JP4396959B2 - Semi-conductive belt - Google Patents
Semi-conductive belt Download PDFInfo
- Publication number
- JP4396959B2 JP4396959B2 JP2000349394A JP2000349394A JP4396959B2 JP 4396959 B2 JP4396959 B2 JP 4396959B2 JP 2000349394 A JP2000349394 A JP 2000349394A JP 2000349394 A JP2000349394 A JP 2000349394A JP 4396959 B2 JP4396959 B2 JP 4396959B2
- Authority
- JP
- Japan
- Prior art keywords
- outer layer
- belt
- inner layer
- layer
- polyimide resin
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Landscapes
- Electrostatic Charge, Transfer And Separation In Electrography (AREA)
- Belt Conveyors (AREA)
- Laminated Bodies (AREA)
- Compositions Of Macromolecular Compounds (AREA)
Description
【0001】
【発明の属する技術分野】
本発明は、ポリイミド系樹脂を主体とする外層と内層とを有し、電子写真記録装置における像の中間転写ベルトや中間転写を兼用する印刷シート搬送用の転写搬送ベルトなどに使用される半導電ベルトに関する。
【0002】
【従来の技術】
従来、電子写真記録装置の中間転写ベルト等に用いうる半導電性ベルトとしては、ポリイミドフイルムに導電性物質を配合して体積抵抗率を1〜1013Ω・cmとしたものが知られていた(特開平5−77252号公報)。これはポリイミドフィルムを用いることにより、それまでの弗化ビニリデンやエチレン・テトラフルオロエチレン共重合体、ポリカーボネート等からなるフィルムを用いた半導電性ベルト(特開平5−200904号公報、特開平5−345368号公報、特開平6−95521号公報)による問題、すなわち強度や対摩擦・摩耗性の機械特性に不足してベルト端部等にクラックが発生したり、駆動時の負荷で変形して転写画像が変形するなどの問題を克服したものである。
【0003】
また、ポリイミド製の半導電性ベルトを複数の層で形成し、各層の電気特性を個別に調整することにより、電気特性や機械特性を向上させる方法が提案されている。例えば特開平7−156287号公報には、内層と外層の樹脂成分を同一のポリイミド樹脂とし、外層への導電性物質の添加量を多くして、外層の導電性を高めることが開示されている。
【0004】
【発明が解決しようとする課題】
しかしながら、このような複層ベルトにおいて、外層への導電性物質(例えばカーボンブラック)の添加量を増加させると、それに伴って、製造される複層ベルトが外側に反り易くなることが判明した。そして、このような反りの有る複層ベルトを中間転写ベルトや転写搬送ベルトに使用すると、外側への反りによって、印刷シートが反りに追従してベルト上で反って転写ムラや画像不良を生じるといった問題、またベルト端部のベルト位置検出用のマーク、フラグ等がうまく読み取れず装置自体が止まってしまうという問題点が生じた。従って、中間転写ベルトや転写搬送ベルトにおいては、初期のみに限らず、長期間の使用においてベルトの反りの少ない状態を維持する必要がある。
【0005】
そこで、本発明の目的は、初期にベルトの反り量が小さくかつ外側に反らず、しかも長期間にわたって反り量を小さく維持することができる半導電性ベルトを提供することにある。
【0006】
【課題を解決するための手段】
本発明者らは、上記目的を達成すべく、反りの原因の解明やその対策について鋭意研究したところ、反りの主な原因が導電性物質の添加による各層の線膨張係数の変化によるものであり、また、ポリイミド系樹脂の種類を変えることにより、線膨張係数の制御が可能で、ベルトの反り量を調整できることを見出し、本発明を完成するに至った。
【0007】
即ち、本発明の半導電性ベルトは、いずれもポリイミド系樹脂を主体とする外層と内層とを有する半導電性ベルトにおいて、少なくとも前記外層は導電性物質を含有しており、この外層と前記内層との50〜400℃における線膨張係数の差が30(ppm/℃)以下であり、前記外層より前記内層の線膨張係数が大きいことを特徴とする。
【0008】
上記において、前記外層を形成するポリイミド系樹脂は、テトラカルボン酸残基である全芳香族骨格とジアミン残基であるp−フェニレン骨格とがイミド結合してなる重合体であり、前記内層を形成するポリイミド系樹脂は、テトラカルボン酸残基である全芳香族骨格とジアミン残基であるp−フェニレン骨格とがイミド結合してなるA成分と、テトラカルボン酸残基である全芳香族骨格とジアミン残基であるジフェニルエーテル骨格とがイミド結合してなるB成分とを繰り返してなる共重合体、及び/又は前記A成分を繰り返し単位とする重合体と前記B成分を繰り返し単位とする重合体とを混合してなるブレンド体であることが好ましい。
【0009】
その際、前記外層を形成するポリイミド系樹脂は3,3’,4,4’−ビフェニルテトラカルボン酸二無水物とp−フェニレンジアミンとの重合体であり、前記内層を形成するポリイミド系樹脂は3,3’,4,4’−ビフェニルテトラカルボン酸二無水物とp−フェニレンジアミンと4,4’−ジアミノジフェニルエーテルとの共重合体であることが好ましい。
【0010】
また、前記外層は表面抵抗率が109 〜1016Ω/□であり、前記内層は表面抵抗率が1011Ω/□以上で前記外層より高い値を有することが好ましい。更に、前記導電性物質がカーボンブラックであることが好ましい。
【0011】
[作用効果]
本発明によると、実施例の結果が示すように、反りの主な原因が導電性物質の添加による各層の線膨張係数の変化によるものであるため、ポリイミド系樹脂の種類等を変えて外層より内層の線膨張係数が幾分か大きくなるように制御することで、初期にベルトの反り量が小さくかつ外側に反らず、しかも長期間にわたって反り量を小さく維持できるようになる。
【0012】
前記外層を形成するポリイミド系樹脂は、テトラカルボン酸残基である全芳香族骨格とジアミン残基であるp−フェニレン骨格とがイミド結合してなる重合体であり、前記内層を形成するポリイミド系樹脂は、上記のA成分とB成分とを繰り返してなる共重合体、及び/又は前記A成分を繰り返し単位とする重合体と前記B成分を繰り返し単位とする重合体とを混合してなるブレンド体である場合、B成分を繰り返し単位又は混合成分として追加することにより、ベルトの機械的強度を低下させずに、樹脂の線膨張係数を大きくすることができ、上記のような反り量の低減効果をより好適に得ることができる。
【0013】
また、前記外層を形成するポリイミド系樹脂は3,3’,4,4’−ビフェニルテトラカルボン酸二無水物とp−フェニレンジアミンとの重合体であり、前記内層を形成するポリイミド系樹脂は3,3’,4,4’−ビフェニルテトラカルボン酸二無水物とp−フェニレンジアミンと4,4’−ジアミノジフェニルエーテルとの共重合体である場合、半導電性ベルトに多用されている重合体を使用しながら、4,4’−ジアミノジフェニルエーテル残基を共重合成分とすることにより、ベルトの機械的強度を低下させずに、樹脂の線膨張係数を大きくして、上記のような反り量の低減効果をより好適に得ることができる。
【0014】
また、前記外層は表面抵抗率が109 〜1016Ω/□であり、前記内層は表面抵抗率が1011Ω/□以上で前記外層より高い値を有する場合、転写特性や除電特性、画像特性が好適に発現できるものの、導電性物質の添加量の差により、前述の如き反りの問題が生じ易いところ、上記の如き作用効果を奏する本発明が特に有効になる。
【0015】
前記導電性物質がカーボンブラックである場合、電気特性の制御が好適に行えるものの、その添加量の差により線膨張係数が大きく変化して、前述の如き反りの問題が生じ易いところ、上記の如き作用効果を奏する本発明が特に有効になる。
【0016】
【発明の実施の形態】
以下、本発明の実施の形態について説明する。
【0017】
本発明の半導電性ベルトは、いずれもポリイミド系樹脂を主体とする外層と内層とを有し、少なくともその外層が導電性物質を含有すると共に、外層と内層との線膨張係数が所定の関係を有することを特徴とする。本発明では、導電性物質や他の添加剤の種類や含有量等により線膨張係数を調整してもよいが、ポリイミド系樹脂の種類を変えることにより線膨張係数を調整するのが好ましい。つまり、本発明の半導電性ベルトとしては、隣接する2層を異なるポリイミド系樹脂を用いて形成することで、前記2層間の線膨張係数の差を、前記何れかのポリイミド系樹脂を前記2層ともに用いる場合より、低減してあることが好ましい。
【0018】
特に、外層と内層の少なくとも何れかの層に、単独重合体では線膨張係数の異なる繰り返し単位(又はモノマー成分)からなる共重合体を使用し、その共重合比率を変えることで、線膨張係数を調整するのが好ましい。その際、外層と内層とで共通する繰り返し単位を有することが、両層の接着強度の点から更に好ましい。また、共重合体を使用する代わりに、同様の混合成分を有するブレンド体を用いてもよい。なお、ポリイミド系樹脂にはイミド成分以外の共重合成分や混合成分を、ポリイミド系樹脂の物性等を損なわない範囲で含有してよもい。
【0019】
具体的には例えば、外層を形成するポリイミド系樹脂として、テトラカルボン酸残基である全芳香族骨格とジアミン残基であるp−フェニレン骨格とがイミド結合してなる重合体を用い、内層を形成するポリイミド系樹脂として、テトラカルボン酸残基である全芳香族骨格とジアミン残基であるp−フェニレン骨格とがイミド結合してなるA成分と、テトラカルボン酸残基である全芳香族骨格とジアミン残基であるジフェニルエーテル骨格とがイミド結合してなるB成分とを繰り返してなる共重合体、及び/又は前記A成分を繰り返し単位とする重合体と前記B成分を繰り返し単位とする重合体とを混合してなるブレンド体を用いればよい。
【0020】
その際、得られるポリイミド系樹脂の引っ張り弾性率を維持する観点から、前記B成分の共重合比率又は混合比率を、モル比で50%以下とすることが好ましい。
【0021】
上記の全芳香族骨格の生成には、テトラカルボン酸二無水物等が使用され、例えばピロメリット酸二無水物(PMDA)、3,3’,4,4’−ビフェニルテトラカルボン酸二無水物(BPDA)、2,3,6,7−ナフタレンテトラカルボン酸二無水物、1,2,5,6−ナフタレンテトラカルボン酸二無水物、1,4,5,8−ナフタレンテトラカルボン酸二無水物、又はこれらの芳香環を低級アルキル基等で置換した化合物等が挙げられる。これらのうち、特に3,3’,4,4’−ビフェニルテトラカルボン酸二無水物が好ましい。
【0022】
また、p−フェニレン骨格の生成には、p−フェニレンジアミン又はその芳香環を低級アルキル基等で置換した化合物等が使用される。ジフェニルエーテル骨格の生成には、4,4’−ジアミノジフェニルエーテル、3,3’−ジアミノジフェニルエーテル又はこれらの芳香環を低級アルキル基等で置換した化合物が使用される。
【0023】
上記のうち、特に好ましい組合せとしては、外層を形成するポリイミド系樹脂が3,3’,4,4’−ビフェニルテトラカルボン酸二無水物とp−フェニレンジアミンとの重合体であり、内層を形成するポリイミド系樹脂が3,3’,4,4’−ビフェニルテトラカルボン酸二無水物とp−フェニレンジアミンと4,4’−ジアミノジフェニルエーテルとの共重合体の場合である。
【0024】
本発明のポリイミド系樹脂は、上記したテトラカルボン酸二無水物等とジアミン成分とを略等モルで有機溶媒中で重合反応させてポリアミド酸を得た後、これをイミド転化することで製造できる。
【0025】
反応溶媒としても適宜なものを用いうるが、溶解性などの点により極性溶媒が好ましく用いうる。ちなみにその極性溶媒の例としては、N,N−ジアルキルアミド類が有用で有り、例えばこれの低分子量のものであるN,N−ジメチルホルムアミド、N,N−ジメチルアセトアミド等があげられる。これらは、蒸発、置換または拡散によりポリアミド酸およびポリアミド酸成形品から容易に除去することができる。また、上記以外の有機極性溶媒として、N,N−ジエチルホルムアミド、N,N−ジエチルアセトアミド、N,N−ジメチルメトキシアセトアミド、ジメチルスルホキシド、ヘキサメチルホスホルトリアミド、N−メチル−2−ピロリドン、ピリジン、ジメチルスルホキシド、テトラメチレンスルホン、ジメチルテトラメチレンスルホン等が挙げられる。これらは単独で使用してもよいし、併せて用いても差し支えない。さらに、上記有機極性溶媒にクレゾール、フェノール、キシレノール等のフェノール類、ベンゾニトリル、ジオキサン、ブチロラクトン、キシレン、シタロヘキサン、ヘキサン、ベンゼン、トルエン等を単独でもしくは併せて混合することもできるが、水の添加は好ましくない。すなわち、水の存在によってポリイミド酸が加水分解して低分子量化刷るため、ポリアミド酸の合成は実質上無水条件下で行うのが好ましい。
【0026】
上記のテトラカルボン酸二無水物(a)とジアミン(b)とを有機極性溶媒中で反応させることによりポリアミド酸が得られる。その際のモノマー濃度「溶媒中における(a)+(b)の濃度」は、種 の条件に応じて設定されるが、通常、5〜30重量%(以下「%」と略す)である。また、反応温度は80℃以下に設定することが好ましく、特に好ましくは5〜50℃であり、反応時間は約0.5〜10時間である。
【0027】
このようにして酸二無水物成分とジアミン成分とを有機極性溶媒中で反応させることによりポリアミド酸が生成し、その反応の進行に伴い溶液粘度が上昇する。この発明においては導電性物質を含有するポリアミド酸溶液のB型粘度計における25℃の粘度は10〜10000PSに調整し用いうる。
【0028】
表面抵抗率の調整には、導電性物質が配合されるが、導電性物質としては、例えばケッチンブラックやアセチレンブラックの如きカーボンブラック、アルミニウムやニッケルの如き金属、酸化錫の如き酸化金属化合物やチタン酸カリウム等の導電性ないし半導電性粉末、あるいはポリアニリンやポリアセチレンの如き導電ポリマーなどの適宜なものの1種又は2種以上を用いることができ、その種類について特に限定はない。
【0029】
用いる導電物質の平均粒径については、特に限定はなく、偏在による電気特性のバラツキを制御する点などにより粒径の小さいものが好ましく用いうる。かかる点により一般には、一次粒子に基づいて5μm以下、就中3μm以下、特に0. 01μm〜1μmの平均粒径のものが好ましく用いうる。
【0030】
導電物質の使用量は、前記した電気特性の達成性などの点により、その種類や粒径や分散性などに応じて適宜決定しうる。一般には、ポリイミドフィルムにおける強度等の機械特性の低下防止などの点により、ポリイミド(固形分)100重量部あたり、50重量部、特に3〜30重量部の使用量が好ましい。なお、ポリイミドフィルムにおける前記した強度等の機械特性維持などの点により導電物質の使用量は少ないほど好ましく、その少ない使用量で前記した電気特性を達成する点により、ケッチンブラック等のカーボンブラックなどが好適に用いうる。なお、カーボンブラックの使用量が多くなるにつれ線膨張係数が大きくなるため、当該使用量に応じて、外層又は内層のポリイミド系樹脂の種類等を変えるのが有効となる。
【0031】
ポリイミド系樹脂中への導電物質の配合は、例えば上記したポリアミド酸を調整する際にその溶液にプラネタリミキサーやビーズミルや3本ロール等の適宜な分散機にて導電性物質を混合分散して配合し、それをフィルム成形に供する方式などの適宜な方式にて行うことができる。なお、ポリアミド酸溶液を調整する際に導電性物質を配合する場合、均一分散による電気特性のバラツキ防止などの点により、先ず溶媒にボールミルや超音波等の適宜な方式で導電性物質を分散させた後、その分散液にテトラカルボン酸二無水物やその誘導体とジアミンを溶解させて重合処理に供する方式が好ましく適用することができる。
【0032】
本発明の半導電性ベルトは、前述の如きポリイミド系樹脂を主体とする外層と内層とを有し、少なくともその外層が導電性物質を含有するものであるが、内層にも導電性物質を含有してもよい。また、各層には導電性物質以外の添加剤を含有してもよい。また、外層と内層に加えて、本発明の趣旨を損なわない範囲でさらに多層化することもできる。
【0033】
半導電性ベルトの形成は、ベルトが無端ベルトである場合には、フィルム端の接着剤等を介した接着方式などの適宜な接続方式にて形成することもできるし、シームレスベルトとすることもできる。シームレスベルトは、重畳による厚さ変化がなく任意な部分を回転の開始位置とすることができて、回転開始位置の制御機構を省略できる利点などを有している。
【0034】
各層の形成は、例えば前述のポリアミド酸溶液を適宜な方式で展開し、その展開層を乾燥製膜してフィルム状に成形し、その成形物を加熱処理してポリアミド酸をイミドに転化する方法などにより行うことができる。外層と内層の積層は、これらの操作を繰り返すことで可能となるが、イミド転化以外の工程を繰り返した後、両層を同時にイミド転化させる方法が、各層の接着性の点から好ましい。
【0035】
シームレスベルトを形成する場合、例えばポリアミド酸溶液を円筒状金型の外周面に浸漬する方式や、内周面に塗布する方式や更に遠心する方式、或いは注形型に充填する方式などの適宜な方式でリング状に展開し、その展開層を乾燥製膜してベル卜形に成形し、その成形物を加熱処理してポリアミド酸をイミドに転化して型より回収する方法などの従来に準じた適宜な方法により行うことができる(特開昭61−95361号公報、特開昭64−22514号公報、特開平3−180309号公報等)。シームレスベルトの形成に際しては、型の離型処理や脱泡処理などの適宜な処理を施すことができる。
【0036】
本発明の半導電性ベルトをシームレスベルトとして形成する場合、例えば、前記の如き成分を有する各層の原料液を用い、外層と内層を順次形成して筒状体とした後、イミド転化を行えばよい。筒状体の形成は、例えば一層目の原料液を円筒面を有する金型の内周面や外周面に前記塗布方式にて筒状に展開して,その展開層を乾燥製膜し、さらに二層目の原料液を用いて同様に展開・乾燥等すればよい。
【0037】
本発明の半導電性ベルトは、外層と内層との50〜400℃における線膨張係数の差が30(ppm/℃)以下、好ましくは20(ppm/℃)以下であり、外層より内層の線膨張係数が大きいことを特徴とする。30(ppm/℃)を超えると、初期や使用中のベルトの外側への反りによって、印刷シートが反りに追従してベルト上で反って転写ムラや画像不良を生じるといった問題、またベルト端部のベルト位置検出用のマーク、フラグ等がうまく読み取れず装置自体が止まってしまうという問題点が生じる。
【0038】
本発明の半導電性ベルトの厚みは、半導電性ベルトの使用目的などに応じて適宜決定しうる。一般には強度や柔軟性等の機械特性などの点により、5〜500μm、就中10〜300μm、特に20〜200μmの厚さとされる。また、外層と内層との厚みの比率(外層/内層)は、2/4〜3/4が好ましい。
【0039】
本発明の半導電性は、電子写真記録装置の中間転写ベルト又は転写搬送用ベルトとして、転写特性や除電特性、画像特性を好適に発現する上で、外層の表面抵抗率が109 〜1016Ω/□であり、内層の表面抵抗率が1011Ω/□以上で外層より高い値を有することが好ましい。
【0040】
本発明の半導電性ベルトは、特に反りが小さく、機械特性や電気特性に優れることにより電子写真記録装置におる像の中間転写用の中間転写ベルトや、中間転写を兼ねた印刷シートの転写搬送用の転写搬送ベルトなどとして好ましく用いうる。電子写真記録装置としては、電子写真記録方式を採用する複写機、プリンター、FAXなど何れでもよい。本発明によれば、ポリイミドフィルムの強度や難伸長性の優れた機械特性を活かすことができ、環境安定性に優れて外部環境により電気特性が変動しにくく、特に、初期にベルトの反り量が小さくかつ外側に反らず、しかも長期間にわたって反り量を小さく維持することができるため、トナー像の変形や転写ムラなく良好な画像を記録シートに転写でき、かつ搬送の記録シートを良好に搬送できる性能を長期に持続することができる。
【0041】
【実施例】
以下、本発明の構成と効果を具体的に示す実施例等について説明する。
【0042】
実施例1
1800gのN−メチルー2−ピロリドン(NMP)中に乾燥したカーボンブラック(三菱化学社製,MA−100,粒子径22nm)84.18g(ポリイミド固形分に対し23重量%)をボールミルで6時間室温で混合した。このNMPに3,3’,4,4’−ビフェニルテトラカルボン酸二無水物(BPDA)294.2gとp−フェニレンジアミン(PDA)108.2gを溶解し、窒素雰囲気中において、室温で6時間攪拌しながら反応させて、1100ポイズのカーボンブラック分散ポリアミド酸溶液を得た(外層用カーボンブラック分散ポリアミド酸溶液)。
【0043】
同様にして1537gのN−メチル−2−ピロリドン(NMP)にBPDA294.2gとPDA86.4gと4,4’−ジアミノジフェニルエーテル(DDE)40.0gをモル比PDA/DDE=8/2溶解し、窒素雰囲気中において、室温で6時間攪拌しながら反応させて、1100ポイズのポリアミド酸溶液を得た(内層用ポリアミド酸溶液)。
【0044】
内径400mm、長さ500mmの内面に上記カーボンブラック分散ポリアミド酸溶液をディスペンサーで厚さ170μmに塗布後、1500rpmで10分間回転させ均一な塗布面を得た。次に、250rpmで回転させながら、金型の外側より60℃の熱風を30分間あてた後、150℃で60分間加熱し、次いで常温に冷却した。次にこの状態で得られたカーボンブラック分散ポリイミド前駆体の内面に、上記のポリアミド酸溶液を同様に塗布、乾燥し、その後300℃まで2℃/分の昇温速度で昇温し、更に300℃で30分間加熱し、溶媒の除去、脱水閉環水の除去、及びイミド転化を行った。その後室温に戻し、金型から剥離し、目的とする外層に半導電性を有する半導電性ベルトを得た。このものの総厚さは75μmであり、外層の厚さが32μm、内層が43μmであった。
【0045】
比較例1
実施例1の内層用ワニスのモル比PDA/DDEを10/0とする以外は、実施例1と同じ操作を行い厚さ75μmのシームレスの半導電性ベルトを得た。
【0046】
評価試験
(1)表面抵抗率
ハイレスタIP、MCP−HT260(三菱油化社製、プローブ:HR−100)にて印加電圧500V、1分後、測定条件25℃、60%RHでの表面抵抗率を外層と内層について調べた。
【0047】
(2)引っ張り強度、伸び
JIS K7127による帯状試験片(全長150mm/幅10mm)について引張り強度(速度50mm/分)、及びその破断時の伸びを調べた。
【0048】
(3)線膨張係数
前記の実施例及び比較例に対応する外層と内槽を、別々に同一の条件で形成し、各層について、TMA/SS6000(セイコーインスルメンツ製)装置にて引張り測定、昇温速度10℃/分、荷重2g、25〜400℃の温度範囲で測定した。その結果から、50〜400℃における線膨張係数(平均値)を求めた。
【0049】
(4)反り量
上下に平行に配置した2本のφ30のロールに、ベルトをたるみなく架け渡し、そのロールとロールの中央部において、対向するベルトの端部間の距離を測定した(30mmで反り無し)。測定するベルトとしては、製造後使用せずに 時間放置したもの(初期)と、下記(5)の評価において、150万枚のテスト後に装置から取り出したもの(テスト後)を用いた。
【0050】
(5)画像転写性、紙搬送性
得られた半導電性ベルトを市販の複写機に、中間転写兼用の記録シート搬送ベルトとして組み込み、150万枚のテスト中で全て良好な転写による鮮明で正確な画像が得られた場合、及び紙の搬送不良を生じなかった場合を良好、転写不良や不鮮明な画像、不正確な画像が得られた場合、及び紙の搬送不良を生じた場合を不良とした。
【0051】
以上の評価結果を表1に示す。
【0052】
【表1】
表1の結果が示すように、比較例1の内層と外層の比較から、導電性物質の添加による外層の線膨張係数の増加により、ベルトの外側へ反りが生じていることが判る。また、実施例1のように、ポリイミド系樹脂の種類を変えて、外層より内層の線膨張係数が幾分か大きくなるように制御することで、初期にベルトの反り量が小さくかつ外側に反らず、しかも長期間にわたって反り量を小さく維持できるようになる。[0001]
BACKGROUND OF THE INVENTION
The present invention has an outer layer and an inner layer mainly composed of a polyimide resin, and is used for an intermediate transfer belt for an image in an electrophotographic recording apparatus, a transfer conveyance belt for conveying a printing sheet that also serves as an intermediate transfer, and the like. Concerning the belt.
[0002]
[Prior art]
Conventionally, as a semiconductive belt that can be used for an intermediate transfer belt or the like of an electrophotographic recording apparatus, a conductive film is blended with a polyimide film to have a volume resistivity of 1 to 10 13 Ω · cm. (JP-A-5-77252). This is because a polyimide film is used, so that a semiconductive belt using a film made of vinylidene fluoride, an ethylene / tetrafluoroethylene copolymer, polycarbonate or the like (Japanese Patent Laid-Open Nos. 5-200904 and 5-95). No. 345368, JP-A-6-95521), that is, lack of strength and mechanical properties such as friction and wear, causing cracks at the belt end or the like, and deforming and transferring due to a load during driving. It overcomes problems such as image deformation.
[0003]
In addition, a method has been proposed in which a semiconductive belt made of polyimide is formed of a plurality of layers, and electrical characteristics and mechanical characteristics are improved by individually adjusting the electrical characteristics of each layer. For example, Japanese Patent Laid-Open No. 7-156287 discloses that the inner layer and the outer layer are made of the same polyimide resin, and the amount of the conductive material added to the outer layer is increased to increase the conductivity of the outer layer. .
[0004]
[Problems to be solved by the invention]
However, it has been found that, in such a multilayer belt, when the amount of conductive material (for example, carbon black) added to the outer layer is increased, the multilayer belt to be manufactured tends to warp outward. When a multilayer belt having such a warp is used for an intermediate transfer belt or a transfer conveyance belt, the print sheet follows the warp due to the warp to the outside, causing a transfer unevenness and an image defect. There was also a problem that the belt position detection marks and flags at the belt end could not be read well and the device itself stopped. Therefore, in the intermediate transfer belt and the transfer conveyance belt, it is necessary to maintain a state in which the belt is less warped not only in the initial stage but also in a long-term use.
[0005]
SUMMARY OF THE INVENTION An object of the present invention is to provide a semiconductive belt in which the amount of warpage of the belt is small at the initial stage and does not warp outward, and can be kept small over a long period of time.
[0006]
[Means for Solving the Problems]
In order to achieve the above object, the present inventors have conducted intensive research on the cause of warping and countermeasures thereof, and the main cause of warping is due to the change in the linear expansion coefficient of each layer due to the addition of a conductive substance. In addition, the inventors have found that the linear expansion coefficient can be controlled and the amount of warpage of the belt can be adjusted by changing the type of polyimide resin, and the present invention has been completed.
[0007]
That is, each of the semiconductive belts of the present invention is a semiconductive belt having an outer layer and an inner layer mainly composed of a polyimide resin, and at least the outer layer contains a conductive substance, and the outer layer and the inner layer The difference in linear expansion coefficient at 50 to 400 ° C. is 30 (ppm / ° C.) or less, and the linear expansion coefficient of the inner layer is larger than that of the outer layer.
[0008]
In the above, the polyimide resin forming the outer layer is a polymer formed by imide bonding of a wholly aromatic skeleton that is a tetracarboxylic acid residue and a p-phenylene skeleton that is a diamine residue, and forms the inner layer. The polyimide-based resin is composed of an A component formed by imide bonding of a wholly aromatic skeleton that is a tetracarboxylic acid residue and a p-phenylene skeleton that is a diamine residue, and a wholly aromatic skeleton that is a tetracarboxylic acid residue. A copolymer obtained by repeating a B component formed by imide bonding with a diphenyl ether skeleton which is a diamine residue, and / or a polymer having the A component as a repeating unit and a polymer having the B component as a repeating unit; It is preferable that it is a blend formed by mixing.
[0009]
At that time, the polyimide resin forming the outer layer is a polymer of 3,3 ′, 4,4′-biphenyltetracarboxylic dianhydride and p-phenylenediamine, and the polyimide resin forming the inner layer is A copolymer of 3,3 ′, 4,4′-biphenyltetracarboxylic dianhydride, p-phenylenediamine and 4,4′-diaminodiphenyl ether is preferable.
[0010]
The outer layer preferably has a surface resistivity of 10 9 to 10 16 Ω / □, and the inner layer preferably has a surface resistivity of 10 11 Ω / □ or higher and a higher value than the outer layer. Furthermore, the conductive material is preferably carbon black.
[0011]
[Function and effect]
According to the present invention, as shown in the results of the examples, the main cause of warping is due to the change in the linear expansion coefficient of each layer due to the addition of a conductive substance, so the type of polyimide resin etc. can be changed from the outer layer. By controlling the linear expansion coefficient of the inner layer to be somewhat larger, the amount of warpage of the belt is small at the initial stage and does not warp to the outside, and the amount of warpage can be kept small for a long period of time.
[0012]
The polyimide resin forming the outer layer is a polymer formed by imide bonding of a wholly aromatic skeleton that is a tetracarboxylic acid residue and a p-phenylene skeleton that is a diamine residue, and the polyimide resin that forms the inner layer The resin is a copolymer obtained by mixing the above-described A component and B component, and / or a polymer comprising the A component as a repeating unit and a polymer containing the B component as a repeating unit. In the case of a body, by adding the B component as a repeating unit or a mixed component, the linear expansion coefficient of the resin can be increased without reducing the mechanical strength of the belt, and the amount of warpage is reduced as described above. An effect can be acquired more suitably.
[0013]
The polyimide resin forming the outer layer is a polymer of 3,3 ′, 4,4′-biphenyltetracarboxylic dianhydride and p-phenylenediamine, and the polyimide resin forming the inner layer is 3 , 3 ′, 4,4′-biphenyltetracarboxylic dianhydride, p-phenylenediamine, and 4,4′-diaminodiphenyl ether, a polymer frequently used in semiconductive belts is used. While using, by using 4,4′-diaminodiphenyl ether residue as a copolymerization component, the linear expansion coefficient of the resin is increased without reducing the mechanical strength of the belt, and the amount of warping as described above is increased. The reduction effect can be obtained more suitably.
[0014]
Further, when the outer layer has a surface resistivity of 10 9 to 10 16 Ω / □ and the inner layer has a surface resistivity of 10 11 Ω / □ or more and a higher value than the outer layer, transfer characteristics, static elimination characteristics, image Although the characteristics can be suitably expressed, the present invention that exhibits the above-described effects is particularly effective because the problem of warping as described above is likely to occur due to the difference in the amount of conductive material added.
[0015]
When the conductive material is carbon black, the electrical characteristics can be suitably controlled, but the linear expansion coefficient greatly changes due to the difference in the amount added, and the problem of warping as described above is likely to occur. The present invention that exhibits the effect is particularly effective.
[0016]
DETAILED DESCRIPTION OF THE INVENTION
Embodiments of the present invention will be described below.
[0017]
Each of the semiconductive belts of the present invention has an outer layer and an inner layer mainly composed of a polyimide resin, and at least the outer layer contains a conductive substance, and the linear expansion coefficient between the outer layer and the inner layer has a predetermined relationship. It is characterized by having. In the present invention, the linear expansion coefficient may be adjusted according to the type and content of the conductive material and other additives, but it is preferable to adjust the linear expansion coefficient by changing the type of the polyimide resin. That is, as the semiconductive belt of the present invention, two adjacent layers are formed by using different polyimide resins, so that the difference in linear expansion coefficient between the two layers can be reduced by using any one of the polyimide resins. It is preferable that the amount is reduced as compared with the case of using both layers.
[0018]
In particular, in at least one of the outer layer and the inner layer, a copolymer composed of repeating units (or monomer components) having different linear expansion coefficients is used in a homopolymer, and the linear expansion coefficient is changed by changing the copolymerization ratio. Is preferably adjusted. In that case, it is more preferable that the outer layer and the inner layer have a common repeating unit from the viewpoint of the adhesive strength of both layers. Moreover, you may use the blend body which has the same mixing component instead of using a copolymer. The polyimide resin may contain a copolymer component or a mixed component other than the imide component as long as the physical properties of the polyimide resin are not impaired.
[0019]
Specifically, for example, as a polyimide resin forming the outer layer, a polymer in which a wholly aromatic skeleton that is a tetracarboxylic acid residue and a p-phenylene skeleton that is a diamine residue are imide-bonded is used, and the inner layer is As the polyimide resin to be formed, an A component formed by imide bonding of a wholly aromatic skeleton that is a tetracarboxylic acid residue and a p-phenylene skeleton that is a diamine residue, and a wholly aromatic skeleton that is a tetracarboxylic acid residue And a B component formed by repeating an imide bond with a diphenyl ether skeleton that is a diamine residue, and / or a polymer having the A component as a repeating unit and a polymer having the B component as a repeating unit A blend obtained by mixing the above and the like may be used.
[0020]
At that time, from the viewpoint of maintaining the tensile modulus of the resulting polyimide resin, the copolymerization ratio or mixing ratio of the component B is preferably 50% or less in terms of molar ratio.
[0021]
Tetracarboxylic dianhydride or the like is used for the formation of the wholly aromatic skeleton. For example, pyromellitic dianhydride (PMDA), 3,3 ′, 4,4′-biphenyltetracarboxylic dianhydride (BPDA), 2,3,6,7-naphthalenetetracarboxylic dianhydride, 1,2,5,6-naphthalenetetracarboxylic dianhydride, 1,4,5,8-naphthalenetetracarboxylic dianhydride Or a compound in which these aromatic rings are substituted with a lower alkyl group or the like. Of these, 3,3 ′, 4,4′-biphenyltetracarboxylic dianhydride is particularly preferable.
[0022]
For the formation of the p-phenylene skeleton, p-phenylenediamine or a compound in which the aromatic ring is substituted with a lower alkyl group or the like is used. For the formation of the diphenyl ether skeleton, 4,4′-diaminodiphenyl ether, 3,3′-diaminodiphenyl ether, or a compound in which these aromatic rings are substituted with a lower alkyl group or the like is used.
[0023]
Among the above, as a particularly preferable combination, the polyimide resin forming the outer layer is a polymer of 3,3 ′, 4,4′-biphenyltetracarboxylic dianhydride and p-phenylenediamine, and forms the inner layer. This is the case where the polyimide resin to be used is a copolymer of 3,3 ′, 4,4′-biphenyltetracarboxylic dianhydride, p-phenylenediamine and 4,4′-diaminodiphenyl ether.
[0024]
The polyimide resin of the present invention can be produced by polymerizing the above-mentioned tetracarboxylic dianhydride and the like and the diamine component in an organic solvent in an approximately equimolar amount to obtain a polyamic acid, which is then converted into an imide. .
[0025]
Although a suitable reaction solvent can be used, a polar solvent can be preferably used in view of solubility. Incidentally, as an example of the polar solvent, N, N-dialkylamides are useful, and examples thereof include N, N-dimethylformamide and N, N-dimethylacetamide, which have low molecular weight. They can be easily removed from the polyamic acid and the polyamic acid molded article by evaporation, displacement or diffusion. Other organic polar solvents include N, N-diethylformamide, N, N-diethylacetamide, N, N-dimethylmethoxyacetamide, dimethylsulfoxide, hexamethylphosphortriamide, N-methyl-2-pyrrolidone, pyridine Dimethyl sulfoxide, tetramethylene sulfone, dimethyl tetramethylene sulfone and the like. These may be used alone or in combination. In addition, phenols such as cresol, phenol, xylenol, benzonitrile, dioxane, butyrolactone, xylene, citalohexane, hexane, benzene, toluene, etc. can be mixed singly or in combination with the above organic polar solvent. Is not preferred. That is, since the polyamic acid is hydrolyzed by the presence of water to reduce the molecular weight, the polyamic acid is preferably synthesized under substantially anhydrous conditions.
[0026]
A polyamic acid is obtained by reacting the tetracarboxylic dianhydride (a) and the diamine (b) in an organic polar solvent. In this case, the monomer concentration “concentration of (a) + (b) in the solvent” is set according to the conditions of the seed, but is usually 5 to 30% by weight (hereinafter abbreviated as “%”). The reaction temperature is preferably set to 80 ° C. or less, particularly preferably 5 to 50 ° C., and the reaction time is about 0.5 to 10 hours.
[0027]
Thus, polyamic acid is produced | generated by making an acid dianhydride component and a diamine component react in an organic polar solvent, and solution viscosity rises with the progress of the reaction. In this invention, the 25 degreeC viscosity in the B-type viscosity meter of the polyamic acid solution containing an electroconductive substance can be adjusted and used for 10-10000PS.
[0028]
For adjusting the surface resistivity, a conductive substance is blended. Examples of the conductive substance include carbon black such as kettin black and acetylene black, metal such as aluminum and nickel, metal oxide compound such as tin oxide, and titanium. One or two or more suitable materials such as conductive or semiconductive powders such as potassium acid or conductive polymers such as polyaniline and polyacetylene can be used, and the type is not particularly limited.
[0029]
The average particle size of the conductive material to be used is not particularly limited, and those having a small particle size can be preferably used due to the point of controlling variation in electrical characteristics due to uneven distribution. In general, particles having an average particle diameter of 5 μm or less, especially 3 μm or less, particularly 0.01 μm to 1 μm based on primary particles can be preferably used.
[0030]
The amount of the conductive material used can be appropriately determined according to the type, particle size, dispersibility, and the like, in view of the above-described achievement of electrical characteristics. Generally, the use amount of 50 parts by weight, particularly 3 to 30 parts by weight per 100 parts by weight of polyimide (solid content) is preferable from the viewpoint of preventing deterioration of mechanical properties such as strength in the polyimide film. In addition, the amount of the conductive material used is preferably as small as possible in terms of maintaining the mechanical properties such as strength as described above in the polyimide film, and carbon black such as kettin black is preferable in terms of achieving the electrical properties described above with the small amount of use. It can be suitably used. Since the linear expansion coefficient increases as the amount of carbon black used increases, it is effective to change the type of polyimide resin in the outer layer or the inner layer depending on the amount used.
[0031]
For example, when preparing the above-mentioned polyamic acid, the conductive material is mixed and dispersed in the polyimide resin by mixing and dispersing the conductive material with an appropriate disperser such as a planetary mixer, a bead mill, or a three roll. And it can be performed by an appropriate method such as a method of subjecting it to film forming. In addition, when blending the conductive material when preparing the polyamic acid solution, first, the conductive material is first dispersed in a solvent by an appropriate method such as ball milling or ultrasonic waves in order to prevent variation in electrical characteristics due to uniform dispersion. Thereafter, a method in which tetracarboxylic dianhydride or a derivative thereof and diamine are dissolved in the dispersion and subjected to a polymerization treatment can be preferably applied.
[0032]
The semiconductive belt of the present invention has an outer layer and an inner layer mainly composed of a polyimide resin as described above, and at least the outer layer contains a conductive substance, but the inner layer also contains a conductive substance. May be. Each layer may contain an additive other than the conductive substance. Further, in addition to the outer layer and the inner layer, the number of layers can be further increased as long as the gist of the present invention is not impaired.
[0033]
When the belt is an endless belt, the semiconductive belt can be formed by an appropriate connection method such as an adhesive method using an adhesive at the film end or a seamless belt. it can. The seamless belt has an advantage that there is no change in thickness due to superposition, an arbitrary portion can be set as a rotation start position, and a control mechanism for the rotation start position can be omitted.
[0034]
The formation of each layer is, for example, a method in which the above-described polyamic acid solution is developed by an appropriate method, the developed layer is dried and formed into a film, and the molded product is heat-treated to convert the polyamic acid into an imide. Etc. Lamination of the outer layer and the inner layer is possible by repeating these operations. However, a method in which both layers are simultaneously converted to imide after repeating steps other than imide conversion is preferable from the viewpoint of adhesiveness of each layer.
[0035]
When forming a seamless belt, for example, an appropriate method such as a method in which a polyamic acid solution is immersed in the outer peripheral surface of a cylindrical mold, a method in which the polyamic acid solution is applied to the inner peripheral surface, a method in which centrifugation is further performed, or a method in which a casting mold is filled is used. According to the conventional method, such as a method of expanding the ring by a method, drying the formed layer into a bell-shaped shape, and heat-treating the molded product to convert the polyamic acid into an imide and recover it from the mold. It can be carried out by an appropriate method (Japanese Patent Laid-Open No. 61-95361, Japanese Patent Laid-Open No. 64-22514, Japanese Patent Laid-Open No. 3-180309, etc.). In forming the seamless belt, an appropriate treatment such as mold release treatment or defoaming treatment can be performed.
[0036]
When forming the semiconductive belt of the present invention as a seamless belt, for example, using the raw material liquid of each layer having the above-described components, forming an outer layer and an inner layer sequentially to form a cylindrical body, and then performing imide conversion Good. The cylindrical body is formed, for example, by spreading the first layer raw material liquid into a cylindrical shape on the inner peripheral surface or outer peripheral surface of a mold having a cylindrical surface by the above-mentioned coating method, and drying the formed layer. What is necessary is just to expand | deploy and dry similarly using the raw material liquid of a 2nd layer.
[0037]
The semiconductive belt of the present invention has a difference in linear expansion coefficient at 50 to 400 ° C. between the outer layer and the inner layer of 30 (ppm / ° C.) or less, preferably 20 (ppm / ° C.) or less. It is characterized by a large expansion coefficient. If it exceeds 30 (ppm / ° C.), the problem is that the printing sheet follows the warpage due to warping to the outside of the belt at the initial stage or in use, causing warping on the belt to cause transfer unevenness or image defects, and the end of the belt This causes a problem that the belt position detection mark, flag, etc. cannot be read well and the apparatus itself stops.
[0038]
The thickness of the semiconductive belt of the present invention can be appropriately determined according to the purpose of use of the semiconductive belt. In general, the thickness is 5 to 500 μm, especially 10 to 300 μm, especially 20 to 200 μm, in view of mechanical properties such as strength and flexibility. The ratio of the thickness of the outer layer to the inner layer (outer layer / inner layer) is preferably 2/4 to 3/4.
[0039]
The semiconductivity of the present invention is such that the surface resistivity of the outer layer is 10 9 to 10 16 in order to suitably exhibit transfer characteristics, static elimination characteristics, and image characteristics as an intermediate transfer belt or transfer conveyance belt of an electrophotographic recording apparatus. It is preferable that the surface resistivity of the inner layer is 10 11 Ω / □ or higher and higher than that of the outer layer.
[0040]
The semiconductive belt of the present invention has particularly low warpage and excellent mechanical and electrical characteristics, so that it can be used as an intermediate transfer belt for intermediate transfer of images in an electrophotographic recording apparatus, and for transfer conveyance of a printing sheet that also serves as an intermediate transfer. It can be preferably used as a transfer / conveying belt or the like. As the electrophotographic recording apparatus, any of a copying machine, a printer, a FAX, etc. that adopts an electrophotographic recording system may be used. According to the present invention, it is possible to take advantage of the mechanical properties of the polyimide film, such as excellent strength and difficult elongation, excellent environmental stability, and electrical characteristics are less likely to fluctuate depending on the external environment. Because it is small and does not warp outside, and the amount of warpage can be kept small over a long period of time, a good image can be transferred to the recording sheet without deformation of the toner image and transfer unevenness, and the transported recording sheet can be transported well. Performance that can be sustained for a long time.
[0041]
【Example】
Examples and the like specifically showing the configuration and effects of the present invention will be described below.
[0042]
Example 1
Carbon black (Mitsubishi Chemical Corporation, MA-100, particle size 22 nm) 84.18 g (23 wt% based on polyimide solid content) dried in 1800 g of N-methyl-2-pyrrolidone (NMP) was heated at room temperature for 6 hours. Mixed. In this NMP, 294.2 g of 3,3 ′, 4,4′-biphenyltetracarboxylic dianhydride (BPDA) and 108.2 g of p-phenylenediamine (PDA) were dissolved, and at room temperature for 6 hours in a nitrogen atmosphere. The mixture was reacted with stirring to obtain a 1100 poise carbon black-dispersed polyamic acid solution (carbon black-dispersed polyamic acid solution for outer layers).
[0043]
Similarly, 294.2 g of BPDA, 86.4 g of PDA and 40.0 g of 4,4′-diaminodiphenyl ether (DDE) were dissolved in 1537 g of N-methyl-2-pyrrolidone (NMP), and the molar ratio PDA / DDE = 8/2 was dissolved. The reaction was carried out in a nitrogen atmosphere with stirring for 6 hours at room temperature to obtain a 1100 poise polyamic acid solution (polyamide acid solution for the inner layer).
[0044]
The carbon black-dispersed polyamic acid solution was applied to an inner surface having an inner diameter of 400 mm and a length of 500 mm with a dispenser to a thickness of 170 μm, and then rotated at 1500 rpm for 10 minutes to obtain a uniform coated surface. Next, while rotating at 250 rpm, hot air of 60 ° C. was applied from the outside of the mold for 30 minutes, heated at 150 ° C. for 60 minutes, and then cooled to room temperature. Next, the above polyamic acid solution is similarly applied to the inner surface of the carbon black-dispersed polyimide precursor obtained in this state, dried, and then heated to 300 ° C. at a rate of 2 ° C./min. Heating was performed at 30 ° C. for 30 minutes to remove the solvent, dehydrated ring-closing water, and imide conversion. Thereafter, the temperature was returned to room temperature, and the mold was peeled from the mold to obtain a semiconductive belt having semiconductivity in the target outer layer. The total thickness of this was 75 μm, the thickness of the outer layer was 32 μm, and the inner layer was 43 μm.
[0045]
Comparative Example 1
A seamless semiconductive belt having a thickness of 75 μm was obtained by performing the same operation as in Example 1 except that the molar ratio PDA / DDE of the varnish for inner layer of Example 1 was 10/0.
[0046]
Evaluation test (1) Surface resistivity Hiresta IP, MCP-HT260 (manufactured by Mitsubishi Yuka Co., Ltd., probe: HR-100), applied voltage 500 V, 1 minute later, surface resistivity at measurement conditions 25 ° C., 60% RH Were examined for the outer and inner layers.
[0047]
(2) Tensile strength and elongation The strip strength test piece (full length 150 mm / width 10 mm) according to JIS K7127 was examined for tensile strength (speed 50 mm / min) and elongation at break.
[0048]
(3) Coefficient of linear expansion The outer layer and the inner tank corresponding to the above examples and comparative examples are separately formed under the same conditions, and for each layer, tensile measurement is performed with a TMA / SS6000 (manufactured by Seiko Instruments) device. Measurement was performed at a temperature rising rate of 10 ° C./min, a load of 2 g, and a temperature range of 25 to 400 ° C. From the result, the linear expansion coefficient (average value) in 50-400 degreeC was calculated | required.
[0049]
(4) Warpage amount The belt was passed over two φ30 rolls arranged in parallel vertically, and the distance between the ends of the opposite belts was measured at the center of the roll and the roll (at 30 mm). No warping). As a belt to be measured, a belt that was not used after production (initial) and a belt taken out from the apparatus after 1.5 million tests in the evaluation (5) (after the test) were used.
[0050]
(5) Image transfer property, paper transportability The obtained semiconductive belt is incorporated into a commercially available copying machine as a recording sheet transport belt that is also used as an intermediate transfer. If a good image is obtained, or if paper conveyance failure does not occur, it is good, if transfer failure or unclear image, inaccurate image is obtained, or if paper conveyance failure occurs did.
[0051]
The above evaluation results are shown in Table 1.
[0052]
[Table 1]
As shown by the results in Table 1, it can be seen from the comparison between the inner layer and the outer layer of Comparative Example 1 that the warpage of the outer side of the belt is caused by the increase in the linear expansion coefficient of the outer layer due to the addition of the conductive material. In addition, as in Example 1, the type of polyimide resin is changed so that the linear expansion coefficient of the inner layer is somewhat larger than that of the outer layer. In addition, the amount of warpage can be kept small over a long period of time.
Claims (3)
少なくとも前記外層は導電性物質を含有しており、この外層と前記内層との50〜400℃における線膨張係数の差が30(ppm/℃)以下であり、前記外層より前記内層の線膨張係数が大きく、
前記外層を形成するポリイミド系樹脂は、3,3’,4,4’−ビフェニルテトラカルボン酸二無水物とp−フェニレンジアミンとの重合体であり、前記内層を形成するポリイミド系樹脂は3,3’,4,4’−ビフェニルテトラカルボン酸二無水物とp−フェニレンジアミンと4,4’−ジアミノジフェニルエーテルとの共重合体である半導電性ベルト。In each of the semiconductive belts having an outer layer and an inner layer mainly composed of a polyimide resin,
At least the outer layer contains a conductive substance, and the difference in linear expansion coefficient at 50 to 400 ° C. between the outer layer and the inner layer is 30 (ppm / ° C.) or less, and the linear expansion coefficient of the inner layer from the outer layer It is rather large,
The polyimide resin forming the outer layer is a polymer of 3,3 ′, 4,4′-biphenyltetracarboxylic dianhydride and p-phenylenediamine, and the polyimide resin forming the inner layer is 3, A semiconductive belt which is a copolymer of 3 ', 4,4'-biphenyltetracarboxylic dianhydride, p-phenylenediamine and 4,4'-diaminodiphenyl ether .
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2000349394A JP4396959B2 (en) | 2000-11-16 | 2000-11-16 | Semi-conductive belt |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2000349394A JP4396959B2 (en) | 2000-11-16 | 2000-11-16 | Semi-conductive belt |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2002156835A JP2002156835A (en) | 2002-05-31 |
JP4396959B2 true JP4396959B2 (en) | 2010-01-13 |
Family
ID=18822814
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2000349394A Expired - Fee Related JP4396959B2 (en) | 2000-11-16 | 2000-11-16 | Semi-conductive belt |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4396959B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8718520B2 (en) | 2011-07-01 | 2014-05-06 | Ricoh Company, Ltd. | Intermediate transfer belt and image forming apparatus |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005309053A (en) * | 2004-04-21 | 2005-11-04 | Fuji Xerox Co Ltd | Double layer intermediate transfer body |
WO2007000821A1 (en) * | 2005-06-29 | 2007-01-04 | Konica Minolta Business Technologies, Inc. | Intermediate transfer belt |
JP4600871B2 (en) | 2008-09-04 | 2010-12-22 | 富士ゼロックス株式会社 | Warpage correction tool, warpage correction apparatus, image forming apparatus, and warpage correction processing program |
JP6079275B2 (en) * | 2013-02-01 | 2017-02-15 | 株式会社リコー | Intermediate transfer belt and image forming apparatus using the same |
JP2020175545A (en) * | 2019-04-16 | 2020-10-29 | コニカミノルタ株式会社 | Intermediate transfer body, method for manufacturing intermediate transfer body, and image forming device |
-
2000
- 2000-11-16 JP JP2000349394A patent/JP4396959B2/en not_active Expired - Fee Related
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8718520B2 (en) | 2011-07-01 | 2014-05-06 | Ricoh Company, Ltd. | Intermediate transfer belt and image forming apparatus |
Also Published As
Publication number | Publication date |
---|---|
JP2002156835A (en) | 2002-05-31 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP1014217B1 (en) | Semiconductive belt | |
JP4396959B2 (en) | Semi-conductive belt | |
JP2010085450A (en) | Seamless belt and method of manufacturing the same | |
JP4263825B2 (en) | Semi-conductive belt for intermediate transfer and method for producing the same | |
JP5428172B2 (en) | Method for producing polyimide film | |
JP2006267572A (en) | Semiconductive seamless belt | |
JP2002162836A (en) | Electrically semiconductive seamless belt | |
JP2002341673A (en) | Semiconductive belt | |
JP2006133510A (en) | Semiconductive polyimide belt and its production method | |
JP5220576B2 (en) | Polyimide resin belt and manufacturing method thereof | |
JP5209685B2 (en) | Seamless belt and manufacturing method thereof | |
EP1721924A1 (en) | Endless tubular polyimide film | |
JP5121426B2 (en) | Semiconductive copolymer polyimide belt, method for producing the same, and intermediate transfer belt | |
JP2002365927A (en) | Electrically semiconductive belt and manufacturing method therefor | |
JP2004302094A (en) | Semiconductive belt and its manufacturing method | |
JP2001022189A (en) | Electrically semiconductive belt | |
JP2003131463A (en) | Electrically semiconductive belt | |
JP2000305377A (en) | Electrically semiconductive belt and its production | |
JP4132419B2 (en) | Semi-conductive belt | |
KR20130141928A (en) | Seamless belt | |
JP4473291B2 (en) | Semi-conductive belt | |
US9250547B2 (en) | Intermediate transfer members and processes | |
JP2004099709A (en) | Belt made of polyimide resin | |
JP2003345084A (en) | Polyimide resin belt | |
JP2003255726A (en) | Semiconductor belt and its manufacturing method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20061106 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20061225 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20090721 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20090804 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20090924 |
|
RD03 | Notification of appointment of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7423 Effective date: 20090924 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20091015 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20091016 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20121030 Year of fee payment: 3 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20121030 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20151030 Year of fee payment: 6 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
LAPS | Cancellation because of no payment of annual fees |