースが構築される。この方法であれば、エキスパートルールデータベースは、環境データセットの履歴を各公共サービスのインプットポートのアクセスモードと制限モードのどちらが望ましいかと、アウトプットポートの排出モードと制限モードのどちらが望ましいかの相関関係を樹立することができる。第一異常信号の発信手段もまた、環境データセットの履歴データベースをエキスパートルールデータベースに比較対照させることができる。
システムには、サイト環境の悪化要因の対策となる手段を盛り込むことができる。この対策手段は、ひとつ以上の運転モードとひとつ以上のスタンドバイモードを持ち、第三の信号に反応してモードが決定される。エキスパートルールデータベースは、測定データセットの履歴、信号データセットの履歴、環境データセットの履歴を対策手段の運転モードとスタンドバイモードのどちらが望ましいかとの相関関係を樹立することができる。第三の信号の発信手段は、測定データセットの履歴データベース、信号データセットの履歴データベース、環境データセットの履歴データベースをエキスパートルールデータベースに比較対照させることができる。さらに、システムには、第三信号をあらかじめ設定した間隔で記録する手段を盛り込むことができる。すなわち、対策手段データセットの履歴データベースが構築され、それゆえにエキスパートルールデータベースは対策手段データセットの履歴を各公共サービスのインプットポートのアクセスモードと制限モードのどちらが望ましいかと、アウトプットポートの排出モードと制限モードのどちらが望ましいかの相関関係を樹立することができる。
添付図面の概略説明
本発明のこれらおよびその他特徴、側面、利点については、下記の説明、請求項目、そして添付の図面によって理解されよう。図面は次の通り。
図1 災害状況の結果を示す概念図
図2 地震災害後の複雑な状況を示す概念図
図3 本発明の第一面を具現化したシステムのスキーム図
図4 サイトのシステマチックな検証プロセスを示すフローチャート
図5 本発明の第二面を具現化したシステムのスキーム図
図6 図5のシステムの連行を示す、フローチャート
図7 図5および6のシステムの具体的かつ簡略化した設置を示すフローチャート
図8 図3および5のシステムと関連して使用する地震計の断面図
発明の説明
図1において、Eという環境のしたで、公共サービスUの入っているサイトがあり、そこで災害が起きた場合にどうなるかということを解析するためのフレームワークが提示されている。災害の結果、なんらかの問題、すなわち102がサイトに存在する。この問題の内容を判断するために対象となっている複数の公共サービスの問題点の有無を調査する。例えば、第一サービスである104(U1)からm番目のサービスである106(Um)まで検証するとしよう。同時に異常な環境条件のセットが存在するかどうかも検証する。例えば、環境の第一条件である108(E1)からn番目の条件である110(En)までである。
104、106、108、110を検証すると、それぞれ112、114、116、118として、直接、推論できるような単純な状況の存在もしくは不在が示唆される。ところが、交差によって組合せてセットとすると、複合した状況多数、120、122、124、126、128、130、132、134、136、138、140の存在もしくは不在が示唆される。この例におけるフレームワークを一般化すると、バイナリーの判定項目が任意数(m+n)ある場合、(m+n)の単一状況があり、2(m+n)−(m+n)−1の複合的な状況が存在し、まったく問題が存在しない状況が1ありうる。バイナリー的な検証でない場合、すなわちアナログやファジー理論による検証では、当然のことながら単一状況も複合状況もはるかに種類が多くなる。
図2を見ると、概念図でありながらより具体的な例示を行っている。地震発生後、緊急事態が発生しているかどうかを判断したいとして、センサーのスキャンを行ったとしよう。これが202である。センサーのうち、所定のものは3つの公共サービス、すなわち電気、水道、ガスを測定するように配置されており、204(U1)電気回線に電気が流れているかどうか、206(U2)サイト内の配水管網に損傷があったかどうか、208(U3)ガス本管のガス圧が正常値より低いかどうかを感知するように設定されているものとしよう。他のセンサーは、210(E1)サイト内の特定の場所で火災が発生しているかどうかを調べるように設定されたとする。当然のことであるが、その他の公共サービスUmも環境条件Enも測定しようとすれば測定することができる。例えば空気、暖房用燃料、スチーム、その他外部からサイト内部へ入っていく物質ならモニターできるわけである。これとは別にその他の環境要因、すなわち煙、温度、湿度、有毒ガス、浸水、構造的強度不良、明るさ、ひいては従業員の位置や状態などまでモニターする場合もあるであろう。人間もしくは財産の健全性に影響するような環境要因であれば、基本的にはどんなものでもモニターすることが可能である。
204、206、208、210の検証それぞれが、単一状況の存在もしくは不在を示唆する。これら単一状況の例には、212停電、214浸水害の危険性、216暖房なし、218火災である。しかしながら、実際の状況に最も適切な対応は、212、214、216、218といった単一単純な状況に対して最も適切な対応ではない可能性がある。実際の状況のより正しい把握は、220、222、224、226、228、230、232、234、236、238、240といった複合した状況の観察から生まれる。これらの複合状況は、212、214、216、218の単一状況の2つ、3つ、4つが交差したセットとして生まれている。
例えば、水道管が損傷した222で火災があったとしよう。消火作業の水が足りない可能性があり、すると、避難という対応や、水を使わない消火方法の重要性がはるかに高くなる。「火災」という218の単一状況に則した対応ではこうした微妙な問題を考慮しない。さらにやっかいなのは、215の「浸水害の危険性」という単一状況に基づいた対応は、水道を完全に止めてしまうという選択になりかねないことだ。
図3では、本発明の第一面が300という数字で一般化されて図示されている。システム300は、302であるサイトの内側で公共サービスの接続を制御し、災害の被害をできるだけ軽減しようとするものだ。このシステム300の具体化している方法論は、まずサイト302からすべての公共サービスを不通にして、災害状況の単純化を図り、それから再開しても問題がないところから選んでサービスを再開しようというものである。サイト302は、ビルであってもその他の構造物であっても、船舶、より大きなインフラ網の中のサブネットワークであってもよい。このサイト302とは、基本的には物理的な境界線もしくは概念的な境界線で定義できる空間であれば何であっても可能である。
サイト302は、304外部の水道本管と接続し、306外部のガス本管と接続し、そして308外部の電線本線に接続している。
水道本管との接続である304は、サイト内部の配水管網310に水を供給し、310は、正常時開口となっているメインバルブ314を通して負荷水量312を送り、正常時開口となっている非常用バルブ318から非常用負荷316を送っている。負荷312は、蛇口、シャワー、水洗トイレ、ラジエーターなどのためであり、負荷316はスプリンクラーや貯水塔のためである。排水口320が配水管網310の排水のために、正常時閉口となっている水抜きバルブ322とポンプ324によって310に接続されている。ただし、このポンプは住宅のような非常に小規模なサイトでは省略してもよいであろう。
メインバルブ314、非常用バルブ318、水抜きバルブ322にはそれぞれに対応するアクチュエーター314’、318’、322’があり、その制御については下記に述べる。ポンプ324は、対応する水抜きバルブ322が開口すると同時にポンプ作業を開始するように調整されている。
ガス本管との接続部である306は、内部のガス支管網326にガスを供給し、326は正常時開口となっているメインガスバルブ330を通してガス負荷328を送る。328には、用途として暖房、レンジ、その他器具などがある。ガス抜き口332がガス支管網326のガス抜きのために、正常時閉口となっているガス抜きバルブ334と強制ガス排気装置336によって326に接続されている。ただし、この排気装置は住宅のような非常に小規模なサイトでは省略してもよいであろう。メインガスバルブ330、ガス抜きバルブ334にはそれぞれに対応するアクチュエーター330’、334’があり、その制御については下記に述べる。強制ガス排気装置336は、対応するガス抜きバルブ334が開口すると同時にガス抜き作業を開始するように調整されている。
電気本線との接続部である308は、内部の電気配線網338に電気を供給し、338は正常時入となっているメインスイッチ342を通して電気負荷340を送る。340には、用途として照明、暖房コイル、家庭電化品、通信機器及びコンピュータ、機械類などがある。予備電源344が、非常用低圧配線網346に配電し、346は電気負荷348を正常時切となっている予備スイッチ350、第一遅延装置352、付属巻線導電経路356を持つ変圧器354を通して配電する。非常用電気負荷348は、照明、警報装置、サイト302の外との通信用機器、ならびに例として、消防署もしくはその相互に連携しているサイトの主たる非常用電源のためとなろう。
第一のセンサーモジュール358は、地震、火災、水害といった災害事態があらかじめ設定した閾値より大きなものであるかどうかを判定するように調整されている。この第一センサーモジュールでは、サイト302全体にセンサーを配置し、災害の地理的な分布状況を調べ、災害と、トースターから煙が出たとか、たらいをひっくり返したといったような小さな事故とを区別できるようにすることが考えられることに留意されたい。こうした認知力は、アナログの加重機能やデジタルもしくはファジーロジックで達成できよう。第一センサーモジュール358は信号をリレイ装置360に送り、360は正常時入になっているメインスイッチ342と正常時切となっている予備スイッチ350の制御のために接続されている。
変圧器354の付属巻線導電経路356は、水道のメインバルブ314のアクチュエータ314’とガスのメインバルブ330のアクチュエータ330’と直接、接続されている。変圧器354の付属巻線導電経路356は、第二遅延装置362を経て、水道の水抜きバルブ322の322’とガス抜きバルブ334のアクチュエータ334’に間接的に接続する。変圧器354の付属巻線導電経路366は、炎、煙、異常な高音を感知する第二センサーモジュール364を経て、水道の非常用バルブ318のアクチュエータ318’に間接的に接続する。この第二センサーモジュール364は、サイト302全体に多数のセンサーを配置することが考えられることに留意されたい。さらに、314、318、322、330、334のバルブは、本例では電気的に操作されていることを認識されたい。例えば油圧機構や気圧機構などの他のアクチュエータを利用して、アナログ制御を構築することも可能である。
図3は位置関係を正しく示すものではない。304、306、308の接続部と314、318、322、330、334、342のバルブとスイッチは、サイト302の危険性の高い場所や居住者のいる場所からは離して設置することになろう。例えば、304、306、308の接続部と314、318、322、330、334、342のバルブとスイッチは、サイト302の周緑部にひとつもしくは複数の安全ボックスに収めることもできれば、危険性の高い場所、住民、その他から離れた場所を選んで、サイト内に散在させることもできる。
図3に示すシステムのオペレーションを説明しよう。正常時には、水道のメインバルブ314、ガスのメインバルブ330、非常用水道バルブ318は開口となっており、上水の負荷312、ガス負荷328、非常用上水負荷316が供給されている。同様に、電気のメインスイッチ342は入になっており、配電を行っている。
あらかじめ設定してある閾値を超えるような災害が発生した場合、例えば大きな地震、火災、水害が発生した場合には、第一センサーモジュール358がリレイ装置360に災害状況発生を伝達する。リレイ装置はメインスイッチを切にして、予備電気スイッチを入にする。遅延装置352が過渡電流を最小限に抑えるのを待って、予備電源344が低圧予備電気負荷348を供給し、サイト302と住民の保護の一助となるのである。
変圧器354を通過する予備電源からの電気は、変圧器の付属巻線導電経路356に通電する。通電した356は、水道のメインバルブ314、ガスのメインバルブ330、そして水道の非常用バルブ318をそれぞれのアクチュエータ314’、330’、318’で閉口させ、サイト302から水道304とガス306を切断してしまう。
遅延装置362に続いて、通電した付属巻線導電経路356は、正常時閉口となっている水抜きバルブ322と正常時閉口となっているガス抜きバルブ334を、それぞれのアクチュエータ322’と334’で開口させる。水道用ポンプ324とガス強制排気装置336は、その対応するバルブ322と334が開口すると、残留している水とガスの抜き取り作業を開始する。すなわち、配水管網310とガス配管網326を空にすることで、水害や爆発が発生する危険性を下げるのである。
スプリンクラーシステムが切られていて火災が大きくなるという状況は避けるために、第二センサーモジュール364が炎、煙、異常高温をモニターする。このような問題を発見すると、第二センサーモジュールは変圧器354の付属巻線導電経路356から非常用水道バルブ318のアクチュエータ318’への信号を中断させる。この信号中断は、回路切断、高インピーダンス、逆流電流、逆電位でも実現できる。変圧器354の付属巻線導電経路356からの信号が中断すると、非常用水道バルブ318はアクチュエータ318’によって正常時の開口に戻り、配水管網310の非常用以外の部分は水道本管との接続304から切断されているまま、非常用水道負荷316が正常に機能する。
サイト302が、例えば一戸建住宅のようにより小規模であるならば、災害状況も充分コントロールされており、外部本管との接続再開が望ましいと判断された場合は、人間がリレイ装置360を手作業でリセットすることができる。すると、予備電気スイッチ350が切となり、遅延があった後、メインスイッチ342が入となり、電気本線308が接続されて負荷340が再開される。予備電源344が切れ、350から予備電気負荷348が切れると、変圧器354の付属巻線導電経路356の通電も切れ、バルブ314、318、322、330、334をそれぞれのアクチュエータ314’、318’、322’、330’、334’で正常時の開口に戻す。
高層マンションやオフィスビル、大型工場などの大規模な建築では、独立したサイト302が複数、互いに連携したネットワークとして存在すると考えた方が、コントロールがよいように思われる。すなわち、個々のサイト302とは、マンション一戸もしくは一部門のように、建物内の論理的に部分をなすものとして定義するわけである。こうしたサイトの設定をすると、個々のサイト302内の第一センサーモジュール358は、その個々のサイト302全体に配置した多数のセンサーのみならず、近隣のサイト302にステータスレポートなり指示なりを送受信するためのコミュニケーションインターフェイスを持つことになる。すなわち、このインターフェイスによって、個々のサイト302の内部もしくは近隣のサイト302内部で何が発生しているかに応じてサイトのコントロールができるようにするためである。このような相互連携が張り巡らされることによって、災害の中心部から幸いにも外れたサイトに対して、貴重な早期の警告ができることになろう。というのも、災害発生の警報は、電磁的に実施する警告信号の伝達の方はるかに短時間で広がるものだからである。個々のサイト302の間の相互連絡網は、上述のシンプルなピア・ツー・ピア型でもよく、中央制御型でもよい。すなわち、例えばここには示されていないが、消防署や公共サービスの管理センターのコンピュータを使ってもいいわけで、これについては本発明の第二面の具体化に関連し、図4から図6までの参照で、より詳しく説明する。
相互連絡している個々のサイト302において、災害状況がコントロールされており個々のサイト302の外部の公共サービス接続を再開したほうがよいと判断された場合、第一センサーモジュール・コミュニケーションインターフェイスである358は、リレイ装置360をリセットする信号を出すか受けるかする。すると、予備電気スイッチ350が切になり、遅延のあとでメインスイッチ342が入になり、電気本線308が接続となり電気負荷340が再び供給される。予備電源344が切られ、350から非常用電気負荷348が切断されると、変圧器354の付属巻線導電経路356の通電も切れ、バルブ314、318、322、330、334をそれぞれのアクチュエータ314’、318’、322’、330’、334’で正常時の開口に戻す。
図4に移り、サイトのさらにシステマチックな異常検査プロセスを説明しよう。
公共サービスは、その性質上、サイトに入り、サイトに影響を与え、そして、たとえ形状は変わったとしてもサイトから出て行くものである。例えば、消費や利用を目的として、上水はサイトへ入り、水は消費されたり利用されて、下水となってサイトから排出される。したがって、システマチックな問題検証としては、サービスがサイトに到着した時点、サイトで利用されている時点、そしてサイトから出て行く時点での検査が入るであろう。それぞれの段階でサービスの質と量を検証することになろう。
公共サービスU1をモニターするために、そのようにセンサーのセットを設置しておけば、センサー402をスキャンすることで、いくつもの検査を行うことができる。そのサービスの入力に問題があるかどうか、本来の用途である406から他へ振り向けられているかどうかとか、サービスの出力に問題があるかどうかを確認することができるのである。この場合はバイナリーデータであるが、その検査の結果を、U1−INである410、U1−DIVである412、U1−OUTである414のコンポーネントを持ったセットで得ることができる。これら410、412、414を416で融合させると、サブベクトルU1418ができ、これこそその公共サービスの状態を簡略に示すものである。
さらなる融合作業である420は、サブベクトルU1である418からU1422までを合わせて、公共サービスのベクトルU424が出てくるが、これこそサイトに関わるすべての公共サービスの状態を表すものである。最後の融合作業である426は、公共サービスベクトルU424を環境センサーすべての状態を反映したベクトルE428と融合させ、システムベクトルS430を算出する。これがサイト全体の状況を簡略に表すものである。コンポーネントをベクトルに融合させる作業はこの例のとおりに行う必要はないことに留意されたい。システムベクトルS430を基準としてシステマチックに任意のサイトをモニターすることは可能でありながら、一方、特定のサイトを正確にモニターするために、システムベクトルS430の個々のコンポーネントをモニターする必要はないであろう。実際上からすれば、多数あるこうした個々のコンポーネントの数値は測定する必要はなく、推定でもよい。
図5は、本発明の第二の面を具現化するシステムを示すものである。500として総体的に図示するサイトは、境界線502の内側とし、図4で述べた方法でモニターされている。第二の具現化であるシステム500の方法論は、第一システム300より高度である。第二システム500においては、サイト500の公共サービスの相互作用を人工知能的に制御できるようにルールを適用する一方、システムベクトルS430を分析対象のファクター源としてモニターを継続する。
電源はサイト外にあり、電気は電気本線504を通じ、サイト500へ送られ、回線506でサイト500から出る。同様に水は水道本管508を通じ、サイト500に送られ、排水管510でサイトから出る。天然ガスはガス本管512を通じ、サイト500に送り込まれる。こうして送られるガスは正常時はほとんどが消費されているが、非常時には未消費のガスを排気するガス抜き管がある。
各公共サービスの接続口504、608、512と、排出口506、510、514は、入力、排出が適切に機能しているか判定するインターフェースセンサーで監視する。例えば、電気本線に接続するセンサー516や回線506に接続するセンサー518は、電流、電圧、電力量、電力の質、導体温度を計測することができる。水道本管508に接続するセンサー520やガス本管512に接続するセンサー522は流体圧や流量を測ることができる。排水管510と接続するセンサー524aおよび524bは、流体圧,流量、方向、排水レベルを測定する。ガス排気口514に接続するセンサー526は、天然ガスをその地帯に回収する上での安全性に影響を与える、電界、温度、その他要因を測定することができる。
各公共サービス接続口504、508、512および各公共サービス排出口506、510、514は境界線502からサイト500に528、530、532、534、536a、536b、538の自動スイッチもしくはバルブをそれぞれ径由して入る。
電気本線504と電気回線506はフィードセレクタスイッチ540と接続する。フィードセレクタスイッチはまた、予備電源542に接続している。フィードセレクタスイッチは電気本線504と回線506か、または予備電源542のどちらかを選んで配電システムを運転する。
フィードセレクタスイッチ540はまた、標準メモリ、記憶、インプット/アウトプット、バス構造、設定プログラムを記憶、実行する能力を有する汎用デジタルコンピュータなどのコントロールユニット546に電力を提供する。コントロールユニット546は、様々な制御を行うが、なかでも、フィードセレクタスイッチを制御し、外部と内部の電源のどちらからか電力の供給をコントロールユニット546が受けられるようにする。コントロールユニット546は、特にフィードセレクタスイッチ540のスイッチ作動中には、D.C.インバータや、中断不可の電源など専用の予備電源548へアクセスがあるものとする。
コントロールユニット546には、遠隔に位置する複数のサイト500のコントロールユニット546へ信号を送受信するためのネットワークインターフェイス549がある。このようなネットワークにより遠隔サイト500からローカルサイト500に災害警報を発することやローカルサイト500を直接制御することができる。広く普及しているネットワークプロトコルならばどれでも、このようなコミュニケーションを行うことができる。
水道本管508は非常用サブシステム550aおよびメインサブシステム550bからなる配水網550を通じ、排水管510と接続する。非常用サブシステム550aは自動バルブ552を通じメインサブシステムと接続する。メインサブシステム550bは、配管に破損が生じた場合、非常用サブシステムとは別個に水抜きを行うことができるような構成になっていることに言及しておく。
ガス本管512は配ガス網554を通じ、ガス抜き管と接続している。
インターフェースセンサー516、518、520、522、524a、524b、526は全てコントロールユニット546に信号を送る。コントロールユニット546はサイト500内のオペレーションセンサーからさらに情報を受け取る。オペレーションセンサー556を最低一個設置し、配電システム544の電気利用状況を計測する。このセンサー556は電流、電圧、電力量、電力の質、導体温度、接地事故を測定する。オペレーションセンサー558aと558bを最低一個ずつ設置し、それぞれ非常サブシステムおよびメインサブシステムの水使用状況を計測する。558aと558bのセンサーは流量や流体圧を測る。オペレーションセンサー560を最低一個配置し、配ガス網554上のガス使用状況を計測する。このセンサーはガスの流量と圧力を測定することができる。
最後に、環境センサー562を最低一個設置し、サイト500内の環境条件の計測に利用することができる。地震、煙、温度、湿度、有毒ガス、浸水、光量、また人の位置や状態までモニターすることができる。すなわち基本的には、人間や財産の保全に影響するような重要な環境要因ならばなんでも選択してモニターすることができる。環境センサー562はまた非常ボタンとして設置することも可能である。
インターフェースセンサー516、518、520、522、524a、524b、526、オペレーションセンサー556、558a、558b、560、環境センサー562は、個々に、あるいは直列や並列、もしくは開放回路や閉鎖回路、その他適切と考えられる方法ならばどのような形でも、コントロールユニット546に接続できる。
各自勤バルブ、スイッチである528、530、532、534、536a、536b、538、552の制御手段はコントロールユニット546が個別に制御するよう接続してあるが、個々に、あるいは直列や並列、もしくは開放回路や閉鎖回路、その他適切と考えられる方法ならばどのような形でも、コントロールユニット546に接続できる。
最後になるが、サイト500内のその他の自動装置564を、緊急時の被害を軽減するため、コントロールユニット546と接続することができる。装置564には、警報装置、非常用照明、自動公衆案内放送や電話システム、スプリンクラーシステムなどがある。
次に図6であるが、これは図5で具現化するシステムの全体的な運営に関するものである。
システムが600として立ち上げられると、コントロールユニット546はインターフェースセンサー516、518、520、522、524a、524b、526、オペレーションセンサー556、558a、558b、560、環境センサー562からの信号を合成してその時点のセンサーベクトルを読みとる。その時点のセンサーベクトルは、あらかじめ設定された時間606の間に計測された全センサーベクトル表に604として記録される。
コントロールユニット546は、現状を判定し、今後の状況を予見し、対策608として適切なプランを選ぶため、全センサーベクトル表606を用いる。コントロールユニット546は、本項で述べる過去および意図されたアクションベクトル610の記録およびエキスパートデータベースを基準に制御を行い対策608を指揮する。コントロールユニット546は、各自動スイッチ、自動バルブ、装置である528、530、532、534、536a、536b、538、562、564の制御信号を成分とするアクションベクトルを発することにより、サイト500と相互作用を行う。過去と意図されたアクションベクトルの記録610、全センサーベクトルの記録606は、アクション履歴、アクションプラン、プランの結果についてのフィードバックを内包しており、すなわち対策608としての行動を選ぶ際に有用である。対策608の選択の際にもうひとつ要素となるのは、幅広い種類の緊急事態や環境状況における複雑な相互作用に関して現在最良の認識を具体化した一般法則のヒエラルヒーや特定サイト500における緊急事態に対処する上での特殊ルールなどから構成されるエキスパートデータベース612である。
例えば、ヒエラルヒーの低位の法則では、水道550に異常があった場合、サイト500内の配水は切断するとしよう。ヒエラルヒーが上位になると、サイト500に火災がある場合は、たとえ非常用水道サブシステム550bに損傷があり、浸水の原因になるとしても、非常用サブシステム550bへの配水を切断してはならないとすることができる。そして、さらにそれよりも上位の法則ではサイト500に火災がある場合でも、非常用サブシステム550bの異常によって発生した浸水が進み、サイトの構造を破壊する恐れがあるときには、配水を遮断すると設定することができる。
下位のサイト特有の法則の例には、水害を受けやすい重要書類や電気系統のあるエリアは、どうしても必要な場合にのみスプリンクラーシステムを機能させるというものが考えられる。サイト特有法則のヒエラルヒーを上げると、重要書類や電気系統のあるエリアの火災が、近接する高圧爆発性ガスボンベの貯蔵庫に広がる恐れがあるときには、スプリンクラーシステムを作動しなければならないという例がありえよう。
対策608が決定されると、意図するアクションベクトル(複数)614をコントロールユニット546の処理能力に見合った精度で再演算処理する。そして次にアクションベクトル616が自動スイッチ、バルブ、装置528、530、532、534、536a、536b、538、552、564まで発動される。次に、これら再計算したアクションベクトルは、意図したものと発動されたものの両方を618として、過去および意図されたアクションベクトルの記録610に記憶し、同じプロセスが繰り返されて新たな現行センサーベクトル602を読みとる。
このような精密なシステムは複雑かつ高価で、多くの場合機能しないと理解されている。そのため実用的で対費用効果が高く、サイト毎に独立したシステムへの単純化が勧められよう。そこで図5および7を参照しながら、このように単純化した実施例について述べる。この実施例が行う災害防止策は、地震などの複合的災害発生時に、サイトの公共サービスを遮断し、そして慎重にかつ、順番にそれぞれの接続を再開するものである。この単純化されたシステムでは、センサーのうち、公共サービスとのインターフェースセンサー516、518、520、522、524a、524b、526は、オペレーションセンサー557、558a、558b、560から直接データを得る方がシンプルであることから、省略できることを強調したい。
図5及び7につき、災害による損害を軽減するための単純化したシステムの運営をここで説明する。ブロック702では、環境センサー562とネットワークインターフェースポート549をモニターするよう、コントロールユニット546に指示を行う。これで得られた情報をもとに、ブロック704に進み、コントロールユニット546に、地震がローカルに発生しているか、遠隔地で発生しているかを判断させる。地震が発生していない場合は、ブロック702に戻り、コントロールユニット546はさらなるモニターを継続するよう指示を受ける。
逆に地震が発生しているときは、ブロック706に行き、コントロールユニット546に対し、公共サービス接続自動バルブおよびスイッチ528、530、532、534、536a、536b、538、552を制御させ、サイト500へ外部から入る公共サービスを遮断させる。地震がローカルであれば、ブロック707に移り、コントロールユニット546に指示し、ネットワークインターフェースポート549を通し地震が起こっていることを伝達させる。
その後、ブロック708では地震センサー562とネットワークインターフェースポート549を引き続き監視するよう、コントロールユニット546に指示を送り、ブロック710では地震が終了したかどうか決定するよう、コントロールユニット546に指示を送る。終了していない場合は、ブロック708に戻り、コントロールユニット546は、さらにモニターを続けるよう指示される。
また、地震が終了している場合は、ブロック712に進み、非常用自動バルブ530、536aに非常用サブシステム550aを水道本管508に再接続させるように、コントロールユニット546に指示を送る。そしてブロック714では、コントロールユニット546に対し、非常用サブシステム550aが、同サブシステム用オペレーションセンサー558aが示すよう正しく作動しているか、あるいは異常があるか、判定するように指示を送る。非常用サブシスデム550aに異常があれば、ブロック716に進み、コントロールユニット546に、非常用自動バルブ530、536aで本管508からサブシステム550aを再切断し、サイト500もしくは外部の水道システムに危険を及ぼさないようにする。
また、非常用サブシステム550aが正しく作動している場合は、接続は再開したまま変更しない。
どちらの場合も、ブロック718では、サイト500にある環境状況がメインサブシステム550bを水道本管508に再度接続しないほうが賢明であるような環境条件があるかどうかの判定のために、環境センサー562をモニターするようにコントロールユニット546に指示を出す。例えば、環境センサー562が、サイト50は既に浸水しているとするなら、メインサブシステム550bを再度接続しない方がよい可能性がある。このような事態があれば、ブロック718から、下記に詳しく述べるよう、ブロック726に進むようコントロールユニット546に指示を送る。
また、このような問題事態がない場合には、ブロック720に進み、コントロールユニット546に対し、メイン自動バルブ552、536bにメインサブシステム550bを水道本管508に再度接続するよう指示する。そしてブロック722では、メインサブシステム550bが同システムのオペレーションセンサー558bが示すよう、適切に作動しているかどうか判定するように、コントロールユニット546に指示する。メインサブシステム550bに異常があれば、ブロック724に進み、メイン自動バルブ552、536bでサブシステム550bを水道本管508から再び切断するように、コントロールユニット546に対し指示を送り、サイト500もサイト外の水道も危険にさらすことがないようにする。また、メインサブシステム550bが正しく機能しているなら、接続は再開したまま変更しない。
ブロック726では、サイト500の環境が、ガス本管512に配ガス網を再度接続すべきかどうか決定するよう、コントロールユニット546に環境センサー562をモニターするよう指示する。例えば、環境センサー562がサイト500内に火災が起こっているとするなら、ガスを再接続するべきではない。このような事態が存在するようであれば、下記にさらに記載するよう、ブロック726からコントロールユニット546にブロック734に進むように指示を行う。
また、ガスに異常がないようであれば、ブロック728に進み、コントロール546に指示を送りガス自動バルブ532、538に配ガス網554をガス本管512に再接続させる。そしてブロック730に進み、コントロールユニット546に配ガス網554が、配ガス網オペレーションセンサー560が示すとおり、正しく作動しているか、あるいは配管に異常があるかどうか、判定するように指示を行う。配ガス網554に異常があるのであれば、ブロック732に進み、コントロールユニット546にガス自動バルブ532、538に配ガス網554をガス本管512から再切断し、サイト500やサイト外のガス網に危険を及ぼすことがないようにする。また、配ガス網554が正しく機能しているのであれば、接続は再開したまま変更しない。
ブロック734では、サイト500が配電システム544を電気本線5504、506に再度接続してもよい状況か決定するため、環境センサー562をモニターするよう、コントロールユニット546に指示する。例えば、環境センサー562がサイト500にガス漏れや浸水があるとするなら、電気の接続を再開するべきではない。このような問題の事態が存在するとわかれば、ブロック734からブロック702に戻し、コントロールユニット546に再度地震状況をモニターするよう、指示する。
電気系統に対して問題となるような事態がないのであれば、ブロック736に進み、コントロールユニットに、電気自動スイッチ528、534で配電システムを電気本線504、506に再接続するようにさせる。ブロック738では、配電システムオペレーションセンサー556が示すよう、配電システム544が正しく作動しているかどうか、コントロールユニット546が判断するように指示する。配電システム544に異常があれば、ブロック740に進み、電気自動スイッチ528と534で配電システム544を電気本線504と506から再切断するようコントロールユニット546に指示を送り、サイト500内もサイト外の電気系統にも危険を及ぼすことがないようにする。また配電が正しく作動しているのであれば、接続は再開したまま変更しない。
コントロールユニット546はそこでブロック702に戻り、さらなる地震のモニターを継続する。
これより、シンプルかつサイト条件からは中立な基準に沿って、外部からの公共サービスを賢明に切断し、また復旧させることにより、災害緩和を合理的な範囲まで行うことが可能であることがご理解いただけよう。
図8には、地震センサーを一般的に800で示している。この地震センサーはたとえば図5に示したような災害探知システムと併用することで、地震のマグニチュード、時間、方向等有効なデータを出すことができる。
センサー800は振り子機構802を備える。この802は支柱804、第一錘806、また支柱804から第一錘806を吊るしているサスペンションケーブル808からなる。この振り子機構802は、第一錘806がサスペンションケーブル808以外の制約を受けず、全方向に自由に振り子運動できるよう作られており、地震の水平方向加速度の計測を目的としている。
センサー800はまた、ばね機構803を備える。この803は支柱804、第二鐘807、そして支柱804から第二錘807を水平に支える弾性ロッド809からなる。ばね機構803は第二錘807が弾性ロッド807以外の制約を受けず、全方向に自由に振動できるよう作られており、地震の鉛直方向加速度の計測を目的としている。
第一錘806と第二錘807を囲む外殻である半球体810は、振り子支柱804からは、第一錘806と第二錘807が常に外殻810の内面812から同一の距離を保つような位置関係にある。外殻の内面812は第一グリッド814と第二グリッド815に分かれ、814及び815の各交差点に、個別に座標確定可能、もしくは他の方法で特定可能なセンサー816が設置されており、第一錘と第二錘が814及び815にそれぞれ影を落としてセンサーに探知される際に、どちらか近いほうに反応してシグナルを発信する。整列しているセンサー816と第一錘806、第二錘の807との組み合わせは電磁力を利用したものが望ましいが、たとえば光や音波を利用したものなど、他の組み合わせも可能である。また能動、受動の組み合わせも考えられる。
第一アウトプットポート818と第二アウトプットポート819は、それぞれ第一グリッド814、第二グリッド815からのセンサー816の信号を受信し、またそれぞれ814および815のその時点におけるセンサー816の反応を合成デジタル信号に変換する。
地震発生時に、地震エネルギーは振り子機構802及びばね機構803に伝わり、結果として第一錘806及び第二錘807に然るべき振り子運動を起こさせる。第一鐘806及び第二鐘807の動きは地震エネルギーに比例しており、マグニチュード、時間、方向等その地震のデータを出す。
第一錘806及び第二鐘807が外殻812上を通過する際、その影がグリッド814、815に投影され、センサー816の列に感知される。816の各センサーはこれらの影に反応して発せられる信号が、グリッド814、815に対する第一錘806及び第二錘807の現在地をコード化するよう調整されている。センサー816の各時間差は、第一錘806及び第二錘807のグリッド814、815上の通過経路を示し、結果的に第一錘806及び第二錘を運動原因となった地震の特徴を示す。
第一アウトプットポート818及び第二アウトプットポート819は、第一グリッド814及び第二グリッド815からのセンサー816信号を受信する。そしてその時点での814、815におけるセンサー816の反応を合成デジタル信号として発する。
図5及び図8にある通り、地震センサー800は環境センサー562としてサイトコントロールユニット546に接続することができる。
本発明の具現化の詳細について説明及び図解をしてきたが、本発明にはこの具現化における特徴にとどまらず、請求の範囲内であればあらゆるバリエーションや改良をも含む。
Figure 0004399750
Figure 0004399750
Figure 0004399750
Figure 0004399750
Figure 0004399750
Figure 0004399750

Claims (31)

  1. 一組の複数の公共サービスそれぞれを外部からサイト内部に送り込むためのインプットポートと、
    前記一組の複数の公共サービスのそれぞれをサイト外部に排出するためのアウトプットポートと、を備え、
    各前記インプットポートは、サイト内部への送り込みを促進するアクセスモードと、サイト内部への送り込みを制限する制限モードと、を有し、
    各前記アウトプットポートは、サイト外部への排出を促進する排出モードと、サイト外部への排出を制限する排出制限モードと、を有し、
    前記インプットポートと、前記アウトプットポートと、サイト内部と、において前記一組の公共サービスに所定の異常があるか否かを判別する異常判別手段と、
    前記異常判別手段により異常があると判別された場合に第一異常信号を発する第一異常信号発信手段と、
    前記第一異常信号に応答して、前記一組の複数の公共サービスそれぞれのインプットポートを前記公共サービスごとにあらかじめ設定された安全モード、すなわち前記アクセスモード又は前記制限モードのいずれかのモードとする手段と、
    前記第一異常信号がなくなったことに応答して、前記一組の複数の公共サービスそれぞれのインプットポートを前記公共サービスごとにあらかじめ設定された運転モード、すなわち前記アクセスモード又は前記制限モードのうち前記安全モードでないモードに復旧する手段と、
    を備え、サイト環境内の一組の複数の公共サービスの相互作用を制御する為のシステム。
  2. 前記各公共サービスのうち第一のサービスのインプットポートが前記制限モードとなった場合、このサービスをサイトに供給するサイト内二次供給源を有する請求項1に記載のシステム。
  3. 前記各公共サービスのインプットポートの前記安全モードが、あらかじめ前記制限モードに設定されている請求項1に記載のシステム。
  4. 前記第一異常信号に応答して、各公共サービスのアウトプットポートを前記公共サービスごとにあらかじめ設定された前記排出モードまたは前記排出制限モードとする手段を有する請求項3に記載のシステム。
  5. 前記各公共サービスのインプットポートの前記運転モードが、あらかじめ前記アクセスモードに設定してある請求項4に記載のシステム。
  6. 前記異常判別手段は、前記各公共サービスの量が正しくない場合、異常があると判別する請求項1に記載のシステム。
  7. 前記異常判別手段は、前記各公共サービスの品質が正しくない場合、異常があると判別する請求項1に記載のシステム。
  8. 前記異常判別手段は、前記各公共サービスの排出量もしくは排出成分が適切でない場合、異常があると判別する請求項1に記載のシステム。
  9. 前記異常判別手段は、
    前記インプットポートでの判別結果と、前記アウトプットポートでの判別結果と、前記サイト内での判別結果と、をあらかじめ設定した間隔で受信し、これらの結果より、各公共サービスの判別結果とその受信時間とから集計したデータセットを作成するデータセット作成手段と、
    前記データセット作成手段が作成したデータセットを記録し、該データセットから測定データセットの履歴のデータベースを構築する手段と、
    前記測定データセットの履歴と、前記各公共サービスのインプットポートにおける前記アクセスモードもしくは前記制限モードのうち望ましいものと、アウトプットポートにおける前記排出モードもしくは前記排出制限モードのうち望ましいものと、の相関関係を示すエキスパートルールデータベースと、
    前記測定データセットの履歴のデータベースを前記エキスパートルールデータベースと比較対照し、前記各公共サービスのインプットポートにおける前記アクセスモードもしくは前記制限モードを選択し、アウトプットポートにおける前記排出モードもしくは前記排出制限モードを選択するモード選択手段と、
    を更に含む請求項1、6、7又は8に記載のシステム。
  10. あらかじめ設定された間隔で前記第一異常信号を記録し、信号データセットの履歴のデータベースを構築する手段を更に有する請求項9に記載のシステム。
  11. 前記エキスパートルールデータベースが更に、前記信号データセットの履歴と、前記各公共サービスのインプットポートにおける前記アクセスモードもしくは前記制限モードのうち望ましいものと、アウトプットポートにおける前記排出モードもしくは前記排出制限モードのうち望ましいものと、の相関関係を記憶する請求項10に記載のシステム。
  12. 前記モード選択手段は、前記信号データセットの履歴のデータベースを前記エキスパートルールデータベースと比較対照して、前記インプットポート及びアウトプットポートのモードを選択する手段を更に有する請求項11に記載のシステム。
  13. サイト環境を悪化させるような条件の組み合わせに反応して前記信号データセットを発するセンサーを更に有する請求項12に記載のシステム。
  14. 前記センサーから発せられる一連の信号をあらかじめ設定した間隔で記録し、環境データセットの履歴のデータベースを構築する手段を更に有する請求項13に記載のシステム。
  15. 前記エキスパートルールデータベースが更に、前記環境データセットの履歴と、前記各公共サービスのインプットポートにおける前記アクセスモードもしくは前記制限モードのうち望ましいものと、アウトプットポートにおける前記排出モードもしくは前記排出制限モードのうち望ましいものと、の相関関係を記憶する請求項14に記載のシステム。
  16. 前記モード選択手段は、環境データセットの履歴のデータベースを前記エキスパートルールデータベースと比較対照して、前記インプットポート及びアウトプットポートのモードを選択する手段を更に有する請求項15に記載のシステム。
  17. サイト環境の悪化要因の対策となる対策手段を更に有し、この対策手段は、一つ以上の作動モード及び一つ以上のスタンドバイモードを有し、所定の第三の信号に反応してその時点でのモードを決定する請求項16に記載のシステム。
  18. 前記エキスパートルールデータベースが更に、前記測定データセットの履歴と、前記信号データセットの履歴と、前記環境データセットの履歴と、前記対策手段における前記作動モードもしくは前記スタンドバイモードのうち望ましいものとの相関関係を記憶する請求項17に記載のシステム。
  19. 前記測定データセットの履歴データベース、前記信号データセットの履歴データベース、前記環境データセットの履歴データベース、を前記エキスパートルールデータベースに比較対照させて、その結果に基づき第三の信号を発する手段を更に有する請求項18に記載のシステム。
  20. 前記第三の信号をあらかじめ設定した間隔で記録し、対策手段データセットの履歴のデータベースを構築する手段を更に有する請求項19に記載のシステム。
  21. 前記エキスパートルールデータベースが更に、前記対策手段データセットの履歴と、前記各公共サービスのインプットポートにおける前記アクセスモードもしくは前記制限モードのうち望ましいもの、アウトプットポートにおける前記排出モードもしくは前記排出制限モードのうち望ましいもの、前記対策手段の前記運転モードもしくは前記スタンドバイモードのうち望ましいもの、との相関関係を記憶する請求項20に記載のシステム。
  22. 前記各公共サービスのインプットポートをあらかじめ設定した前記運転モードに同時に戻す復旧手段を有する請求項1乃至21のいずれか1項に記載のシステム。
  23. 前記各公共サービスのインプットポートをあらかじめ設定した前記運転モードに逐次復旧する前記復旧手段を有する請求項1乃至21のいずれか1項に記載のシステム。
  24. 前記復旧手段が非常用水道のインプットポートを最初に作動させる請求項23に記載のシステム。
  25. 前記復旧手段が非常用水道のインプットポートに次いで、配水本管のインプットポートを作動させる請求項24に記載のシステム。
  26. 前記復旧手段が配水本菅のインプットポートに次いで、ガスのインプットポートを作動させる請求項25に記載のシステム。
  27. 前記復旧手段がガスのインプットポートに次いで、電気のインプットポートを作動させる請求項26に記載のシステム。
  28. 前記各公共サービスのうち、設定された第一サービスのインプットポートがあらかじめ設定した前記運転モードに復旧すべきではない場合、第三異常信号を発する手段と、
    前記第三異常信号に反応し、前記復旧手段に優先して、前記運転モードに復旧すべきでないインプットポートの復旧を停止する手段と、
    を更に有する請求項27に記載のシステム。
  29. 前記公共サービスのうち、設定された第二サービスが異常事態にあった場合、第四異常信号を発する手段と、
    前記第四異常信号に反応して、前記異常事態のあった第二サービスのインプットポートをあらかじめ設定した前記安全モードにする手段と、
    を更に有する請求項27に記載のシステム。
  30. 前記第一異常信号を遠隔サイトに伝達する手段を更に有する請求項1乃至29のいずれか1項に記載のシステム。
  31. 前記第一異常信号が遠隔地から発せられる請求項1乃至30のいずれか1項に記載のシステム。
JP53801698A 1997-03-05 1998-03-03 災害時の被害軽減システム Expired - Fee Related JP4399750B2 (ja)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
CA002199189A CA2199189C (en) 1997-03-05 1997-03-05 System for reducing disaster damage
US2,199,189 1998-02-12
US09/022,667 US6266579B1 (en) 1997-03-05 1998-02-12 System for reducing disaster damage
US09/022,667 1998-02-12
PCT/CA1998/000171 WO1998039753A1 (en) 1997-03-05 1998-03-03 System for reducing disaster damage

Publications (2)

Publication Number Publication Date
JP2001522484A JP2001522484A (ja) 2001-11-13
JP4399750B2 true JP4399750B2 (ja) 2010-01-20

Family

ID=25679083

Family Applications (1)

Application Number Title Priority Date Filing Date
JP53801698A Expired - Fee Related JP4399750B2 (ja) 1997-03-05 1998-03-03 災害時の被害軽減システム

Country Status (8)

Country Link
US (1) US20010047227A1 (ja)
EP (1) EP1051696B1 (ja)
JP (1) JP4399750B2 (ja)
AT (1) ATE285098T1 (ja)
DE (1) DE69828200T2 (ja)
ES (1) ES2235314T3 (ja)
PT (1) PT1051696E (ja)
WO (1) WO1998039753A1 (ja)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007103353A2 (en) * 2006-03-03 2007-09-13 The Trustees Of Columbia University In The City Of New York Methods, systems, and media for forming linear combinations of data
US20090083586A1 (en) * 2007-09-24 2009-03-26 General Electric Company Failure management device and method
EP2225881A4 (en) * 2007-11-29 2011-05-18 Intelligent Sentinel Technologies Llc SYSTEMS AND METHOD FOR PROPERTY PROTECTION
JP2014067160A (ja) * 2012-09-25 2014-04-17 Railway Technical Research Institute 地震との複合災害に対する鉄道や道路の運転規制システム
US10014681B2 (en) 2013-12-03 2018-07-03 International Business Machines Corporation Providing electricity to essential equipment during an emergency
US10712720B2 (en) * 2017-05-11 2020-07-14 E-Seismic Solutions, Llc Seismic event responsive alert and utilities control system having a utilities control unit

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3714456A (en) * 1971-12-27 1973-01-30 G Krohmer Disaster control system
US4414994A (en) * 1981-11-18 1983-11-15 Hogan Roderick D Earthquake fire safety system
US4841287A (en) * 1987-12-17 1989-06-20 Flig Alan Y Earthquake utilities cut-off control system
US4833461A (en) * 1988-02-01 1989-05-23 Richard Yeager Utility shut off apparatus
WO1993020544A1 (en) * 1992-03-31 1993-10-14 Barbeau Paul E Fire crisis management expert system
US5489889A (en) * 1993-03-08 1996-02-06 Kambouris; K. H. Universal earthquake safety valve
JP3293340B2 (ja) * 1994-07-29 2002-06-17 株式会社日立製作所 緊急時情報提供システム
US5601108A (en) * 1995-12-20 1997-02-11 Scott M. Perry Gas line safety evacuation apparatus and method

Also Published As

Publication number Publication date
JP2001522484A (ja) 2001-11-13
ES2235314T3 (es) 2005-07-01
PT1051696E (pt) 2005-04-29
EP1051696B1 (en) 2004-12-15
EP1051696A1 (en) 2000-11-15
ATE285098T1 (de) 2005-01-15
WO1998039753A1 (en) 1998-09-11
US20010047227A1 (en) 2001-11-29
DE69828200T2 (de) 2005-12-15
DE69828200D1 (de) 2005-01-20

Similar Documents

Publication Publication Date Title
US20180200552A1 (en) Fire containment system, devices and methods for same and for firefighting systems
KR100543891B1 (ko) 유비쿼터스 기능을 갖는 전기안전 차단기 및 그 제어방법
JP2018503344A (ja) 統合ハザード・リスク管理及び軽減システム
CN103956018B (zh) 一种改进的建筑消防设施报警信号分析处理方法
US20040054921A1 (en) Integrated monitoring and damage assessment system
JP2006025600A (ja) 電力遮断システム
JP4399750B2 (ja) 災害時の被害軽減システム
US6266579B1 (en) System for reducing disaster damage
KR101775489B1 (ko) 소방 전원공급장치의 모니터링 시스템
CN114326468A (zh) 一种基于物联网的智慧消防远程监控系统
JP6309254B2 (ja) 非常時管理システムおよび非常時管理装置
US20200219375A1 (en) Method and apparatus for monitoring building alarm systems
CN111696296A (zh) 一种火灾报警系统
KR20040087995A (ko) 네트워크 fire 방재감시 시스템 및 서비스 방법
KR20190046014A (ko) 진동센서를 구비한 가스안전 차단 및 관리 시스템
Mathews et al. A performance-based approach for fire safety engineering: A comprehensive engineering risk analysis methodology, a computer model, and a case study
CN111520917A (zh) 一种小区集中供暖燃气锅炉房的安全运行监控方法
KR102234285B1 (ko) 실시간 소방시설 관리 시스템
US20240003561A1 (en) System and method of a loop architecture of a fixed piping system implemented within a safety system of a structure to continuously supply breathable air therewithin
KR102563866B1 (ko) 재난안전위기 대응기능을 갖춘 빌딩자동화시스템
Jakubowski Analysis of Reliability Requirements for Fire Alarm Systems Operated in Civil Structures and Critical Infrastructure Facilities
JP3292557B2 (ja) スプリンクラ消火設備
Feeney Accounting for Sprinkler Effectiveness in Performance Based Design of Steel Buildings for Fire
KR20230165427A (ko) 인공지능 화재 확산 예측 시스템
US20210121721A1 (en) 24-7 Offsite Structural/Nonstructural Exterior Fire Detection Protection And Method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050224

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070508

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070808

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080304

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20080602

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20080714

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20080627

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20080804

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20080801

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20080922

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080903

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090414

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090710

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20090710

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090915

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20091015

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121106

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees