JP4398355B2 - Metal porous body and method for producing the same - Google Patents

Metal porous body and method for producing the same Download PDF

Info

Publication number
JP4398355B2
JP4398355B2 JP2004371015A JP2004371015A JP4398355B2 JP 4398355 B2 JP4398355 B2 JP 4398355B2 JP 2004371015 A JP2004371015 A JP 2004371015A JP 2004371015 A JP2004371015 A JP 2004371015A JP 4398355 B2 JP4398355 B2 JP 4398355B2
Authority
JP
Japan
Prior art keywords
foamed resin
resin sheet
longitudinal direction
peeling
sheet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2004371015A
Other languages
Japanese (ja)
Other versions
JP2006176829A (en
Inventor
英敏 斉藤
斉 土田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Sumitomo Electric Toyama Co Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Sumitomo Electric Toyama Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd, Sumitomo Electric Toyama Co Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP2004371015A priority Critical patent/JP4398355B2/en
Publication of JP2006176829A publication Critical patent/JP2006176829A/en
Application granted granted Critical
Publication of JP4398355B2 publication Critical patent/JP4398355B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Description

本発明は、ニッケルカドミウム電池、ニッケル水素電池などの二次電池に用いられる電池用電極、または、粉塵、油などのフィルタ材に用いる金属多孔体に関する。   The present invention relates to a battery electrode used for a secondary battery such as a nickel cadmium battery or a nickel metal hydride battery, or a porous metal body used for a filter material such as dust or oil.

従来、電池用電極にはNiの金属多孔体シートを基材として、これに活物質を充填し、セパレーターと対極のシートと重ね合わせ、巻回することにより円筒状の電池が作られている。
金属多孔体は、主として樹脂発泡体に導電処理を施し、これを電気めっきすることにより、所定の金属を付着させた後、焙焼・還元することで得られる。
Conventionally, a cylindrical battery is manufactured by filling a battery electrode with a Ni metal porous sheet as a base material, filling it with an active material, and stacking and winding the separator and a counter electrode sheet.
The metal porous body is obtained by conducting a conductive treatment mainly on a resin foam and electroplating this to deposit a predetermined metal, followed by roasting and reduction.

樹脂発泡体は主として発泡ポリウレタンが使われているが、発泡工程での問題からシート状の発泡体を直接得ることは難しく、大きなブロックで得られる。このブロックは、樹脂の発泡時、樹脂の自重、粘度などにより発泡時の上下方向に発泡気孔の大きさが変化したり、発泡気孔の形状そのものが上下方向に縦長となる等の不均一性が生じる。
このウレタンシートを基材として作られる金属多孔体は、電池用電極材として使用される場合も、フィルタ材として使用される場合も、その気孔の大きさや形状は均一であることが望まれるが、発泡樹脂ブロックからシート材を製造する工程でシートの面内に不均一性が生じてしまう。
Polyurethane foam is mainly used as the resin foam, but it is difficult to directly obtain a sheet-like foam due to a problem in the foaming process, and it can be obtained in a large block. This block has non-uniformity such as when the foaming of the resin, the size of the foam pores changes in the vertical direction during foaming due to its own weight, viscosity, etc., or the shape of the foam pores itself is vertically long. Arise.
The porous metal body made of this urethane sheet as a base material is desired to have a uniform pore size and shape, both when used as a battery electrode material and as a filter material. In the process of manufacturing the sheet material from the foamed resin block, non-uniformity occurs in the surface of the sheet.

この不均一性を無くすために、特許文献1や特許文献2に記載されるような工夫が必要になる。
特許文献1では、そのシート材の採取方法を気泡が抜ける方向を軸として渦巻き状にピーリングすることを開示している。この方法によれば、ピーリングされたシートの幅方向に対して発泡した気泡の抜け方向が平行でかつ一定であり、またシートの長さ方向においても気孔の形状、及び、大きさによるばらつきが少ないとの記載がある。
In order to eliminate this non-uniformity, a device as described in Patent Document 1 or Patent Document 2 is required.
Patent Document 1 discloses that the sheet material collecting method is peeled in a spiral shape around the direction in which bubbles are removed. According to this method, the bubble removal direction of the foamed bubbles is parallel and constant with respect to the width direction of the peeled sheet, and there is little variation due to the shape and size of the pores in the length direction of the sheet. There is a description.

また、特許文献2では、樹脂状発泡体のブロックの長手方向の端末同士を貼り合せ、ドーナツ状に、かつ気孔の分布が径方向に現われるようにし、外周もしくは内周からスライス状に所定の厚みに切出すことにより得られる樹脂発泡体のシートを基材とする技術が開示されている。この方法によれば、気孔の形状が円形に近く、かつ長さ方向及び幅方向の分布が均一な金属多孔体が得られるとの記載がある。
特開平3−226969号公報 特開平9−153365号公報
Further, in Patent Document 2, the terminals in the longitudinal direction of the resinous foam block are bonded to each other so that the distribution of pores appears in a radial direction in a doughnut shape, and has a predetermined thickness in a slice shape from the outer periphery or the inner periphery. A technique using a resin foam sheet obtained by cutting into a base material is disclosed. According to this method, there is a description that a porous metal body having a pore shape close to a circle and a uniform distribution in the length direction and the width direction can be obtained.
JP-A-3-226969 Japanese Patent Laid-Open No. 9-153365

ところが、特許文献1(特開平3−226969号公報)に記載された技術に基づく金属多孔体の場合、樹脂の発泡時には、樹脂の自重や粘性から気孔の抜け方向にも気孔径の分布があり、幅方向にある気孔分布を維持した製品となる。
また、発泡時の気泡は発泡時の上下方向に長い長球状となるため、ピーリングして製造したシート材において、気孔は幅方向に長く、長さ方向に短い楕円形状となる。
これらの点から、得られた金属多孔体は、幅方向の不均一性や長手方向と幅方向の非対称性を持ったものとなる。
However, in the case of a metal porous body based on the technique described in Patent Document 1 (Japanese Patent Application Laid-Open No. 3-226969), when the resin is foamed, there is a distribution of pore diameters in the pore removal direction due to its own weight and viscosity. The product maintains the pore distribution in the width direction.
Further, since the bubbles at the time of foaming are oblong and long in the vertical direction at the time of foaming, in the sheet material manufactured by peeling, the pores have an elliptical shape that is long in the width direction and short in the length direction.
From these points, the obtained metal porous body has non-uniformity in the width direction and asymmetry in the longitudinal direction and the width direction.

一方、特許文献2(特開平9−153365号公報)に記載された技術に基づく金属多孔体の場合、樹脂状発泡体のブロックの長手方向の端末同士を貼り合せ、ドーナツ状にしたのちスライスしてシート材を得るため、初期の樹脂ブロックの長さに応じた短い周期で、シート材の全幅にわたる接合部が周期的に連続して存在する。この接合部は、周辺部に比べ強度が弱く、金属多孔体を製造する工程において破断を発生しやすく、著しい生産性の低下につながる問題があった。
また、長球状気泡に対し、長手方向に垂直な方向でスライスするため、スライスするシートの厚さを気泡の大きさに近づけて行くと、シート内の骨格結合点が減少し、接合部以外の箇所も強度が低くなる問題があった。
On the other hand, in the case of a metal porous body based on the technique described in Patent Document 2 (Japanese Patent Application Laid-Open No. 9-153365), the longitudinal ends of the resinous foam blocks are bonded together to form a donut shape and then sliced. In order to obtain a sheet material, joints over the entire width of the sheet material are present periodically and continuously in a short cycle corresponding to the length of the initial resin block. This joint has a problem that the strength is weaker than that of the peripheral part, and breakage is likely to occur in the process of manufacturing the metal porous body, leading to a significant reduction in productivity.
In addition, since the spheroid bubbles are sliced in a direction perpendicular to the longitudinal direction, when the thickness of the sheet to be sliced is made closer to the size of the bubbles, the skeletal bond points in the sheet are reduced, and other than the joints There was also a problem that the strength of the part was lowered.

本発明は、以上の実状に鑑み、気孔(径及び形状)の分布が長さ方向、幅方向のいずれでも均一で、かつ、強度に優れる金属多孔体を提供することを目的とする。   An object of the present invention is to provide a porous metal body in which the distribution of pores (diameter and shape) is uniform in both the length direction and the width direction, and has excellent strength.

上記課題について検討した結果、以下の金属多孔体及びその製造方法を発明するに至った。即ち、本発明は以下のとおりである。
(1)発泡樹脂のブロック体をシート状にピーリングして得られた発泡樹脂シート基材に金属材料をめっきすることにより得られる金属多孔体において、上記発泡樹脂シートが、発泡後の樹脂ブロックの上面部を切断除去し、発泡時の上下方向に2段以上積層し、それらの界面を接着接合した後、上記上下方向の軸に対して平行にピーリングして得られることを特徴とする金属多孔体。
(2)前記金属多孔体の気孔径の長手方向の径と幅方向の径との比が0.9から1.1の範囲にあることを特徴とする前記(1)項記載の金属多孔体。
ここで、「長手方向」とはピーリング時にピーリングされた発泡樹脂シートが走行する方向をいい、「幅方向」とは前記発泡樹脂シートが走行する方向と垂直な方向をいう。
As a result of examining the above problems, the inventors have invented the following metal porous body and a method for producing the same. That is, the present invention is as follows.
(1) In a porous metal body obtained by plating a metal material on a foamed resin sheet substrate obtained by peeling a foamed resin block body into a sheet shape, the foamed resin sheet is a resin block after foaming. Metal porous material obtained by cutting and removing the upper surface part, laminating two or more layers in the vertical direction at the time of foaming, and bonding and bonding the interfaces between them, and then peeling in parallel to the vertical axis body.
(2) the metal said of porous ratio of the longitudinal diameter and the diameter of the width direction of the pore diameter of which is characterized in that in the range of 1.1 0.9 (1) a metal porous body according to claim .
Here, the “longitudinal direction” refers to the direction in which the foamed resin sheet that has been peeled off travels during peeling, and the “width direction” refers to the direction that is perpendicular to the direction in which the foamed resin sheet travels.

(3)発泡樹脂のブロック体をシート状にピーリングして得られた発泡樹脂シート基材に金属材料をめっきすることにより得られる金属多孔体の製造方法であって、発泡後の樹脂ブロックの上面部を切断除去し、発泡時の上下方行に2段以上積層し、それらの界面を接着接合する工程と、上記上下方向の軸に対して平行にピーリングして得られる発泡樹脂シートを基材としこの表面に導電処理を行う工程と、電気めっきで金属体を付着させる工程と、熱処理を行い発泡樹脂部材を燃焼除去する工程を含むことを特徴とする金属多孔体の製造方法。 (3) A method for producing a porous metal body obtained by plating a foamed resin sheet base material obtained by peeling a foamed resin block body into a sheet shape, the upper surface of the foamed resin block The step of cutting and removing the portion, laminating two or more layers in the upper and lower rows at the time of foaming, adhesively bonding the interface between them, and the foamed resin sheet obtained by peeling in parallel with the vertical axis above A method for producing a porous metal body comprising a step of conducting a conductive treatment on the surface, a step of attaching a metal body by electroplating, and a step of performing a heat treatment to burn and remove the foamed resin member.

(4)前記発泡樹脂シートに、発泡樹脂シートの長手方向に張力を加えることにより、金属多孔体の気孔径の長手方向の径と幅方向の径との比が0.9から1.1の範囲とすることを特徴とする前記(3)に記載の金属多孔体の製造方法。
ここで、「長手方向」とはピーリング時にピーリングされた発泡樹脂シートが走行する方向をいい、「幅方向」とは前記発泡樹脂シートが走行する方向と垂直な方向をいう。
(4) the foaming resin sheet, foamed by applying tension in the longitudinal Direction of the resin sheet, the ratio is from 0.9 1.1 to the longitudinal direction of the diameter of the diameter and the width direction of the pore diameter of the porous metal body The method for producing a porous metal body as described in (3) above, wherein
Here, the “longitudinal direction” refers to the direction in which the foamed resin sheet that has been peeled off travels during peeling, and the “width direction” refers to the direction that is perpendicular to the direction in which the foamed resin sheet travels.

(5)前記発泡樹脂シートの長手方向に張力を加える工程が、樹脂シートへの導電処理工程、電気めっき工程、のいずれか、または、その両方の工程中に行われることを特徴とする前記(4)に記載の金属多孔体の製造方法。
ここで、「長手方向」とはピーリング時にピーリングされた発泡樹脂シートが走行する方向をいう。
(5) the said foamed resin sheet in the longitudinal direction step of applying tension to the direction is conductive treatment step of the resin sheet, electroplating process, either, or, characterized in that it is carried out in both steps The manufacturing method of the metal porous body as described in (4).
Here, the “longitudinal direction” refers to a direction in which the foamed resin sheet that has been peeled at the time of peeling travels.

本発明の金属多孔体は、気孔の形状が真円に近く、かつ長手方向・幅方向のいずれにおいても分布が均一となり、これにより、金属多孔体の電気抵抗も長手方向と幅方向で均一であり、かつ長手方向、幅方向の電気抵抗ばらつきも低減できる。また、製造工程の破断が発生することが無く、かつ、製品に亀裂等のダメージを受けることがないので機械的特性も安定した金属多孔体を得ることができる。   The porous metal body of the present invention has a pore shape close to a perfect circle and a uniform distribution in both the longitudinal direction and the width direction, whereby the electrical resistance of the porous metal body is uniform in the longitudinal direction and the width direction. In addition, variations in electrical resistance in the longitudinal direction and width direction can be reduced. Moreover, since the manufacturing process is not broken and the product is not damaged such as cracks, a porous metal body having stable mechanical properties can be obtained.

本発明において使用する樹脂発泡体ブロックは、特に制限はなく、ポリウレタン、ポリオレフインなどの各種樹脂が使用できるが、発泡後の気孔径の均一さの点からは、ポリウレタンを使用することが望ましい。
樹脂発泡ブロックを接合するには、気孔への流入による製品特性への悪影響の防止や接合強度の安定化のため、チクソトロピック性に富む熱硬化性樹脂系の接着剤を使用することが望ましい。
The resin foam block used in the present invention is not particularly limited, and various resins such as polyurethane and polyolefin can be used. From the viewpoint of uniformity of pore diameter after foaming, it is desirable to use polyurethane.
In order to join the resin foam block, it is desirable to use a thermosetting resin-based adhesive having a high thixotropic property in order to prevent adverse effects on product characteristics due to inflow into the pores and to stabilize the joint strength.

発泡樹脂のブロック体をシート状にピーリングして得られた発泡樹脂シート基材は、この表面に導電処理を行う工程(導電処理工程)と、電気めっきで金属体を付着させる工程(電気めっき工程)と、熱処理を行い発泡樹脂部材を燃焼除去する工程(焙焼工程)によって製造される。さらに、その後に金属を還元・アニールする工程を含むことができる。これらの工程は、公知の方法によって行うことができる。   The foamed resin sheet base material obtained by peeling the foamed resin block into a sheet form includes a step of conducting a conductive treatment on this surface (conductive treatment step) and a step of attaching a metal body by electroplating (electroplating step) ) And a step (roasting step) in which the foamed resin member is burned and removed by heat treatment. Furthermore, the process of reducing and annealing a metal after that can be included. These steps can be performed by a known method.

これらの工程において、発樹脂シートの長手方向に張力を加えることにより、気孔径の長手方向と幅方向の比が0.9から1.1の範囲にあるようにする。
張力を加える工程は、導電処理工程または金属めっき工程中に行うことが望ましい。
尚、本発明において長手方向とは、発樹脂シートが走行する方向、即ち、図2においてピーリングされた発樹脂シートが走行する矢印の方向をいう。
In these processes, by applying tension in the longitudinal direction of the foamed resin sheet, the longitudinal direction and the ratio of the width direction of the pore diameter to be in the range of from 0.9 to 1.1.
The step of applying tension is desirably performed during the conductive treatment step or the metal plating step.
It should be noted that the longitudinal direction in the present invention, the direction of travel foamed resin sheet, i.e., refers to the direction of the arrow foamed resin sheet which is peeled in Fig. 2 is traveling.

樹脂ブロックの気孔の分布を調査した結果、樹脂ブロック発泡時の幅方向に対し高さ方向の長さが底面から2/3の範囲内であれば、気孔の大きさはほぼ均一であることがわかった。このことより、発泡ブロックの底側の方を幅寸法に対して2/3の高さ以下で切断し、それらを2段以上重ねて接合しその後ピーリングすれば、幅方向に均一な気孔径を持つ金属多孔体が得られる。   As a result of investigating the distribution of pores in the resin block, if the length in the height direction with respect to the width direction during foaming of the resin block is within the range of 2/3 from the bottom surface, the pore size may be substantially uniform all right. From this, if the bottom side of the foam block is cut at a height of 2/3 or less with respect to the width dimension, two or more layers of them are joined together and then peeled to obtain a uniform pore diameter in the width direction. A porous metal body is obtained.

また、製造工程において長手方向に適度の張力を加えることにより、気孔の形状が初期の幅方向に長い長円形から真円形となるため長手方向と幅方向に均一な特性をもつ金属多孔体が得られる。
張力を加える工程は、導電処理工程またはめっき工程、特にめっき工程においては、めっき工程の初期の工程部分に行うことが望ましく、これらの工程で張力を加えた場合には、製品にダメージを与えることがないため安定した特性をもつ金属多孔体が得られる。
なぜなら、これらの工程の段階では、製品に柔軟性があるため、張力を加えても基材の骨格に亀裂などのダメージが発生しない。しかし、めっき工程の後期、及び焙焼・還元・アニールの熱処理工程では、めっきが十分に付着しており、過度の張力を加えると亀裂を生じ製品の機械的特性に悪影響を及ぼす。また、熱処理工程では金属が高温に曝されているため、強度が低下しており、張力の影響を著しく受けると言う問題がある。
In addition, by applying an appropriate tension in the longitudinal direction in the manufacturing process, the pore shape changes from an oval shape that is long in the initial width direction to a true circle shape, so that a porous metal body having uniform characteristics in the longitudinal direction and width direction is obtained. It is done.
The process of applying tension is preferably performed in the initial process part of the plating process in the conductive treatment process or plating process, particularly in the plating process. If tension is applied in these processes, the product may be damaged. Therefore, a porous metal body having stable characteristics can be obtained.
This is because at these stages of the process, the product is flexible, and even if tension is applied, damage such as cracks does not occur in the skeleton of the base material. However, in the latter stage of the plating process and in the heat treatment process of roasting / reduction / annealing, the plating is sufficiently adhered, and if excessive tension is applied, cracks are generated and the mechanical properties of the product are adversely affected. Further, since the metal is exposed to a high temperature in the heat treatment process, the strength is lowered, and there is a problem that it is significantly affected by the tension.

導電処理工程は、真空蒸着、化学めっき、導電性材料の塗布等で行うことができる。
また、その後に行う金属めっきに使用される金属としては、電極に好ましいNi、Cu、Fe等が挙げられる。
The conductive treatment step can be performed by vacuum deposition, chemical plating, application of a conductive material, or the like.
Moreover, as a metal used for the metal plating performed after that, Ni, Cu, Fe etc. which are preferable for an electrode are mentioned.

本発明の金属多孔体では、特許文献2(特開平9−153365号公報)により開示されている技術のように接合部が幅方向には無く、縦方向(長手方向)に存在するため導電処理工程やめっき工程で長手方向に引張張力をかけても破断することがなく、生産性に優れる金属多孔体が提供できる。従って、発泡樹脂シートの厚さ、幅、孔径に合わせ孔径の縦横比を1.0に近づけるために適正な張力を加えることができる。   In the metal porous body of the present invention, there is no joining portion in the width direction as in the technique disclosed in Patent Document 2 (Japanese Patent Laid-Open No. 9-153365), and therefore the conductive treatment is present in the longitudinal direction (longitudinal direction). Even if a tensile tension is applied in the longitudinal direction in the process or the plating process, the metal porous body that does not break and is excellent in productivity can be provided. Therefore, an appropriate tension can be applied to bring the aspect ratio of the hole diameter close to 1.0 in accordance with the thickness, width and hole diameter of the foamed resin sheet.

気孔径の縦横比を0.9〜1.1の範囲内に納めることにより、電池材料として使用するときの重要特性である電気抵抗の縦横比を同様に0.9〜1.1の範囲に納めることができるため、実質的に長手方向と幅方向が均一となるため、ばらつきの少ない安定した電池を得ることができる。
また、フィルタ材として使用するときも、均一な孔が得られることにより、ばらつきの少ない安定したフィルタリング特性が得られる。
By keeping the aspect ratio of the pore diameter in the range of 0.9 to 1.1, the aspect ratio of electrical resistance, which is an important characteristic when used as a battery material, is similarly in the range of 0.9 to 1.1. Therefore, since the longitudinal direction and the width direction are substantially uniform, a stable battery with little variation can be obtained.
Also, when used as a filter material, a stable filtering characteristic with little variation can be obtained by obtaining uniform holes.

以下に実施例を挙げて本発明をさらに詳細に説明する。
実施例1
図1に示すようなポリウレタン発泡体ブロックを製造した(高さ890mm)。このブロックの上面部を切断除去して、底面側のみで底面1100mm×1100mm、高さ550mmのウレタンブロックを2つ作り、それらを2段に積層し、その界面を柔軟性を高め、ポリウレタン発泡体との接合性を高めるためにウレタン樹脂を配合した熱硬化性のエポキシ系の接着剤で接合した。
その後、図2に示す軸を中心に外周部よりピーリングを行い発泡ポリウレタンシートを切出した。
こうして作製したポリウレタンシートの厚みは1.8mmで、幅が1100mm、平均気孔径は500μmであった。これに導電性カーボンを塗布した。この塗布工程において、ウレタンシートには、長手方向に20.5Nの張力を加え、長手方向に引き伸ばしながら導電化処理を行った。その後、ニッケルを電気めっきにより、550g/m付着させた。
これを水洗し、700℃の酸化雰囲気中でウレタンとカーボンを燃焼除去し、1000℃の水素雰囲気中で加熱してニッケルを還元するとともにアニールして、金属多孔体を得た。
Hereinafter, the present invention will be described in more detail with reference to examples.
Example 1
A polyurethane foam block as shown in FIG. 1 was produced (height 890 mm). By cutting and removing the upper surface of this block, two urethane blocks with a bottom surface of 1100 mm x 1100 mm and a height of 550 mm are made only on the bottom surface side, and they are laminated in two steps to increase the flexibility of the interface, polyurethane foam In order to enhance the bondability, the resin was bonded with a thermosetting epoxy adhesive containing a urethane resin.
Thereafter, peeling was performed from the outer periphery around the axis shown in FIG. 2 to cut out the polyurethane foam sheet.
The polyurethane sheet thus prepared had a thickness of 1.8 mm, a width of 1100 mm, and an average pore diameter of 500 μm. Conductive carbon was applied to this. In this coating step, the urethane sheet was subjected to a conductive treatment while applying a tension of 20.5 N in the longitudinal direction and stretching in the longitudinal direction. Thereafter, 550 g / m 2 of nickel was deposited by electroplating.
This was washed with water, and urethane and carbon were burned and removed in an oxidizing atmosphere at 700 ° C., heated in a hydrogen atmosphere at 1000 ° C. to reduce nickel and annealed to obtain a porous metal body.

このニッケル金属多孔体を顕微鏡で観察し、気孔の長手方向と幅方向の径を金属多孔体の幅方向1100mmと長手方向5mに対し測定した。測定は5箇所について行い、その平均値を求めた。また、ニッケル金属多孔体を顕微鏡で観察し、幅方向に20箇所、長手方向に2mの長さで20箇所測定した気孔径の測定値からばらつきを求めた。測定結果を表1に示す。
次に、幅10mm、電極間距離100mmの条件で電気抵抗を測定した。また、40箇所測定値の1σ値をばらつきとして求めた。更に、幅20mm、長さ150mmの試験片で引張強度を測定した。クランプ代は各約25mmとし、測定端子間距離は100mmとした。測定結果を表2に示す。
This nickel metal porous body was observed with a microscope, and the longitudinal and width diameters of the pores were measured with respect to 1100 mm in the width direction and 5 m in the longitudinal direction of the metal porous body. The measurement was performed at five locations, and the average value was obtained. Further, the nickel metal porous body was observed with a microscope, and the variation was determined from the measured values of the pore diameter measured at 20 places in the width direction and 20 places in the length direction of 2 m. The measurement results are shown in Table 1.
Next, the electrical resistance was measured under the conditions of a width of 10 mm and a distance between electrodes of 100 mm. Further, the 1σ value of the 40-point measurement values was obtained as variation. Furthermore, the tensile strength was measured with a test piece having a width of 20 mm and a length of 150 mm. The clamping allowance was about 25 mm each, and the distance between measurement terminals was 100 mm. The measurement results are shown in Table 2.

比較例1〜3
図3の方法でピーリングし作られている従来品(比較例1)、特許文献1(特開平3−226969号公報)に基づく技術で作られている製品(比較例2)、および特許文献2(特開平9−153365号公報)に基づく技術で作られている製品(比較例3)を実施例1と同じ条件で作製し、評価した。
測定結果を表1および表2に示す。
Comparative Examples 1-3
A conventional product (Comparative Example 1) made by peeling by the method of FIG. 3, a product (Comparative Example 2) made by a technique based on Patent Document 1 (Japanese Patent Laid-Open No. 3-226969), and Patent Document 2 A product (Comparative Example 3) made by a technique based on (JP-A-9-153365) was produced and evaluated under the same conditions as in Example 1.
The measurement results are shown in Tables 1 and 2.

Figure 0004398355
Figure 0004398355

Figure 0004398355
Figure 0004398355

表1に示すように、比較例1(図3の方法でピーリングし作られている従来品)、比較例2(特開平3−226969号公報に基づく技術で作られた製品)、および比較例3(特開平9−153365号公報に基づく技術で作られた製品)に比べ、本発明の金属多孔体の気孔径の縦横比は、1.00で、また幅方向、長手方向に径のばらつきが小さい。
また、電気抵抗も幅方向長手方向比がほぼ1.0で、しかも幅方向と長手方向のばらつきが小さくなっている。
更に、公知の技術の中では最もばらつきの小さな比較例3(特開平9−153365号公報に基づく技術で作られた製品)に比べ高い引張強度を持っている。
尚、この製造過程において製品に破断が発生することはなかった。
As shown in Table 1, Comparative Example 1 (conventional product made by peeling by the method of FIG. 3), Comparative Example 2 (product made by the technique based on Japanese Patent Laid-Open No. 3-226969), and Comparative Example 3 (product made by the technique based on Japanese Patent Laid-Open No. 9-153365), the aspect ratio of the pore diameter of the porous metal body of the present invention is 1.00, and the variation in the diameter in the width direction and the longitudinal direction. Is small.
Further, the electrical resistance has a width direction longitudinal ratio of about 1.0, and the variation between the width direction and the longitudinal direction is small.
Furthermore, it has a higher tensile strength than Comparative Example 3 (a product made by a technique based on Japanese Patent Laid-Open No. 9-153365) having the smallest variation among known techniques.
Note that the product did not break during this manufacturing process.

実施例2
図1に示すようなポリウレタン発泡体ブロックを製造した(高さ650mm)。このブロックの底面部から30mmと上面部を切断除去して底面1050mm×1050mm、高さ350mmのウレタンブロックを3つ作り、それらを3段に積層し、その界面をアクリル系の接着剤で接合した。
その後、実施例1と同様に上下方向を軸とする方向で外周部よりピーリングを行い発泡ポリウレタンシートを切出した。
こうして作製したポリウレタンシートの厚みは1.4mmで、幅が1050mm、平均気孔径は450μmであった。これに導電性カーボンを塗布した後、ニッケルを電気めっきにより、450g/m付着させた。
この電気めっき工程の初期において、ウレタンシートには、長手方向に17.0Nの張力を加え、長手方向に引き伸ばしながら電気めっきを行った。
これを水洗し、700℃の酸化雰囲気中でウレタンと黒鉛塗料を燃焼除去し、1000℃の水素雰囲気中で加熱してニッケルを還元するとともにアニールして、金属多孔体を得た。
Example 2
A polyurethane foam block as shown in FIG. 1 was produced (height 650 mm). By cutting and removing 30 mm and the upper surface from the bottom surface of this block, three urethane blocks with a bottom surface of 1050 mm × 1050 mm and a height of 350 mm were made, laminated in three steps, and the interface was joined with an acrylic adhesive. .
Thereafter, in the same manner as in Example 1, peeling was performed from the outer peripheral portion in a direction with the vertical direction as an axis, and a foamed polyurethane sheet was cut out.
The polyurethane sheet thus prepared had a thickness of 1.4 mm, a width of 1050 mm, and an average pore diameter of 450 μm. After applying conductive carbon to this, 450 g / m 2 of nickel was deposited by electroplating.
In the initial stage of this electroplating step, the urethane sheet was electroplated while applying a tension of 17.0 N in the longitudinal direction and stretching it in the longitudinal direction.
This was washed with water, urethane and graphite paint were burned and removed in an oxidizing atmosphere at 700 ° C., heated in a hydrogen atmosphere at 1000 ° C. to reduce nickel and annealed to obtain a porous metal body.

このニッケル金属多孔体を顕微鏡で観察し、気孔の長手方向と幅方向の径を金属多孔体の幅方向1050mmと長手方向5mに対し実施例1と同様に測定した。また、気孔径のばらつき、電気抵抗、引っ張り強度についても実施例1と同様に測定した。
測定結果を表3および表4に示す。
This nickel metal porous body was observed with a microscope, and the longitudinal and width diameters of the pores were measured in the same manner as in Example 1 with respect to the width direction of 1050 mm and the longitudinal direction of the metal porous body. Further, the variation in pore diameter, electrical resistance, and tensile strength were also measured in the same manner as in Example 1.
The measurement results are shown in Tables 3 and 4.

比較例4
図3の方法でピーリングし作られている従来品を実施例2と同じ条件で作製し、評価した。
測定結果を表3および表4に示す。
Comparative Example 4
A conventional product peeled by the method of FIG. 3 was produced under the same conditions as in Example 2 and evaluated.
The measurement results are shown in Tables 3 and 4.

Figure 0004398355
Figure 0004398355

Figure 0004398355
Figure 0004398355

表3に示すように、比較例4(従来品)に比べ、実施例2の金属多孔体の気孔径の縦横比は、1.00と均一で、また幅方向、長手方向に径のばらつきがほとんどないことが分かった。また、電気抵抗も幅方向と長手方向比がほぼ1.0で、しかも幅方向と長手方向のばらつきがほとんどないことが分かった。また、実施例1よりも更に幅方向に均一な金属多孔体を得ることができた。
また、この製造過程において製品に破断が発生することはなかった。
As shown in Table 3, compared with Comparative Example 4 (conventional product), the aspect ratio of the pore diameter of the metal porous body of Example 2 is uniform at 1.00, and there are variations in diameter in the width direction and the longitudinal direction. I found that there was almost no. It was also found that the electrical resistance had a width-to-longitudinal ratio of approximately 1.0 and almost no variation in the width and longitudinal directions. Moreover, the metal porous body more uniform in the width direction than Example 1 was able to be obtained.
In addition, the product did not break during this manufacturing process.

本発明の樹脂発泡体シートを切出すための発泡体の説明図である。It is explanatory drawing of the foam for cutting out the resin foam sheet of this invention. 本発明の発泡樹脂シートの切出し工程の説明図である。It is explanatory drawing of the cutting process of the foamed resin sheet of this invention. 従来の発泡樹脂シートの切出し工程の説明図である。It is explanatory drawing of the cutting process of the conventional foamed resin sheet.

Claims (5)

発泡樹脂のブロック体をシート状にピーリングして得られた発泡樹脂シート基材に金属材料をめっきすることにより得られる金属多孔体において、上記発泡樹脂シートが、発泡後の樹脂ブロックの上面部を切断除去し、発泡時の上下方向に2段以上積層し、それらの界面を接着接合した後、上記上下方向の軸に対して平行にピーリングして得られることを特徴とする金属多孔体。   In the porous metal body obtained by plating a metal material on the foamed resin sheet base material obtained by peeling the foamed resin block body into a sheet shape, the foamed resin sheet has an upper surface portion of the resin block after foaming. A porous metal body obtained by cutting and removing, laminating two or more layers in the vertical direction at the time of foaming, adhesively bonding the interfaces, and peeling in parallel to the vertical axis. 前記金属多孔体の気孔径の長手方向の径と幅方向の径との比が0.9から1.1の範囲にあることを特徴とする請求項1記載の金属多孔体。
ここで、「長手方向」とはピーリング時にピーリングされた発泡樹脂シートが走行する方向をいい、「幅方向」とは前記発泡樹脂シートが走行する方向と垂直な方向をいう。
2. The porous metal body according to claim 1 , wherein the ratio of the diameter in the longitudinal direction to the diameter in the width direction of the pore diameter of the porous metal body is in the range of 0.9 to 1.1.
Here, the “longitudinal direction” refers to the direction in which the foamed resin sheet that has been peeled off travels during peeling, and the “width direction” refers to the direction that is perpendicular to the direction in which the foamed resin sheet travels.
発泡樹脂のブロック体をシート状にピーリングして得られた発泡樹脂シート基材に金属材料をめっきすることにより得られる金属多孔体の製造方法であって、発泡後の樹脂ブロックの上面部を切断除去し、発泡時の上下方行に2段以上積層し、それらの界面を接着接合する工程と、上記上下方向の軸に対して平行にピーリングして得られる発泡樹脂シートを基材としこの表面に導電処理を行う工程と、電気めっきで金属体を付着させる工程と、熱処理を行い発泡樹脂部材を燃焼除去する工程を含むことを特徴とする金属多孔体の製造方法。   A method for producing a porous metal body obtained by plating a metal material on a foamed resin sheet substrate obtained by peeling a foamed resin block into a sheet shape, and cutting the upper surface of the foamed resin block This surface is made by removing and laminating two or more layers in the upper and lower rows at the time of foaming, adhesively bonding the interfaces between them, and the foamed resin sheet obtained by peeling in parallel with the vertical axis. A method for producing a porous metal body comprising a step of conducting a conductive treatment, a step of attaching a metal body by electroplating, and a step of performing a heat treatment to burn and remove the foamed resin member. 前記発泡樹脂シートに、発泡樹脂シートの長手方向に張力を加えることにより、金属多孔体の気孔径の長手方向の径と幅方向の径との比を0.9から1.1の範囲とすることを特徴とする請求項3に記載の金属多孔体の製造方法。
ここで、「長手方向」とはピーリング時にピーリングされた発泡樹脂シートが走行する方向をいい、「幅方向」とは前記発泡樹脂シートが走行する方向と垂直な方向をいう。
The foamed resin sheet by applying tension in the longitudinal Direction of the foamed resin sheet, and the range of the ratio of the longitudinal direction of the diameter and the width direction diameter of pore diameter of the porous metal body 0.9 1.1 The manufacturing method of the metal porous body of Claim 3 characterized by the above-mentioned.
Here, the “longitudinal direction” refers to the direction in which the foamed resin sheet that has been peeled off travels during peeling, and the “width direction” refers to the direction that is perpendicular to the direction in which the foamed resin sheet travels.
前記発泡樹脂シートの長手方向に張力を加える工程が、発泡樹脂シートへの導電処理工程、電気めっき工程、のいずれか、または、その両方の工程中に行われることを特徴とする請求項4に記載の金属多孔体の製造方法。
ここで、「長手方向」とはピーリング時にピーリングされた発泡樹脂シートが走行する方向をいう。
The foaming step of applying tension in the longitudinal Direction of the resin sheet, the conductive process to the foamed resin sheet, according to claim 4 in which the electroplating process, either, or, characterized in that it is carried out in both steps The manufacturing method of the metal porous body as described in any one of.
Here, the “longitudinal direction” refers to a direction in which the foamed resin sheet that has been peeled at the time of peeling travels.
JP2004371015A 2004-12-22 2004-12-22 Metal porous body and method for producing the same Active JP4398355B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004371015A JP4398355B2 (en) 2004-12-22 2004-12-22 Metal porous body and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004371015A JP4398355B2 (en) 2004-12-22 2004-12-22 Metal porous body and method for producing the same

Publications (2)

Publication Number Publication Date
JP2006176829A JP2006176829A (en) 2006-07-06
JP4398355B2 true JP4398355B2 (en) 2010-01-13

Family

ID=36731195

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004371015A Active JP4398355B2 (en) 2004-12-22 2004-12-22 Metal porous body and method for producing the same

Country Status (1)

Country Link
JP (1) JP4398355B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5137117B2 (en) * 2007-12-05 2013-02-06 住友電気工業株式会社 Nonwoven fabric substrate for battery, battery electrode using the same, and battery
JP5598027B2 (en) * 2009-03-05 2014-10-01 日立金属株式会社 Aluminum porous material and method for producing the same, and electricity storage device using aluminum porous material as electrode current collector
JP5334658B2 (en) * 2009-04-14 2013-11-06 株式会社ブリヂストン Method for bonding urethane foam block for electrode base material and method for producing porous metal body for electrode using the bonding method
JP2010253901A (en) * 2009-04-28 2010-11-11 Bridgestone Corp Bonding method for urethane foam block for electrode preform, and method of manufacturing metal porous body for electrode using the bonding method
CN108660489B (en) * 2018-06-07 2020-04-24 常德力元新材料有限责任公司 Preparation method of three-dimensional porous metal material with non-deviation aperture and physical property

Also Published As

Publication number Publication date
JP2006176829A (en) 2006-07-06

Similar Documents

Publication Publication Date Title
CN106507689B (en) Electrolytic copper foil for lithium secondary battery and lithium secondary battery comprising the same
KR101679095B1 (en) Multiply-conductive matrix for battery current collectors
JP4762368B2 (en) Porous metal foil and method for producing the same
JP2011174184A5 (en)
JP4398355B2 (en) Metal porous body and method for producing the same
US4219004A (en) Flexible, self-supporting blade for cutting electronic crystals and substrates or the like
JPH0860508A (en) Metal nonwoven fabric and method for producing the same
JP2006024906A (en) Aluminum substrate for printed circuit and manufacturing method of the substrate, and printed circuit board and manufacturing method of the board
JPH0411058A (en) Metallic fiber felt-like body and production thereof
CN116657209A (en) Polymer fiber substrate composite metal film, preparation method and application
JP6724801B2 (en) Copper porous body, copper porous composite member, method for producing copper porous body, and method for producing copper porous composite member
KR102372707B1 (en) Carrier material for forming perforated metal foil and perforated metal foil with carrier material
JP2019173057A (en) Plated metallic material
WO2022059497A1 (en) Nickel-chromium porous body, and method for producing nickel-chromium porous body
KR100481302B1 (en) Method for manufacturing electro-plated diamond wheel and electro-plated diamond wheel manufactured by the method, and apparatus for plating diamond wheel
JP6733286B2 (en) Method for producing copper porous body, and method for producing copper porous composite member
JPH11120994A (en) Electrode having interleaf film and its manufacture
JP2013069684A (en) Copper foil of negative electrode collector for lithium ion secondary battery, negative electrode for lithium ion secondary battery, lithium ion secondary battery, and method for manufacturing copper foil of negative electrode collector for lithium ion secondary battery
US2505196A (en) Method for making abrasive articles
JP2007005044A (en) Metallic porous body for battery
CN1163994C (en) Earth plate for electrodde base of secondary cell, secondary cell electrode base, process for producing same
CN106206325B (en) Manufacturing method of lead frame structure
JPH09153365A (en) Metal porous body, its manufacture, and battery electrode plate using the same
JPS5935696A (en) Production of porous nickel body
KR102142886B1 (en) Processing method of porous carbon electrode and porous carbon electrode thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070822

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090724

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090821

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090924

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20091016

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20091022

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121030

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4398355

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131030

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250