JP4399676B2 - Building structure and its construction method - Google Patents

Building structure and its construction method Download PDF

Info

Publication number
JP4399676B2
JP4399676B2 JP2008104417A JP2008104417A JP4399676B2 JP 4399676 B2 JP4399676 B2 JP 4399676B2 JP 2008104417 A JP2008104417 A JP 2008104417A JP 2008104417 A JP2008104417 A JP 2008104417A JP 4399676 B2 JP4399676 B2 JP 4399676B2
Authority
JP
Japan
Prior art keywords
column
steel
building
floor
joint
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2008104417A
Other languages
Japanese (ja)
Other versions
JP2009256890A (en
Inventor
敏郎 有馬
Original Assignee
敏郎 有馬
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 敏郎 有馬 filed Critical 敏郎 有馬
Priority to JP2008104417A priority Critical patent/JP4399676B2/en
Publication of JP2009256890A publication Critical patent/JP2009256890A/en
Application granted granted Critical
Publication of JP4399676B2 publication Critical patent/JP4399676B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、住宅を主な対象として、工場生産化率の向上を図る建築構造体に関する。   The present invention relates to a building structure that is mainly intended for housing and is intended to improve the factory production rate.

従来の建築では、3階以下の低層建築(戸建住宅や低層アパート等)用には、木材か、軽量鉄骨の10〜13cm角の小断面の柱を適用し、中層・高層建築(マンション等)用には、重量鉄骨造では20cm角以上の中断面の柱を、鉄筋コンクリート造では40cm角以上の大断面の柱を、それぞれ適用している。これら従来建築について次に説明する。   In conventional architecture, for low-rise buildings with 3 floors or less (detached houses, low-rise apartments, etc.), low-profile pillars of 10 to 13 cm square made of wood or lightweight steel are applied to medium- and high-rise buildings (condominiums, etc.) For heavy steel structures, medium-section columns of 20 cm square or more are used, and for reinforced concrete structures, large-section columns of 40 cm square or more are applied. These conventional buildings will be described next.

低層建築では、木造の場合、小断面の柱材や梁材を複数本集積し、上階から下階に向けて集積本数を多くした柱と梁を強固に接合することにより、耐力壁が不要なラーメン構造を構成する建築構造体がある(例えば、特許文献1参照。)。また、鉄骨造の場合、小断面の軽量鉄骨の柱を用いて垂直荷重に対応し、地震や台風による水平外力には、建築モジュール(90〜120cm)幅の耐力フレームで対応する建築構造体がある(例えば、特許文献2参照。)。尚、低層建築の2階以上に設ける浴室等の住宅設備用の配管は、屋外配管にするのが通常である。屋外には他に雨水排水用の竪樋が設けられている。   In low-rise buildings, in the case of wooden buildings, multiple columns and beams with small cross-sections are accumulated, and columns and beams that are increased in number from the upper floor to the lower floor are firmly joined, eliminating the need for bearing walls. There is an architectural structure that constitutes a rigid ramen structure (for example, see Patent Document 1). In the case of a steel structure, a lightweight steel column with a small cross section is used to handle vertical loads, and for horizontal external forces due to earthquakes and typhoons, a building module (90 to 120 cm) wide with a load-bearing frame is available. (For example, refer to Patent Document 2). Note that piping for housing equipment such as a bathroom provided on the second floor or more of a low-rise building is usually an outdoor piping. There are other rainwater drains outside.

一方、中層・高層建築では、重量鉄骨造の場合、上下階の柱は現場溶接で接合し、柱と梁は現場溶接又はリベットで接合するため、建設工事には専門の建築職人が必要である。
更に、建築構造体の施工では、複数階分の長尺の柱を基礎に仮固定し、倒れ防止のとら綱と歪直しワイヤを柱に取り付けた後に、梁を柱に仮止めする工程を取り、各接合部の本締めは、測量機器で測定しながら歪直しワイヤを調節し、柱の倒れを修正した後に行っている(例えば、非特許文献1参照。)。また、鉄筋コンクリート造の場合、構造体の骨組みとなる鉄筋の組立と、コンクリートを流し込む型枠の組立に、重量鉄骨造と同様に、専門の建築職人が必要である。更に、構造設計面では、物件毎に複雑な構造計算を行って各階の柱と梁の断面積と鉄筋量及びセメント強度を設定している。尚、中層・高層建築のマンションでは、キッチンや浴室等の住宅設備用の配管シャフトを設置することで、各住戸の間取りが制約されているが、この問題を解決するために、構造体の柱内部の空隙を配管シャフト代わりに利用する建築構造体がある(例えば、特許文献3参照。)。
On the other hand, in middle- and high-rise buildings, in the case of heavy steel structures, the upper and lower floor columns are joined by on-site welding, and the columns and beams are joined by on-site welding or rivets. .
Furthermore, in the construction of a building structure, a process of temporarily fixing a beam to a column after temporarily fixing a long column of multiple floors to the foundation, attaching a twisted rope and a straightening wire to the column, and then fixing the wire to the column. The final tightening of each joint is performed after correcting the column collapse by adjusting the wire while measuring with a surveying instrument (for example, see Non-Patent Document 1). In the case of a reinforced concrete structure, a professional architect is required for assembling the reinforcing bars that form the framework of the structure and assembling the formwork into which the concrete is poured, as in the case of heavy steel structures. Furthermore, in terms of structural design, complex structural calculations are performed for each property to set the cross-sectional areas, the amount of reinforcing bars, and the cement strength of the columns and beams on each floor. In mid- and high-rise apartments, the layout of each dwelling unit is restricted by installing piping shafts for housing equipment such as kitchens and bathrooms. To solve this problem, structural pillars are used. There is an architectural structure that uses an internal gap instead of a piping shaft (see, for example, Patent Document 3).

ところで、建設現場の省人化と工期短縮及び建設費低減を目的とした住宅の工場生産化率向上(住宅工業化)に向けた取組みについては、住宅設備やサッシ、内外装材、屋根材等の分野では工場製品が普及しているが、構造体の分野では、低層建築分野で、小断面の鉄骨構造体、ツーバイフォーパネル及びプレキャストコンクリートパネルが工場製品として供給されている程度で、普及率は低層建築全体の2〜3割と低く、地元ビルダーの在来木造建築が大半を占めている。また、中層・高層建築分野では、工場製品のプレキャストコンクリートパネルが中層建築の一部に採用されている程度で、現場溶接の重量鉄骨や、鉄筋コンクリートによる在来工法の建築が大半を占めている。また、日本の住宅の建替周期は平均30年以下と欧米住宅に比べて極端に短く、住宅解体時の廃材は分別回収され、材料毎のリサイクルが取組まれているが、廃棄に回される量も少なくない。   By the way, with regard to efforts to improve the factory production rate (residential industrialization) of houses for the purpose of labor saving, shortening the construction period and reducing construction costs, such as housing equipment, sashes, interior / exterior materials, roofing materials, etc. Factory products are widespread in the field, but in the structure field, low-rise building fields, small-sized steel structures, two-by-four panels, and precast concrete panels are supplied as factory products. It is as low as 20-30% of the total construction, and most of them are local wooden buildings of local builders. In the middle- and high-rise buildings, precast concrete panels, which are factory products, are used as a part of middle-rise buildings, and the majority of them are heavy-duty steel frames that are welded on-site and conventional construction methods using reinforced concrete. In addition, the rebuilding cycle of Japanese houses is 30 years or less on average, which is extremely short compared to European and American houses. Waste materials at the time of dismantling the houses are collected separately and recycled for each material. Not too small.

特開2002−317495号 公報JP 2002-317495 A 特開2004−346548号 公報JP 2004-346548 A 特開平10−252218号 公報Japanese Patent Laid-Open No. 10-252218 藤本盛久・大野隆司監修、「図解 建築工事の進め方 鉄骨造」市ヶ谷出版社、2003年5月30日出版、P114〜132Supervised by Morihisa Fujimoto and Takashi Ohno, “Illustration: How to proceed with construction work, steel structure”, Ichigaya Publishing Co., Ltd., published on May 30, 2003, P114-132

従来、住宅着工件数の約半数ずつを占める低層建築と中層・高層建築では、構造体の柱の断面が大きく異なり、それに伴って構造体全体の材料や施工方法も多種多様で標準化が進まず、建築部材費の低減や建設工期短縮の阻害要因になっている。   Conventionally, low-rise buildings and middle- and high-rise buildings, which account for about half of the number of housing starts, have a large difference in the cross-section of the pillars of the structure. This is an impediment to reducing the cost of building materials and shortening the construction period.

例えば、特許文献1の柱構造は、小断面の木材を集積する構造のため、対象が低層建築に限られて中層・高層建築に対応できない点や、階によって柱の幅と奥行の寸法が異なって、柱周りの納まりが統一できない点で、建築構造体としての汎用性が限られる。また、例えば、特許文献2の建築構造体は、小断面の軽量鉄骨を使用する構造のため、やはり、対象が低層建築に限られて中層・高層建築に対応できない点や、建築モジュール幅の耐力フレームにより間取りが制約される点で、建築構造体としての汎用性が限られる。   For example, the column structure of Patent Document 1 is a structure in which small cross-section timbers are accumulated, so that the object is not limited to low-rise buildings and cannot be applied to middle- and high-rise buildings, and the column width and depth dimensions differ depending on the floor. Therefore, the versatility of the building structure is limited in that the fit around the pillars cannot be unified. In addition, for example, the building structure of Patent Document 2 is a structure that uses a lightweight steel frame with a small cross section, so that the target is limited to low-rise buildings and cannot be applied to middle- and high-rise buildings, and the strength of the building module width The versatility as a building structure is limited in that the floor plan is restricted by the frame.

一方、低層建築で通常施工される2階以上の住宅設備用の屋外配管は、住宅の外観を著しく損なう。また、雨水排水用の竪樋も、本数が多くなると、外観を損なう場合が多い。
また、中層・高層建築では、配管シャフト代りに考案された、例えば、特許文献3の鋼管柱は、力が集中する柱と梁の接合部を避けて、柱自体の側面に配管口を設けるため、柱の構造上許容される断面欠損の範囲内に配管口の大きさが制約される。また、柱と梁の接合部とほぼ同じ高さに設けられる天井空間や床下空間への配管上、柱と梁の接合部を避けた配管口の位置では、横引き配管の納まり寸法が制約される問題がある。
On the other hand, outdoor piping for residential facilities of two or more floors that is usually constructed in low-rise buildings significantly impairs the appearance of the house. Moreover, when the number of rainwater drainage tubs increases, the appearance is often impaired.
Moreover, in middle- and high-rise buildings, for example, the steel pipe column of Patent Document 3 devised in place of a piping shaft avoids the joint between a column and a beam where the force is concentrated and provides a piping port on the side surface of the column itself. In addition, the size of the piping port is limited within the range of the cross-sectional defect allowed in the structure of the column. In addition, in the piping to the ceiling space and underfloor space provided at almost the same height as the joint between the column and the beam, the size of the horizontal piping is limited at the position of the piping port avoiding the joint between the column and the beam. There is a problem.

建設現場の職人に関しては、少子高齢化社会の急速な進展による労働人口先細りと豊かな社会で育った若年労働者の3K(きつい、汚い、危険)職場からの忌避傾向により、特に、木造住宅施工に必要な大工職人や、現場溶接の重量鉄骨施工に必要な溶接職人、鉄筋コンクリート施工に必要な型枠職人と鉄筋組立職人等、在来工法の構造体建設を担う建築職人の確保が年々難しくなっている問題がある。   With regard to craftsmen at construction sites, the construction of wooden houses, especially due to the declining trend of the working population due to the rapid progress of the aging society with a declining birthrate and the 3K (tight, dirty, dangerous) young workers who grew up in a prosperous society, It is becoming more and more difficult to secure building craftsmen who are responsible for construction of conventional construction methods, such as carpenter craftsmen required for construction, welding craftsmen required for heavy steel construction for on-site welding, formwork craftsmen and rebar assembly craftsmen required for reinforced concrete construction. There is a problem.

更に、重量鉄骨の中層・高層建築の施工方法では、柱の建方において、倒れ防止のとら綱や歪直しワイヤの取り付け、柱や梁の各接合部の仮止め、測量機器による柱の倒れ修正と最終段階の各部接合部の本締め等、施工工程が複雑で、施工時間が長くかかる問題がある。また、鉄筋コンクリート造では、近年の耐震偽装問題を契機に、構造計算とその検証プロセスがより複雑になり、構造設計者の負荷が増えている。   Furthermore, in the construction method of heavy-duty steel frame middle- and high-rise buildings, in the construction of the pillars, it is possible to prevent falling down by attaching the ropes and straightening wires, temporarily fixing the joints of the pillars and beams, and correcting the fall of the pillars using surveying equipment. And there is a problem that the construction process is complicated and the construction time is long, such as final fastening of each joint part at the final stage. In reinforced concrete construction, the structural calculation and verification process have become more complicated due to the recent seismic camouflage problem, increasing the burden on structural designers.

住宅の建替周期の短さと、解体廃材の廃棄の現状については、地球環境保護の観点から看過できない問題であるが、日本の住宅の建替周期を短くしている原因として、住宅の主な建替動機である家族構成の変化や高年齢化に伴う間取り改造への制約が上げられる。低層建築では、小断面の柱の構造耐力上、柱間隔を5.4m(3間)以内に配置するのが通常で、住宅平面上に散在する柱が間取りの改造を制約し、中層・高層建築では、設備用の配管シャフトが住戸平面上で固定的な構造となり、間取りの改造を制約している。   The shortness of the rebuilding cycle of houses and the current state of disposal of demolition waste is a problem that cannot be overlooked from the viewpoint of protecting the global environment. Restriction to floor plan remodeling accompanying change of family constitution and aging that is rebuilding motive is raised. In low-rise buildings, it is normal to arrange the column spacing within 5.4 m (3 intervals) due to the structural strength of the columns with small cross-sections, and the columns scattered on the house plane restrict the modification of the floor plan. In architecture, the piping shaft for equipment has a fixed structure on the flat surface of the dwelling unit, which limits the modification of the floor plan.

また、中層・高層建築分野が抱える問題として、老朽化マンションの建替潜在需要の増加がある。この問題への対応としては、長期耐久性があり、建設費が低廉で短工期のマンションの建設工法が求められている。   In addition, as a problem in the middle-rise and high-rise building fields, there is an increase in potential demand for rebuilding aging apartments. In order to cope with this problem, there is a demand for a construction method for condominiums that have long-term durability, low construction costs, and short construction periods.

本発明は、このような従来技術が抱えている問題を解決しようとするものであり、前述の幾多の課題を解決する手段を提供することを目的とするものである。   The present invention is intended to solve such problems of the prior art, and an object of the present invention is to provide means for solving the above-mentioned various problems.

第1の課題解決手段は、柱と梁と、前記柱と梁を接合するジョイントボックスからなる建築構造体であって、前記柱は、幅と奥行を建築モジュールの略1/2の寸法とする四角柱状で、柱の四角に立設する鉄骨と、隣接する前記鉄骨同士をトラス状に緊結する鉄骨とで構成して、長さ方向に貫通する住宅設備配管用空隙を有し、前記梁は鋼製梁とし、前記ジョイントボックスは、幅と奥行を前記柱と同寸法とする鋼板製の箱状の構造で、上下面及び側面に前記柱内部の空隙と繋がる住宅設備配管用空隙を有することを特徴とする。 A first problem-solving means is a building structure including a column and a beam, and a joint box that joins the column and the beam, and the column has a width and a depth that are approximately half the size of a building module. It has a square pillar shape and is composed of a steel frame standing upright at the square of the pillar and a steel frame that connects the adjacent steel frames together in a truss shape, and has a gap for housing equipment piping penetrating in the length direction, and the beam is It is a steel beam, and the joint box has a box-like structure made of a steel plate having the same width and depth as the column, and has a space for housing equipment piping connected to the space inside the column on the upper and lower surfaces and side surfaces. It is characterized by.

第2の課題解決手段は、第1の課題解決手段の建築構造体を適用する建築物において、各階の構造耐力に応じて、第1の課題解決手段の柱ジョイントボックス奥行方向にそれぞれ複数個連結して、一体化した連続柱連続ジョイントボックスを構成し、前記連続ジョイントボックス側面に第1の課題解決手段の梁を接合して構造体を構成することを特徴とする。 In the building to which the building structure of the first problem solving means is applied, the second problem solving means includes a plurality of columns and joint boxes of the first problem solving means in the depth direction according to the structural strength of each floor. These are connected together to form an integrated continuous column and a continuous joint box, and a structure is formed by joining the beam of the first problem solving means to the side of the continuous joint box .

の課題解決手段は、施工方法であって、第1又は第2の課題解決手段の建築構造体と、ボルト、ナットを用いて、1階分の前記ジョイントボックスを基礎アンカー金具又は階下の前記柱に仮固定する第1工程と、1階分の前記梁を前記ジョイントボックス間に配置、接合して、水平の枠体を形成し、前記ジョイントボックスを本固定する第2工程と、1階分の前記柱を前記ジョイントボックスに固定する第3工程を、建築物の各階毎に繰り返して構造体を構築することを特徴とする。 The third problem solving means is a construction method, wherein the joint box of the first floor is connected to the foundation anchor bracket or the downstairs using the building structure of the first or second problem solving means, the bolt, and the nut. A first step of temporarily fixing the column to the pillar; a second step of arranging and joining the beams of one floor between the joint boxes to form a horizontal frame; The third step of fixing the pillars of the floor to the joint box is repeated for each floor of the building to construct the structure.

前述第1の課題解決手段による作用は次の通りである。   The operation of the first problem solving means is as follows.

一つ目の作用は、建物の各階毎に、柱と梁と、前記柱と梁を接合するジョイントボックスの3つの構成部品に建築構造体を分離することにより、構造体の全ての構成部品を工場生産や道路輸送に適した部品サイズにできることである。   The first function is to separate all building components by separating the building structure into three components: a column and a beam, and a joint box that joins the column and beam, for each floor of the building. It is possible to make the parts size suitable for factory production and road transportation.

二つ目の作用は、前記柱の幅と奥行の寸法を、建築モジュールの略1/2とすることにより、次の四つの効果をもたらすことである。   The second action is to bring the following four effects by making the width and depth dimensions of the pillars approximately ½ of the building module.

一つ目の効果は、前記柱の同一方向を向く2つの構面ずつに、建築の1モジュール幅の耐力壁に相当(1/2モジュール×2=1モジュール)する構造耐力を持たせることが可能となり、従来、柱の外に設けていた耐力壁の機能を柱の中に取込むことができることである。   The first effect is that each of the two structural surfaces facing the same direction of the pillar has a structural strength equivalent to a one-module width bearing wall (1/2 module × 2 = 1 module). This is possible, and the function of the load-bearing wall that has conventionally been provided outside the pillar can be incorporated into the pillar.

二つ目の効果は、前記柱の構造耐力上必要な外周部を除く内部に、25cm角以上の配管用の空隙部が確保され、住宅設備用の配管(汚水配管径10cm、雑排水配管径6cm等)に必要な大きさを満たし、配管シャフトの機能を柱の内部に取込むことができることである。   The second effect is that a space for a pipe of 25 cm square or more is secured inside the column excluding the outer peripheral part necessary for the structural strength of the column, and pipes for housing equipment (sewage pipe diameter 10 cm, miscellaneous drainage pipe diameter). 6 cm, etc.), and the function of the piping shaft can be taken into the column.

三つ目の効果は、3階以下の低層建築では、柱の幅と奥行を、従来の小断面の柱の4倍以上の大断面の柱にすることにより、柱間隔を従来の2倍の10m前後まで広げることができると共に、構造条件の厳しい地下室の本格的な利用が可能になることである。   The third effect is that in low-rise buildings with 3 floors or less, the width and depth of the columns are made larger than four times that of conventional small-sized columns. In addition to being able to expand to around 10m, it is possible to make full use of the basement with severe structural conditions.

四つ目の効果は、前記柱を連続柱に展開した場合でも、柱の奥行寸法が建築モジュールの1/2ずつ規則的に増加することで、各階の柱周りの納まりを統一できることである。   The fourth effect is that even when the pillar is expanded into a continuous pillar, the depth around the pillars on each floor can be unified by regularly increasing the depth of the pillar by 1/2 of the building module.

また、前述第1の課題解決手段による三つ目の作用は、上下面と側面に空隙を設けた前記ジョイントボックスを介し、上下階の前記柱内部の空隙と天井裏や床下空間が連続的に繋がり、同空隙を利用する配管類の縦配管や、天井裏や床下空間への横引き配管が行えるようになることである。尚、この効果は、柱と梁の接合部を柱から分離して別体のジョイントボックスにすることで、個別の補強構造が可能となり、配管用に十分な大きさの空隙を設けても、接合部に集中する力に耐えられる強固なジョイントボックスを構成できることによる。   In addition, the third action by the first problem solving means is that the space inside the pillar on the upper and lower floors and the space behind the ceiling and the underfloor space are continuously connected via the joint box provided with spaces on the upper and lower surfaces and side surfaces. It is connected and it becomes possible to perform vertical piping of pipes that use the same gap, and horizontal piping to the back of the ceiling and under the floor. This effect can be achieved by separating the column-beam joint from the column into a separate joint box, enabling an individual reinforcement structure, and providing a sufficiently large gap for piping. This is because a strong joint box that can withstand the force concentrated on the joint can be constructed.

前述第2の課題解決手段による作用は次の通りである。一体化した連続柱と連続ジョイントボックスを用いることにより、単一の柱に3階分の構造耐力を持たせれば、2連の柱には2倍の6階分、3連の柱には3倍の9階分、4連の柱には4倍の12階分の構造耐力を持たせることが可能となり、低層建築から中層・高層建築まで、構造体の柱を同一の材料、同一の幅寸法で構成することができる。尚、連続ジョイントボックスの作用は、上階の単一の前記柱又は連続柱の構造応力を、当該階の連続柱を通じて、下階の連続柱に円滑に伝えることと、連続する空隙を利用して、複数の配管類を配管できることである。   The operation of the second problem solving means is as follows. By using an integrated continuous column and continuous joint box, if a single column has structural strength equivalent to 3 floors, it will be double 6 columns for 2 columns and 3 for 3 columns. It is possible to give structural strength equivalent to 4 times 12 floors to 4 times 9 floors, 4 columns, and structure pillars of the same material and width from low-rise buildings to middle- and high-rise buildings Can be configured with dimensions. The action of the continuous joint box is to transfer the structural stress of the single upper column or the continuous column of the upper floor smoothly to the continuous column of the lower floor through the continuous column of the floor and use the continuous gap. In other words, a plurality of pipes can be piped.

前述第課題解決手段による四つ目の作用は次の通りである。鋼材で構成する場合は、構造耐力別に標準化された建築用鋼材で構成することにより、建物の各階別の構造負荷に応じて、単一の柱から連続柱まで柱の構成部材を組み換えることで、低層建築から中層・高層建築まで、構造体の柱を同一の材料、同一の幅寸法で構成することができる。また、鋼材とコンクリートで構成する場合は、建築用鋼材で構成した柱や梁およびジョイントボックスを、耐火被覆機能を兼ね備えたコンクリートと一体成形したプレキャストコンクリート製品にすることで、耐火被覆材を構造体に取付ける現場工程を削除し、建設工期を短縮できる。 The fourth action of the first problem solving means is as follows. When it is composed of steel, it is composed of standard steel for construction according to structural strength, so that the structural components of the pillar can be recombined from a single pillar to a continuous pillar according to the structural load of each floor of the building. From low-rise buildings to mid- and high-rise buildings, structural pillars can be made of the same material and the same width. In the case of steel and concrete, the pillars, beams and joint boxes made of construction steel are made into a precast concrete product that is integrally molded with concrete having a fireproof coating function. The construction process can be shortened by eliminating the on-site process attached to the machine.

前述第4の解決手段による作用は次の通りである。一つ目の作用は、各階に取り付けられる柱が精度高く自立し、従来の倒れ防止用のとら綱や歪直し用のワイヤの取付け、及び測量機器による柱の倒れ修正の工程が不要になり、工程が簡素化され、施工作業内容も単純化できることで、施工時間の短縮ができることである。また、付随効果として、ジョイントボックスと基礎アンカー金具の間には、構造体の免震装置を取付けることができる。   The operation of the fourth solving means is as follows. The first effect is that the pillars attached to each floor are self-supporting with high precision, and the conventional steps of preventing the fall-down and attaching the wire for straightening, and correcting the fall of the pillars by surveying equipment are no longer necessary. By simplifying the process and simplifying the construction work, the construction time can be shortened. As an accompanying effect, a seismic isolation device for a structure can be attached between the joint box and the foundation anchor fitting.

二つ目の作用は、柱と梁とジョイントボックスの全ての接合を、ボルト、ナットで行うことにより、建築物の解体時にも、構造体の全ての構成部品を、組立前の状態に取外すことができることである。   The second effect is that all the components of the structure are removed to the state prior to assembly, even when the building is dismantled, by connecting all the columns, beams and joint boxes with bolts and nuts. It is possible to do.

本発明の建築構造体により、住宅着工件数の約半数ずつを占めている低層建築と中層・高層建築で大きく異なっている構造体を、一連の繋がりのある構造体に統一できる。このことにより、住宅構造の標準化を促進することが可能となり、住宅の建築部材費の低減と建設工期の短縮が図れる。次に、家族構成の変化や高年齢化に伴う間取りの改造を制約していた住宅平面上に散在する柱や耐力壁及び配管シャフトが無くなり、間取りの自由度が大幅に向上することで、住宅の建替え周期の長期化を図ることができる。次に、低層建築から中層・高層建築まで、単一の柱から、複数の連続柱に展開する明快な構造方式とすることで、構造設計者の負荷を軽減できる。次に、構造体の全ての構成部品を高品質な工場製品とし、組立にボルト、ナットを用いることにより、現場施工作業に熟練工を必要としなくなり、人員確保が難しくなっている建築職人問題を解消できる。次に、建物の解体時にも、構造体の全ての構成部品が組立前の状態に取外せることにより、構造体の構成部品を全て再使用することが可能となり、構造体関連の廃棄物を無くすことができる。次に、中層・高層建築分野が抱える老朽化マンションの建替問題に対しても、具体的な解決策が提供できるようになる。   With the building structure of the present invention, a structure that is largely different between a low-rise building and a middle-rise / high-rise building that account for about half of the number of housing starts can be unified into a series of connected structures. As a result, standardization of the housing structure can be promoted, and the construction material cost of the housing can be reduced and the construction period can be shortened. Next, there are no pillars, load-bearing walls, and piping shafts scattered on the floor of the house, which have restricted the change in the layout of the family and aging, and the degree of freedom in the layout is greatly improved. The rebuilding cycle can be prolonged. Next, from a low-rise building to a middle-rise / high-rise building, it is possible to reduce the burden on the structural designer by adopting a clear structural system that develops from a single pillar to a plurality of continuous pillars. Next, all the components of the structure are made into high-quality factory products, and bolts and nuts are used for assembly, eliminating the need for skilled workers for on-site construction work and eliminating the problem of building craftsmen who are difficult to secure personnel it can. Next, even when the building is dismantled, all the structural components can be removed in the state before assembly, so that all structural components can be reused, and the structure-related waste is eliminated. be able to. Next, it will be possible to provide concrete solutions to the rebuilding problem of aging condominiums in the middle-rise and high-rise building fields.

本発明を実施するための最良の形態を、図1と図2に基づいて説明する。図1は、柱の幅と奥行の寸法を建築モジュールの略1/2の45cmとし、柱1と梁2及びジョイントボックス3を建築用鋼材で構成した本発明の建築構造体である。柱1の四角に重量鉄骨の等辺山形鋼1aを各1本ずつ配置し、柱間隔を10m前後とした3階分の垂直荷重に耐える構造耐力を持たせている。尚、柱1の部材構成については、構造耐力に応じて、3階分の最上階用の柱には一辺が10cmの中形等辺山形鋼を、3階分の2階用と1階用の柱には、一辺が夫々13cmと15cmの大型等辺山形鋼を用いている。柱1の4つの構面全て、小型の等辺山形鋼1bを用いて等辺山形鋼1a同士を溶接又はリベットでトラス状に緊結し、等辺山形鋼1aの座屈止めとすると共に、地震や台風による水平外力への構造耐力を持たせている。柱1の上面と下面には、ジョイントボックス3との接合用の9mm厚鋼板の接合金具を溶接で取り付け、接合金具の中央には25cm角の配管用の空隙部を設け、配管類4とダクト5を配管している。柱1の高さは、天井高を250cmとし、床材と天井材の納まり寸法を加えることで、265cmとしている。   The best mode for carrying out the present invention will be described with reference to FIGS. FIG. 1 shows a building structure according to the present invention in which the column width and depth dimension are set to 45 cm, which is approximately a half of the building module, and the column 1, the beam 2 and the joint box 3 are made of building steel. Each of the square steel pillars 1a made of heavy steel frames is arranged on each square of the pillar 1 so as to have a structural strength that can withstand a vertical load of three floors with a pillar interval of about 10 m. In addition, about the member structure of the pillar 1, according to structural strength, the medium-sized equal side mountain-shaped steel with a side of 10 cm is used for the top floor pillar for the third floor, for the second floor and the first floor for the third floor. The pillars are made of large isometric angle steel with sides of 13 cm and 15 cm, respectively. All the four structural surfaces of the pillar 1 are made of small equilateral mountain-shaped steel 1b, and the equilateral mountain-shaped steels 1a are joined together in a truss shape by welding or rivets to prevent buckling of the equilateral mountain-shaped steel 1a, and by earthquakes and typhoons Has structural strength against horizontal external force. On the upper and lower surfaces of the pillar 1, a 9 mm-thick steel plate joint for joining to the joint box 3 is attached by welding, and a 25 cm square pipe gap is provided in the center of the joint, and piping 4 and ducts are provided. 5 is piped. The height of the pillar 1 is set to 265 cm by setting the ceiling height to 250 cm and adding the dimensions of the floor material and the ceiling material.

梁2は、柱間隔を10m前後とするため、柱間隔の1/25の40cmを梁高さとし、15cm幅の重量鉄骨のI形鋼を加工してウエブ面にハニカム状の空隙を設けた合成梁を用いている。尚、梁2の両端部には、ジョイントボックス3との接合用の接合金具2aを溶接で取付けている。   Since the beam 2 has a column interval of about 10 m, the beam height is set to 1/25 of the column interval, 40 cm, and a 15 cm wide heavy steel I-shaped steel is processed to provide a honeycomb-like void on the web surface. A beam is used. In addition, the joining metal fitting 2a for joining with the joint box 3 is attached to the both ends of the beam 2 by welding.

ジョイントボックス3は、柱1と梁2の接合部で、垂直加重と水平外力が集中する部位であるため、9mmの厚板鋼板を用いて溶接で強固に箱状に構成して、上面と下面は柱1の断面と同寸法の45cm角とし、高さは梁2より上下に5cmずつ高い50cmとしている。尚、上面と下面に25cm角の配管用の空隙部3aを設け、側面には幅15cm、高さ20cmの空隙部3bを設けている。   Since the joint box 3 is a joint between the column 1 and the beam 2 and the vertical load and the horizontal external force are concentrated, it is configured by welding using a 9 mm thick steel plate to form a strong box shape. Is a 45 cm square having the same dimensions as the cross section of the column 1, and the height is 50 cm higher by 5 cm above and below the beam 2. A 25 cm square gap 3a for piping is provided on the upper and lower surfaces, and a gap 3b having a width of 15 cm and a height of 20 cm is provided on the side surface.

柱1と梁2とジョイントボックス3は、部品としての加工後にそれぞれ溶融亜鉛メッキを施して長期耐久性を持たせる。   The pillar 1, the beam 2 and the joint box 3 are each subjected to hot dip galvanization after being processed as a part so as to have long-term durability.

柱1は、柱1の上面と下面に溶接した接合金具に取付けた8個の裏ナットに、上下のジョイントボックス3の上面と下面のボルト孔側から六角ボルトM16を8本ずつ挿入し、ジョイントボックス3に緊固に接合する。尚、ボルトの固定作業はジョイントボックス3の側面の空隙部3bから行う。梁2は、梁2の両端部の接合金具2aのボルト孔側から、ジョイントボックス3の側面裏に取付けた裏ナットに、六角ボルトM16を8本挿入して緊固に接合する。   The column 1 has eight hexagonal bolts M16 inserted into the eight back nuts attached to the joints welded to the upper and lower surfaces of the column 1 from the bolt hole side of the upper and lower joint boxes 3, respectively. Tightly bond to box 3. The bolt is fixed from the gap 3b on the side surface of the joint box 3. The beam 2 is firmly joined by inserting eight hexagon bolts M16 from the bolt hole side of the joint fitting 2a at both ends of the beam 2 to the back nut attached to the back of the side surface of the joint box 3.

図2は、柱の幅と奥行の寸法を建築モジュールの略1/2の55cmとし、柱6と梁7とジョイントボックス8をコンクリートで構成した本発明の建築構造体である。   FIG. 2 shows the building structure of the present invention in which the column width and depth dimension are about 1/2 of the building module, 55 cm, and the column 6, beam 7 and joint box 8 are made of concrete.

柱6は、幅と奥行の寸法を45cmとする図1の建築用鋼材で構成した柱1と同構造の鋼製柱を内蔵し、コンクリート被り厚を鋼製柱の全周に5cm取ることで、柱6の外形寸法を55cmにしている。柱6の高さは、建築用鋼材で構成した柱1と同じ265cmとしている。柱6の上面と下面および内部には25cm角の配管用の空隙部を設けている。   The column 6 has a built-in steel column having the same structure as the column 1 made of the structural steel material of FIG. 1 having a width and depth of 45 cm, and the concrete cover thickness is 5 cm around the entire circumference of the steel column. The external dimension of the pillar 6 is 55 cm. The height of the pillar 6 is set to 265 cm, which is the same as that of the pillar 1 made of building steel. On the upper surface, the lower surface, and the inside of the column 6, a 25 cm square gap for piping is provided.

梁7は、高さ40cm、幅15cmの図1の建築用鋼材で構成した梁2と同構造の合成梁7aを使用し、コンクリート被り厚を合成梁7aの全周に5cm取ることで、梁7の全高は50cmとしている。尚、梁7の両端部には、ジョイントボックス8との接合用の接合金具を内蔵している。   The beam 7 uses the composite beam 7a having the same structure as the beam 2 constructed of the construction steel material of FIG. 1 having a height of 40 cm and a width of 15 cm, and the concrete covering thickness is 5 cm on the entire circumference of the composite beam 7a. The total height of 7 is 50 cm. Note that, at both ends of the beam 7, a joint fitting for joining to the joint box 8 is incorporated.

ジョイントボックス8の内部には、9mmの厚板鋼板を用いて溶接で強固に組立てた箱体8aを内蔵し、コンクリート被り圧を同箱体の全周に5cm取ることで、上面と下面は柱6の断面と同寸法の55cm角とし、高さは梁7と同じ高さの50cmとしている。上面と下面に25cm角の配管用の空隙部8bを設け、側面には幅15cm、高さ20cmの配管用の空隙部8cを設け、配管類4とダクト5を配管している。   Inside the joint box 8 is a box 8a that is firmly assembled by welding using a 9mm thick steel plate. By taking 5cm of concrete covering pressure around the entire circumference of the box, the upper and lower surfaces are pillars. The same size as that of the cross section 6 is set to 55 cm square, and the height is set to 50 cm which is the same height as the beam 7. A 25 cm square gap 8b for piping is provided on the upper surface and the lower surface, a gap 8c for piping having a width of 15 cm and a height of 20 cm is provided on the side surface, and the piping 4 and the duct 5 are piped.

柱6は、コンクリート内部に内蔵する建築用鋼材で構成した鋼製柱の上面と下面に溶接した接合金具に取付けた8個の裏ナットに、上下のジョイントボックス8の上面と下面のボルト孔側から、六角ボルトM16を8本ずつ挿入して緊固に接合する。梁7は、コンクリート内部に内蔵する合成梁7aの両端部の接合金具に取付けた8個の裏ナットに、ジョイントボックス8の側面のボルト孔側から、六角ボルトM16を8本挿入して緊固に接合する。尚、ボルトの固定作業はジョイントボックス8の側面の空隙部8cから行う。   The column 6 is composed of eight back nuts attached to the metal fittings welded to the upper and lower surfaces of a steel column made of steel for construction built in the concrete, and the bolt hole side of the upper and lower joint boxes 8 on the upper and lower surfaces. Then, eight hexagon bolts M16 are inserted and joined firmly. The beam 7 is firmly fixed by inserting eight hexagonal bolts M16 from the bolt hole side of the side of the joint box 8 into the eight back nuts attached to the joint fittings at both ends of the composite beam 7a built in the concrete. To join. The bolt is fixed from the gap 8c on the side surface of the joint box 8.

図3は、幅寸法を45cm、奥行寸法を195cmとする建築用鋼材で構成した本発明の建築構造体の4連続柱11の構成例である。前記柱11の上面と下面と内部には、4連続の配管用の空隙部11dを設けている。前記柱11の上面と下面の接合金具11cは、一枚板の9mmの厚板鋼板とすると共に、前記柱11の等辺山形鋼11a同士は、小形の等辺山形鋼11bのトラス間隔の位置に合せてピッチ溶接し、連続柱としての一体性を高めている。   FIG. 3 is a configuration example of the four continuous columns 11 of the building structure according to the present invention, which is made of an architectural steel material having a width dimension of 45 cm and a depth dimension of 195 cm. On the upper surface, the lower surface, and the inside of the column 11, four continuous piping gaps 11d are provided. The upper and lower metal fittings 11c of the pillars 11 are made of a single 9 mm thick steel plate, and the equilateral angle steels 11a of the pillars 11 are aligned with the truss interval of the small equilateral angle steel 11b. Pitch welding to improve the integrity of the continuous column.

図4は、幅寸法を45cm、奥行寸法を195cmとする建築用鋼材で構成した本発明の4連続ジョイントボックス12の構成例である。尚、梁2は、段落番号「0036」及び「0045」に記述するように、ジョイントボックスの側面に接合可能である。前記ジョイントボックス12の上面と下面と内部には、4連続の配管用の空隙部12cを設けている。、前記ジョイントボックス12の側面にも配管用の空隙部12dを設けている。前記ジョイントボックス12の上面と下面の接合金具12aと奥行方向の側面板12bは、それぞれ一枚板の9mmの厚板鋼板とし、4連続ジョイントボックスとしての一体性を高めている。前記ジョイントボックスの高さは50cmとする。 FIG. 4 is a configuration example of the four-continuous joint box 12 of the present invention, which is made of an architectural steel material having a width dimension of 45 cm and a depth dimension of 195 cm. The beam 2 can be joined to the side surface of the joint box as described in paragraph numbers “0036” and “0045”. On the upper surface, the lower surface, and the inside of the joint box 12, four continuous gaps 12c for piping are provided. Further , a gap 12d for piping is also provided on the side surface of the joint box 12. The joint metal 12a on the upper surface and the lower surface of the joint box 12 and the side plate 12b in the depth direction are each a 9-mm thick steel plate that enhances the unity as a four-continuous joint box. The height of the joint box is 50 cm.

図5は、12階建て高層住宅13に本発明の建築構造体を適用した構成例を示す断面図である。単一の柱1に3階分の構造耐力を持たせ、2連続柱9、3連続柱10、4連続柱11を選択して、上階から下階に向け、各階の構造耐力に応じた柱を配置している。   FIG. 5 is a cross-sectional view showing a configuration example in which the building structure of the present invention is applied to a 12-story high-rise house 13. Give a single pillar 1 structural strength for 3 floors, select 2 continuous pillars 9, 3 continuous pillars 10, 4 continuous pillars 11 according to the structural strength of each floor from the upper floor to the lower floor A pillar is placed.

図6は、本発明の建築構造体を適用した3階建て住宅の構造体の施工方法を示す施工概念図である。構造体の建方の一番工程で、高さ・位置共高い寸法精度で基礎14に埋め込んだ基礎アンカー金具14aにジョイントボックス3を仮固定し、二番工程で、ジョイントボックス3の間に梁2を配置して相互に接合し、水平の枠体を形成すると共に、ジョイントボックス3を基礎アンカー金具14aに本固定し、三番工程で、1階分の柱1を六角ボルト8本ずつでジョイントボックス3に固定する。2階以上は基礎アンカー金具14aを階下の柱上面の接続金具1cに読み替えて、同様の工程を各階毎に繰り返し行い、3階建ての建築構造体を構築する施工方法である。   FIG. 6 is a construction conceptual diagram showing a construction method of a three-story house structure to which the building structure of the present invention is applied. The joint box 3 is temporarily fixed to the foundation anchor bracket 14a embedded in the foundation 14 with high dimensional accuracy in the first process of constructing the structure, and the beam between the joint boxes 3 in the second process. 2 are joined to each other to form a horizontal frame, and the joint box 3 is permanently fixed to the basic anchor fitting 14a, and in the third step, the pillar 1 for the first floor is formed with eight hexagon bolts. Fix to the joint box 3. The second floor or higher is a construction method for constructing a three-story building structure by replacing the basic anchor metal fitting 14a with the connection metal fitting 1c on the upper surface of the downstairs pillar and repeating the same process for each floor.

は、本発明の建築構造体を適用した地上2階、地下1階建ての低層住宅15の地下1階の平面図である。南面間口10m、南北奥行11mの建築面積を全面地下室として、住宅の四角の柱15a以外は柱の無い自由な間取り空間を確保している。住宅設備用の配管類や竪樋は、柱15aの内部の配管用の空隙部15bに配管する。 FIG. 7 is a plan view of the first basement floor of a low-rise house 15 having two floors above ground and one basement floor to which the building structure of the present invention is applied. With a building area of 10m on the south side and 11m in the north-south depth as a whole basement, a floor space with no pillars is secured except for the square pillar 15a of the house. Pipings and troughs for housing equipment are piped in a gap 15b for piping inside the pillar 15a.

は、本発明の建築構造体を適用した12階建て高層住宅13の1階部分の住戸平面16である。南面間口10m、南北奥行11mの住戸平面上には、柱と配管シャフトの無い自由な間取り空間を確保している。柱は、12階建ての1階用として、4連続柱16aを適用している。隣接住戸との戸境壁16cは、遮音性能向上を目的に二重壁にし、戸境壁16c内部に4連続柱16aを構成することにより、各住戸内部に柱形が全く出ない空間を作り出している。住宅設備の配管類は4連続柱16aの内部の配管用の空隙部16bに配管する。 FIG. 8 is a dwelling unit plane 16 on the first floor of a 12-story high-rise house 13 to which the building structure of the present invention is applied. A free floor space without pillars and piping shafts is secured on the plane of the dwelling unit with a south entrance of 10m and a depth of 11m. For the pillars, the four continuous pillars 16a are applied for the first floor of 12 stories. The doorway wall 16c with the adjacent dwelling unit is a double wall for the purpose of improving the sound insulation performance, and the four continuous pillars 16a are formed inside the doorway wall 16c, thereby creating a space where no columnar shape appears in each dwelling unit. ing. Pipings for housing equipment are piped in a gap 16b for piping inside the four continuous columns 16a.

建築物の対象を中層建築以下に絞る場合は、単一の柱1に持たせる構造耐力を2階分として、前記柱1の構成部材の品種を削減することができる。また、建築物の対象を超高層建築まで広げる場合は、単一の柱1の構成部材の強度を上げて、前記柱1に持たせる構造耐力を4〜5階分とすることも可能である。   When the object of the building is narrowed down to a medium-rise building or less, the structural strength imparted to the single pillar 1 can be divided into two floors, and the types of constituent members of the pillar 1 can be reduced. Moreover, when extending the object of a building to a super high-rise building, it is also possible to raise the intensity | strength of the structural member of the single pillar 1, and to make the structural strength given to the said pillar 1 into 4-5 floors. .

本発明の鋼材で構成した建築構造体の組立図である。It is an assembly drawing of the building structure comprised with the steel material of this invention. 本発明のコンクリートで構成した建築構造体の組立図である。It is an assembly drawing of the building structure comprised with the concrete of this invention. 本発明の4連続柱の構成例を示す姿図である。It is a figure which shows the structural example of 4 continuous pillars of this invention. 本発明の4連続ジョイントボックスの構成例を示す姿図である。It is a figure which shows the structural example of the 4 continuous joint box of this invention. 本発明の建築構造体を適用した高層住宅の構造体断面図である。It is a structure sectional view of a high-rise house to which a building structure of the present invention is applied. 本発明の建築構造体を適用した低層住宅の構造体の施工概念図である。It is a construction conceptual diagram of the structure of a low-rise house to which the building structure of the present invention is applied. 本発明の建築構造体を適用した低層住宅の地下1階平面図である。It is a 1st floor plan view of a low-rise house to which a building structure of the present invention is applied. 本発明の建築構造体を適用した高層住宅の1階の住戸平面図である。It is a 1st floor dwelling unit top view of the high-rise house to which the building structure of the present invention is applied.

符号の説明Explanation of symbols

1 柱
1a 等辺山形鋼
1b 等辺山形鋼
1c 接合金具
2 梁
2a 接合金具
3 ジョイントボックス
3a 空隙部
3b 空隙部
4 配管
5 ダクト
6 柱
7 梁
7a 合成梁
8 ジョイントボックス
8a 箱体
8b 空隙部
8c 空隙部
9 2連続柱
10 3連続柱
11 4連続柱
11a 等辺山形鋼
11b 等辺山形鋼
11c 接合金具
11d 空隙部
12 4連続ジョイントボックス
12a 接合金具
12b 側面板
12c 空隙部
12d 空隙部
13 高層住宅
14 基礎
14a 基礎アンカー金具
15 低層住宅の地下1階平面
15a 柱
15b 空隙部
16 高層住宅の1階住戸平面
16a 4連続柱
16b 空隙部
16c 戸境壁
1 pillar 1a equilateral angle steel 1b equilateral angle steel 1c joint metal fitting 2 beam 2a joint metal fitting 3 joint box 3a void 3b void 4 piping 5 duct 6 pillar 7 beam 7a composite beam 8 joint box 8a box 8b void 8c void 8c 9 2 continuous columns 10 3 continuous columns 11 4 continuous columns 11a equilateral mountain-shaped steel 11b equilateral mountain-shaped steel 11c joint metal fitting 11d gap part 12 4-continuous joint box 12a joint metal fitting 12b side plate 12c gap part 12d gap part 13 high-rise house 14 foundation 14a foundation Anchor bracket 15 Basement 1st floor of low-rise housing 15a Column 15b Air gap 16 1st floor dwelling unit of high-rise housing 16a 4 continuous columns 16b Air gap 16c

Claims (1)

柱と梁と、前記柱と梁を接合するジョイントボックスからなる建築構造体であって、前記柱は、幅と奥行の寸法を建築モジュールの略1/2とする四角柱状で、柱の四角に立設する鉄骨と、隣接する前記鉄骨同士をトラス状に緊結する鉄骨とで構成して、長さ方向に貫通する住宅設備配管用空隙を有し、前記梁は鋼製梁とし、前記ジョイントボックスは、幅と奥行を前記柱と同寸法とする鋼板製の箱状の構造で、上下面及び側面に前記柱内部の空隙と繋がる住宅設備配管用空隙を有すると共に、前記建築構造体を適用する建築物において、各階の構造耐力に応じて、前記柱と前記ジョイントボックスを奥行方向にそれぞれ複数個連結して、一体化した連続柱と連続ジョイントボックスを構成し、前記連続ジョイントボックス側面に前記梁を接合して構造体を構成することを特徴とする建築構造体。 A building structure comprising a column and a beam, and a joint box for joining the column and the beam, wherein the column is a quadrangular column having a width and a depth of about half of a building module, and is formed in a square of the column. The steel box to be erected and the steel frame that connects the adjacent steel frames in a truss shape, and has a gap for housing equipment piping penetrating in the length direction, the beam being a steel beam, and the joint box Is a box-like structure made of steel plate having the same dimensions as the pillars in the width and depth, and has a housing facility piping gap connected to the gap inside the pillar on the upper and lower surfaces and the side surface, and applies the building structure In a building, according to the structural strength of each floor, a plurality of the columns and the joint boxes are connected in the depth direction to form an integrated continuous column and a continuous joint box, and the beam is formed on the side of the continuous joint box. Touch Building structure, characterized in that the structured body was.
JP2008104417A 2008-04-14 2008-04-14 Building structure and its construction method Expired - Fee Related JP4399676B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008104417A JP4399676B2 (en) 2008-04-14 2008-04-14 Building structure and its construction method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008104417A JP4399676B2 (en) 2008-04-14 2008-04-14 Building structure and its construction method

Publications (2)

Publication Number Publication Date
JP2009256890A JP2009256890A (en) 2009-11-05
JP4399676B2 true JP4399676B2 (en) 2010-01-20

Family

ID=41384642

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008104417A Expired - Fee Related JP4399676B2 (en) 2008-04-14 2008-04-14 Building structure and its construction method

Country Status (1)

Country Link
JP (1) JP4399676B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014033938A1 (en) * 2012-08-31 2014-03-06 株式会社モジュールハウス研究所 Building structure, construction method for same, and beam-and-column joints for building structures

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6961984B2 (en) * 2017-03-31 2021-11-05 株式会社Ihi Column structure
CN111456451A (en) * 2019-01-19 2020-07-28 江苏国森时创建设有限公司 Steel structure construction method
JP2022122470A (en) * 2021-02-10 2022-08-23 株式会社北二 Building method and building component

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61126243A (en) * 1984-11-26 1986-06-13 積水化学工業株式会社 House made of reinforcing bar
JPH01142143A (en) * 1987-11-27 1989-06-05 Takenaka Komuten Co Ltd Multifunctional framing in building
JPH04272345A (en) * 1991-02-27 1992-09-29 Shimizu Corp Column/beam structure serving also as equipment space
JPH0616505U (en) * 1991-10-24 1994-03-04 殖産住宅相互株式会社 Column-to-beam connection equipment for steel-framed buildings
JPH0562603U (en) * 1992-02-05 1993-08-20 片桐ハウジング株式会社 Wooden ramen structure frame
JPH07150750A (en) * 1993-11-25 1995-06-13 Matsushita Electric Works Ltd Structure for building skeleton
JPH08113982A (en) * 1994-10-17 1996-05-07 Shokusan Jutaku Sogo Co Ltd Device for joining column and beam of steel framed building
JPH0913512A (en) * 1995-06-28 1997-01-14 Sumitomo Metal Ind Ltd Joint construction of steel framed structural member
JP2002303002A (en) * 2001-04-09 2002-10-18 Nippon Steel Trading Coil Center Co Ltd Frame member
JP4115679B2 (en) * 2001-04-23 2008-07-09 株式会社エヌ・シー・エヌ Column structure of building frame
JP2003056058A (en) * 2001-08-10 2003-02-26 Nkk Corp Connecting structure of steel pipe column and beam, its connecting method and splice plate used for it
JP2004137885A (en) * 2003-11-21 2004-05-13 Yoshinori Fukada Connector for long material and its connecting structure

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014033938A1 (en) * 2012-08-31 2014-03-06 株式会社モジュールハウス研究所 Building structure, construction method for same, and beam-and-column joints for building structures

Also Published As

Publication number Publication date
JP2009256890A (en) 2009-11-05

Similar Documents

Publication Publication Date Title
Yu et al. Rigidity of corrugated plate sidewalls and its effect on the modular structural design
US10323428B2 (en) Sequence for constructing a building from prefabricated components
KR101767677B1 (en) Compisite column structure for steel and concrete
US8813445B2 (en) Support beam structure capable of extending span and reducing height of ceiling structure and installing method thereof
JP2009528464A (en) Prefabricated reinforced concrete single-person house and method for constructing the house
KR20120120233A (en) Panelized structural system for building construction
CN108005265B (en) Multilayer prefabricated steel reinforced concrete shear wall structure and preparation and construction methods thereof
JP4247496B2 (en) Seismic reinforcement structure
JP3204340U (en) Hybrid wooden building with J-grade ace system of production management process
JP4399676B2 (en) Building structure and its construction method
JP4917179B1 (en) Seismic maintenance method for existing buildings
JP2012255298A (en) H-shaped steel member
CN108005266B (en) Strip steel frame precast reinforced concrete shear wall structure and preparation and installation methods
RU62622U1 (en) REINFORCED REINFORCED CONCRETE STRUCTURE OF A MULTI-STOREY BUILDING, FRAMEWORK CONSTRUCTION OF A FRAME, INTERIOR ELEMENT
JP4520242B2 (en) Frame structure of apartment house
RU2197578C2 (en) Structural system of multistory building and process of its erection ( variants )
KR101266215B1 (en) Improved seismic performance of Staggered wall system with central hall
US20210032855A1 (en) Construction System
JP6950068B1 (en) Residential building
KR200421529Y1 (en) Prefabricated of Unit Cabin the Whole Construction
JP3814265B2 (en) How to build tower buildings
JP4651976B2 (en) Steel house
Antonov et al. Framing Systems in Residential Construction
JP5131659B2 (en) Wall surface structure and wall surface and wooden frame construction method building and heterogeneous structure building using the same
WO2014033938A1 (en) Building structure, construction method for same, and beam-and-column joints for building structures

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20091006

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20091013

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151106

Year of fee payment: 6

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees