JP4392412B2 - Channel forming device and natural circulation boiling water reactor - Google Patents

Channel forming device and natural circulation boiling water reactor Download PDF

Info

Publication number
JP4392412B2
JP4392412B2 JP2006053019A JP2006053019A JP4392412B2 JP 4392412 B2 JP4392412 B2 JP 4392412B2 JP 2006053019 A JP2006053019 A JP 2006053019A JP 2006053019 A JP2006053019 A JP 2006053019A JP 4392412 B2 JP4392412 B2 JP 4392412B2
Authority
JP
Japan
Prior art keywords
flow path
coolant
core
lattice
flow
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2006053019A
Other languages
Japanese (ja)
Other versions
JP2007232497A (en
Inventor
健児 金森
椿  正昭
文仁 廣川
雅哉 大塚
志郎 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi GE Nuclear Energy Ltd
Original Assignee
Hitachi GE Nuclear Energy Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi GE Nuclear Energy Ltd filed Critical Hitachi GE Nuclear Energy Ltd
Priority to JP2006053019A priority Critical patent/JP4392412B2/en
Publication of JP2007232497A publication Critical patent/JP2007232497A/en
Application granted granted Critical
Publication of JP4392412B2 publication Critical patent/JP4392412B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Landscapes

  • Fuel Cell (AREA)
  • Monitoring And Testing Of Nuclear Reactors (AREA)

Description

本発明は、自然循環型沸騰水型原子炉に関し、特に、原子炉のチムニ内の流路形成装置に関する。   The present invention relates to a natural circulation boiling water reactor, and more particularly to a flow path forming device in a chimney of a nuclear reactor.

自然循環型沸騰水型原子炉では、原子炉圧力容器内の冷却材の循環流路を、炉心の上部に設けた円筒状のチムニ胴と炉心の周囲を囲う炉心シュラウドとを利用して形成している。炉心シュラウドとチムニとの外周面と、原子炉圧力容器内面との間の、ダウンカマと呼ばれている下降流路に冷却材を下降させ、炉心シュラウド内側とチムニの内側の上昇流路に冷却材を上昇させて、冷却材を自然循環させることで原子炉圧力容器において冷却材をを循環させている。   In natural circulation boiling water reactors, the coolant circulation path in the reactor pressure vessel is formed by using a cylindrical chimney cylinder provided at the top of the core and a core shroud surrounding the core. ing. The coolant is lowered to a descending passage called a downcomer between the outer peripheral surface of the core shroud and chimney and the inner surface of the reactor pressure vessel, and the coolant is placed on the inner passage of the core shroud and inside the chimney. And the coolant is circulated in the reactor pressure vessel by naturally circulating the coolant.

このような循環流路を自然循環型沸騰水型原子炉は原子炉圧力容器内に備えているので、炉心で核反応による熱を受けて加熱された冷却材が液体と蒸気を伴う気液二相流となって炉心からチムニ内を通る上昇流路にて上昇し、その気液二相流は液体と蒸気に気水分離器で分離されて、蒸気は原子炉圧力容器外のタービンなどに供給され、液体は下降流路に送られる。   Since the natural circulation boiling water reactor is equipped with such a circulation channel in the reactor pressure vessel, the coolant heated by the heat from the nuclear reaction in the reactor core is a gas-liquid two-phase liquid and vapor. Ascending in the ascending flow path from the core through the chimney as a phase flow, the gas-liquid two-phase flow is separated into liquid and steam by the steam separator, and the steam is sent to the turbine outside the reactor pressure vessel Supplied and liquid is sent to the downflow channel.

下降流路では冷却材がチムニ内の冷却材よりも低温で蒸気を含まないので密度が大きく、この密度差に基づく自然循環力で冷却材が下降して行く。下降した冷却材の流れは原子炉圧力容器の底部で上昇に転じ、冷却材は再度炉心へ下方から入り加熱され上昇する。このように冷却材は、ポンプを利用しないで自然循環をすることができる(例えば、特許文献1および特許文献2参照)。   In the descending flow path, the coolant is colder than the coolant in the chimney and does not contain steam, so the density is large, and the coolant descends by natural circulation force based on this density difference. The descending coolant flow begins to rise at the bottom of the reactor pressure vessel, and the coolant enters the core again from below and is heated and raised. Thus, the coolant can be naturally circulated without using a pump (see, for example, Patent Document 1 and Patent Document 2).

その冷却材の自然循環力を向上させるために、チムニ内に流路隔壁でチムニ内の上昇流路を複数の直立した格子流路に仕切って、その複数の格子流路内に炉心から上昇してきた気液二相流を流して、冷却材を上昇させるようにした例もある(例えば、特許文献3参照)。   In order to improve the natural circulation force of the coolant, the ascending flow path in the chimney is divided into a plurality of upright lattice flow paths by a flow partition wall in the chimney, and rises from the core into the multiple lattice flow paths. There is also an example in which the gas-liquid two-phase flow is flowed to raise the coolant (see, for example, Patent Document 3).

特開平08−094793号公報Japanese Patent Laid-Open No. 08-094793 特開平06−265665号公報Japanese Patent Laid-Open No. 06-265665 特公平07−027051号公報Japanese Patent Publication No. 07-027051

このチムニ内に、格子状に仕切られた複数の直立した格子流路を設ける場合、格子流路に気液二相流が流れると、格子流路を構成する流路隔壁に圧力変動荷重が掛かることがわかった。   When a plurality of upright grid channels partitioned in a grid pattern are provided in the chimney, when a gas-liquid two-phase flow flows in the grid channels, a pressure fluctuation load is applied to the channel partition walls constituting the grid channels. I understood it.

液体と蒸気が混合して流れる気液二相流は上昇するに従い発達し、それぞれの格子流路内の中央部が気相である蒸気で占められ、その蒸気の外側に流路隔壁の壁面に沿って液相である液体が存在するように、蒸気と液体とが分離状態で流れる環状流が生じる。この環状流の前後には、竹の節のように、流路断面内を液体が満たし、中央部に発達した蒸気を分断している。このような気液二相流は、チャーン流に近い流動様式となり、流路隔壁に圧力変動荷重が掛かる。   The gas-liquid two-phase flow that flows as a mixture of liquid and vapor develops as it rises, and the central part of each lattice channel is occupied by vapor in the vapor phase. An annular flow is generated in which the vapor and the liquid flow in a separated state so that there is a liquid that is in the liquid phase. Before and after this annular flow, like the bamboo node, the liquid fills the cross section of the flow path and divides the vapor developed at the center. Such a gas-liquid two-phase flow becomes a flow pattern close to a churn flow, and a pressure fluctuation load is applied to the flow path partition wall.

そして、この圧力変動荷重により、流路隔壁が振動する場合があることがわかった。この振動は、流路隔壁によって格子流路を仕切るための流路隔壁同士の接合部に長期的に損傷等の悪影響を及ぼす可能性がある。   And it turned out that a flow path partition may vibrate by this pressure fluctuation load. This vibration may have a long-term adverse effect such as damage on the joint between the flow path partition walls for partitioning the lattice flow paths by the flow path partition walls.

この振動を抑制するには、圧力変動荷重を分散させればよいので、格子流路の断面の大きさを均一にするように流路隔壁を構成することが考えられるが、流路隔壁の物量が増加する課題を生じる。   In order to suppress this vibration, it is only necessary to disperse the pressure fluctuation load. Therefore, it is conceivable to configure the channel partition so that the cross-sectional size of the lattice channel is uniform. Causes an increasing problem.

したがって、本発明の目的は、流路隔壁の物量を小さくしながら、流路隔壁の振動を抑制することが可能な流路形成装置および自然循環型沸騰水型原子炉を提供することである。   Accordingly, an object of the present invention is to provide a flow path forming device and a natural circulation boiling water reactor capable of suppressing vibration of a flow path partition wall while reducing the volume of the flow path partition wall.

本発明の流路形成装置および自然循環型沸騰水型原子炉の基本的要件は、原子炉圧力容器内の炉心の上方に装備されるチムニ内に配置され前記炉心の中央部の上方に設けられ前記炉心からの冷却材が流れる第1流路と、前記チムニ内に配置され前記炉心の周辺部の上方に設けられ前記炉心からの前記冷却材が流れ前記冷却材の流れ方向に垂直な断面積が前記第1流路より大きい第2流路とを有し、前記第1流路の前記冷却材の流れ方向に垂直な断面が第1矩形であり、前記第2流路の前記冷却材の流れ方向に垂直な断面が第2矩形であり、前記第1矩形の最も長い辺の長さは、前記第2矩形の最も長い辺の長さより短い構成にある。 The basic requirements of the flow path forming apparatus and the natural circulation boiling water reactor of the present invention are arranged in a chimney installed above the core in the reactor pressure vessel and provided above the center of the core. A first flow path through which the coolant from the core flows, and a cross-sectional area disposed in the chimney and provided above the periphery of the core, the coolant flowing from the core flows and perpendicular to the flow direction of the coolant There have a said first flow path is greater than the second flow path, the cross section perpendicular to the flow direction of the coolant of the first flow path is a first rectangular, of the coolant of the second flow path The cross section perpendicular to the flow direction is the second rectangle, and the length of the longest side of the first rectangle is shorter than the length of the longest side of the second rectangle .

本発明によれば、流路隔壁の物量を小さくしながら、流路隔壁の振動を抑制することが可能な流路形成装置および自然循環型沸騰水型原子炉を提供できる。   ADVANTAGE OF THE INVENTION According to this invention, the flow path formation apparatus and natural circulation boiling water reactor which can suppress a vibration of a flow path partition can be provided, reducing the quantity of a flow path partition.

(自然循環型沸騰水型原子炉の概要)
次に、本発明の実施の形態に係る自然循環型沸騰水型原子炉1について、図1を参照しながら詳細に説明する。一般に、沸騰水型原子炉内の冷却材(軽水)の駆動方法は2通りあり、一つは再循環ポンプを用いて強制循環させる方法であり、もう一つは再循環ポンプを用いないで自然循環による方法である。本実施の形態は、後者の自然循環による方法である。
(Outline of natural circulation boiling water reactor)
Next, a natural circulation boiling water reactor 1 according to an embodiment of the present invention will be described in detail with reference to FIG. In general, there are two ways to drive coolant (light water) in boiling water reactors, one is forced circulation using a recirculation pump, and the other is natural without using a recirculation pump. It is a method by circulation. This embodiment is the latter method based on natural circulation.

自然循環による方法は、冷却材を原子炉圧力容器6内に収容し、原子炉圧力容器6内に収納する炉心7で冷却材を加熱して液体から蒸気を発生させ、蒸気と飽和温度の液体の混合した密度の低い冷却材と、給水配管16bから供給される給水と混合された液体の冷却材との比重差によって自然循環に必要な駆動力を得るものである。   In the natural circulation method, the coolant is accommodated in the reactor pressure vessel 6, and the coolant is heated in the core 7 accommodated in the reactor pressure vessel 6 to generate steam from the liquid. Thus, the driving force necessary for natural circulation is obtained by the specific gravity difference between the mixed low density coolant and the liquid coolant mixed with the feed water supplied from the feed water pipe 16b.

自然循環型沸騰水型原子炉1は、円筒状の原子炉圧力容器6内に、炉心シュラウド8が、同心の円筒状に設けられている。この炉心シュラウド8は、その外側面と原子炉圧力容器6の内側面との間隙に環状空間を形成し、これをダウンカマ9という。また、炉心シュラウド8の内部には、多数の燃料集合体21が配置された炉心7を収容している。   In the natural circulation boiling water reactor 1, a core shroud 8 is provided in a cylindrical shape in a cylindrical reactor pressure vessel 6 in a concentric cylindrical shape. The core shroud 8 forms an annular space in the gap between the outer surface thereof and the inner surface of the reactor pressure vessel 6, and this is referred to as a downcomer 9. Further, the core 7 in which a large number of fuel assemblies 21 are arranged is housed inside the core shroud 8.

ダウンカマ9の上方には、復水器3から給水ポンプ4を介して、給水加熱器5で加熱の後、給水入口ノズル17から原子炉圧力容器6内に供給される冷却材を配給する図示しない給水スパージャが円環状に設けられている。炉心シュラウド8は、シュラウドレグ8aによって支持される。ダウンカマ9を下降した冷却材は、シュラウドレグ8a間の流路から、炉心7の下部の炉心下部プレナム10に導き入れられる。   Above the downcomer 9, the coolant supplied from the feed water inlet nozzle 17 into the reactor pressure vessel 6 after being heated by the feed water heater 5 from the condenser 3 through the feed water pump 4 is not shown. A water supply sparger is provided in an annular shape. The core shroud 8 is supported by a shroud leg 8a. The coolant descending the downcomer 9 is introduced from the flow path between the shroud legs 8 a into the core lower plenum 10 below the core 7.

炉心7の下部には、炉心支持板22を、上部には上部格子板23を設け、燃料集合体21と制御棒24の横方向の配置を決めている。炉心支持板22には、所定の間隔で円形の図示しない貫通孔が設けられ、その貫通孔に制御棒案内管25が挿入され、制御棒案内管25の下部は、原子炉圧力容器6の底部を貫通して制御棒24を上下方向に動かす制御棒駆動機構26を収容する制御棒駆動機構ハウジング26aの上部に組合わされている。   A core support plate 22 is provided at the lower part of the core 7 and an upper lattice plate 23 is provided at the upper part to determine the lateral arrangement of the fuel assemblies 21 and the control rods 24. The core support plate 22 is provided with circular through holes (not shown) at predetermined intervals. A control rod guide tube 25 is inserted into the through holes, and the lower portion of the control rod guide tube 25 is the bottom of the reactor pressure vessel 6. And a control rod drive mechanism housing 26a that accommodates a control rod drive mechanism 26 that moves the control rod 24 in the vertical direction.

燃料集合体21は、制御棒案内管25の上端に取り付けられた図示しない燃料支持金具の上に据えられ、その荷重は制御棒案内管25および制御棒駆動機構ハウジング26aを介して、原子炉圧力容器6の底部に伝えられる。   The fuel assembly 21 is placed on a fuel support bracket (not shown) attached to the upper end of the control rod guide tube 25, and the load is applied to the reactor pressure via the control rod guide tube 25 and the control rod drive mechanism housing 26a. It is transmitted to the bottom of the container 6.

前記の燃料支持金具は、側面に冷却材入口を有し、そこに図示しないオリフィスが設けられて、冷却材流量を規制している。燃料支持金具の冷却材入口に対応する制御棒案内管25の側面には開口が設けられ、炉心下部プレナム10に導かれた冷却材が燃料支持金具を経て、燃料集合体21内に導かれる。個々の燃料集合体21は、図示しない四角筒のチャンネルボックスで囲われ軸方向の個別の流路を形成しており、チャンネルボックスは上部格子板23の上面まで到る構成をしている。前記制御棒24は図示しない中性子吸収物質を含む有効部を有し、その有効部が前記チャンネルボックスの外面をガイドとして、周囲の4体の燃料集合体21間に挿入される。   The fuel support fitting has a coolant inlet on a side surface, and an orifice (not shown) is provided therein to regulate the coolant flow rate. An opening is provided in the side surface of the control rod guide tube 25 corresponding to the coolant inlet of the fuel support bracket, and the coolant guided to the core lower plenum 10 is guided into the fuel assembly 21 through the fuel support bracket. Each fuel assembly 21 is surrounded by a rectangular tube channel box (not shown) to form individual flow paths in the axial direction, and the channel box is configured to reach the upper surface of the upper lattice plate 23. The control rod 24 has an effective portion containing a neutron absorbing material (not shown), and the effective portion is inserted between the surrounding four fuel assemblies 21 using the outer surface of the channel box as a guide.

さらに、炉心7内には、中性子検出器を複数含み出力領域の中性子束を計測するLPRM(Local Power Range Monitor:局部出力領域モニタ)検出器集合体33が、配置されている。LPRM検出器集合体33は、その下部が圧力容器6の底部に設けられた貫通孔を通る炉内核計装ハウジング33aに収容され、信号ケーブルが炉内核計装ハウジング33aの下端から出ている。   Further, an LPRM (Local Power Range Monitor) detector assembly 33 that includes a plurality of neutron detectors and measures the neutron flux in the output region is arranged in the core 7. The lower part of the LPRM detector assembly 33 is accommodated in an in-core nuclear instrument housing 33a that passes through a through hole provided in the bottom of the pressure vessel 6, and a signal cable extends from the lower end of the in-core nuclear instrument housing 33a.

炉心7の上には、炉心7から出た気液二相流の冷却材を上方に導く流路を確保し、冷却材の対流を促進し、自然循環駆動力を増加させるチムニ11が設けられている。チムニ11は、原子炉圧力容器6と同心の円筒状のチムニ胴11dを有し、その内部に、流路隔壁Rで仕切ることにより格子流路C0とC1を形成する流路形成装置11aを有している。なお、個々の格子流路C0とC1を上方に流れる冷却材はチムニ11内の上部で合流するように、チムニ11の上部に上部プレナム11cが設けられている。上部格子板23とチムニ11の下端とは、ダウンカマ9を下降する冷却材と、炉心7から上昇する冷却材とが混じらないような組み合わせ構造になっている。   Provided on the core 7 is a chimney 11 that secures a flow path that guides the gas-liquid two-phase flow coolant flowing out from the core 7 upward, promotes convection of the coolant, and increases the natural circulation driving force. ing. The chimney 11 has a cylindrical chimney cylinder 11d concentric with the reactor pressure vessel 6, and has a flow path forming device 11a for forming lattice flow paths C0 and C1 by partitioning with a flow path partition wall R therein. is doing. In addition, the upper plenum 11c is provided in the upper part of the chimney 11 so that the coolant flowing upward through the individual lattice channels C0 and C1 merges in the upper part of the chimney 11. The upper lattice plate 23 and the lower end of the chimney 11 have a combined structure in which the coolant that descends the downcomer 9 and the coolant that rises from the core 7 are not mixed.

チムニ11の上端は、シュラウドヘッド12aで閉じられる。シュラウドヘッド12aには、所定の数の冷却材通過用の孔が設けられ、その孔はスタンドパイプ12bを介して気液二相流から飽和蒸気と飽和水とに分離する気水分離器12につながっている。気水分離器12の上部には、蒸気乾燥器13が設けられ、気水分離器12を出た飽和蒸気に含まれる湿分を除去し、蒸気ドーム14、蒸気出口ノズル15、主蒸気配管16aを経て、タービン2に飽和蒸気を送る。なお、シュラウドヘッド12aとスタンドパイプ12bと気水分離器12は一体に組み立てられており、燃料交換時には、一体でチムニ11の上端から取り外し可能な構成である。   The upper end of the chimney 11 is closed by the shroud head 12a. The shroud head 12a is provided with a predetermined number of coolant passage holes, and the holes are provided in the steam / water separator 12 for separating the steam / saturated water and the steam / steam from the gas / liquid two-phase flow through the stand pipe 12b. linked. A steam dryer 13 is provided above the steam / water separator 12 to remove moisture contained in the saturated steam exiting the steam / water separator 12, and the steam dome 14, steam outlet nozzle 15, main steam pipe 16a. Then, saturated steam is sent to the turbine 2. Note that the shroud head 12a, the stand pipe 12b, and the steam / water separator 12 are integrally assembled, and can be integrally removed from the upper end of the chimney 11 when the fuel is changed.

自然循環型沸騰水型原子炉1においては、給水入口ノズル17から供給される冷却材は、気水分離器12で分離された飽和水と混合し、方向Aにダウンカマ9を下降する。シュラウドレグ8aの図示しない間隙によって構成される流路から、冷却材は、炉心シュラウド8内に流入し、炉心7によって加熱される。炉心7からの加熱によって、冷却材は、方向B1とB2に流れる飽和状態の気液二相流となる。この気液二相流は格子流路C0とC1、上部プレナム11c、スタンドパイプ12bを経て、気水分離器12に達し、気水分離器12によって、方向Cに流れる飽和蒸気と、方向Dに流れる飽和水に分離される。分離された飽和蒸気は、蒸気乾燥器13を経て、蒸気出口ノズル15から主蒸気配管16aによってタービン2に導かれ発電に供される。   In the natural circulation boiling water reactor 1, the coolant supplied from the feed water inlet nozzle 17 is mixed with the saturated water separated by the steam separator 12 and descends the downcomer 9 in the direction A. The coolant flows into the core shroud 8 from a flow path formed by a gap (not shown) of the shroud leg 8 a and is heated by the core 7. By heating from the core 7, the coolant becomes a saturated gas-liquid two-phase flow flowing in the directions B1 and B2. This gas-liquid two-phase flow reaches the steam-water separator 12 via the lattice channels C0 and C1, the upper plenum 11c, and the stand pipe 12b. The steam-water separator 12 causes the saturated steam flowing in the direction C and the direction D to flow. Separated into flowing saturated water. The separated saturated steam passes through the steam dryer 13 and is led from the steam outlet nozzle 15 to the turbine 2 through the main steam pipe 16a to be used for power generation.

一方、分離された飽和水は、原子炉圧力容器6内の冷却材に混合され、給水入口ノズル17から供給される冷却材と更に混合されて、再びダウンカマ9を下降して原子炉圧力容器6内を循環する。   On the other hand, the separated saturated water is mixed with the coolant in the reactor pressure vessel 6, further mixed with the coolant supplied from the feed water inlet nozzle 17, descends the downcomer 9 again, and the reactor pressure vessel 6. Circulate inside.

(チムニの構造)
図2の(a)と(b)に示すように、チムニ11は、チムニ胴11dと流路形成装置11aとを有している。チムニ胴11dは円筒状の形状をしており、この円筒内の空間に上方から見て矩形の格子流路C0、C1、C2を有する流路形成装置11aが配備されている。
(Chimni structure)
As shown in FIGS. 2A and 2B, the chimney 11 includes a chimney cylinder 11d and a flow path forming device 11a. The chimney cylinder 11d has a cylindrical shape, and a flow path forming device 11a having rectangular lattice flow paths C0, C1, and C2 as viewed from above is disposed in a space in the cylinder.

図2の(a)と図3に示すように、流路形成装置11aには、等間隔で平行な列線R1乃至R9と、等間隔で平行な行線L1乃至L9とを設定することができる。列線R1乃至R9の間隔と、行線L1乃至L9の間隔は等しい。列線R1乃至R9と行線L1乃至L9とは直角に交わる。列線R5と行線L5とは、チムニ胴11dの円筒の中心の近傍を通る。   As shown in FIG. 2A and FIG. 3, the flow path forming device 11a is set with column lines R1 to R9 that are parallel at equal intervals and row lines L1 to L9 that are parallel at equal intervals. it can. The intervals between the column lines R1 to R9 are equal to the intervals between the row lines L1 to L9. The column lines R1 to R9 and the row lines L1 to L9 intersect at right angles. The column line R5 and the row line L5 pass through the vicinity of the center of the cylinder of the chimney cylinder 11d.

そして、隣り合う2本の列線と、隣り合う2本の行線とで囲まれそれぞれが合同の関係にある複数の正方形の領域A1乃至A15を設定することができる。なお、チムニ11は円柱形であり、4分の1円分のみ考慮すれば他の領域は円の対称性により類推できるので、対称的に同一符号の領域A1乃至A15を配置している。   Then, a plurality of square areas A1 to A15 surrounded by two adjacent column lines and two adjacent row lines and having a congruent relationship can be set. Note that the chimney 11 has a cylindrical shape, and if only a quarter circle is considered, other regions can be analogized by the symmetry of the circle, so the regions A1 to A15 having the same sign are arranged symmetrically.

格子流路C0は、領域A1、A2、A5、A6、A11、A12、A15にそれぞれ1つずつ形成されている。格子流路C1は、領域A3、A4、A7、A8の4つの領域にわたる領域に1つ形成されている。格子流路C2は、領域A9、A10、A13、A14の4つの領域にわたる領域に1つ形成されている。   One lattice channel C0 is formed in each of the regions A1, A2, A5, A6, A11, A12, and A15. One lattice channel C1 is formed in a region extending over the four regions A3, A4, A7, and A8. One lattice channel C2 is formed in a region extending over the four regions A9, A10, A13, and A14.

そして、まず、格子流路C0を形成するために、流路形成装置11aには、列線R1乃至R9上に、それぞれ等間隔で平行になるように流路隔壁R1乃至R9が配置されている。また、流路形成装置11aには、行線L1乃至L9上に、それぞれ等間隔で平行になるように流路隔壁L1乃至L9が配置されている。なお、便宜上、列線R1乃至R9、行線L1乃至L9と流路隔壁R1乃至R9とL1乃至L9とは一対一に対応するので同じ符号を用いている。流路隔壁R1乃至R9の間隔と流路隔壁L1乃至L9の間隔とは等しい。流路隔壁R1乃至R9とL1乃至L9とは金属製の板であり、流路隔壁R1乃至R9と流路隔壁L1乃至L9とを溶接等により接合することで、格子流路C0が形成される。流路形成装置11aは溶接構造になっている。   First, in order to form the lattice flow path C0, flow path partition walls R1 to R9 are arranged in the flow path forming device 11a so as to be parallel to each other at equal intervals on the column lines R1 to R9. . In the flow path forming device 11a, flow path partition walls L1 to L9 are arranged on the row lines L1 to L9 so as to be parallel to each other at equal intervals. For convenience, the column lines R1 to R9, the row lines L1 to L9, and the flow path partitions R1 to R9 and L1 to L9 have a one-to-one correspondence. The interval between the channel partition walls R1 to R9 is equal to the interval between the channel partition walls L1 to L9. The channel partitions R1 to R9 and L1 to L9 are metal plates, and the lattice channel C0 is formed by joining the channel partitions R1 to R9 and the channel partitions L1 to L9 by welding or the like. . The flow path forming device 11a has a welded structure.

次に、格子流路C1を形成するために、領域A3、A4、A7、A8を互いに隔てる流路隔壁を取り除いている。具体的には、流路隔壁R1とR3との間と、流路隔壁R7とR9との間の流路隔壁L4を取り除き、流路隔壁R1とR3との間と、流路隔壁R7とR9との間の流路隔壁L6を取り除き、流路隔壁L3とL7との間の流路隔壁R2を取り除き、流路隔壁L3とL7との間の流路隔壁R8を取り除いている。   Next, in order to form the lattice channel C1, the channel partition walls that separate the regions A3, A4, A7, and A8 from each other are removed. Specifically, the channel partition L4 between the channel partition walls R1 and R3 and between the channel partition walls R7 and R9 is removed, and between the channel partition walls R1 and R3 and between the channel partition walls R7 and R9. The flow path partition L6 between the flow path partition walls L3 and L7 is removed, and the flow path partition wall R8 between the flow path partition walls L3 and L7 is removed.

さらに、格子流路C2を形成するために、領域A9、A10、A13、A14を互いに隔てる流路隔壁を取り除いている。具体的には、流路隔壁R3とR7との間の流路隔壁L2を取り除き、流路隔壁R3とR7との間の流路隔壁L8を取り除き、流路隔壁L1とL3との間と、流路隔壁L7とL9との間の流路隔壁R4を取り除き、流路隔壁L1とL3との間と、流路隔壁L7とL9との間の流路隔壁R6を取り除いている。   Further, in order to form the lattice channel C2, the channel partition walls separating the regions A9, A10, A13, and A14 from each other are removed. Specifically, the flow path partition L2 between the flow path partition walls R3 and R7 is removed, the flow path partition wall L8 between the flow path partition walls R3 and R7 is removed, and between the flow path partition walls L1 and L3, The channel partition R4 between the channel partition L7 and L9 is removed, and the channel partition R6 between the channel partition L1 and L3 and between the channel partition L7 and L9 is removed.

以上により、チムニ11内の領域A1乃至A15が格子状に仕切られ、炉心9の上方に直立した大きさの異なる格子流路C0、C1、C2が複数形成される。格子流路C0、C1、C2には、炉心7からの前記冷却材が流れる。   As described above, the regions A1 to A15 in the chimney 11 are partitioned in a lattice shape, and a plurality of lattice channels C0, C1, and C2 having different sizes upright above the core 9 are formed. The coolant from the core 7 flows through the lattice channels C0, C1, and C2.

格子流路C0は、チムニ11の中央部に設けられている。中央部には、領域A1が含まれ、領域A1に隣接する領域が含まれていてもよい。格子流路C1とC2とは、チムニ11の周辺部に設けられている。周辺部は中央部の外側に位置している。格子流路C1、C2の図1の冷却材の流れ方向B2に垂直な断面積が、格子流路C0の冷却材の流れ方向B1に垂直な断面積より大きい。また、格子流路C0の冷却材の流れ方向B1に垂直な断面は矩形であり、格子流路C1、C2の冷却材の流れ方向B2に垂直な断面も矩形である。格子流路C0の矩形の最も長い辺の長さは、格子流路C1、C2の矩形の最も長い辺の長さより短い。   The lattice channel C0 is provided in the central portion of the chimney 11. The center part may include a region A1 and a region adjacent to the region A1. The lattice channels C1 and C2 are provided in the periphery of the chimney 11. The peripheral part is located outside the central part. The cross-sectional area perpendicular to the coolant flow direction B2 in FIG. 1 of the lattice channels C1 and C2 is larger than the cross-sectional area perpendicular to the coolant flow direction B1 of the lattice channel C0. The cross section perpendicular to the coolant flow direction B1 in the lattice channel C0 is rectangular, and the cross section perpendicular to the coolant flow direction B2 in the lattice channels C1 and C2 is also rectangular. The length of the longest side of the rectangle of the lattice channel C0 is shorter than the length of the longest side of the rectangles of the lattice channels C1 and C2.

原子炉圧力容器6内での冷却材の流れは、ダウンカマ9での図1の方向Aの下降流と炉心7とチムニ11の内側での方向B1とB2の上昇流に分けられ、上昇流は炉心7で発生した蒸気を含むため、下降流と比べ密度が小さい。そのため、ダウンカマ9とチムニ11の内側とで水頭圧の差ができ、冷却材はダウンカマ9を下降し炉心下部プレナム10から反転上昇して炉心7へ流れ込む。このように自然循環型沸騰水型原子炉1は、冷却材の密度差を利用して対流を起こし、冷却材を自然循環させる。チムニ11内の冷却材の密度は、蒸気により低くなるものの、チムニ11の径方向で均一ではない。これは、炉心7での発熱量が、炉心7の中央部で高く、周辺部で低いからである。この炉心7の横断面内での温度の分布により、冷却材は、中央部で周辺部より加熱される。そして、冷却材は、中央部で周辺部より多くの蒸気を発生させ、密度が低くなる。ダウンカマ9との水頭圧の差は、中央部の方が、周辺部より大きくなる。冷却材の流速は、中央部の方向B1の上昇流の方が、周辺部の方向B2の上昇流より速くなる。   The coolant flow in the reactor pressure vessel 6 is divided into a downward flow in the direction A of FIG. 1 at the downcomer 9 and an upward flow in the directions B1 and B2 inside the core 7 and chimney 11, and the upward flow is Since the steam generated in the core 7 is included, the density is smaller than that of the downflow. Therefore, there is a head pressure difference between the downcomer 9 and the inside of the chimney 11, and the coolant descends the downcoma 9, reverses and rises from the core lower plenum 10, and flows into the core 7. Thus, the natural circulation boiling water nuclear reactor 1 causes convection using the density difference of the coolant, and naturally circulates the coolant. The density of the coolant in the chimney 11 is not uniform in the radial direction of the chimney 11 although it is lowered by the steam. This is because the amount of heat generated in the core 7 is high in the central part of the core 7 and low in the peripheral part. Due to the temperature distribution in the cross section of the core 7, the coolant is heated from the peripheral part at the central part. And a coolant produces more vapor | steam than a peripheral part in a center part, and a density becomes low. The difference in water head pressure with the downcomer 9 is greater in the center than in the periphery. The flow rate of the coolant is higher in the upward flow in the center direction B1 than in the peripheral direction B2.

すなわち、図4に示すように、チムニ11内において、冷却材の流速は、中心で最も速く、中央部から周辺部に向かうにしたがい遅くなっていく。このように、流速に遅速の分布があると、流路隔壁R1乃至R9、L1乃至L9がない場合は、方向B1とB2の方向が曲げられて、上昇流が乱れて、上昇流の流速が低下してしまう。流路隔壁R1乃至R9、L1乃至L9をチムニ11内に設けることにより、流路隔壁R1乃至R9、L1乃至L9をチムニ11で仕切られた流路C0、C1、C2それぞれの中での流速の遅速の分布は小さくなり、上昇流の流速は低下しない。   That is, as shown in FIG. 4, in the chimney 11, the flow rate of the coolant is the fastest at the center and becomes slower as it goes from the central part to the peripheral part. Thus, if there is a slow distribution in the flow velocity, the direction of the directions B1 and B2 is bent and the upward flow is disturbed in the absence of the channel partitions R1 to R9 and L1 to L9, and the upward flow velocity is increased. It will decline. By providing the flow path partition walls R1 to R9 and L1 to L9 in the chimney 11, the flow velocity in each of the flow paths C0, C1, and C2 partitioned by the chimney 11 is determined by the flow path partition walls R1 to R9 and L1 to L9. The slow speed distribution becomes smaller and the flow velocity of the upward flow does not decrease.

一方、流速に遅速の分布があっても、流速が全体的に遅ければ、上昇流の乱れは抑えられる。チムニ11の周辺部に注目すれば、周辺部全域は、流速が全体的に遅くなっていると考えられる。したがって、周辺部では、上昇流の乱れは流路隔壁R1乃至R9、L1乃至L9がなくても小さい。そこで、周辺部の流路隔壁R1乃至R9、L1乃至L9を省くことができる。周辺部に配置された格子流路C1とC2は、中央部に配置された格子流路C0より、横断面積を大きく設定することができる。   On the other hand, even if the flow velocity has a slow distribution, if the flow velocity is slow as a whole, turbulence in the upward flow can be suppressed. If attention is paid to the peripheral part of the chimney 11, it is considered that the entire peripheral part has a low flow velocity. Therefore, in the peripheral portion, the turbulence of the upward flow is small even without the flow path partition walls R1 to R9 and L1 to L9. Therefore, the peripheral partition walls R1 to R9 and L1 to L9 can be omitted. The lattice channels C1 and C2 arranged in the peripheral part can be set to have a larger cross-sectional area than the lattice channel C0 arranged in the central part.

このようにチムニ11内に、格子流路C0、C1、C2を設ける場合、上昇流は、気液二相流となっているので、チャーン流に近い流動様式になり、流路隔壁R1乃至R9、L1乃至L9に圧力変動荷重による分布荷重が掛かっている。   As described above, when the lattice channels C0, C1, and C2 are provided in the chimney 11, the upward flow is a gas-liquid two-phase flow, so that the flow pattern is close to the churn flow, and the channel partition walls R1 to R9. , L1 to L9 are distributed loads due to pressure fluctuation loads.

図5に示すように、分布荷重は、チムニ11内において、蒸気の発生量の多い中心で最も大きく、中央部から周辺部に向かうにしたがい小さくなっていく。分布荷重が大きいと、流路隔壁R1乃至R9、L1乃至L9が大きく振動する。振動が大きいと、流路隔壁R1乃至R9と流路隔壁L1乃至L9との接合部に長期的に損傷等の悪影響を及ぼす可能性がある。接合部の損傷をなくすためには、流路隔壁R1乃至R9の互いの間隔と流路隔壁L1乃至L9の互いの間隔とを狭くして、接合部に掛かる荷重を減らせばよい。逆に、中央部で、接合部に掛かる荷重を十分に減らせる程度に流路隔壁R1乃至R9の互いの間隔と流路隔壁L1乃至L9の互いの間隔が設定してあれば、周辺部においては、中央部よりさらに接合部に掛かる荷重が低くなっているので、流路隔壁R1乃至R9の互いの間隔と流路隔壁L1乃至L9の互いの間隔を、中央部より広げることができる。すなわち、周辺部においては、中央部より、流路隔壁R1乃至R9の互いの間隔と流路隔壁L1乃至L9の互いの間隔を広げても、接合部に掛かる荷重は中央部と同程度かそれより小さく設定することができる。そこで、周辺部の流路隔壁R1乃至R9、L1乃至L9を省くことができ、周辺部に配置された格子流路C1とC2は、中央部に配置された格子流路C0より、横断面積を大きく設定することができる。また、格子流路C0の横断面の矩形の最も長い辺の長さより、格子流路C1、C2の横断面の矩形の最も長い辺の長さを、長く設定することができる。   As shown in FIG. 5, the distributed load is the largest in the chimney 11 at the center where the amount of generated steam is large, and becomes smaller as it goes from the central part to the peripheral part. When the distributed load is large, the flow path partition walls R1 to R9 and L1 to L9 vibrate greatly. If the vibration is large, there is a possibility that the joints between the flow path partition walls R1 to R9 and the flow path partition walls L1 to L9 may be adversely affected such as damage in the long term. In order to eliminate damage to the joint, it is only necessary to reduce the distance between the flow path partitions R1 to R9 and the distance between the flow path partitions L1 to L9 to reduce the load applied to the joint. On the contrary, if the distance between the flow path partition walls R1 to R9 and the distance between the flow path partition walls L1 to L9 are set to such an extent that the load applied to the joint portion can be sufficiently reduced, Since the load applied to the joint portion is further lower than the central portion, the mutual distance between the flow path partition walls R1 to R9 and the mutual distance between the flow path partition walls L1 to L9 can be increased from the central portion. That is, in the peripheral part, even if the mutual distance between the flow path partition walls R1 to R9 and the mutual distance between the flow path partition walls L1 to L9 are increased from the central part, the load applied to the joint part is about the same as that in the central part. It can be set smaller. Therefore, the peripheral partition walls R1 to R9 and L1 to L9 can be omitted, and the lattice channels C1 and C2 arranged in the peripheral part have a cross-sectional area larger than the lattice channel C0 arranged in the central part. Can be set large. Further, the length of the longest side of the rectangular cross section of the lattice channels C1 and C2 can be set longer than the length of the longest side of the rectangular cross section of the lattice channel C0.

図6に示すように、流路隔壁R5乃至R9と流路隔壁L1乃至L5の配置は、炉心7の燃料集合体21と制御棒24の配置と関係付けられている。図6は、炉心7の横断面における燃料集合体21と制御棒24の配置と、チムニ11の横断面における流路隔壁R5乃至R9と流路隔壁L1乃至L5の配置とを重ねて示したものである。   As shown in FIG. 6, the arrangement of the flow path partition walls R5 to R9 and the flow path partition walls L1 to L5 is related to the layout of the fuel assemblies 21 and the control rods 24 in the core 7. FIG. 6 shows the arrangement of the fuel assemblies 21 and the control rods 24 in the cross section of the core 7 and the arrangement of the flow path partitions R5 to R9 and the flow path partitions L1 to L5 in the cross section of the chimney 11. It is.

燃料集合体21は4体を2×2配列され、その4体で形成される十字形状の隙間に、十字形状の制御棒24が挿入されている。この4体の燃料集合体21と挿入される燃料棒24とを単位セルとする制御棒セルが構成されている。領域A1乃至A15には、制御棒セルが2×2配列で4セル配置されている。すなわち、各領域A1乃至A15にはそれぞれ、4×4配列で16体の燃料集合体21が配置されている。また、チムニ胴11dと、流路隔壁R5乃至R9、L1乃至L5とで囲まれた領域にも、燃料集合体21と制御棒24が制御棒セルの配列に準じて配列されている。流路隔壁R5乃至R9と流路隔壁L1乃至L5は、領域A1乃至A15を分割するように配置されているので、流路隔壁R5乃至R9と流路隔壁L1乃至L5は、燃料集合体21と制御棒24の上を横切らないような配置となっている。このように横切らない配置にすることで、炉心7の燃料集合体21と制御棒24を、格子流路C0、C1、C2を通して、原子炉圧力容器6の外側に搬出することができる。すなわち、燃料集合体21と制御棒24の炉心7に対しての装荷・引き抜きに際して、流路隔壁R1乃至R9と流路隔壁L1乃至L9を、原子炉圧力容器6の外に取り出す必要がない。   Four fuel assemblies 21 are arranged in a 2 × 2 arrangement, and a cross-shaped control rod 24 is inserted into a cross-shaped gap formed by the four fuel assemblies 21. A control rod cell having the four fuel assemblies 21 and the inserted fuel rods 24 as unit cells is configured. In the areas A1 to A15, four control rod cells are arranged in a 2 × 2 array. That is, 16 fuel assemblies 21 are arranged in a 4 × 4 arrangement in each of the regions A1 to A15. Further, the fuel assemblies 21 and the control rods 24 are arranged in accordance with the arrangement of the control rod cells also in the region surrounded by the chimney cylinder 11d and the flow path partition walls R5 to R9 and L1 to L5. Since the channel partition walls R5 to R9 and the channel partition walls L1 to L5 are arranged so as to divide the regions A1 to A15, the channel partition walls R5 to R9 and the channel partition walls L1 to L5 are connected to the fuel assembly 21. The arrangement is such that it does not cross over the control rod 24. By arranging in such a manner not to cross, the fuel assembly 21 and the control rod 24 of the core 7 can be carried out of the reactor pressure vessel 6 through the lattice channels C0, C1, and C2. That is, when the fuel assemblies 21 and the control rods 24 are loaded and withdrawn from the core 7, there is no need to take out the flow path partition walls R 1 to R 9 and the flow path partition walls L 1 to L 9 from the reactor pressure vessel 6.

したがって、本発明の実施の形態によれば、チムニ11内の格子流路C0、C1、C2の横断面の面積を不均一とし、周辺部の格子流路C1、C2の面積を中央部の格子流路C0の面積より大きくすることで、圧力変動荷重による流力振動を大きくすることなく、流路隔壁R1乃至R9と流路隔壁L1乃至L9の金属部材の物量を低減でき、材料/製造コストを低減することができる。流路隔壁R1乃至R9と流路隔壁L1乃至L9の接合部も減るので、加工/溶接/組み立てに要する時間を減らすことができる。   Therefore, according to the embodiment of the present invention, the cross-sectional areas of the lattice channels C0, C1, and C2 in the chimney 11 are non-uniform, and the areas of the peripheral lattice channels C1 and C2 are set to the central lattice. By making the area larger than the area of the flow path C0, the amount of metal members of the flow path partition walls R1 to R9 and the flow path partition walls L1 to L9 can be reduced without increasing the fluid vibration due to the pressure fluctuation load, and the material / manufacturing cost can be reduced. Can be reduced. Since the number of joints between the flow path partition walls R1 to R9 and the flow path partition walls L1 to L9 is also reduced, the time required for processing / welding / assembly can be reduced.

(流路隔壁R1乃至R9、L1乃至L9の配置の変形例1)
図7に、流路隔壁R1乃至R9、L1乃至L9の配置の変形例を示す。図3の配置と比較して異なる点は、格子流路C3が、新たに、領域A11、A12、A15の3つの領域にわたる領域に形成されている点である。
(Modification 1 of arrangement of flow path partition walls R1 to R9, L1 to L9)
FIG. 7 shows a modified example of the arrangement of the channel partition walls R1 to R9 and L1 to L9. The difference from the arrangement in FIG. 3 is that the lattice channel C3 is newly formed in a region extending over the three regions A11, A12, and A15.

そして、格子流路C3を形成するために、領域A11、A12、A15を互いに隔てる流路隔壁を取り除いている。具体的には、R2とR3との間と、R7とR8との間の流路隔壁L2とL8とを取り除き、L2とL3との間と、L7とL8との間の流路隔壁R2とR8とを取り除いている。   Then, in order to form the lattice flow path C3, the flow path partition walls that separate the regions A11, A12, and A15 from each other are removed. Specifically, the flow path partition walls L2 and L8 between R2 and R3 and between R7 and R8 are removed, and the flow path partition wall R2 between L2 and L3 and between L7 and L8. R8 is removed.

以上により、格子流路C3が新たに形成され、格子流路C3に、炉心7からの冷却材が流れる。格子流路C3は、格子流路C1、C2と同様に、チムニ11の周辺部に設けられている。格子流路C3の図1の冷却材の流れ方向B2に垂直な横断面積は、格子流路C0の冷却材の流れ方向B1に垂直な横断面積より大きい。また、格子流路C3の横断面の6角形の最も長い辺の長さは、格子流路C0の矩形の最も長い辺の長さより長い。チムニ11の周辺部では、周辺部全域において、流速が全体的に遅くなっており、上昇流の乱れは流路隔壁R1乃至R9、L1乃至L9がなくても小さい。そこで、周辺部の流路隔壁R1乃至R9、L1乃至L9を省くことができ、周辺部に配置された格子流路C1、C2、C3を、中央部に配置された格子流路C0より、横断面積で大きく設定することができる。   As described above, the lattice channel C3 is newly formed, and the coolant from the core 7 flows into the lattice channel C3. The lattice channel C3 is provided in the peripheral portion of the chimney 11 in the same manner as the lattice channels C1 and C2. The cross-sectional area perpendicular to the coolant flow direction B2 in FIG. 1 of the lattice channel C3 is larger than the cross-sectional area perpendicular to the coolant flow direction B1 of the lattice channel C0. Further, the length of the longest side of the hexagon in the cross section of the lattice channel C3 is longer than the length of the longest side of the rectangle of the lattice channel C0. In the peripheral part of the chimney 11, the flow velocity is generally slow throughout the peripheral part, and the turbulence of the upward flow is small even without the flow path partition walls R1 to R9 and L1 to L9. Therefore, the peripheral partition walls R1 to R9 and L1 to L9 can be omitted, and the lattice channels C1, C2, and C3 disposed in the peripheral portion are crossed from the lattice channel C0 disposed in the central portion. The area can be set large.

また、格子流路C0、C1、C2、C3を流れる気液二相流はチャーン流に近い流動様式になり、流路隔壁R1乃至R9、L1乃至L9に圧力変動荷重による分布荷重が掛かるが、流路隔壁R1乃至R9と流路隔壁L1乃至L9との接合部に掛かる荷重は、周辺部においては、中央部より低くなっているので、流路隔壁R1乃至R9の互いの間隔と流路隔壁L1乃至L9の互いの間隔を、中央部より広げることができる。そこで、周辺部の流路隔壁R1乃至R9、L1乃至L9を省くことができ、周辺部に配置された格子流路C1、C2、C3は、中央部に配置された格子流路C0より、横断面積で大きく設定することができる。また、格子流路C0の横断面の矩形の最も長い辺の長さより、格子流路C1、C2、C3の横断面の図形の最も長い辺の長さを長く設定することができる。また、格子流路C3を通しても、炉心7の燃料集合体21と制御棒24を、原子炉圧力容器6の外側に搬出可能である。   In addition, the gas-liquid two-phase flow that flows through the lattice channels C0, C1, C2, and C3 has a flow mode close to a churn flow, and a distributed load due to a pressure fluctuation load is applied to the channel partition walls R1 to R9 and L1 to L9. Since the load applied to the joint between the flow path partition walls R1 to R9 and the flow path partition walls L1 to L9 is lower in the peripheral portion than the central portion, the distance between the flow path partition walls R1 to R9 and the flow path partition wall The distance between L1 to L9 can be increased from the center. Therefore, the peripheral partition walls R1 to R9 and L1 to L9 can be omitted, and the lattice channels C1, C2, and C3 arranged in the peripheral portion are more transverse than the lattice channel C0 arranged in the central portion. The area can be set large. Further, the length of the longest side of the figure of the cross section of the lattice channels C1, C2, and C3 can be set longer than the length of the longest side of the rectangle of the cross section of the lattice channel C0. Further, the fuel assembly 21 and the control rod 24 of the core 7 can be carried out of the reactor pressure vessel 6 through the lattice channel C3.

したがって、本発明の実施の形態の変形例1によれば、チムニ11内の格子流路C0、C1、C2、C3の横断面の面積を不均一とし、周辺部の格子流路C1、C2、C3の面積を中央部の格子流路C0の面積より大きくすることで、圧力変動荷重による流力振動を大きくすることなく、流路隔壁R1乃至R9と流路隔壁L1乃至L9の金属部材の物量をさらに低減でき、材料/製造コストをさらに低減することができる。流路隔壁R1乃至R9と流路隔壁L1乃至L9の接合部もさらに減るので、加工/溶接/組み立てに要する時間をさらに減らすことができる。   Therefore, according to the first modification of the embodiment of the present invention, the cross-sectional areas of the lattice channels C0, C1, C2, and C3 in the chimney 11 are non-uniform, and the lattice channels C1, C2, and By making the area of C3 larger than the area of the grid flow path C0 in the central part, the quantity of the metal members of the flow path partition walls R1 to R9 and the flow path partition walls L1 to L9 without increasing the hydrodynamic vibration due to the pressure fluctuation load Can be further reduced, and the material / manufacturing cost can be further reduced. Since the joints between the flow path partition walls R1 to R9 and the flow path partition walls L1 to L9 are further reduced, the time required for processing / welding / assembly can be further reduced.

(流路隔壁R1乃至R9、L1乃至L9の配置の変形例2)
図8に、流路隔壁R1乃至R9、L1乃至L9の配置の変形例を示す。図7の変形例1の配置と比較して異なる点は、格子流路C3が、格子流路C3と、格子流路C3とチムニ胴11dとの間に形成される格子流路とを合体して拡大し、図8上への記載では格子流路C3がなくなっている点である。
(Modification 2 of arrangement of flow path partition walls R1 to R9, L1 to L9)
FIG. 8 shows a modified example of the arrangement of the channel partition walls R1 to R9 and L1 to L9. 7 differs from the arrangement of the modification 1 of FIG. 7 in that the lattice channel C3 combines the lattice channel C3 and the lattice channel formed between the lattice channel C3 and the chimney cylinder 11d. In the description on FIG. 8, the lattice channel C3 is eliminated.

そして、図7の格子流路C3を拡大するために、図8に示すように領域A12、A15と外側の領域を隔てる流路隔壁を取り除いている。具体的には、R2とR3との間と、R7とR8との間の流路隔壁L1を取り除き、R1とR2との間と、R8とR9との間の流路隔壁L2を取り除き、R1とR2との間と、R8とR9との間の流路隔壁L8を取り除き、R2とR3との間と、R7とR8との間の流路隔壁L9を取り除き、L2とL3との間と、L7とL8との間の流路隔壁R1を取り除き、L1とL2との間と、L8とL9との間の流路隔壁R2を取り除き、L1とL2との間と、L8とL9との間の流路隔壁R8を取り除き、L2とL3との間と、L7とL8との間の流路隔壁R9を取り除いている。以上により、結果的に図7の格子流路C3は、図8においてはチムニ胴11dまで拡大されたことになる。   Then, in order to enlarge the lattice flow path C3 in FIG. 7, the flow path partition walls that separate the areas A12 and A15 from the outer area are removed as shown in FIG. Specifically, the flow path partition L1 between R2 and R3, between R7 and R8 is removed, the flow path partition L2 between R1 and R2, and between R8 and R9 is removed, and R1 Between R2 and R2, between R8 and R9, the flow path partition L8 is removed, between R2 and R3, between R7 and R8, the flow path partition L9 is removed, and between L2 and L3. , The flow path partition R1 between L7 and L8 is removed, the flow path partition R2 between L1 and L2, and the flow path partition R2 between L8 and L9 is removed, between L1 and L2, and between L8 and L9. The flow path partition R8 between them is removed, and the flow path partition R9 between L2 and L3 and between L7 and L8 is removed. As a result, the lattice channel C3 in FIG. 7 is consequently expanded to the chimney cylinder 11d in FIG.

したがって、本発明の実施の形態の変形例2によっても、さらに、周辺部の格子流路C3の面積を拡大しているので、変形例1の効果が得られるだけでなく、流路隔壁R1乃至R9と流路隔壁L1乃至L9の金属部材の物量をさらに低減でき、材料/製造コストをさらに低減することができる。流路隔壁R1乃至R9と流路隔壁L1乃至L9の接合部もさらに減るので、加工/溶接/組み立てに要する時間をさらに減らすことができる。   Therefore, according to the second modification of the embodiment of the present invention, since the area of the lattice channel C3 in the peripheral portion is further enlarged, not only the effect of the first modification is obtained but also the flow path partition walls R1 to R1. The amount of metal members of R9 and the flow path partition walls L1 to L9 can be further reduced, and the material / manufacturing cost can be further reduced. Since the joints between the flow path partition walls R1 to R9 and the flow path partition walls L1 to L9 are further reduced, the time required for processing / welding / assembly can be further reduced.

(流路隔壁R1乃至R9、L1乃至L9の配置の変形例3)
図9に、流路隔壁R1乃至R9、L1乃至L9の配置の変形例を示す。図3の配置と比較して異なる点は、格子流路C1とC2に替わって、新たに、格子流路C4乃至C7が形成されている点である。格子流路C4は隣接する2つの領域A4にわたり形成されている。格子流路C5は、領域A8、A12の2つの領域にわたる領域に形成されている。格子流路C6は、領域A14、A15の2つの領域にわたる領域に形成されている。格子流路C7は隣接する2つの領域A13にわたり形成されている。他の領域A1乃至A3、A5乃至A7、A9乃至A11にはそれぞれ格子流路C0が形成されている。
(Modification 3 of arrangement of flow path partition walls R1 to R9, L1 to L9)
FIG. 9 shows a modified example of the arrangement of the flow path partitions R1 to R9 and L1 to L9. A difference from the arrangement of FIG. 3 is that lattice channels C4 to C7 are newly formed instead of the lattice channels C1 and C2. The lattice channel C4 is formed across two adjacent regions A4. The lattice channel C5 is formed in a region extending over two regions A8 and A12. The lattice channel C6 is formed in a region extending over the two regions A14 and A15. The lattice channel C7 is formed over two adjacent regions A13. A lattice channel C0 is formed in each of the other regions A1 to A3, A5 to A7, and A9 to A11.

そして、格子流路C4を形成するために、隣接する2つの領域A4を互いに隔てる流路隔壁を取り除いている。具体的には、R1とR2との間と、R8とR9との間の流路隔壁L5を取り除いている。   And in order to form the lattice flow path C4, the flow path partition which separates two adjacent area | regions A4 from each other is removed. Specifically, the flow path partition L5 between R1 and R2 and between R8 and R9 is removed.

格子流路C5を形成するために、領域A8と領域A12とを互いに隔てる流路隔壁を取り除いている。具体的には、R1とR2との間と、R8とR9との間の流路隔壁L3とL7とを取り除いている。   In order to form the lattice channel C5, the channel partition that separates the region A8 and the region A12 from each other is removed. Specifically, the channel partition walls L3 and L7 between R1 and R2 and between R8 and R9 are removed.

格子流路C6を形成するために、領域A14と領域A15とを互いに隔てる流路隔壁を取り除いている。具体的には、L1とL2との間と、L8とL9との間の流路隔壁R3とR7とを取り除いている。   In order to form the lattice channel C6, the channel partition that separates the region A14 and the region A15 from each other is removed. Specifically, the channel partition walls R3 and R7 between L1 and L2 and between L8 and L9 are removed.

格子流路C7を形成するために、隣接する2つの領域A13を互いに隔てる流路隔壁を取り除いている。具体的には、L1とL2との間と、L8とL9との間の流路隔壁R5を取り除いている。   In order to form the lattice channel C7, the channel partition that separates the two adjacent regions A13 from each other is removed. Specifically, the flow path partition R5 between L1 and L2 and between L8 and L9 is removed.

以上により、格子流路C4乃至C7が新たに形成され、格子流路C4乃至C7に、炉心7からの冷却材が流れる。格子流路C4乃至C7は、格子流路C1、C2と同様に、チムニ11の周辺部に設けられている。格子流路C4乃至C7の横断面積は、格子流路C0の横断面積より大きい。また、格子流路C4乃至C7の横断面は長方形であり、その長方形の最も長い辺の長さは、格子流路C0の矩形の最も長い辺の長さより長い。チムニ11の周辺部では、周辺部全域において、流速が全体的に遅くなっており、上昇流の乱れは流路隔壁R1乃至R9、L1乃至L9がなくても小さい。そこで、周辺部の流路隔壁R1乃至R9、L1乃至L9を省くことができ、周辺部に配置された格子流路C4乃至C7を、中央部に配置された格子流路C0より、横断面積で大きく設定することができる。   As described above, the lattice channels C4 to C7 are newly formed, and the coolant from the core 7 flows into the lattice channels C4 to C7. The lattice channels C4 to C7 are provided in the peripheral portion of the chimney 11 in the same manner as the lattice channels C1 and C2. The cross-sectional area of the lattice channels C4 to C7 is larger than the cross-sectional area of the lattice channel C0. The cross sections of the lattice channels C4 to C7 are rectangular, and the length of the longest side of the rectangle is longer than the length of the longest side of the rectangle of the lattice channel C0. In the peripheral part of the chimney 11, the flow velocity is generally slow throughout the peripheral part, and the turbulence of the upward flow is small even without the flow path partition walls R1 to R9 and L1 to L9. Therefore, the peripheral flow partition walls R1 to R9 and L1 to L9 can be omitted, and the lattice flow paths C4 to C7 arranged in the peripheral portion can be separated from the lattice flow path C0 arranged in the central portion in a cross-sectional area. Can be set large.

また、格子流路C0、C4乃至C7を流れる気液二相流はチャーン流に近い流動様式になり、流路隔壁R1乃至R9、L1乃至L9に圧力変動荷重による分布荷重が掛かるが、流路隔壁R1乃至R9と流路隔壁L1乃至L9との接合部に掛かる荷重は、周辺部においては、中央部より低くなっているので、流路隔壁R1乃至R9の互いの間隔と流路隔壁L1乃至L9の互いの間隔を、中央部より広げることができる。そこで、周辺部の流路隔壁R1乃至R9、L1乃至L9を省くことができ、周辺部に配置された格子流路C4乃至C7は、中央部に配置された格子流路C0より、横断面積で大きく設定することができる。また、格子流路C0の横断面の矩形の最も長い辺の長さより、格子流路C4乃至C7の横断面の長方形の長辺の長さを長く設定することができる。また、格子流路C4乃至C7を通しても、炉心7の燃料集合体21と制御棒24を、原子炉圧力容器6の外側に搬出可能である。   In addition, the gas-liquid two-phase flow that flows through the lattice channels C0, C4 to C7 has a flow pattern close to that of the churn flow, and distributed loads due to pressure fluctuation loads are applied to the channel partition walls R1 to R9 and L1 to L9. Since the load applied to the joint portion between the partition walls R1 to R9 and the flow path partition walls L1 to L9 is lower in the peripheral portion than the central portion, the distance between the flow path partition walls R1 to R9 and the flow path partition walls L1 to L9. The space | interval of L9 can mutually be expanded from a center part. Therefore, the peripheral partition walls R1 to R9 and L1 to L9 can be omitted, and the lattice channels C4 to C7 arranged in the peripheral part have a cross-sectional area larger than the lattice channel C0 arranged in the central part. Can be set large. Further, the length of the long side of the rectangular cross section of the lattice channels C4 to C7 can be set longer than the length of the longest side of the rectangular cross section of the lattice channel C0. Further, the fuel assembly 21 and the control rod 24 of the core 7 can be carried out of the reactor pressure vessel 6 through the lattice channels C4 to C7.

したがって、本発明の実施の形態の変形例3によれば、チムニ11内の格子流路C0、C4乃至C7の横断面の面積を不均一とし、周辺部の格子流路C4乃至C7の面積を中央部の格子流路C0の面積より大きくすることで、圧力変動荷重による流力振動を大きくすることなく、流路隔壁R1乃至R9と流路隔壁L1乃至L9の金属部材の物量を低減でき、材料/製造コストを低減することができる。流路隔壁R1乃至R9と流路隔壁L1乃至L9の接合部も減るので、加工/溶接/組み立てに要する時間を減らすことができる。   Therefore, according to the third modification of the embodiment of the present invention, the cross-sectional areas of the lattice channels C0, C4 to C7 in the chimney 11 are made non-uniform, and the areas of the peripheral lattice channels C4 to C7 are By making it larger than the area of the lattice flow path C0 in the central part, the amount of metal members of the flow path partition walls R1 to R9 and the flow path partition walls L1 to L9 can be reduced without increasing the hydrodynamic vibration due to the pressure fluctuation load, Material / manufacturing costs can be reduced. Since the number of joints between the flow path partition walls R1 to R9 and the flow path partition walls L1 to L9 is also reduced, the time required for processing / welding / assembly can be reduced.

(流路隔壁R1乃至R9、L1乃至L9の配置の変形例4)
図10に、流路隔壁R1乃至R9、L1乃至L9の配置の変形例を示す。図3の配置と比較して異なる点は、格子流路C1とC2に替わって、新たに、格子流路C8、C9が形成されている点である。格子流路C8は、領域A4、A8、A12の3つの領域にわたる領域に形成されている。格子流路C9は、領域A13、A14、A15の3つの領域にわたる領域に形成されている。他の領域A1乃至A3、A5乃至A7、A9乃至A11にはそれぞれ格子流路C0が形成されている。
(Modification 4 of arrangement of flow path partition walls R1 to R9, L1 to L9)
FIG. 10 shows a modified example of the arrangement of the channel partition walls R1 to R9 and L1 to L9. A difference from the arrangement of FIG. 3 is that lattice channels C8 and C9 are newly formed instead of the lattice channels C1 and C2. The lattice channel C8 is formed in a region extending over the three regions A4, A8, and A12. The lattice channel C9 is formed in a region extending over the three regions A13, A14, and A15. A lattice channel C0 is formed in each of the other regions A1 to A3, A5 to A7, and A9 to A11.

そして、格子流路C8を形成するために、領域A4、A8、A12を互いに隔てる流路隔壁を取り除いている。具体的には、R1とR2との間と、R8とR9との間の流路隔壁L3、L4、L6、L7を取り除いている。   Then, in order to form the lattice channel C8, the channel partition walls that separate the regions A4, A8, and A12 from each other are removed. Specifically, the flow path partitions L3, L4, L6, and L7 between R1 and R2 and between R8 and R9 are removed.

格子流路C9を形成するために、領域A13、A14、A15を互いに隔てる流路隔壁を取り除いている。具体的には、L1とL2との間と、L8とL9との間の流路隔壁R3、R4、R6、R7を取り除いている。   In order to form the lattice channel C9, the channel partition walls that separate the regions A13, A14, and A15 from each other are removed. Specifically, the flow path partition walls R3, R4, R6, and R7 between L1 and L2 and between L8 and L9 are removed.

以上により、格子流路C8とC9が新たに形成され、格子流路C8とC9に、炉心7からの冷却材が流れる。格子流路C8とC9は、格子流路C1、C2と同様に、チムニ11の周辺部に設けられている。格子流路C8とC9の横断面積は、格子流路C0の横断面積より大きい。また、格子流路C8とC9の横断面は長方形であり、その長方形の最も長い辺の長さは、格子流路C0の矩形の最も長い辺の長さより長い。チムニ11の周辺部では、周辺部全域において、流速が全体的に遅くなっており、上昇流の乱れは流路隔壁R1乃至R9、L1乃至L9がなくても小さい。そこで、周辺部の流路隔壁R1乃至R9、L1乃至L9を省くことができ、周辺部に配置された格子流路C8とC9を、中央部に配置された格子流路C0より、横断面積で大きく設定することができる。   As described above, the lattice channels C8 and C9 are newly formed, and the coolant from the core 7 flows into the lattice channels C8 and C9. The lattice channels C8 and C9 are provided in the peripheral part of the chimney 11 like the lattice channels C1 and C2. The cross-sectional area of the lattice channels C8 and C9 is larger than the cross-sectional area of the lattice channel C0. The cross sections of the lattice channels C8 and C9 are rectangular, and the length of the longest side of the rectangle is longer than the length of the longest side of the rectangle of the lattice channel C0. In the peripheral part of the chimney 11, the flow velocity is generally slow throughout the peripheral part, and the turbulence of the upward flow is small even without the flow path partition walls R1 to R9 and L1 to L9. Therefore, the peripheral partition walls R1 to R9 and L1 to L9 can be omitted, and the lattice channels C8 and C9 arranged in the peripheral part can be separated from the lattice channel C0 arranged in the center by a cross-sectional area. Can be set large.

また、格子流路C0、C8とC9を流れる気液二相流はチャーン流に近い流動様式になり、流路隔壁R1乃至R9、L1乃至L9に圧力変動荷重による分布荷重が掛かるが、流路隔壁R1乃至R9と流路隔壁L1乃至L9との接合部に掛かる荷重は、周辺部においては、中央部より低くなっているので、流路隔壁R1乃至R9の互いの間隔と流路隔壁L1乃至L9の互いの間隔を、中央部より広げることができる。そこで、周辺部の流路隔壁R1乃至R9、L1乃至L9を省くことができ、周辺部に配置された格子流路C8とC9は、中央部に配置された格子流路C0より、横断面積で大きく設定することができる。また、格子流路C0の横断面の矩形の最も長い辺の長さより、格子流路C8とC9の横断面の長方形の長辺の長さを長く設定することができる。また、格子流路C8とC9を通しても、炉心7の燃料集合体21と制御棒24を、原子炉圧力容器6の外側に搬出可能である。   In addition, the gas-liquid two-phase flow flowing through the lattice channels C0, C8, and C9 has a flow pattern close to that of the churn flow, and distributed loads due to pressure fluctuation loads are applied to the channel partition walls R1 to R9 and L1 to L9. Since the load applied to the joint portion between the partition walls R1 to R9 and the flow path partition walls L1 to L9 is lower in the peripheral portion than the central portion, the distance between the flow path partition walls R1 to R9 and the flow path partition walls L1 to L9. The space | interval of L9 can mutually be expanded from a center part. Therefore, the peripheral flow partition walls R1 to R9 and L1 to L9 can be omitted, and the lattice flow paths C8 and C9 arranged in the peripheral part have a larger cross-sectional area than the lattice flow path C0 arranged in the central part. Can be set large. Further, the length of the long side of the rectangular cross section of the lattice channels C8 and C9 can be set longer than the length of the longest side of the rectangular cross section of the lattice channel C0. Further, the fuel assembly 21 and the control rod 24 of the core 7 can be carried out of the reactor pressure vessel 6 through the lattice channels C8 and C9.

したがって、本発明の実施の形態の変形例4によれば、チムニ11内の格子流路C0、C8とC9の横断面の面積を不均一とし、周辺部の格子流路C8とC9の面積を中央部の格子流路C0の面積より大きくすることで、圧力変動荷重による流力振動を大きくすることなく、流路隔壁R1乃至R9と流路隔壁L1乃至L9の金属部材の物量を低減でき、材料/製造コストを低減することができる。流路隔壁R1乃至R9と流路隔壁L1乃至L9の接合部も減るので、加工/溶接/組み立てに要する時間を減らすことができる。   Therefore, according to the fourth modification of the embodiment of the present invention, the cross-sectional areas of the lattice channels C0, C8 and C9 in the chimney 11 are made non-uniform and the areas of the peripheral lattice channels C8 and C9 are By making it larger than the area of the lattice flow path C0 in the central part, the amount of metal members of the flow path partition walls R1 to R9 and the flow path partition walls L1 to L9 can be reduced without increasing the hydrodynamic vibration due to the pressure fluctuation load, Material / manufacturing costs can be reduced. Since the number of joints between the flow path partition walls R1 to R9 and the flow path partition walls L1 to L9 is also reduced, the time required for processing / welding / assembly can be reduced.

(流路隔壁R1乃至R9、L1乃至L9の配置の変形例5)
図11に、流路隔壁R1乃至R9、L1乃至L9の配置の変形例を示す。図8の変形例2の配置と比較して異なる点は、格子流路C1とC2に替わって、新たに、格子流路C10、C11が形成されている点である。格子流路C10は、領域A4とA8の2つの領域にわたる領域に形成されている。格子流路C11は、領域A13とA14の2つの領域にわたる領域に形成されている。他の領域A1乃至A3、A5乃至A7、A9とA10にはそれぞれ格子流路C0が形成されている。
(Modification 5 of arrangement of flow path partition walls R1 to R9, L1 to L9)
FIG. 11 shows a modified example of the arrangement of the channel partition walls R1 to R9 and L1 to L9. A difference from the arrangement of the modification 2 of FIG. 8 is that lattice channels C10 and C11 are newly formed instead of the lattice channels C1 and C2. The lattice channel C10 is formed in a region extending over two regions A4 and A8. The lattice channel C11 is formed in a region extending over two regions A13 and A14. A lattice channel C0 is formed in each of the other regions A1 to A3, A5 to A7, A9, and A10.

そして、格子流路C10を形成するために、領域A4とA8とを互いに隔てる流路隔壁を取り除いている。具体的には、R1とR2との間と、R8とR9との間の流路隔壁L4とL6とを取り除いている。   Then, in order to form the lattice channel C10, the channel partition walls that separate the regions A4 and A8 from each other are removed. Specifically, the flow path partitions L4 and L6 between R1 and R2 and between R8 and R9 are removed.

格子流路C11を形成するために、領域A13とA14とを互いに隔てる流路隔壁を取り除いている。具体的には、L1とL2との間と、L8とL9との間の流路隔壁R4とR6とを取り除いている。   In order to form the lattice channel C11, the channel partition that separates the regions A13 and A14 from each other is removed. Specifically, the flow path partitions R4 and R6 between L1 and L2 and between L8 and L9 are removed.

以上により、格子流路C10とC11が新たに形成され、格子流路C10とC11に、炉心7からの冷却材が流れる。格子流路C10とC11は、格子流路C1、C2と同様に、チムニ11の周辺部に設けられている。格子流路C10とC11の横断面積は、格子流路C0の横断面積より大きい。また、格子流路C10とC11の横断面は長方形であり、その長方形の最も長い辺の長さは、格子流路C0の矩形の最も長い辺の長さより長い。チムニ11の周辺部では、周辺部全域において、流速が全体的に遅くなっており、上昇流の乱れは流路隔壁R1乃至R9、L1乃至L9がなくても小さい。そこで、周辺部の流路隔壁R1乃至R9、L1乃至L9を省くことができ、周辺部に配置された格子流路C10とC11を、中央部に配置された格子流路C0より、横断面積で大きく設定することができる。   As described above, the lattice channels C10 and C11 are newly formed, and the coolant from the core 7 flows into the lattice channels C10 and C11. The lattice channels C10 and C11 are provided in the peripheral part of the chimney 11 like the lattice channels C1 and C2. The cross-sectional area of the lattice channels C10 and C11 is larger than the cross-sectional area of the lattice channel C0. The cross sections of the lattice channels C10 and C11 are rectangular, and the length of the longest side of the rectangle is longer than the length of the longest side of the rectangle of the lattice channel C0. In the peripheral part of the chimney 11, the flow velocity is generally slow throughout the peripheral part, and the turbulence of the upward flow is small even without the flow path partition walls R1 to R9 and L1 to L9. Therefore, the peripheral partition walls R1 to R9 and L1 to L9 can be omitted, and the lattice channels C10 and C11 disposed in the peripheral portion can be separated from the lattice channel C0 disposed in the center by a cross-sectional area. Can be set large.

また、格子流路C0、C10とC11を流れる気液二相流はチャーン流に近い流動様式になり、流路隔壁R1乃至R9、L1乃至L9に圧力変動荷重による分布荷重が掛かるが、流路隔壁R1乃至R9と流路隔壁L1乃至L9との接合部に掛かる荷重は、周辺部においては、中央部より低くなっているので、流路隔壁R1乃至R9の互いの間隔と流路隔壁L1乃至L9の互いの間隔を、中央部より広げることができる。そこで、周辺部の流路隔壁R1乃至R9、L1乃至L9を省くことができ、周辺部に配置された格子流路C10とC11は、中央部に配置された格子流路C0より、横断面積で大きく設定することができる。また、格子流路C0の横断面の矩形の最も長い辺の長さより、格子流路C10とC11の横断面の長方形の長辺の長さを長く設定することができる。また、格子流路C10とC11を通しても、炉心7の燃料集合体21と制御棒24を、原子炉圧力容器6の外側に搬出可能である。   In addition, the gas-liquid two-phase flow flowing through the lattice channels C0, C10, and C11 has a flow pattern close to a churn flow, and distributed flow due to pressure fluctuation load is applied to the channel partition walls R1 to R9 and L1 to L9. Since the load applied to the joint portion between the partition walls R1 to R9 and the flow path partition walls L1 to L9 is lower in the peripheral portion than the central portion, the distance between the flow path partition walls R1 to R9 and the flow path partition walls L1 to L9. The space | interval of L9 can mutually be expanded from a center part. Therefore, the peripheral flow partition walls R1 to R9 and L1 to L9 can be omitted, and the lattice flow paths C10 and C11 disposed in the peripheral portion have a larger cross-sectional area than the lattice flow path C0 disposed in the central portion. Can be set large. Further, the length of the long side of the rectangular cross section of the lattice channels C10 and C11 can be set longer than the length of the longest side of the rectangular cross section of the lattice channel C0. Further, the fuel assembly 21 and the control rod 24 of the core 7 can be carried out to the outside of the reactor pressure vessel 6 through the lattice channels C10 and C11.

したがって、本発明の実施の形態の変形例5によれば、チムニ11内の格子流路C0、C10とC11の横断面の面積を不均一とし、周辺部の格子流路C10とC11の面積を中央部の格子流路C0の面積より大きくすることで、圧力変動荷重による流力振動を大きくすることなく、流路隔壁R1乃至R9と流路隔壁L1乃至L9の金属部材の物量を低減でき、材料/製造コストを低減することができる。流路隔壁R1乃至R9と流路隔壁L1乃至L9の接合部も減るので、加工/溶接/組み立てに要する時間を減らすことができる。   Therefore, according to the fifth modification of the embodiment of the present invention, the cross-sectional areas of the lattice channels C0, C10 and C11 in the chimney 11 are non-uniform, and the areas of the lattice channels C10 and C11 in the peripheral portion are By making it larger than the area of the lattice flow path C0 in the central part, the amount of metal members of the flow path partition walls R1 to R9 and the flow path partition walls L1 to L9 can be reduced without increasing the hydrodynamic vibration due to the pressure fluctuation load, Material / manufacturing costs can be reduced. Since the number of joints between the flow path partition walls R1 to R9 and the flow path partition walls L1 to L9 is also reduced, the time required for processing / welding / assembly can be reduced.

(流路隔壁R1乃至R9、L1乃至L9の配置の変形例6)
図12に、流路隔壁R1乃至R9、L1乃至L9の配置の変形例を示す。図7の変形例1の配置と比較して異なる点は、領域A1において、格子流路C0に替わって、新たに、格子流路C101乃至C104が形成されている点である。4本の格子流路C101乃至C104は、領域A1に2×2配列されている。図6の領域A1を参照すれば、格子流路C101乃至C104のそれぞれ1つずつの配置位置には、4体の燃料集合体21とそこに挿入される燃料棒24とからなる制御棒セルが配置されている。
(Modification 6 of arrangement of flow path partition walls R1 to R9, L1 to L9)
FIG. 12 shows a modified example of the arrangement of the channel partition walls R1 to R9 and L1 to L9. A difference from the arrangement of the first modification shown in FIG. 7 is that lattice channels C101 to C104 are newly formed in the area A1 instead of the lattice channel C0. The four lattice channels C101 to C104 are arranged 2 × 2 in the region A1. Referring to region A1 in FIG. 6, control rod cells each including four fuel assemblies 21 and fuel rods 24 inserted therein are disposed at each one of the grid channels C101 to C104. Is arranged.

そして、格子流路C101乃至C104を形成するために、領域A1をさらに分割する流路隔壁R10とL10を形成している。具体的には、L4とL6との間に、流路隔壁R4とR5との中間と流路隔壁R5とR6との中間とに位置する流路隔壁R10を追加している。R4とR6との間に、流路隔壁L4とL5との中間と流路隔壁L5とL6との中間とに位置する流路隔壁L10を追加している。   Then, in order to form the lattice channels C101 to C104, channel partition walls R10 and L10 that further divide the region A1 are formed. Specifically, a flow path partition R10 positioned between the flow path partition walls R4 and R5 and between the flow path partition walls R5 and R6 is added between L4 and L6. Between R4 and R6, a flow path partition L10 located between the flow path partition walls L4 and L5 and between the flow path partition walls L5 and L6 is added.

以上により、格子流路C101乃至C104が新たに形成され、格子流路C101乃至C104に、炉心7からの冷却材が流れる。格子流路C101乃至C104は、チムニ11の中央部に設けられている。格子流路C101乃至C104の横断面積は、格子流路C0の横断面積より小さい。また、格子流路C101乃至C104の横断面は矩形であり、その矩形の最も長い辺の長さは、格子流路C0の矩形の最も長い辺の長さより短い。   As described above, the lattice channels C101 to C104 are newly formed, and the coolant from the core 7 flows into the lattice channels C101 to C104. The lattice channels C101 to C104 are provided at the center of the chimney 11. The cross-sectional areas of the lattice channels C101 to C104 are smaller than the cross-sectional area of the lattice channel C0. The cross sections of the lattice channels C101 to C104 are rectangular, and the length of the longest side of the rectangle is shorter than the length of the longest side of the rectangle of the lattice channel C0.

チムニ11の中央部では、流速が速くなっており、さらに速くなると、上昇流の乱れは流路隔壁R1乃至R9、L1乃至L9があっても大きい。そこで、中央部の領域A1にさらに流路隔壁R10とL10を加える。中央部に配置された格子流路C101乃至C104を、周辺部に配置された格子流路C1、C2、C3より、さらには、中央部と周辺部の間の中間部に配置された格子流路C0より、横断面積で小さく設定することができる。   In the central part of the chimney 11, the flow velocity is high, and as the speed increases further, the turbulence of the upward flow is large even with the flow path partition walls R1 to R9 and L1 to L9. Therefore, channel partition walls R10 and L10 are further added to the central region A1. The lattice channels C101 to C104 arranged in the central part are arranged further than the lattice channels C1, C2 and C3 arranged in the peripheral part, and further in the intermediate part between the central part and the peripheral part. From C0, the cross-sectional area can be set smaller.

また、格子流路C0、C1、C2、C3、C101乃至C104を流れる気液二相流はチャーン流に近い流動様式になり、流路隔壁R1乃至R9、L1乃至L9に圧力変動荷重による分布荷重が掛かるが、流路隔壁R10とL10により接合部に掛かる荷重は、中央部においては、中間部と周辺部と同程度に低くできる。これは、格子流路C0、C1、C2、C3の横断面の矩形の最も長い辺の長さより、格子流路C101乃至C104の横断面の矩形の長辺の長さを短く設定しているからである。また、格子流路C101乃至C104を通しても、炉心7の燃料集合体21と制御棒24を、原子炉圧力容器6の外側に搬出可能である。   In addition, the gas-liquid two-phase flow that flows through the lattice channels C0, C1, C2, C3, C101 to C104 has a flow pattern close to a churn flow, and distributed loads due to pressure fluctuation loads are applied to the channel partitions R1 to R9 and L1 to L9. However, the load applied to the joint portion by the flow path partition walls R10 and L10 can be made as low as the intermediate portion and the peripheral portion in the central portion. This is because the length of the long side of the rectangular cross section of the lattice channels C101 to C104 is set shorter than the length of the longest side of the rectangular shape of the cross section of the lattice channels C0, C1, C2, and C3. It is. Further, the fuel assembly 21 and the control rod 24 of the core 7 can be carried out to the outside of the reactor pressure vessel 6 through the lattice channels C101 to C104.

したがって、本発明の実施の形態の変形例6によれば、チムニ11内の格子流路C0、C1、C2、C3、C101乃至C104の横断面の面積を不均一とし、周辺部の格子流路C1、C2、C3の面積を中間部の格子流路C0の面積より大きくし、中央部の格子流路C101乃至C104の面積を中間部の格子流路C0の面積より小さくすることで、圧力変動荷重による流力振動を大きくすることなく、流路隔壁R10とL10の金属部材の物量は増加するものの、トータルの流路隔壁R1乃至R10と流路隔壁L1乃至L10の金属部材の物量は低減でき、材料/製造コストを低減することができる。   Therefore, according to the sixth modification of the embodiment of the present invention, the cross-sectional areas of the lattice channels C0, C1, C2, C3, C101 to C104 in the chimney 11 are non-uniform, and the lattice channels in the peripheral portion By changing the area of C1, C2, and C3 to be larger than the area of the intermediate lattice flow path C0 and making the area of the central lattice flow paths C101 to C104 smaller than the area of the intermediate lattice flow path C0, pressure fluctuations Although the quantity of the metal members of the flow path partition walls R10 and L10 increases without increasing the hydrodynamic vibration due to the load, the total amount of the metal members of the flow path partition walls R1 to R10 and the flow path partition walls L1 to L10 can be reduced. , Material / manufacturing costs can be reduced.

本発明の一実施の形態に係る自然循環型沸騰水型原子炉1の縦断面図である。1 is a longitudinal sectional view of a natural circulation boiling water reactor 1 according to an embodiment of the present invention. (a)はチムニ11の上面図であり、(b)は(a)のII−II方向の縦断面図である。(A) is a top view of the chimney 11, and (b) is a longitudinal sectional view in the II-II direction of (a). 本発明の一実施の形態に係る流路形成装置11aの格子流路と流路隔壁の配置図である。It is an arrangement drawing of a lattice channel and a channel partition of channel formation device 11a concerning one embodiment of the present invention. 流路隔壁L4とL5の間の領域A1乃至A4に配置された格子流路を流れる冷却材の流速を示すグラフである。It is a graph which shows the flow rate of the coolant which flows through the lattice flow path arrange | positioned in area | region A1 thru | or A4 between flow-path partition L4 and L5. 格子流路に冷却材が流れると、領域A1乃至A4の流路隔壁L5に印加される分布荷重を示すグラフである。It is a graph which shows the distributed load applied to the flow path partition L5 of area | region A1 thru | or A4, when a coolant flows into a lattice flow path. 炉心7の横断面における燃料集合体21と制御棒24の配置と、チムニ11の横断面における流路形成装置11aの流路隔壁の配置とを重ねて示した配置図である。FIG. 3 is an arrangement view showing the arrangement of fuel assemblies 21 and control rods 24 in the cross section of the core 7 and the arrangement of the flow path partition walls of the flow path forming device 11a in the cross section of the chimney 11. FIG. 本発明の一実施の形態に係る流路形成装置11aの格子流路と流路隔壁の配置図である。It is an arrangement drawing of a lattice channel and a channel partition of channel formation device 11a concerning one embodiment of the present invention. 本発明の一実施の形態に係る流路形成装置11aの格子流路と流路隔壁の配置図である。It is an arrangement drawing of a lattice channel and a channel partition of channel formation device 11a concerning one embodiment of the present invention. 本発明の一実施の形態に係る流路形成装置11aの格子流路と流路隔壁の配置図である。It is an arrangement drawing of a lattice channel and a channel partition of channel formation device 11a concerning one embodiment of the present invention. 本発明の一実施の形態に係る流路形成装置11aの格子流路と流路隔壁の配置図である。It is an arrangement drawing of a lattice channel and a channel partition of channel formation device 11a concerning one embodiment of the present invention. 本発明の一実施の形態に係る流路形成装置11aの格子流路と流路隔壁の配置図である。It is an arrangement drawing of a lattice channel and a channel partition of channel formation device 11a concerning one embodiment of the present invention. 本発明の一実施の形態に係る流路形成装置11aの格子流路と流路隔壁の配置図である。It is an arrangement drawing of a lattice channel and a channel partition of channel formation device 11a concerning one embodiment of the present invention.

符号の説明Explanation of symbols

6 原子炉圧力容器
7 炉心
8 炉心シュラウド
9 ダウンカマ
11 チムニ
11a 流路形成装置
11d チムニ胴
21 燃料集合体
24 制御棒
A1乃至A15 領域
C0乃至C11、C101乃至C104 格子流路
R、R1乃至R10、L1乃至L10 流路隔壁
6 reactor pressure vessel 7 core 8 core shroud 9 downcomer 11 chimney 11a flow path forming device 11d chimney cylinder 21 fuel assembly 24 control rods A1 to A15 regions C0 to C11, C101 to C104 grid flow paths R, R1 to R10, L1 To L10 Channel bulkhead

Claims (7)

原子炉圧力容器内の炉心の上方に装備されるチムニ内に配置され、前記炉心の中央部の上方に設けられ、前記炉心からの冷却材が流れる第1流路と、
前記チムニ内に配置され、前記炉心の周辺部の上方に設けられ、前記炉心からの前記冷却材が流れ、前記冷却材の流れ方向に垂直な断面積が前記第1流路より大きい第2流路とを有し、
前記第1流路の前記冷却材の流れ方向に垂直な断面が第1矩形であり、前記第2流路の前記冷却材の流れ方向に垂直な断面が第2矩形であり、前記第1矩形の最も長い辺の長さは、前記第2矩形の最も長い辺の長さより短いことを特徴とする原子炉のチムニ内の流路形成装置。
A first flow path disposed in a chimney equipped above a core in a reactor pressure vessel, provided above a central portion of the core, and through which a coolant from the core flows;
A second flow that is disposed in the chimney and is provided above the periphery of the core, the coolant flows from the core, and a cross-sectional area perpendicular to the flow direction of the coolant is larger than the first flow path. Road and
A cross section perpendicular to the coolant flow direction in the first flow path is a first rectangle, a cross section perpendicular to the coolant flow direction in the second flow path is a second rectangle, and the first rectangle The length of the longest side is shorter than the length of the longest side of the second rectangle, and the flow path forming device in the chimney of the nuclear reactor .
前記炉心の前記中央部と前記周辺部の間の上方に設けられ、前記炉心からの前記冷却材が流れ、前記冷却材の流れ方向に垂直な断面積が前記第1流路より大きく前記第2流路より小さい第3流路をさらに有することを特徴とする請求項1に記載の流路形成装置。   The coolant is provided above the central portion and the peripheral portion of the core, the coolant flows from the core, and the cross-sectional area perpendicular to the flow direction of the coolant is larger than the first flow path. The flow path forming apparatus according to claim 1, further comprising a third flow path smaller than the flow path. 前記第3流路の前記冷却材の流れ方向に垂直な断面が第3矩形であり、前記第1矩形の最も長い辺の長さは、前記第3矩形の最も長い辺の長さより短いことを特徴とする請求項2に記載の流路形成装置。 The cross section perpendicular to the flow direction of the coolant in the third flow path is a third rectangle, and the length of the longest side of the first rectangle is shorter than the length of the longest side of the third rectangle. The flow path forming device according to claim 2. 冷却材を収容可能な原子炉圧力容器と、
前記原子炉圧力容器内に配置され、前記冷却材を加熱して液体から蒸気を発生させる炉心と、
前記原子炉圧力容器内で前記炉心の上方に配置され、前記液体の対流を促進するチムニとを有する自然循環型沸騰水型原子炉において、
前記チムニが、
前記炉心の中央部の上方に設けられ、前記炉心からの冷却材が流れる第1流路と、
前記炉心の周辺部の上方に設けられ、前記炉心からの前記冷却材が流れ、前記冷却材の流れ方向に垂直な断面積が前記第1流路より大きい第2流路とを有し、
前記第1流路の前記冷却材の流れ方向に垂直な断面が第1矩形であり、前記第2流路の前記冷却材の流れ方向に垂直な断面が第2矩形であり、前記第1矩形の最も長い辺の長さは、前記第2矩形の最も長い辺の長さより短いことを特徴とする自然循環型沸騰水型原子炉。
A reactor pressure vessel capable of containing coolant;
A reactor core disposed within the reactor pressure vessel to heat the coolant and generate steam from a liquid;
In a natural circulation boiling water reactor having a chimney disposed above the core in the reactor pressure vessel and promoting convection of the liquid,
The chimney is
A first flow path provided above a central portion of the core and through which coolant from the core flows;
Provided above the periphery of the core, the coolant flows from the core, and has a second flow path whose cross-sectional area perpendicular to the flow direction of the coolant is larger than the first flow path,
A cross section perpendicular to the coolant flow direction in the first flow path is a first rectangle, a cross section perpendicular to the coolant flow direction in the second flow path is a second rectangle, and the first rectangle length of the longest sides, natural circulation boiling water reactor and being shorter than the length of said second rectangular longest side of.
前記炉心の前記中央部と前記周辺部の間の上方に設けられ、前記炉心からの前記冷却材が流れ、前記冷却材の流れ方向に垂直な断面積が前記第1流路より大きく前記第2流路より小さい第3流路を、前記チムニがさらに有することを特徴とする請求項4に記載の自然循環型沸騰水型原子炉。   The coolant is provided above the central portion and the peripheral portion of the core, the coolant flows from the core, and the cross-sectional area perpendicular to the flow direction of the coolant is larger than the first flow path. The natural circulation boiling water reactor according to claim 4, wherein the chimney further has a third flow path smaller than the flow path. 前記第3流路の前記冷却材の流れ方向に垂直な断面が第3矩形であり、前記第1矩形の最も長い辺の長さは、前記第3矩形の最も長い辺の長さより短いことを特徴とする請求項5に記載の自然循環型沸騰水型原子炉。 The cross section perpendicular to the flow direction of the coolant in the third flow path is a third rectangle, and the length of the longest side of the first rectangle is shorter than the length of the longest side of the third rectangle. The natural circulation boiling water nuclear reactor according to claim 5, 前記炉心の燃料集合体を、前記第1流路または前記第2流路を通して、前記原子炉圧力容器の外側に搬出可能であることを特徴とする請求項4乃至請求項6のいずれか1項に記載の自然循環型沸騰水型原子炉。
The fuel assembly of the core can be carried out of the reactor pressure vessel through the first flow path or the second flow path. The natural circulation boiling water reactor described in 1.
JP2006053019A 2006-02-28 2006-02-28 Channel forming device and natural circulation boiling water reactor Expired - Fee Related JP4392412B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006053019A JP4392412B2 (en) 2006-02-28 2006-02-28 Channel forming device and natural circulation boiling water reactor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006053019A JP4392412B2 (en) 2006-02-28 2006-02-28 Channel forming device and natural circulation boiling water reactor

Publications (2)

Publication Number Publication Date
JP2007232497A JP2007232497A (en) 2007-09-13
JP4392412B2 true JP4392412B2 (en) 2010-01-06

Family

ID=38553227

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006053019A Expired - Fee Related JP4392412B2 (en) 2006-02-28 2006-02-28 Channel forming device and natural circulation boiling water reactor

Country Status (1)

Country Link
JP (1) JP4392412B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103117097B (en) * 2013-02-04 2015-07-15 中国核动力研究设计院 Tube-plate double-process supercritical water cooled reactor

Also Published As

Publication number Publication date
JP2007232497A (en) 2007-09-13

Similar Documents

Publication Publication Date Title
KR102200640B1 (en) Heavy radial neutron reflector for pressurized water reactors
CN104335286A (en) Pressurizer surge-line separator for integral pressurized water reactors
JP4458489B2 (en) Channel forming device and natural circulation boiling water reactor
US7769124B2 (en) Natural circulation boiling water reactor and handling method thereof
JP4392412B2 (en) Channel forming device and natural circulation boiling water reactor
JP3316459B2 (en) Reactor Vessel Internal Structure
US4584168A (en) System for controlling destructive vibration of a nuclear control rod
JP2007232423A (en) Natural circulation boiling water reactor
JP2007047090A (en) Natural circulation type boiling water reactor
JP2007232519A (en) Natural circulation boiling water reactor
JP4500276B2 (en) Chimney structure of natural circulation boiling water reactor
JP2007198997A (en) Super-critical pressure water cooled reactor and super-critical pressure water cooled fuel assembly
JP2003294878A (en) Fuel assembly
JP2010002246A (en) Boiling water reactor of natural circulation system
JP2007232518A (en) Natural circulation boiling water reactor
JP2021113769A (en) Fuel aggregate
JP5999890B2 (en) Reactor
JP7212644B2 (en) boiling water reactor
JP5191913B2 (en) Natural circulation boiling water reactor
US8559586B2 (en) Distributed clumping of part-length rods for a reactor fuel bundle
JP2531910B2 (en) Device for reducing parasitic bypass flow in boiling water reactors.
JP4944455B2 (en) Natural circulation boiling water reactor
JP2011069751A (en) Chimney of natural circulation type boiling water reactor, fuel exchange method of natural circulation type boiling water reactor using the same, inspection method of natural circulation type boiling water reactor using the same, and natural circulation type boiling water reactor using the same
JP3035276B1 (en) Reactor vessel core support structure
JP4166910B2 (en) Pressurized water reactor

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20071204

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071205

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090625

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090707

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090904

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20091006

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20091009

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121016

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4392412

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121016

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131016

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees