JP4399525B2 - Method for producing carbon nanowire-dispersed resin composition - Google Patents

Method for producing carbon nanowire-dispersed resin composition Download PDF

Info

Publication number
JP4399525B2
JP4399525B2 JP2003423971A JP2003423971A JP4399525B2 JP 4399525 B2 JP4399525 B2 JP 4399525B2 JP 2003423971 A JP2003423971 A JP 2003423971A JP 2003423971 A JP2003423971 A JP 2003423971A JP 4399525 B2 JP4399525 B2 JP 4399525B2
Authority
JP
Japan
Prior art keywords
carbon
resin
resin composition
dispersed
extruder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003423971A
Other languages
Japanese (ja)
Other versions
JP2005200436A (en
Inventor
昌典 辰巳
Original Assignee
株式会社プラスチック工学研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社プラスチック工学研究所 filed Critical 株式会社プラスチック工学研究所
Priority to JP2003423971A priority Critical patent/JP4399525B2/en
Publication of JP2005200436A publication Critical patent/JP2005200436A/en
Application granted granted Critical
Publication of JP4399525B2 publication Critical patent/JP4399525B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Processes Of Treating Macromolecular Substances (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Description

本発明は、導電性を有し、軽量で高強度な樹脂成形品を得ることができるカーボンナノ線条体分散樹脂組成物の製造方法に関する。   The present invention relates to a method for producing a carbon nanowire-dispersed resin composition that is conductive, and that can obtain a lightweight, high-strength resin molded product.

カーボンナノチューブ(炭素フィブリルともいう)やカーボンナノファイバーと称されるカーボンナノ線条体は、カーボンブラックなどよりもマトリックス樹脂に少量分散混合させるだけで、導電性を備えた樹脂組成物が得られる(特許文献1参照)。したがって、透明なマトリックス樹脂を用いた場合、透明で導電性に優れた樹脂フィルム等を得ることができる。   Carbon nanowires called carbon nanotubes (also called carbon fibrils) or carbon nanofibers can be obtained by dispersing and mixing in a small amount in a matrix resin rather than carbon black or the like to obtain a resin composition with conductivity ( (See Patent Document 1). Accordingly, when a transparent matrix resin is used, a transparent resin film having excellent conductivity can be obtained.

しかし、カーボンナノ線条体は、高価であるとともに、一般に多数の繊維が縺れた状態で存在するため、カーボンナノ線条体をマトリックス樹脂に分散混合する際、縺れた状態で分散される。したがって、理論量以上のカーボンナノ線条体を添加しなければ、必要とする導電性を確保することができないため、製造コストの面で問題がある。
一方、縺れを解消すべく分散混合の際に混合物に長時間高剪断力をくわえると、摩擦熱等によってマトリックス樹脂にやけや変質が生じ、目的とする強度や透明性を確保できない恐れがある。
However, the carbon nanostriate is expensive and generally has a large number of fibers in a state of being twisted. Therefore, when the carbon nanostriate is dispersed and mixed in the matrix resin, it is dispersed in a state of being twisted. Therefore, the necessary conductivity cannot be ensured unless the carbon nano-striate more than the theoretical amount is added, and there is a problem in terms of manufacturing cost.
On the other hand, if a high shear force is applied to the mixture for a long time during dispersion mixing in order to eliminate wrinkling, the matrix resin may be burned or deteriorated due to frictional heat or the like, and the intended strength and transparency may not be ensured.

そこで、カーボンナノ線条体においては、硫黄を含む強酸、及び酸化剤でカーボンナノ線条体を処理することにより極性溶液中でカーボンナノ線条体の縺れをほぐすようにしたカーボンナノ線条体の分散方法が既に提案されている(特許文献2参照)。
しかしながら、上記分散方法では、用いられる強酸がマトリックス樹脂等に悪影響を与える恐れが有るため、分散後十分に洗浄しなければならず、作業性が悪い。また、強酸で処理したのち、極性溶媒に分散させるようになっているため、極性溶媒を用いない系への使用が不可能であるいう問題がある。
Therefore, in the carbon nano-striate, the carbon nano-striate is made to loosen the carbon nano-striate in a polar solution by treating the carbon nano-striate with a strong acid containing sulfur and an oxidizing agent. Has already been proposed (see Patent Document 2).
However, in the above dispersion method, the strong acid used may have an adverse effect on the matrix resin and the like, so it must be washed thoroughly after dispersion, and workability is poor. Moreover, since it is made to disperse | distribute to a polar solvent after processing with a strong acid, there exists a problem that the use to the system which does not use a polar solvent is impossible.

特表平8−508534号公報JP-T 8-508534 特表2000−511245号公報Special Table 2000-511245

以上のような事情に鑑みて、本発明は、マトリックス樹脂にやけや変質を生じさせることなく、カーボンナノ線条体の縺れをほぐしつつ作業性よくマトリックス樹脂中にカーボンナノ線条体を分散混合することができるカーボンナノ線条体分散樹脂組成物の製造方法を提供することを目的としている。   In view of the circumstances as described above, the present invention disperses and mixes the carbon nano-striates in the matrix resin with good workability, while preventing the carbon nano-striates from being melted and causing deterioration. An object of the present invention is to provide a method for producing a carbon nanowire-dispersed resin composition that can be used.

上記目的を達成するために、本発明の請求項1に記載のカーボンナノ線条体分散樹脂組成物の製造方法(以下、「請求項1の製造方法」と記す)は、マトリックス樹脂にカーボンナノ線条体を分散混合するカーボンナノ線条体分散樹脂組成物の製造方法において、マトリックス樹脂とカーボンナノ線条体とを、樹脂可塑化ガスの存在下溶融混練する工程を備えることを特徴としている。   In order to achieve the above object, the method for producing a carbon nanowire-dispersed resin composition according to claim 1 of the present invention (hereinafter referred to as `` the production method of claim 1 '') is characterized in that In the method for producing a carbon nano-striate-dispersed resin composition in which a striate is dispersed and mixed, the method includes a step of melt-kneading a matrix resin and a carbon nano-striate in the presence of a resin plasticizing gas. .

本発明において、樹脂可塑化ガスとしては、たとえば、炭酸ガス、窒素ガス、ブタンガス、ペンタンガス等が挙げられ、請求項2のように炭酸ガスが好適に用いられる。カーボンナノ線条体の縺れをほぐしつつ作業性よくマトリックス樹脂中にカーボンナノ線条体を分散混合できるため亜臨界状態又は超臨界流体状態での使用が好ましい。   In the present invention, examples of the resin plasticizing gas include carbon dioxide gas, nitrogen gas, butane gas, pentane gas and the like, and carbon dioxide gas is preferably used as in claim 2. Since the carbon nanostriate can be dispersed and mixed in the matrix resin with good workability while loosening the carbon nanostriate, use in a subcritical state or a supercritical fluid state is preferable.

本発明において、カーボンナノ線条体としては、直径が300nm以下のものであれば特に限定されない。単層カーボンナノチューブ(たとえば、ハイペリオン社製SWCNT)、多層カーボンナノチューブ(たとえば、ハイペリオン社製MWCNT)、気相成長カーボンナノファイバー(たとえば、昭和電工社製VGCF)等が挙げられ、多層カーボンナノチューブおよび、気相成長カーボンナノファイバーが好適に用いられる。   In the present invention, the carbon nanowire is not particularly limited as long as it has a diameter of 300 nm or less. Single-walled carbon nanotubes (for example, SWCNT manufactured by Hyperion), multi-walled carbon nanotubes (for example, MWCNT manufactured by Hyperion), vapor-grown carbon nanofibers (for example, VGCF manufactured by Showa Denko), etc. Vapor growth carbon nanofibers are preferably used.

本発明に使用されるマトリックス樹脂としては、特に限定されず、熱可塑性樹脂、熱硬化性樹脂のいずれも用いることができる。
熱可塑性樹脂には汎用熱可塑性樹脂、エンジニアリングプラスチックス、難成形性樹脂等があげられる。
上記汎用熱可塑性樹脂としてはポリオレフィン系樹脂、塩化ビニル、酢酸ビニル等のビニル系樹脂、スチレン系樹脂等があげられる。
The matrix resin used in the present invention is not particularly limited, and any of a thermoplastic resin and a thermosetting resin can be used.
Examples of the thermoplastic resin include general-purpose thermoplastic resins, engineering plastics, and difficult-to-mold resins.
Examples of the general-purpose thermoplastic resin include polyolefin resins, vinyl resins such as vinyl chloride and vinyl acetate, and styrene resins.

上記エンジニアリングプラスチックスとしては、ポリカーボネート、ポリアミド、ポリエチレンテレフタレート、ポリブチレンテレフタレート、アクリル系樹脂、ポリアセタール樹脂、ポリビニルアセタール樹脂等があげられる。
更に熱可塑性であるが成形温度が高い、通常の混練押出装置の上限温度まで温度を上げても流動性を下げることが困難である、あるいは熱成形温度と熱分解温度が近く成形時に分解を生じ易い等であって、温度、背圧等が高度を要するため通常装置ではモーター能力上、ヒーター性能上装置能力から混練成形が難しい場合、あるいは温度・圧力等の管理に極めて精妙な制御を要する、等の樹脂であっても、樹脂可塑化ガスによる易成形効果により、カーボンナノ線条体を分散させることができる。
Examples of the engineering plastics include polycarbonate, polyamide, polyethylene terephthalate, polybutylene terephthalate, acrylic resin, polyacetal resin, and polyvinyl acetal resin.
Furthermore, although it is thermoplastic, the molding temperature is high, it is difficult to lower the fluidity even if the temperature is raised to the upper limit temperature of ordinary kneading extrusion equipment, or the thermoforming temperature and the thermal decomposition temperature are close, causing decomposition during molding. It is easy, and because temperature, back pressure, etc. require high altitude, it is difficult to knead and mold due to motor capacity and heater performance with normal equipment, or management of temperature, pressure, etc. requires extremely delicate control. Even in the case of a resin such as carbon nanowires, carbon nanowires can be dispersed due to the easy molding effect of the resin plasticizing gas.

上記成形が難しい熱可塑性樹脂としては、超高分子量PE樹脂、フッ素樹脂、芳香族ポリアミド、ポリアミドイミド、ポリエーテルエーテルケトン、ポリイミド、生分解性ポリマー等があげられる。   Examples of the thermoplastic resin that is difficult to mold include ultra high molecular weight PE resin, fluororesin, aromatic polyamide, polyamideimide, polyetheretherketone, polyimide, and biodegradable polymer.

上記生分解性ポリマーには微生物系のバイオポリエステル(PHB/V等)、バクテリアセルロース、微生物多糖(プルラン、カードラン等)、化学合成系の脂肪族ポリエステル(ポリカプロラクトン、ポリブチレンサクシネート、ポリエチレンサクシネート、ポリグリコール酸、ポリ乳酸、ポリヒドロキシブチレート、ポリヒドロキシブチレートバリレート等)、ポリビニルアルコール、ポリアミノ酸類(PMGL等)、ポリウレタン、ナイロンオリゴマー等がある。   The biodegradable polymers include microbial biopolyesters (PHB / V, etc.), bacterial cellulose, microbial polysaccharides (pullulan, curdlan, etc.), chemically synthesized aliphatic polyesters (polycaprolactone, polybutylene succinate, polyethylene succinate). Nate, polyglycolic acid, polylactic acid, polyhydroxybutyrate, polyhydroxybutyrate valerate, etc.), polyvinyl alcohol, polyamino acids (PMGL, etc.), polyurethane, nylon oligomer and the like.

更に上記生分解性ポリマーには天然物系のキトサン/セルロース、澱粉、酢酸セルロース等、複合物である澱粉/脂肪族ポリエステル、澱粉/ポリビニルアルコールや、上記の混合物や、積層体等があげられる。尚、上記分類は製法主体による分類であるが、ポリ乳酸の例のように環境性、製造容易性等により各種製法で製造されるものであってもかまわない。   Furthermore, examples of the biodegradable polymer include natural products such as chitosan / cellulose, starch, and cellulose acetate, starch / aliphatic polyester that is a composite, starch / polyvinyl alcohol, the above mixtures, and laminates. In addition, although the said classification | category is a classification | category by the main body of a manufacturing method, it may be manufactured by various manufacturing methods by the environmental property, ease of manufacture, etc. like the example of polylactic acid.

次に上記熱硬化性樹脂は、樹脂可塑化ガスの可塑化効果により、通常よりも一段と低い温度で混練成形が可能であるため、混練成形中には硬化しない、あるいは多少硬化反応が生じても装置内で固化しない程度に制御することができる。熱硬化性樹脂としては熱硬化性ポリエステル樹脂、エポキシ系樹脂、フェノール樹脂等があげられる。   Next, the thermosetting resin can be kneaded and molded at a lower temperature than usual due to the plasticizing effect of the resin plasticizing gas. It can be controlled to such an extent that it does not solidify in the apparatus. Examples of the thermosetting resin include a thermosetting polyester resin, an epoxy resin, and a phenol resin.

導電性を上げるためその他の目的でカーボンナノ線条体以外にカーボンブラックや金属微粒子その他通常用いられる添加剤がマスターバッチ又は直接混合等の通常の方法により混合されてもかまわない。   In order to increase conductivity, carbon black, metal fine particles, and other commonly used additives other than carbon nano-striates may be mixed for other purposes by a usual method such as master batch or direct mixing.

本発明のカーボンナノ線条体分散樹脂組成物の製造方法によれば、カーボンナノ線条体の縺れをほぐしつつ作業性よくマトリックス樹脂中にカーボンナノ線条体を分散混合でき、又線条体が細く柔軟なため成形物表面から線条体が突出せず断線しないため成形品表面から導線性の線条体断片の脱落が少ない。このため導電回路の短絡を起こし難く、更にアウトガスが少ないため、帯電防止性を要する電子部品トレー等の容器、ハウジング等、EMIシールド材料、あるいは、高導電性の要求される、静電塗料、更に高濃度に充填することで導電性配線材料等、又熱伝導性を要求されるCPUの放熱材料用シート、放熱成形部品に好適に用いられる。又カーボンナノ線条体が細く折れにくいため反復リサイクル性にすぐれるため、リサイクル用途に、表面摩擦抵抗が減少するため、低摩擦材料等が要求される用途に、表面平滑性にすぐれるため、平滑性の要求される用途に好適に用いられる。   According to the method for producing a carbon nano-striated dispersion resin composition of the present invention, the carbon nano-striates can be dispersed and mixed in the matrix resin with good workability while loosening the carbon nano-striates. However, since the striate does not protrude from the surface of the molded product and does not break because it is thin and flexible, there is little dropout of the conductive striated piece from the surface of the molded product. For this reason, it is difficult to cause a short circuit of the conductive circuit, and since there is less outgas, containers such as electronic component trays that require antistatic properties, housings, EMI shielding materials, electrostatic paints that require high conductivity, By being filled at a high concentration, it can be suitably used for conductive wiring materials and the like, sheets for heat dissipation materials of CPUs that require thermal conductivity, and heat dissipation molded parts. Also, since the carbon nanowires are thin and difficult to break, they have excellent repetitive recyclability, and since surface friction resistance is reduced for recycling applications, they have excellent surface smoothness for applications that require low friction materials, etc. It is suitably used for applications requiring smoothness.

本発明にかかるカーボンナノ線条隊体分散樹脂組成物の製造方法は、以上のように構成されているので、うまくカーボンナノ線条体がその縺れを解消しつつ均一に分散され少量の添加でも高い導電性を備えたカーボンナノ線条体樹脂組成物が得られる。
また、請求項2のように、樹脂可塑化ガスとして炭酸ガスを用いるようにすれば、不燃ガスであり安全性が高い上、可塑化が比較的低温低圧で起こり容易であり、可塑化ガスを大気中に放散してもほとんど環境に悪影響を及ぼすことがなく、安全である。
Since the method for producing a carbon nano-striated body dispersed resin composition according to the present invention is configured as described above, the carbon nano-striated body is uniformly dispersed while eliminating the wrinkles, and even with a small amount of addition. A carbon nano-striate resin composition having high conductivity is obtained.
Further, if carbon dioxide gas is used as the resin plasticizing gas as in claim 2, it is nonflammable gas and high safety, and plasticization easily occurs at a relatively low temperature and low pressure. Even if released into the atmosphere, it has little adverse effect on the environment and is safe.

以下に、本発明を、その実施の形態をあらわす図面を参照しつつ詳しく説明する。図1は、本発明にるカーボンナノ線条体分散樹脂組成物の製造方法の1つの実施の形態を表している。 Hereinafter, the present invention will be described in detail with reference to the drawings showing embodiments thereof. Figure 1 represents one embodiment of the manufacturing method of the engagement Ru carbon nano striatum dispersion resin composition of the present invention.

図1に示すように、この製造方法は、まず、ホッパー1のホッパー本体部11へ、第1原料供給導管11aからマトリックス樹脂としてのポリカーボネートのペレットを、第2原料供給導管11bからカーボンナノ線条体としてのカーボンナノチューブが公知の方法で予め分散された市販のカーボンナノチューブ分散ペレットをそれぞれ供給し、ホッパー本体部11内でアジテータ12によって攪拌混合したのち、得られた混合物をホッパー導管13を介して図2に示すような2条タイプの2軸押出機(以下、「押出機」とのみ記す)2の供給口21から押出機2内に供給し押出機2内で溶融混練する。   As shown in FIG. 1, in this manufacturing method, first, polycarbonate pellets as a matrix resin are supplied from the first raw material supply conduit 11a to the hopper body 11 of the hopper 1, and the carbon nano filaments are supplied from the second raw material supply conduit 11b. Commercially available carbon nanotube dispersion pellets in which carbon nanotubes as a body are previously dispersed by a known method are respectively supplied and stirred and mixed by the agitator 12 in the hopper main body 11, and the resulting mixture is passed through the hopper conduit 13. 2 is supplied into the extruder 2 through a supply port 21 of a two-screw type twin-screw extruder (hereinafter referred to as “extruder” only) 2 and melt-kneaded in the extruder 2 as shown in FIG.

また、供給口21より下流側の溶融した樹脂が充満状態になる位置に設けられたガス供給口22から樹脂可塑化ガスとしての炭酸ガスを供給するとともに、温度および圧力を炭酸ガスの超臨界状態にしてさらに溶融混練したのち、ガス排出口23から樹脂中に溶解した炭酸ガスをシリンダ25外に排出させ、その後、押出機2の先端に設けられたペレッティングダイ3からストランド4aとして連続的に押し出し、ベルトコンベヤ5によって下方から受けながら空冷する。そして、冷却されたストランド4aをペレタイザー6によって短く切断し、本発明のカーボンナノチューブ分散樹脂組成物としてのペレット4bを得るようになっている。   Further, carbon dioxide gas as a resin plasticizing gas is supplied from a gas supply port 22 provided at a position where the molten resin downstream from the supply port 21 is filled, and the temperature and pressure are set to a supercritical state of carbon dioxide gas. After further melt-kneading, the carbon dioxide dissolved in the resin is discharged from the gas outlet 23 to the outside of the cylinder 25, and then continuously from the pelleting die 3 provided at the tip of the extruder 2 as a strand 4a. Extruded and air cooled while receiving from below by the belt conveyor 5. And the cooled strand 4a is cut | disconnected shortly with the pelletizer 6, and the pellet 4b as the carbon nanotube dispersion | distribution resin composition of this invention is obtained.

なお、図1中、24はスクリュー、26はヒーターユニットであって、このヒーターユニット26は、図示していないが加熱用の電気抵抗ヒーターと合わせて水冷用の水冷コイルが内蔵されているとともに、制御装置によってヒーターユニット26自体やシリンダ25内を流れる材料が適正な温度になるように制御されるようになっている。   In FIG. 1, reference numeral 24 denotes a screw, and 26 denotes a heater unit. The heater unit 26 includes a water cooling coil for water cooling in combination with an electric resistance heater for heating, although not shown. The control unit controls the material flowing in the heater unit 26 and the cylinder 25 so as to have an appropriate temperature.

この製造方法によれば、マトリックス樹脂としてのポリカーボネートと、カーボンナノチューブとを押出機2内で溶融混練させる際に、炭酸ガスを供給してポリカーボネートの粘度を低下させるようにしたので、摩擦抵抗による樹脂の発熱を押さえながら、ポリカーボネートとカーボンナノチューブとが容易に撹拌できるようにした。しかも、超臨界流体である炭酸ガスの高い分散性によって、ナノベースでカーボンナノチューブの縺れが解消された状態でカーボンナノチューブがポリカーボネート中に分散される。
したがって、従来に比べて少量のカーボンナノチューブを添加するだけで、必要とする導電性を確保できるようになり、安価に導電層を備えたフィルムや強度的に優れ、導電性を備えた無端ベルト等の成形品を得ることができる。
According to this manufacturing method, when the polycarbonate as the matrix resin and the carbon nanotubes are melt-kneaded in the extruder 2, carbon dioxide gas is supplied to lower the viscosity of the polycarbonate. The polycarbonate and the carbon nanotubes can be easily stirred while suppressing the heat generation. Moreover, due to the high dispersibility of the carbon dioxide gas, which is a supercritical fluid, the carbon nanotubes are dispersed in the polycarbonate in a state where the carbon nanotubes are eliminated from the nano-base.
Therefore, the required conductivity can be ensured by adding a small amount of carbon nanotubes compared to the conventional one, a film having a conductive layer at a low cost, an endless belt having excellent strength and conductivity, etc. Can be obtained.

また、樹脂可塑化ガスとして炭酸ガスを用いるようにしたので、排気した炭酸ガスが大気中に漏れ出ても、ほとんど環境に悪影響を与えることがなく、また、発火等の恐れがなく安全である。   In addition, since carbon dioxide gas is used as the resin plasticizing gas, even if the exhausted carbon dioxide gas leaks into the atmosphere, there is almost no adverse effect on the environment, and there is no fear of ignition etc., which is safe. .

本発明は、上記実施の形態に限定されない。たとえば、上記実施の形態では押出機が2条タイプの二軸押出機であったが、単軸押出機でも、三軸押出機等の多軸押出機でもよく、また2条タイプにこだわらず3条その他のタイプであっても構わない。
上記実施の形態では、カーボンナノチューブが予め公知の方法で分散されたペレットを原料として押出機に供給するようになっていたが、カーボンナノ線条体とマトリックス樹脂とを直接混合するようにしても構わないし、予めカーボンナノ線条体を樹脂可塑化ガス雰囲気中で予め分散させておき、樹脂可塑化ガスとともに押出機のマトリックス樹脂充満域に供給し、マトリックス樹脂と撹拌混合するようにしても構わない。
The present invention is not limited to the above embodiment. For example, in the above embodiment, the extruder is a double-screw type twin-screw extruder, but it may be a single-screw extruder or a multi-screw extruder such as a three-screw extruder. Articles and other types may be used.
In the above embodiment, pellets in which carbon nanotubes are dispersed in advance by a known method are supplied to the extruder as raw materials. However, the carbon nanowires and the matrix resin may be directly mixed. Alternatively, the carbon nanowires may be preliminarily dispersed in a resin plasticizing gas atmosphere, supplied to the matrix resin filling region of the extruder together with the resin plasticizing gas, and stirred and mixed with the matrix resin. Absent.

上記実施の形態では、押出機2内に供給された炭酸ガスを押出機2の終端部分に設けられたガス排出口23から排出させたのち、溶融混練物をペレッティングダイ3から押し出すようになっているが、溶融混練物をダイから押し出したのち、炭酸ガスを徐々にマトリックス樹脂から揮発させるようにしても構わない。
上記実施の形態では、ペレッティングダイ3を用いて線条に押し出し、ペレット4bを得るようになっているが、Tダイ、丸ダイ、異型ダイ等を用いて、直接所望の成形品を得るようにしても構わない。
以下に、本発明の具体的な実施例を説明する。
In the above embodiment, after the carbon dioxide gas supplied into the extruder 2 is discharged from the gas discharge port 23 provided at the end portion of the extruder 2, the melt-kneaded material is extruded from the pelleting die 3. However, the carbon dioxide gas may be gradually evaporated from the matrix resin after the melt-kneaded product is extruded from the die.
In the above embodiment, the pellets 4b are obtained by extruding the pellets 4b using the pelleting die 3, but a desired molded product is obtained directly using a T die, a round die, a modified die or the like. It doesn't matter.
Hereinafter, specific examples of the present invention will be described.

最終カーボンナノチューブの配合割合が1重量%になるように、ポリカーボネート(三菱エンジニアリング社製 ユーピロンPC(S2000))と、既製のカーボンナノチューブ入りマスターバッチ(ハイペリオン社製 ハイペリオンPCマスターバッチ(低分子ポリカーボネート85重量%、カーボンナノ線条体(d=10nm、L=1〜10μm)15重量%))とを14.15:1の割合で攪拌機で混合し、この混合物を図3に示すように、各長さ20cmの7つのシリンダユニットC1〜C7と、ヘッドHと、ダイDとを備えた同方向回転2軸スクリュー押出機(プラスチック工学研究所社製 BT−40−S2−42−L)2のC1に設けられた供給口から5kg/hrの押出量で投入し、スクリュー回転数300rpmで押出機2内で溶融混練するとともに、押出機2の樹脂が充満するC3の部分から炭酸ガスを1%濃度になるように供給した。そして、C7部分から炭酸ガスを真空吸引して排気したのち、ヘッダーHおよびダイDを連続的に押出し図1に示すように、ベルトコンベヤ5およびペレタイザー6を経て直径3.0mm、長さ3.0mmの樹脂組成物ペレットを得た。   Polycarbonate (Mitsubishi Engineering Co., Ltd. Iupilon PC (S2000)) and ready-made master batch containing carbon nanotubes (Hyperion Co., Ltd. Hyperion PC Masterbatch (85% by weight low molecular polycarbonate) so that the final carbon nanotube content is 1% by weight. %, Carbon nanostriates (d = 10 nm, L = 1 to 10 μm) 15 wt%)) with a stirrer at a ratio of 14.15: 1, and this mixture is mixed with each length as shown in FIG. C1 of the same direction rotating twin screw extruder (BT-40-S2-42-L manufactured by Plastics Engineering Laboratory Co., Ltd.) 2 having seven cylinder units C1 to C7 having a length of 20 cm, a head H, and a die D Is fed at an extrusion rate of 5 kg / hr from the supply port provided in the extruder, and the extruder at a screw speed of 300 rpm. With melt-kneaded at an internal, it was supplied such that the concentration of 1% carbon dioxide from the C3 portion of the resin in the extruder 2 is filled. Then, after carbon dioxide gas is sucked and exhausted from the C7 portion, the header H and the die D are continuously extruded, and the belt conveyor 5 and the pelletizer 6 are passed through the belt conveyor 5 and the pelletizer 6 as shown in FIG. A resin composition pellet of 0 mm was obtained.

得られたペレットを原料として以下の射出条件で、30mm×30mm×2mmの正方形の板状成形品を射出成形した。
〔射出条件〕
・射出速度:20mm3/s
・保圧:30MPa
・保圧時間:3s
・冷却時間:20s
A square plate-shaped molded product of 30 mm × 30 mm × 2 mm was injection-molded using the obtained pellets as a raw material under the following injection conditions.
[Injection conditions]
・ Injection speed: 20 mm 3 / s
-Holding pressure: 30 MPa
・ Pressure holding time: 3s
・ Cooling time: 20s

炭酸ガスの濃度を5%とした以外は、実施例1と同様にして板状成形品を得た。   A plate-like molded product was obtained in the same manner as in Example 1 except that the concentration of carbon dioxide gas was 5%.

最終カーボンナノチューブの配合割合が5重量%になるように、ポリカーボネート(三菱エンジニアリング社製 ユーピロンPC(S2000))と、既製のカーボンナノチューブ入りマスターバッチ(ハイペリオン社製 ハイペリオンPCマスターバッチ(低分子ポリカーボネート85重量%、カーボンナノチューブ(d=10nm、L=1〜10μm)15重量%))とを2.15:1の割合で攪拌機で混合した混合物を用いた以外は、実施例1と同様にして板状成形品を得た。   Polycarbonate (Iupilon PC (S2000) manufactured by Mitsubishi Engineering) and a masterbatch containing pre-made carbon nanotubes (Hyperion PC masterbatch (Hyperion PC 85% by weight)) so that the final carbon nanotube content is 5% by weight. %, Carbon nanotubes (d = 10 nm, L = 1 to 10 μm) 15 wt%)) in the same manner as in Example 1 except that a mixture of 2.15: 1 was mixed with a stirrer. A molded product was obtained.

(比較例1)
炭酸ガスを押出機2内に供給しなかった以外は、実施例1と同様にして板状成形品を得た。
(Comparative Example 1)
A plate-shaped molded article was obtained in the same manner as in Example 1 except that carbon dioxide gas was not supplied into the extruder 2.

(比較例2)
炭酸ガスを押出機2内に供給しなかった以外は、実施例3と同様にして板状成形品を得た。
(Comparative Example 2)
A plate-like molded product was obtained in the same manner as in Example 3 except that carbon dioxide gas was not supplied into the extruder 2.

上記実施例1〜3および比較例1、2で得られた板状成形品の体積抵抗率(単位:Ω・cm)を調べ、その結果をペレット製造時の押出機各部の温度、スクリュー駆動モータの駆動電流値と併せて表1に示した。なお、体積抵抗率は、印加電圧100Vで電圧印加開始から5分後の抵抗値(n数5の平均値)から算出した。   The volume resistivity (unit: Ω · cm) of the plate-like molded products obtained in Examples 1 to 3 and Comparative Examples 1 and 2 was examined, and the results were obtained as the temperature of each part of the extruder during pellet production, and the screw drive motor. Table 1 shows the driving current values. The volume resistivity was calculated from the resistance value (average value of n number 5) after 5 minutes from the start of voltage application at an applied voltage of 100V.

Figure 0004399525
Figure 0004399525

表1からマトリックス樹脂とカーボンナノチューブとの混練を樹脂可塑化ガスである炭酸ガスの存在下行うようにすれば、樹脂の粘度が下がり、うまくカーボンナノチューブがその縺れを解消しつつ均一に分散され、少量の添加でも高い導電性を備えた樹脂組成物得られることが判る。 If kneading of the matrix resin and the carbon nanotubes from Table 1 is performed in the presence of carbon dioxide gas, which is a resin plasticizing gas, the viscosity of the resin is lowered, and the carbon nanotubes are uniformly dispersed while eliminating the dripping, it can be seen that the resin composition having a high electrical conductivity even in a small amount of addition can be obtained.

本発明のカーボンナノ線条体分散樹脂組成物の製造方法によれば、カーボンナノ線条体の少量の添加でも高い導電性を備えた樹脂組成物が得られるため、導電性を要する成型品
又はそのための中間材料の製造に好適に用いることができる。
According to the method for producing a carbon nanowire-dispersed resin composition of the present invention, a resin composition having high conductivity can be obtained even when a small amount of carbon nanostriates is added. Therefore, it can be suitably used for production of an intermediate material.

本発明にかかるカーボンナノチューブ分散樹脂組成物の製造方法に用いる装置の1例を模式的にあらわす図である。It is a figure which shows typically one example of the apparatus used for the manufacturing method of the carbon nanotube dispersion | distribution resin composition concerning this invention. 図1の装置の押出機断面図である。It is an extruder sectional drawing of the apparatus of FIG. 実施例で用いた押出機を説明する説明図である。It is explanatory drawing explaining the extruder used in the Example.

符号の説明Explanation of symbols

4b ペレット(カーボンナノ線条体分散樹脂組成物)


4b Pellets (carbon nano-striate dispersion resin composition)


Claims (2)

マトリックス樹脂にカーボンナノ線条体を分散混合するカーボンナノ線条体分散樹脂組成物の製造方法において、マトリックス樹脂とカーボンナノ線条体とを、樹脂可塑化ガスの存在下溶融混練する工程を備えることを特徴とするカーボンナノ線条体分散樹脂組成物の製造方法。   In the method for producing a carbon nano-striated dispersion resin composition in which carbon nano-striates are dispersed and mixed in a matrix resin, the method includes melt-kneading the matrix resin and the carbon nano-striates in the presence of a resin plasticizing gas. A method for producing a carbon nanowire-dispersed resin composition, comprising: 樹脂可塑化ガスが炭酸ガスである請求項1に記載のカーボンナノ線条体分散樹脂組成物の製造方法。
The method for producing a carbon nanowire-dispersed resin composition according to claim 1, wherein the resin plasticizing gas is carbon dioxide.
JP2003423971A 2002-12-26 2003-12-22 Method for producing carbon nanowire-dispersed resin composition Expired - Fee Related JP4399525B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003423971A JP4399525B2 (en) 2002-12-26 2003-12-22 Method for producing carbon nanowire-dispersed resin composition

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2002376601 2002-12-26
JP2003418938 2003-12-17
JP2003423971A JP4399525B2 (en) 2002-12-26 2003-12-22 Method for producing carbon nanowire-dispersed resin composition

Publications (2)

Publication Number Publication Date
JP2005200436A JP2005200436A (en) 2005-07-28
JP4399525B2 true JP4399525B2 (en) 2010-01-20

Family

ID=34830914

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003423971A Expired - Fee Related JP4399525B2 (en) 2002-12-26 2003-12-22 Method for producing carbon nanowire-dispersed resin composition

Country Status (1)

Country Link
JP (1) JP4399525B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006525412A (en) * 2003-05-02 2006-11-09 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニー POLYESTER CONTAINING MICROFIBER AND METHOD FOR PRODUCTION AND USE THEREOF
JP5143671B2 (en) * 2008-08-27 2013-02-13 電気化学工業株式会社 Protective sheet
JP2012131962A (en) * 2010-12-24 2012-07-12 Sekisui Chem Co Ltd Method of producing resin composite material, and resin composite material

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4602490B2 (en) * 1998-04-15 2010-12-22 旭化成ケミカルズ株式会社 Method for producing thermoplastic resin kneaded material
JP2002067209A (en) * 2000-08-25 2002-03-05 Shimadzu Corp Conductive plastic sheet
JP4131091B2 (en) * 2001-04-25 2008-08-13 三井化学株式会社 Method for producing thermoplastic resin composition
JP4159339B2 (en) * 2002-10-23 2008-10-01 旭化成ケミカルズ株式会社 Conductive resin composition
JP2004148634A (en) * 2002-10-30 2004-05-27 Toppan Printing Co Ltd Laminate having antistatic function

Also Published As

Publication number Publication date
JP2005200436A (en) 2005-07-28

Similar Documents

Publication Publication Date Title
JP4896422B2 (en) Method for producing fine carbon fiber-containing resin composition
KR101802545B1 (en) Thermoplastic and/or elastomeric composite material containing carbon nanotubes and graphenes
CA2658970C (en) Ultrasound assisted continuous process for dispersion of nanofibers and nanotubes in polymers
US10137617B2 (en) Low shear process for producing polymer composite fibers
JP4164044B2 (en) Polymer composition and production method thereof
CN107099077B (en) Method for preparing conductive resin composition
JP2003012939A (en) Carbon-containing resin composition, molding material and molded product
JP2005035134A (en) Manufacturing method of resin composition
WO2013111862A1 (en) Method for producing master batch for conductive resin, and master batch
JP2006097006A (en) Method for producing electrically conductive resin composition and application thereof
CN112405931B (en) Preparation method of nano-montmorillonite reinforced starch-based biodegradable blown film material, product and application thereof
JP4869615B2 (en) Method for producing fine carbon fiber-containing resin composition
JP4404702B2 (en) Method for producing carbon nanowire-dispersed resin composition
JP4399525B2 (en) Method for producing carbon nanowire-dispersed resin composition
TW201127607A (en) Process for incorporating solids into polymers
WO2023284311A1 (en) High electrical performance pc/polyester material and preparation method therefor
CN110885506B (en) Conductive resin composition and method for preparing same
WO2018155502A1 (en) Multi-screw kneader and method for producing nano-composite using said multi-screw kneader, and disk-shaped segment used for said kneader and said method
CN112341747A (en) Carbon nanotube modified permanent antistatic ABS material and preparation method thereof
KR20160144613A (en) Composite having improved conductivity and Preparation Method Thereof
JP3086392B2 (en) Method for producing thermoplastic polyester resin foam
JP2001329179A (en) Method for producing electrically conductive resin composition
EP4353437A1 (en) Method and apparatus for manufacturing resin composite material
JP3472406B2 (en) Method for producing conductive resin composition and conductor
WO2023099408A1 (en) Method for manufacture of a polymer composition

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061130

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090824

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090901

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090905

R150 Certificate of patent or registration of utility model

Ref document number: 4399525

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121106

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121106

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151106

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees