JP2007232518A - Natural circulation boiling water reactor - Google Patents

Natural circulation boiling water reactor Download PDF

Info

Publication number
JP2007232518A
JP2007232518A JP2006053346A JP2006053346A JP2007232518A JP 2007232518 A JP2007232518 A JP 2007232518A JP 2006053346 A JP2006053346 A JP 2006053346A JP 2006053346 A JP2006053346 A JP 2006053346A JP 2007232518 A JP2007232518 A JP 2007232518A
Authority
JP
Japan
Prior art keywords
lattice
flow
channel
chimney
core
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006053346A
Other languages
Japanese (ja)
Inventor
Shiro Takahashi
志郎 高橋
Masaya Otsuka
雅哉 大塚
Masaaki Tsubaki
椿  正昭
Fumihito Hirokawa
文仁 廣川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2006053346A priority Critical patent/JP2007232518A/en
Publication of JP2007232518A publication Critical patent/JP2007232518A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Landscapes

  • Monitoring And Testing Of Nuclear Reactors (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To realize a channel structure of a lattice channel, which reduces flow induced vibration of a flow regime of a two-phase (gas-liquid) flow produced, when a plurality of vertical lattice channels are formed by partitions and the inner side of a chimney is used as an ascending channel of a coolant. <P>SOLUTION: A plurality of vertical lattice channels 11a-1, 11a-2 are formed by upper/lower lattice structure members 11-1, 11-2 within the circular tubular chimney 11 installed above a core 7 inside a pressure vessel 6. A branching/confluent zone 37 in which the lattice channels 11a-1, 11a-2 have different channel cross-sections is provided between partition end faces 28, 29 of the upper/lower lattice structure members 11-1, 11-2 to change the flow regime of the two-phase (gas-liquid) flow into a flow regime mixed or combined with a flow regime such as a churn flow when the two-phase (gas-liquid) flow ascends from the lattice flow channel 11a-1 to the lattice flow channel 11a-2 so that flow induced vibration load produced in the flow regime of the churn flow is reduced to secure the structural soundness of the chimney and economy is achieved in performance work for maintaining the soundness and making periodic inspection of the reactor. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、自然循環式沸騰水型原子炉に係り、特に冷却材の密度差により自然循環の冷却材循環駆動力を得るために炉心の上に設置されるチムニの流路構造に関する。   The present invention relates to a natural circulation boiling water nuclear reactor, and more particularly to a chimney flow path structure installed on a reactor core to obtain a natural circulation coolant circulation driving force due to a density difference of the coolant.

自然循環式の沸騰水型原子炉(以後、BWRと称する)は、原子炉圧力容器内に炉心が収納されており、この炉心を取り囲むように円筒状の炉心シュラウドが設けられている。そして、炉心の上にはこれにつながるかたちで円筒状のチムニが設けられている。
これら炉心シュラウド及びチムニの内側に冷却材の上昇流路が、外側には原子炉圧力容器の内周面との間で冷却材の下降流路としてダウンカマが形成されている。これにより、原子炉圧力容器内には冷却水が密度差に基づく冷却材循環駆動力によって自然循環するための循環流路がダウンカマ、炉心下部プレナム、上昇流路によって構成されている。
In a natural circulation boiling water reactor (hereinafter referred to as BWR), a reactor core is housed in a reactor pressure vessel, and a cylindrical reactor core shroud is provided so as to surround the reactor core. A cylindrical chimney is provided on the core so as to lead to this.
A coolant ascending channel is formed inside the core shroud and chimney, and a downcomer is formed outside as a coolant descending channel between the inner periphery of the reactor pressure vessel. As a result, in the reactor pressure vessel, the circulation channel for the natural circulation of the cooling water by the coolant circulation driving force based on the density difference is constituted by the downcomer, the core lower plenum, and the ascending channel.

冷却材が自然循環するための循環流路を原子炉圧力容器内に備えているBWRは、その循環途中である炉心で熱を受けて加熱された冷却材が蒸気を伴う飽和状態の気液二相流となり、炉心の各燃料集合体からチムニ内を抜け出る上昇流路にて上昇し、気水分離器によって水と蒸気に分離される。蒸気はタービンなどに供給され、水はダウンカマ側に戻される。また、タービンで仕事をした後の蒸気は、復水された後に給水入口ノズルを介して原子炉圧力容器内(ダウンカマ側)に戻される。
ダウンカマに戻された冷却材は、炉心で加熱されて炉心からチムニへの上昇流路を上昇する水、蒸気二相飽和状態の冷却材よりも低温で密度が大きいことから、その密度差に基づく冷却材自然循環駆動力でダウンカマを下降していく。ダウンカマを下降した冷却材の流れは炉心下部プレナムで上側に反転して再度炉心へ下方から入り加熱されて上昇流路を上昇する。
In a BWR equipped with a circulation channel for the natural circulation of coolant in the reactor pressure vessel, the coolant heated by receiving heat from the core in the middle of the circulation is saturated with gas and liquid in a saturated state with steam. It becomes a phase flow, rises in the ascending flow path that exits the chimney from each fuel assembly in the core, and is separated into water and steam by the steam separator. Steam is supplied to a turbine or the like, and water is returned to the downcomer side. Further, the steam after working in the turbine is condensed and then returned to the reactor pressure vessel (downcomer side) through the feed water inlet nozzle.
The coolant returned to the downcomer is heated in the core and rises in the ascending flow path from the core to the chimney, and the density is lower than the coolant in the two-phase saturated state, which is based on the density difference. The downcomer is lowered by the coolant natural circulation driving force. The flow of the coolant descending the downcomer reverses upward in the lower plenum of the core, enters the core again from below and is heated and rises in the ascending flow path.

このような、循環流路を原子炉圧力容器内に備えているBWRでは、原子炉圧力容器内の冷却材を、再循環ポンプを用いて強制循環させる替わりに、自然循環させるようにしている(例えば、特許文献1及び特許文献2参照)。
そのため、自然循環式のBWRと、冷却材を再循環ポンプで強制的に循環させる強制循環式のBWRとの最大の違いは、冷却材を循環させるための系統及び機器が簡略化されていることである。
In such a BWR having a circulation channel in the reactor pressure vessel, the coolant in the reactor pressure vessel is naturally circulated instead of being forcedly circulated using a recirculation pump ( For example, see Patent Literature 1 and Patent Literature 2).
Therefore, the biggest difference between a natural circulation type BWR and a forced circulation type BWR that forcibly circulates the coolant with a recirculation pump is that the system and equipment for circulating the coolant are simplified. It is.

また、自然循環による冷却材の循環効率の向上を期待し、円筒状のチムニの横断面においてその半径方向に沿って外側から中心に向かうにしたがって軸方向の高さが高くなるように、例えば、最外周領域、外側領域、内側領域などのように区画された直立の食違い格子流路構造を有するチムニを炉心の上に具備し、その中を炉心からの気液二相流を通して上昇させるようにした自然循環式のBWRも知られている(例えば、特許文献3参照)。
特開平06−265665号公報(段落番号0019、及び図1参照) 特開平08−094793号公報(段落番号0022〜0023、及び図1参照) 特公平07−027051号公報(請求項1、明細書第4頁右欄の第7行目〜第21行目、及び図1参照)
In addition, with the expectation of improvement in the circulation efficiency of the coolant by natural circulation, in the transverse cross section of the cylindrical chimney, the axial height increases from the outside toward the center along the radial direction, for example, A chimney having an upright staggered grid flow path structure divided into an outermost peripheral region, an outer region, an inner region, and the like is provided on the core so as to be raised through a gas-liquid two-phase flow from the core. A natural circulation type BWR is also known (see, for example, Patent Document 3).
Japanese Patent Laid-Open No. 06-265665 (see paragraph number 0019 and FIG. 1) Japanese Unexamined Patent Publication No. 08-094793 (see paragraph numbers 0022 to 0023 and FIG. 1) Japanese Patent Publication No. 07-027051 (see claim 1, lines 7 to 21 in the right column on page 4 of the specification, and FIG. 1)

本願発明者らは、チムニの格子流路を模擬した空気−水二相流実験装置を用いて、垂直上昇流の二相流の流動試験を実施した。この流動試験の中で、二相流の空気と水の流量は、変化させた。
その結果、格子流路を形成する流路隔壁に流力振動(FIV:Flow Induced Vibration)荷重が掛かることが分かった。
The inventors of the present application performed a flow test of a two-phase flow of a vertical upward flow using an air-water two-phase flow experimental apparatus simulating a chimney lattice channel. During the flow test, the flow rates of the two-phase air and water were varied.
As a result, it was found that a flow induced vibration (FIV) load was applied to the flow path partition walls forming the lattice flow paths.

例えば、図9に示すように、格子流路40の流路横断面内の中央部が気相(空気泡)で占められ、その気泡の外側に格子流路40の内壁面40aに沿って液相(水)が存在する状態41と、流路横断面内が略液相で満たされた状態42とが交互に繰り返されて通過する所謂チャーン流に近い二相流の流動様式となり、流路隔壁に数kPa〜十数kPaの圧力変動が加えられることが分かった。
また、この実験では、隣り合う格子流路間における格子隔壁への圧力変動は、位相が異なることが分かった。
これは、格子流路内におけるチャーン流では、前記のように流れの中で高さ方向にボイド率分布が一様分でないことに加え、高さ方向のボイド率分布が格子流路間では同位相でないこと、さらに格子流路ごとに気相の容積量が異なることによるものと考えられる。
このような、流力振動荷重は、格子流路間を仕切る流路隔壁を、板材を溶接などにより接合して形成する場合、この接合部に繰り返し荷重が掛かり、長期的には悪影響を与える可能性がある。
For example, as shown in FIG. 9, the central portion in the cross section of the lattice channel 40 is occupied by a gas phase (air bubbles), and the liquid flows along the inner wall surface 40 a of the lattice channel 40 outside the bubbles. A state 41 in which a phase (water) is present and a state 42 in which the inside of the channel cross-section is substantially filled with a liquid phase are alternately repeated to form a two-phase flow mode close to a so-called Churn flow. It was found that pressure fluctuations of several kPa to several tens of kPa were applied to the partition walls.
Moreover, in this experiment, it turned out that the phase to the pressure fluctuation to the lattice partition between adjacent lattice flow paths differs.
This is because, in the churn flow in the lattice flow path, the void ratio distribution is not uniform in the height direction in the flow as described above, and the void ratio distribution in the height direction is the same between the lattice flow paths. This is considered to be due to the fact that it is not in phase and that the volume of the gas phase is different for each lattice channel.
Such a hydrodynamic vibration load may be adversely affected in the long term when a flow path partition that separates grid flow paths is formed by joining plate materials by welding or the like. There is sex.

本発明は、複数の直立した格子流路に仕切ってチムニの内側を冷却材の上昇流路とした際に発生する冷却材の流力振動荷重を効果的に低減することができるように改良された流路構造を有するチムニを備えた自然循環式沸騰水型原子炉を提供することを目的とする。   The present invention has been improved so as to effectively reduce the coolant vibration vibration load generated when the inside of the chimney is divided into a plurality of upright lattice channels to be used as the coolant ascending channel. An object of the present invention is to provide a natural circulation boiling water reactor equipped with chimneys having a flow channel structure.

前記課題を解決するために本発明の自然循環式沸騰水型原子炉は、原子炉圧力容器内の炉心の上に設置されるチムニの内側に、格子状に仕切られた複数の直立した格子流路を備え、該格子流路の流路横断面が、高さ方向において異なる領域を有している構成を特徴とする(請求項1)。そして、前記格子流路が、上下の格子構造体によって高さ方向に構成されていることを特徴とする(請求項2)。さらに、前記上下の格子構造体の分割端面の間に、隙間が設けられていることを特徴とする(請求項3)。   In order to solve the above problems, the natural circulation boiling water reactor according to the present invention includes a plurality of upright grid flows partitioned in a grid form inside a chimney installed on a core in a reactor pressure vessel. The present invention is characterized in that a channel is provided, and the cross section of the lattice channel has different regions in the height direction (Claim 1). And the said grid flow path is comprised in the height direction by the upper and lower grid structures (Claim 2), It is characterized by the above-mentioned. Furthermore, a gap is provided between the divided end faces of the upper and lower lattice structures (claim 3).

本発明の自然循環式沸騰水型原子炉によれば、炉心で加熱された冷却材が飽和状態の気液二相流となってチムニの各格子流路を上昇通過する際に、各格子流路内に流力振動荷重を引き起こす要素であるチャーン流などの流動様式は、高さ方向において流路横断面が異なる格子流路の領域における例えば分岐や合流などによって混合されてその流れが変換される。これにより、気液二相流が格子流路を上昇する過程で引き起こすチャーン流に起因する圧力変動の発生が抑えられてそれに伴う流力振動荷重を低減することができる。すなわち、本発明により、チャーン流のような、水と蒸気が分離されて流れる流動様式が、水と蒸気が分散された流れに変換される。   According to the natural circulation boiling water nuclear reactor of the present invention, when the coolant heated in the core becomes a gas-liquid two-phase flow in a saturated state and rises and passes through each lattice channel of Chimney, The flow mode such as churn flow, which is a factor causing hydrodynamic vibration load in the channel, is mixed by, for example, branching or merging in the region of the grid channel where the channel cross section is different in the height direction, and the flow is converted. The Thereby, generation | occurrence | production of the pressure fluctuation resulting from the churn flow caused in the process in which the gas-liquid two-phase flow ascends the lattice channel is suppressed, and the hydrodynamic vibration load associated therewith can be reduced. That is, according to the present invention, a flow mode in which water and steam flow separated, such as a churn flow, is converted into a flow in which water and steam are dispersed.

また、異なる領域の流路横断面を高さ方向に有する格子流路は、分割された上下の格子構造体の段積み組み合わせによって容易に実現することができる。さらに、上下の格子構造体の各格子流路は、両格子構造体の分割端面の間に設けた隙間によって連通している。これにより、チャーン流の流動様式によって各格子流路の高さ方向に発生する位相が相違する圧力変動は隙間を介して干渉することで、隣り合う格子流路における圧力変動の均一化を図ることが可能となり、流力振動荷重をより一層効果的に低減させることができる。   Moreover, the lattice flow path which has the cross-sectional area of the flow path of a different area | region in a height direction can be easily implement | achieved by the stacking | stacking combination of the divided | segmented upper and lower lattice structures. Further, the lattice flow paths of the upper and lower lattice structures are communicated with each other through a gap provided between the divided end faces of both lattice structures. As a result, pressure fluctuations in which the phase generated in the height direction of each lattice flow path differs depending on the flow mode of the churn flow interferes with each other through the gap, so that the pressure fluctuations in adjacent lattice flow paths are made uniform. It is possible to reduce the hydrodynamic vibration load more effectively.

本発明は、複数の直立した格子流路に仕切ってチムニの内側を冷却材の上昇流路とした際に各格子流路に生じる流力振動荷重を効果的に低減することができる。
また、格子流路の高さ方向における冷却材の分岐と混合は、チムニのボイド率分布を均一化する効果も有する。
The present invention can effectively reduce the hydrodynamic vibration load generated in each lattice channel when the inside of the chimney is divided into a plurality of upright lattice channels and the inside of the chimney is used as the coolant ascending channel.
Further, the branching and mixing of the coolant in the height direction of the lattice channel also has the effect of making the chimney void ratio distribution uniform.

以下、本発明の実施形態について、適宜図面を参照しながら詳細に説明する。
図1は、第1の実施形態に係るチムニを備えた本発明の自然循環式沸騰水型原子炉の概略を示す縦断面図である。
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings as appropriate.
FIG. 1 is a longitudinal sectional view showing an outline of a natural circulation boiling water reactor of the present invention provided with a chimney according to a first embodiment.

≪原子炉の概要≫
自然循環式沸騰水型原子炉(以後、原子炉と称する)1は、図1に示すように、原子炉圧力容器(以後、圧力容器と称する)6内に収納する炉心7で発生するボイド、すなわち蒸気(気相)と飽和温度の液相の冷却材の混合した密度の低い冷却材と、給水配管16bから供給される給水と混合された液相の冷却材との密度差(比重差)によって自然循環に必要な冷却材循環駆動力を得るように構成されている。
≪Outline of nuclear reactor≫
As shown in FIG. 1, a natural circulation boiling water reactor (hereinafter referred to as “reactor”) 1 includes voids generated in a reactor core 7 housed in a reactor pressure vessel (hereinafter referred to as “pressure vessel”). That is, the density difference (specific gravity difference) between the low-density coolant mixed with the vapor (gas phase) and the liquid coolant at the saturation temperature and the liquid coolant mixed with the feed water supplied from the feed water pipe 16b. Thus, a coolant circulation driving force necessary for natural circulation is obtained.

≪原子炉の構成≫
原子炉1は、図1に示すように、縦長で円筒状を呈する圧力容器6の内部に、円筒状の炉心シュラウド(以後、シュラウドと称する)8が同心上に設けられている。このシュラウド8は、圧力容器6内面の底部の近くに設けられたシュラウドサポート32に固定されたシュラウドレグ8aによって支持されている。そして、シュラウド8の外周面と圧力容器6の内周面との間に環状の空間を形成し、この環状の空間を冷却材の下降流路としてのダウンカマ9としている。
また、シュラウド8の内部には、多数の燃料集合体21を装架する炉心7が炉心支持板22及び上部格子板23で支持されて収容されている。この炉心7の上部格子板23の上には、円筒状のチムニ11が同心上に設けられており、シュラウド8及びチムニ11の内側に冷却材の上昇流路を形成する。
≪Reactor configuration≫
As shown in FIG. 1, a nuclear reactor 1 is provided with a cylindrical core shroud (hereinafter referred to as a shroud) 8 concentrically inside a pressure vessel 6 that is vertically long and has a cylindrical shape. The shroud 8 is supported by a shroud leg 8 a fixed to a shroud support 32 provided near the bottom of the inner surface of the pressure vessel 6. An annular space is formed between the outer peripheral surface of the shroud 8 and the inner peripheral surface of the pressure vessel 6, and this annular space is used as a downcomer 9 as a coolant downflow path.
Further, inside the shroud 8, the core 7 on which a large number of fuel assemblies 21 are mounted is supported and accommodated by the core support plate 22 and the upper lattice plate 23. A cylindrical chimney 11 is provided concentrically on the upper lattice plate 23 of the reactor core 7, and a coolant ascending flow path is formed inside the shroud 8 and the chimney 11.

ダウンカマ9の上方には、復水器3から給水ポンプ4を介して、給水加熱器5で加熱の後、給水入口ノズル17から圧力容器6内に供給される冷却材を配給する図示省略の給水スパージャが円環状に設けられている。ダウンカマ9を下降した冷却材は、シュラウドレグ8a間の流路から、下部プレナム10に導き入れられる。   Above the downcomer 9, a water supply (not shown) that distributes the coolant supplied from the water supply inlet nozzle 17 into the pressure vessel 6 after being heated by the water supply heater 5 from the condenser 3 via the water supply pump 4. A sparger is provided in an annular shape. The coolant descending the downcomer 9 is introduced into the lower plenum 10 from the flow path between the shroud legs 8a.

そして、チムニ11の上端はシュラウドヘッド12aで閉じられている。このシュラウドヘッド12aには、所定数の冷却材通過用の孔(図示省略)が設けられており、スタンドパイプ12bを介して気液二相流から飽和蒸気と飽和水とに分離する気水分離器12に繋がっている。
この気水分離器12の上部には、蒸気乾燥器13が設けられ、気水分離器12を出た飽和蒸気に含まれている湿分が分離除去されるようになっている。
The upper end of the chimney 11 is closed by a shroud head 12a. The shroud head 12a is provided with a predetermined number of coolant passage holes (not shown), and the steam-water separation for separating the steam-saturated water and the saturated water from the gas-liquid two-phase flow through the stand pipe 12b. Connected to vessel 12.
A steam dryer 13 is provided on the top of the steam / water separator 12 so that moisture contained in the saturated steam exiting the steam / water separator 12 is separated and removed.

また、シュラウドヘッド12aで閉じられたチムニ11の上には、チムニ11の後記する下側の格子流路11a−1から上側の格子流路11a−2を通って上昇してくる飽和状態の冷却材が合流するようにシュラウド上部プレナム(以後、上部プレナムと称する)11cが形成されている(図1参照)。   Further, on the chimney 11 closed by the shroud head 12a, the saturated cooling rising from the lower lattice channel 11a-1 described later of the chimney 11 through the upper lattice channel 11a-2. A shroud upper plenum (hereinafter referred to as an upper plenum) 11c is formed so that the materials meet (see FIG. 1).

炉心7の下部には、下方へ略半球面状に膨らませた炉心下部プレナム(以後、下部プレナムと称する)10が一体に形成されている。この下部プレナム10と炉心7との間には炉心7と下部プレナム10とを区切る境界になる炉心支持板22を、この炉心支持板22の上方には上部格子板23をそれぞれ設け、燃料集合体21と制御棒24の横方向の配置を決めている。
炉心支持板22には、所定の間隔で円形の図示しない貫通孔が設けられ、その貫通孔に制御棒案内管25が挿入され、制御棒案内管25の下部は、圧力容器6の底部を貫通して制御棒24を上下方向に動かす制御棒駆動機構26を収容する制御棒駆動機構ハウジング(以後、CRDハウジングと称する)26aの上部に組み合わされている。
燃料集合体21は、制御棒案内管25の上端に取り付けられた図示省略の燃料支持金具の上に据えられ、その荷重は制御棒案内管25およびCRDハウジング26aを介して圧力容器6の底部に伝えられるようにしている。
A lower core plenum (hereinafter referred to as a lower plenum) 10 swelled downward in a substantially hemispherical shape is integrally formed at the lower part of the core 7. A core support plate 22 is provided between the lower plenum 10 and the core 7 as a boundary that separates the core 7 and the lower plenum 10, and an upper lattice plate 23 is provided above the core support plate 22. 21 and the control rod 24 are arranged in the horizontal direction.
The core support plate 22 is provided with circular through holes (not shown) at predetermined intervals. A control rod guide tube 25 is inserted into the through holes, and the lower portion of the control rod guide tube 25 penetrates the bottom of the pressure vessel 6. The control rod drive mechanism housing (hereinafter referred to as a CRD housing) 26a for accommodating the control rod drive mechanism 26 for moving the control rod 24 in the vertical direction is combined with the upper portion.
The fuel assembly 21 is placed on a fuel support fitting (not shown) attached to the upper end of the control rod guide tube 25, and the load is applied to the bottom of the pressure vessel 6 via the control rod guide tube 25 and the CRD housing 26a. I am trying to communicate.

燃料支持金具は、側面に冷却材入口を有し、そこに図示省略のオリフィスが設けられ、冷却材流量を規制している。燃料支持金具の冷却材入口に対応する制御棒案内管25の側面には開口が設けられ、下部プレナム10に導かれた冷却材が燃料支持金具を経て、燃料集合体21内に導かれるようになっている。   The fuel support fitting has a coolant inlet on a side surface, and an orifice (not shown) is provided therein to regulate the coolant flow rate. An opening is provided in the side surface of the control rod guide tube 25 corresponding to the coolant inlet of the fuel support bracket so that the coolant guided to the lower plenum 10 is guided into the fuel assembly 21 through the fuel support bracket. It has become.

個々の燃料集合体21は、図示省略の四角筒のチャンネルボックスで囲われ、軸方向の個別の流路を形成している。チャンネルボックスは、上部格子板23の上面まで至る。前記四角筒のチャンネルボックスの外側には、隣接している燃料集合体21のチャンネルボックスとの間に間隙を有し、所定割合の冷却材が上方に流れる流路を形成している。
制御棒24は、図示省略の中性子吸収物質を含む有効部を有し、その有効部が前記チャンネルボックスの外面をガイドとして、4体の燃料集合体21間に挿入される。
一方、圧力容器6の上部開口部には上方へ略半球面状に膨らませた容器蓋27が、図示省略の多数のスタッドボルトなどによって着脱(開閉)可能に取り付けられている。この容器蓋27の内側に蒸気ドーム14が設けられている。
The individual fuel assemblies 21 are surrounded by a rectangular tube channel box (not shown) to form individual flow paths in the axial direction. The channel box reaches the upper surface of the upper lattice plate 23. On the outside of the channel box of the rectangular tube, there is formed a flow path having a gap between the adjacent fuel assembly 21 and the flow rate of a predetermined ratio of coolant.
The control rod 24 has an effective portion containing a neutron absorbing material (not shown), and the effective portion is inserted between the four fuel assemblies 21 with the outer surface of the channel box as a guide.
On the other hand, a container lid 27 swelled upward in a substantially hemispherical shape is attached to the upper opening of the pressure vessel 6 so as to be detachable (openable / closable) by a number of stud bolts not shown. A steam dome 14 is provided inside the container lid 27.

なお、シュラウドヘッド12aとスタンドパイプ12b及び気水分離器12は一体に組み立てられており、原子炉1の定期検査や燃料を交換するなどのときにはチムニ11の上端から一体で取り外すことが可能になっている。   Note that the shroud head 12a, the stand pipe 12b, and the steam / water separator 12 are integrally assembled, and can be removed from the upper end of the chimney 11 at the time of periodic inspection of the nuclear reactor 1 or replacement of fuel. ing.

このように、概略説明した炉心7、チムニ11などの炉内構造物を圧力容器6内に順次設けけた構造になっている自然循環式の原子炉1においては、図1に示すように、冷却材(軽水)が気水分離器12の途中の高さの水位レベルLまで入れられた状態で運転される。
そして、給水入口ノズル17から供給される冷却材は、気水分離器12で分離された飽和水と混合し、図1中矢印Aで示す冷却材はダウンカマ9を下降する。ダウンカマを降下する冷却材の流れは、シュラウド8の下部側に設けられているシュラウドレグ8aから下部プレナム10に流下し、下部プレナム10で上側に反転して再度炉心7内に下方から流入し、炉心7によって加熱される。
In this way, in the natural circulation reactor 1 having a structure in which the reactor cores 7 and chimneys 11 and the like schematically described are sequentially provided in the pressure vessel 6, as shown in FIG. The operation is performed in a state in which the material (light water) is put to a water level L at a height in the middle of the steam separator 12.
Then, the coolant supplied from the feed water inlet nozzle 17 is mixed with the saturated water separated by the steam separator 12, and the coolant indicated by the arrow A in FIG. The coolant flow descending the downcomer flows from the shroud leg 8a provided on the lower side of the shroud 8 to the lower plenum 10, reverses upward at the lower plenum 10, and flows again into the core 7 from below. Heated by the core 7.

炉心7からの加熱によって冷却材Aは、図1中矢印Bで示す飽和状態の気液二相流となる。この気液二相流は、チムニ11の下側の格子流路11a−1から後記の隙間30を介して上側の格子流路11a−2を通って上昇し、上部プレナム11c、スタンドパイプ12bを経て、気水分離器12によって、矢印Cで示す気相の飽和蒸気と、矢印Dで示す液相の飽和水に分離される。このように、炉心7、チムニ11は、内側に冷却材の上昇流路を構成している。
飽和蒸気Cは、蒸気乾燥器13を経て、蒸気出口ノズル15から主蒸気配管16aによってタービン2に導かれて発電に供される。
By the heating from the core 7, the coolant A becomes a gas-liquid two-phase flow in a saturated state indicated by an arrow B in FIG. This gas-liquid two-phase flow rises from the lower lattice flow path 11a-1 of the chimney 11 through the upper lattice flow path 11a-2 through the gap 30 described later, and passes through the upper plenum 11c and the stand pipe 12b. Then, the steam-water separator 12 separates the saturated vapor in the gas phase indicated by the arrow C and the saturated water in the liquid phase indicated by the arrow D. In this way, the core 7 and the chimney 11 constitute a coolant ascending flow path inside.
The saturated steam C passes through the steam dryer 13 and is led from the steam outlet nozzle 15 to the turbine 2 by the main steam pipe 16a to be used for power generation.

一方、飽和水Dは、圧力容器6内の冷却材に混合され、また、給水入口ノズル17から供給される冷却材と更に混合されて、再びダウンカマ9を下降してシュラウドレグ8aから下部プレナム10に流下され、この下部プレナム10で上側に反転して再度炉心7内に下方から流入して加熱されることが繰り返される。
つまり、ダウンカマ9に戻された冷却材は、給水と混ざり合ったものであり、炉心7で加熱されて炉心7、チムニ11と繋がる上昇流路を上昇する気液二相流の冷却材よりも低温で密度が大きいことから、その密度差(比重差)に基づく冷却水自然循環駆動力が生じ、ダウンカマ9を下降していく。
On the other hand, the saturated water D is mixed with the coolant in the pressure vessel 6 and further mixed with the coolant supplied from the feed water inlet nozzle 17, and descends the downcomer 9 again from the shroud leg 8 a to the lower plenum 10. The lower plenum 10 is turned upside down, and again flows into the core 7 from below to be heated.
That is, the coolant returned to the downcomer 9 is mixed with the feed water, and is heated by the core 7 and rises more than the gas-liquid two-phase flow coolant that rises in the ascending flow path connected to the core 7 and chimney 11. Since the density is high at low temperatures, a cooling water natural circulation driving force based on the density difference (specific gravity difference) is generated, and the downcomer 9 is lowered.

≪第1の実施形態のチムニの構成≫
つぎに、第1の実施形態に係るチムニの格子流路の流路構造を、図2、図3及び図4を用いて説明する。ここでは、図1を適宜参照して説明する。
図2は、図1のII−II線横断面図であり、図3は、第1の実施形態に係るチムニの上下の格子構造体を示す斜視図であり、図4は、上下の格子構造体を重ね合わせたときの格子流路の組み合わせ配置関係と格子流路と炉心の制御棒セルとの配置関係を、一部を拡大して示す横断面図である。
<< Configuration of Chimney of First Embodiment >>
Next, the channel structure of the chimney lattice channel according to the first embodiment will be described with reference to FIGS. 2, 3, and 4. Here, description will be made with reference to FIG.
2 is a cross-sectional view taken along the line II-II in FIG. 1, FIG. 3 is a perspective view showing the upper and lower lattice structures of the chimney according to the first embodiment, and FIG. 4 is an upper and lower lattice structure. It is a cross-sectional view which expands a part and shows the combination arrangement relation of a lattice channel when a body is piled up, and the arrangement relationship between a lattice channel and a control rod cell of a core.

チムニ11は、図2及び図4に示すように、上方から見て格子状に仕切られた複数の格子流路11a−1,11a−2をそれぞれ有する上下の格子構造体11−1,11−2を内側に備えて構成されている。
また、チムニ11は、上下の格子構造体11−1,11−2の周囲を取り囲む円筒状のチムニ胴11dを備えている(図2参照)。このチムニ胴11dは、例えば圧力容器6内に同心上に設置されて上下の格子構造体11−1,11−2を同心上に段積み組み合わせて収容すると共に、上部格子構造体11−2の上端とシュラウドヘッド12aとの間に上部プレナム11cとなる上部空間が確保される高さに形成されている(図1参照)。
As shown in FIGS. 2 and 4, the chimney 11 includes upper and lower lattice structures 11-1 and 11-each having a plurality of lattice channels 11 a-1 and 11 a-2 partitioned in a lattice shape when viewed from above. 2 is provided inside.
The chimney 11 includes a cylindrical chimney cylinder 11d that surrounds the upper and lower lattice structures 11-1 and 11-2 (see FIG. 2). The chimney cylinder 11d is installed concentrically in, for example, the pressure vessel 6 and accommodates the upper and lower lattice structures 11-1 and 11-2 stacked in a concentric manner. Between the upper end and the shroud head 12a, it is formed at such a height that an upper space serving as the upper plenum 11c is secured (see FIG. 1).

≪格子構造体の構成≫
上下の格子構造体11−1,11−2は、チムニ11の高さ方向に2分割され、チムニ胴11dの内側に同心上に段積み組み合わせられて収容される。そして、上下の格子構造体11−1,11−2は、チムニ胴1dの内側に同心上に収容されるに際して、分割端面28,29の間に隙間30を確保するように収容される(図1参照)。
なお、隙間30は、気体を含む飽和蒸気が横断面において外側から中央側に集まってこない。つまり、偏流が起こらない程度にすることが好適である。要するに、上下の格子構造体11−1,11−2の格子流路11a−1,11a−2同士が互いに連通し合い、圧力の均一化の効果を期待できる程度の隙間であればよい。
この上下の格子構造体11−1,11−2は、図3及び図4に示すように、流路隔壁11bによって格子状に仕切られた格子流路11a−1,11a−2を備えて構成されている。ちなみに、流路隔壁11bの接合は溶接などによって行われている。
≪Lattice structure construction≫
The upper and lower lattice structures 11-1 and 11-2 are divided into two in the height direction of the chimney 11, and are accommodated by being stacked and combined concentrically inside the chimney cylinder 11d. When the upper and lower lattice structures 11-1 and 11-2 are concentrically accommodated inside the chimney cylinder 1d, the upper and lower lattice structures 11-1 and 11-2 are accommodated so as to secure a gap 30 between the divided end faces 28 and 29 (see FIG. 1).
In addition, the clearance gap 30 does not collect saturated vapor | steam containing gas from the outer side to the center side in a cross section. In other words, it is preferable that the drift does not occur. In short, it is sufficient that the lattice flow paths 11a-1 and 11a-2 of the upper and lower lattice structures 11-1 and 11-2 communicate with each other and can be expected to have a uniform pressure effect.
As shown in FIGS. 3 and 4, the upper and lower lattice structures 11-1 and 11-2 include lattice flow paths 11 a-1 and 11 a-2 partitioned in a lattice shape by flow path partition walls 11 b. Has been. Incidentally, the flow path partition 11b is joined by welding or the like.

≪格子流路の構成≫
下部格子構造体11−1の各格子流路11a−1と上部格子構造体11−2の各格子流路11a−2は、炉心平面の中心に対する配置を除いて基本的に同じ構成であることから、下部格子構造体11−1の各格子流路11a−1について説明する。なお、上部格子構造体11−2の各格子流路11a−2の配置については後記する。
各格子流路11a−1は、流路横断面が正方形を呈し、その流路横断面(開口)の大きさを、炉心平面の2×2配列の制御棒セル31の配列角に合わせて形成している(図4参照)。従って、各格子流路11a−1の配置は、図2に示すように、炉心の平面に対し、1/8対称軸35に対して鏡対称の配置となる。ちなみに、制御棒セル31は、2×2配列の燃料集合体21の中央に制御棒24を配したものである。
つまり、図2に示すように、通常、炉心7の平面における中心Pを通るX軸33とY軸34のそれぞれの対称軸、およびX軸33又はY軸34に対して45°の角度をなして中心Pを通る1/8対称軸35を有している。
≪Lattice flow path configuration≫
Each lattice channel 11a-1 of the lower lattice structure 11-1 and each lattice channel 11a-2 of the upper lattice structure 11-2 are basically the same except for the arrangement with respect to the center of the core plane. Next, each lattice channel 11a-1 of the lower lattice structure 11-1 will be described. In addition, the arrangement | positioning of each grating | lattice flow path 11a-2 of the upper grating | lattice structure 11-2 is mentioned later.
Each lattice channel 11a-1 has a square channel cross section, and the size of the channel cross section (opening) is formed according to the array angle of the 2 × 2 array of control rod cells 31 on the core plane. (See FIG. 4). Therefore, the arrangement of each lattice channel 11a-1 is mirror-symmetric with respect to the 1/8 symmetry axis 35 with respect to the plane of the core, as shown in FIG. Incidentally, the control rod cell 31 has a control rod 24 arranged in the center of a 2 × 2 array of fuel assemblies 21.
That is, as shown in FIG. 2, normally, an angle of 45 ° is formed with respect to the respective symmetry axes of the X axis 33 and the Y axis 34 passing through the center P in the plane of the core 7 and the X axis 33 or the Y axis 34. And has a 1/8 symmetry axis 35 passing through the center P.

一方、上部格子構造体11−2の各格子流路11a−2の配置は、図4に示すように、下部格子構造体11−1の2×2配列の格子流路11a−1の各々の横断面中心位置に、1本の格子流路11a−2の四隅が位置するようになっている。したがって、下部格子構造体11−1と上部格子構造体11−2とを段積み組み合わせたものを上側から見ると、各格子流路11a−2の中心位置に、4本の格子流路11a−1を形成する流路隔壁11bの十字交差部P1が位置して見えることになる。
なお、上部格子構造体11−2の各格子流路11a−2を仕切る流路隔壁11bの下端は、ナイフエッジ状又は流線形状に形成することが好適なものとなる。これにより、チムニ11内の気液二相流の圧損を低減することができる。
On the other hand, the arrangement of the lattice channels 11a-2 of the upper lattice structure 11-2 is as shown in FIG. 4 in each of the lattice channels 11a-1 of the 2 × 2 array of the lower lattice structure 11-1. The four corners of one lattice channel 11a-2 are positioned at the center of the cross section. Therefore, when a combination of the lower lattice structure 11-1 and the upper lattice structure 11-2 stacked from above is viewed from above, the four lattice channels 11a- are located at the center of each lattice channel 11a-2. Thus, the cross intersection P1 of the channel partition wall 11b forming 1 appears to be located.
In addition, it is suitable to form the lower end of the flow path partition 11b which partitions each grid flow path 11a-2 of the upper grid structure 11-2 into a knife edge shape or a streamline shape. Thereby, the pressure loss of the gas-liquid two-phase flow in the chimney 11 can be reduced.

このように、上部格子構造体11−2の1本の格子流路11a−2は、その下方にある下部格子構造体11−1の2×2配列の格子流路11a−1の1/4面積ずつを囲う関係となり、下部格子構造体11−1の1本の格子流路11a−1を上昇してきた気液二相流は、上部格子構造体11−2の流路隔壁11bによって、4つの流れに分岐されることになる。そして、下部格子構造体11−1の2×2配列の格子流路11a−1の1/4面積分の気液二相流が、上部格子構造体11−2の1本の格子流路11a−2において合流することになる。
これにより、下部格子構造体11−1の各格子流路11a−1と上部格子構造体11−2の各格子流路11a−2との間における上下の格子構造体11−1,11−2の分割端面28,29の間には、気液二相流が、分割端面28を出て、隙間30を介して分割端面29を通過して上部格子構造体11−2の1本の格子流路11a−2に流れることで、分岐と合流とが行われる流路横断面が異なる分岐・合流領域37を有する流路構造が上下の格子構造体11−1,11−2の高さ方向に形成される(図5参照)。
As described above, one lattice channel 11a-2 of the upper lattice structure 11-2 is ¼ of the lattice channel 11a-1 of the 2 × 2 array of the lower lattice structure 11-1 below the upper one. The gas-liquid two-phase flow that rises in one lattice flow path 11a-1 of the lower lattice structure 11-1 becomes 4 by the flow partition 11b of the upper lattice structure 11-2. It will be branched into one flow. Then, a gas-liquid two-phase flow corresponding to ¼ area of the 2 × 2 array of lattice channels 11a-1 of the lower lattice structure 11-1 is converted into one lattice channel 11a of the upper lattice structure 11-2. -2 will join.
Thereby, the upper and lower lattice structures 11-1 and 11-2 between the respective lattice flow paths 11a-1 of the lower lattice structure 11-1 and the respective lattice flow paths 11a-2 of the upper lattice structure 11-2. A gas-liquid two-phase flow exits the split end face 28 and passes through the split end face 29 via the gap 30 between the split end faces 28 and 29 of the upper grid structure 11-2. By flowing in the path 11a-2, the flow path structure having the branch / merging region 37 in which the cross section of the flow path where branching and merging are performed is different in the height direction of the upper and lower lattice structures 11-1 and 11-2. Formed (see FIG. 5).

そして、定期検査などの点検の際に、チムニ11を圧力容器6の内部に設置したまま、上下の格子構造体11−1,11−2の高さ方向につながる各格子流路11a−1,11a−2を通して燃料集合体21又は制御棒24を引き上げ、そして装荷するなどの交換作業を行うことができる(図4参照)。
つまり、定期検査などの点検の際に、チムニ11を炉圧力容器6の内部に設置したまま、チムニ11の各格子流路11a−1,11a−2を通じて燃料集合体21を引き上げ、そして装荷するなどの交換作業を行う観点から、チムニ11の各格子流路11a−1,11a−2の流路隔壁11bは、制御棒セル31単位で炉心7の上部格子板23に明けられた正方形の格子孔(図示省略)を横切るような形で塞がないように構成することが好ましい。
And, in the inspection such as the periodic inspection, the lattice channels 11 a-1 connected to the upper and lower lattice structures 11-1 and 11-2 in the height direction while the chimney 11 is installed inside the pressure vessel 6. Replacement work such as lifting and loading the fuel assembly 21 or the control rod 24 through 11a-2 can be performed (see FIG. 4).
That is, at the time of inspection such as periodic inspection, the fuel assembly 21 is pulled up and loaded through the lattice channels 11a-1 and 11a-2 of the chimney 11 while the chimney 11 is installed in the furnace pressure vessel 6. From the viewpoint of exchanging operations such as the above, the flow path partition walls 11b of the lattice flow paths 11a-1 and 11a-2 of the chimney 11 are square lattices opened in the upper grid plate 23 of the core 7 in units of control rod cells 31. It is preferable to configure so as not to block the hole (not shown).

つぎに、隙間30と流路横断面が異なる分岐・合流領域37を有する流路構造の格子流路11a−1,11a−2を上昇する気液二相流の流れを、図5を用いて説明する。ここでは、図1を適宜参照しながら説明する。
図5は、第1の実施形態に係るチムニの格子流路における流路構造の気液二相流の流れを説明するために供した概念図である。
図5に示すように、下部格子構造体11−1の各格子流路11a−1を上昇する蒸気が混じった気液二相流は、チャーン流の流動様式まで発達する前に、流路横断面が異なる上部格子構造体11−2の各格子流路11aー2との分岐・合流領域37に達する。このとき、気液二相流が上昇するにしがたって格子流路11a−1の流路横断面の中央部に蒸気泡が集まる。
Next, the flow of the gas-liquid two-phase flow rising up the lattice flow channels 11a-1 and 11a-2 having a flow channel structure having a branching / merging region 37 having a gap 30 and a flow channel cross-section different from each other with reference to FIG. explain. Here, description will be made with reference to FIG. 1 as appropriate.
FIG. 5 is a conceptual diagram provided for explaining the flow of the gas-liquid two-phase flow of the flow channel structure in the chimney lattice flow channel according to the first embodiment.
As shown in FIG. 5, the gas-liquid two-phase flow mixed with the vapor rising in each lattice channel 11 a-1 of the lower lattice structure 11-1 crosses the channel before it develops to the flow pattern of the churn flow. It reaches the branching / merging region 37 with each lattice channel 11a-2 of the upper lattice structure 11-2 having a different surface. At this time, as the gas-liquid two-phase flow rises, vapor bubbles collect at the center of the cross section of the lattice channel 11a-1.

分岐・合流領域37の達した格子流路11a−1の蒸気泡は、格子流路11a−2の流路隔壁1bにより、例えば、4つに分割され、格子流路11a−2の流路横断面の四隅寄りに放出されるように流れる。そして、格子流路11a−2の入口部分で細分割された蒸気泡は、格子流路11a−2を上昇するにしたがって格子流路11a−2の流路横断面の中央部に移動しつつ、大きな蒸気泡を形成するように再び気液の分離が始まる。
つまり、下部格子構造体11−1の各格子流路11a−1を上昇してきた気液二相流は、分岐・合流領域37を通過して上部格子構造体11−2の各格子流路11a−2内に分岐して流れ込み、各格子流路11a−2において隣り合う他の格子流路11a−1から分岐して流れ込んできた気液二相流との混合がなされる。このとき、各格子流路11a−1,11a−2における液体と気体の存在(瞬時ボイド率)に関する位相はランダムであり、一致していない。
The vapor bubbles in the lattice channel 11a-1 reached by the branching / merging region 37 are divided into, for example, four by the channel partition wall 1b of the lattice channel 11a-2, and cross the channel of the lattice channel 11a-2. It flows so as to be released near the four corners of the surface. Then, the vapor bubbles subdivided at the entrance of the lattice channel 11a-2 move to the central portion of the cross section of the lattice channel 11a-2 as it moves up the lattice channel 11a-2, Gas-liquid separation begins again to form large vapor bubbles.
That is, the gas-liquid two-phase flow that has risen through each lattice channel 11 a-1 of the lower lattice structure 11-1 passes through the branch / merging region 37 and each lattice channel 11 a of the upper lattice structure 11-2. -2 is branched into the gas flow and mixed with the gas-liquid two-phase flow that flows into the lattice flow channels 11a-2 from the other adjacent lattice flow channels 11a-1. At this time, the phases relating to the presence of liquid and gas (instantaneous void ratio) in each of the lattice channels 11a-1 and 11a-2 are random and do not match.

このように、下部格子構造体11−1と上部格子構造体11−2とで上下に分断して、高さ方向の流路断面積が異なる分岐・合流領域37を有する格子流路1a−1,1a−2からなら高さ方向の流路構造により、チャーン流の発達を抑えて、チャーン流に起因する圧力変動を抑制することができる。
また、下部格子構造体11−1の隣り合う各格子流路11a−1と上部格子構造体11−2の隣り合う各格子流路11a−2は、分岐・合流領域37における隙間30にて流通していることにより、下部格子構造体11−1の各格子流路11a−1を出た流れの間で圧力変動が干渉し合うことで、圧力変動(流力振動)が抑制されることとなる。
In this way, the lattice channel 1a-1 having the branch / merging region 37 that is divided into the upper and lower lattice structures 11-1 and 11-2 in the vertical direction and that has different channel cross-sectional areas in the height direction. 1a-2, the flow path structure in the height direction can suppress the development of the churn flow and suppress the pressure fluctuation caused by the churn flow.
Further, adjacent lattice channels 11 a-1 of the lower lattice structure 11-1 and adjacent lattice channels 11 a-2 of the upper lattice structure 11-2 flow through the gaps 30 in the branching / merging region 37. By doing so, pressure fluctuations interfere with each other between the flows exiting each grid flow path 11a-1 of the lower grid structure 11-1, thereby suppressing pressure fluctuations (fluid vibration). Become.

≪第2の実施形態のチムニの構成≫
つぎに、第2の実施形態に係るチムニの格子流路の流路構造を、図6から図8を用いて説明する。
図6は、第2の実施形態に係るチムニを備えた本発明の自然循環式沸騰水型原子炉の概略を示す縦断面図であり、図7は、第2の実施形態に係るチムニの上下の格子構造体を示す斜視図であり、図8は、上下の格子構造体を重ね合わせたときの格子流路の組み合わせ配置と格子流路と炉心の制御棒セルとの配置関係を、一部を拡大して示す横断面図である。
なお、第2の実施形態に係るチムニ11の流路構造は、図6、図7及び図8に示すように、上部格子構造体11−2の各格子流路11a−3の大きさとその配置形態に違いがあるだけで、それ以外の構成においては前記した第1の実施形態に係るチムニ11の構成要素と基本的に同じことから同じ構成要素に同じ符号を付することで重複説明を省略する。
<< Configuration of Chimney of Second Embodiment >>
Next, the flow channel structure of the chimney lattice flow according to the second embodiment will be described with reference to FIGS.
FIG. 6 is a longitudinal sectional view showing an outline of the natural circulation boiling water reactor of the present invention provided with the chimney according to the second embodiment, and FIG. 7 is a top and bottom view of the chimney according to the second embodiment. 8 is a perspective view showing the lattice structure of FIG. 8, and FIG. 8 is a partial view of the combined arrangement of the lattice channels and the arrangement relationship between the lattice channels and the control rod cells of the core when the upper and lower lattice structures are overlapped. It is a cross-sectional view which expands and shows.
Note that the channel structure of the chimney 11 according to the second embodiment is the size and arrangement of each grid channel 11a-3 of the upper grid structure 11-2 as shown in FIGS. There is only a difference in form, and in other configurations, the same components are basically the same as the components of the chimney 11 according to the first embodiment described above, and the same components are denoted by the same reference numerals, and redundant description is omitted. To do.

すなわち、第2の実施形態に係るチムニ11の上部格子構造体11−2の各格子流路11a−3は、流路横断面が正方形を呈し、その流路横断面(開口)の大きさを、下部格子構造体11−1の横断面の2×2配列の格子流路11a−1の配列角に合わせて形成している。そして、各格子流路11a−3の配置は、図8に示すように、上部格子構造体11−2の1本の格子流路11a−3の各々の横断面中心に、下部格子構造体11−1の3×3配列の格子流路11a−1のうち、中央の1本の格子流路11a−1が同心上に位置し、尚且つ、この1本の格子流路11a−1の横断面各辺及び四隅において隣り合う各々の格子流路11a−1の横断面各辺と四隅とが位置するようになっている。したがって、下部格子構造体11−1と上部格子構造体11−2とを段積み組み合わせたものを上側から見ると、各格子流路11a−3の流路横断面内に、1本の格子流路11a−1と隣り合う計8本の格子流路11a−1の各々の一部が位置して見えることになる。
なお、上部格子構造体11−2の各格子流路11a−2を仕切る流路隔壁11bの下端は、ナイフエッジ状又は流線形状に形成することが好適なものとなる。これにより、チムニ11内の気液二相流の圧損を低減することができる。
That is, each lattice channel 11a-3 of the upper lattice structure 11-2 of the chimney 11 according to the second embodiment has a square channel cross section, and the size of the channel cross section (opening) is the same. The lower grid structure 11-1 is formed in accordance with the array angle of the 2 × 2 array of lattice channels 11a-1 in the cross section. Then, as shown in FIG. 8, each grid channel 11a-3 is arranged at the center of each cross section of one grid channel 11a-3 of the upper grid structure 11-2. -1 of the 3 × 3 array of lattice channels 11a-1, the central lattice channel 11a-1 is located concentrically, and the crossing of the single lattice channel 11a-1 Each side and four corners of the cross section of each lattice channel 11a-1 adjacent to each other at each side and four corners of the surface are positioned. Therefore, when the combination of the lower lattice structure 11-1 and the upper lattice structure 11-2 stacked from above is viewed from above, one lattice flow is formed in the cross section of each lattice passage 11a-3. A part of each of the eight lattice flow paths 11a-1 in total adjacent to the path 11a-1 appears to be located.
In addition, it is suitable to form the lower end of the flow path partition 11b which partitions each grid flow path 11a-2 of the upper grid structure 11-2 into a knife edge shape or a streamline shape. Thereby, the pressure loss of the gas-liquid two-phase flow in the chimney 11 can be reduced.

これにより、下部格子構造体11−1の各格子流路11a−1と上部格子構造体11−3の各格子流路11a−3との間における上下の格子構造体11−1,11−3の分割端面28,29の間には隙間30を介して高さ方向に流通する流路横断面が異なる分岐・合流領域37が形成される。つまり、図8に示すように、下部格子構造体11−1の1本の格子流路11a−1を中心としてその横断面各辺及び四隅おいて隣り合う計9本の格子流路11a−1を上昇してきた気液二相流は、上部格子構造体11−2の流路隔壁1bによって、8つの流れに分岐されることになる。そして、下部格子構造体11−1の3×3配列のうち、1本の格子流路11a−1と格子流路11a−1のほぼ1/8面積分の気液二相流が、上部格子構造体11−2の1本の格子流路11a−2において合流することになる。   Thus, the upper and lower lattice structures 11-1 and 11-3 between the lattice flow paths 11a-1 of the lower lattice structure 11-1 and the lattice flow paths 11a-3 of the upper lattice structure 11-3. Between the divided end faces 28 and 29, a branching / merging region 37 having a different flow path cross section flowing in the height direction through the gap 30 is formed. That is, as shown in FIG. 8, a total of nine grid channels 11a-1 adjacent to each other at each side and four corners of the cross section centering on one grid channel 11a-1 of the lower grid structure 11-1. The gas-liquid two-phase flow rising up is branched into eight flows by the flow path partition 1b of the upper lattice structure 11-2. In the 3 × 3 arrangement of the lower lattice structure 11-1, the gas-liquid two-phase flow corresponding to approximately 1/8 area of the single lattice channel 11a-1 and the lattice channel 11a-1 is converted into the upper lattice. In one structure flow path 11a-2 of the structure 11-2, it merges.

従って、第2の実施形態に係るチムニ11を備えた原子炉1によれば、第1の実施形態と同様に、チャーン流の発達を抑えて、チャーン流に起因する圧力変動を抑制することができる。また、下部格子構造体11−1の隣り合う各格子流路11a−1と上部格子構造体11−2の隣り合う各格子流路11a−3は、分岐・合流領域37における隙間30にて連通していることにより、下部格子構造体11−1の各格子流路11a−1を出た流れの間で圧力変動が干渉し合うことで、圧力変動(流力振動)が抑制されることとなる。
そして、定期検査などの点検の際に、チムニ11を圧力容器6の内部に設置したまま、上下の格子構造体11−1,11−2の高さ方向につながる各格子流路11a−1,11a−3を通じて燃料集合体21又は制御棒24を引き上げ、そして装荷するなどの交換作業を行うことができる。
Therefore, according to the nuclear reactor 1 including the chimney 11 according to the second embodiment, it is possible to suppress the pressure fluctuation caused by the churn flow by suppressing the development of the churn flow as in the first embodiment. it can. Further, the adjacent lattice channels 11 a-1 of the lower lattice structure 11-1 and the adjacent lattice channels 11 a-3 of the upper lattice structure 11-2 communicate with each other through a gap 30 in the branch / merging region 37. By doing so, pressure fluctuations interfere with each other between the flows exiting each grid flow path 11a-1 of the lower grid structure 11-1, thereby suppressing pressure fluctuations (fluid vibration). Become.
And, in the inspection such as the periodic inspection, the lattice channels 11 a-1 connected to the upper and lower lattice structures 11-1 and 11-2 in the height direction while the chimney 11 is installed inside the pressure vessel 6. Replacement work such as lifting and loading the fuel assembly 21 or the control rod 24 through 11a-3 can be performed.

以上のように構成された各実施形態のチムニ11を備えた原子炉1によれば、炉心7で加熱された冷却材が飽和状態の気液二相流となって下部格子構造体11−1の各格子流路11a−1、そして上部格子構造体11−2の各格子流路11a−2又は11a−3を上昇通過する際に、気液二相流は流力振動を引き起こす要素であるチャーン流などの流動様式まで発達することは抑制される。
そして、チャーン流の流動様式まで発達せずに下部格子構造体11−1の各格子流路11a−1を上昇する気液二相流は、上下の格子構造体11−1,11−2の分割端面28,29の間に形成された流動断面積が異なる分岐・合流領域37によって分岐され、そして合流されることによって混合されてその流れが変換される。
つまり、下部格子構造体11−1の各格子流路11a−1の内壁面に沿う液膜流は、上方で液滴の状態となって上部格子構造体11−2の各格子流路11a−2又は各格子流路11a−3の流路隔壁1b側に沿って分布し、該流路隔壁1bの内壁面に付着して液膜液を形成するように流れ込む。また、下部格子構造体11−1の各格子流路11a−1の流路横断面内の中央部の蒸気泡は、上部格子構造体11−2の各格子流路11a−2又は各格子流路11a−3を仕切る流路隔壁11bによって細分割されて小さい体積の蒸気泡に分割されて各格子流路11a−2又は各格子流路11a−3に流れ込むこととなる。これにより、気液二相流が上昇する過程で引き起こすチャーン流に起因する圧力変動の発生が抑えられてその流力振動荷重を低減することができる。
According to the nuclear reactor 1 provided with the chimney 11 of each embodiment configured as described above, the coolant heated in the core 7 becomes a gas-liquid two-phase flow in a saturated state, and the lower lattice structure 11-1. The gas-liquid two-phase flow is an element that causes fluid vibration when passing through each grid channel 11a-1 and each grid channel 11a-2 or 11a-3 of the upper grid structure 11-2. The development of flow patterns such as Churn flow is suppressed.
And the gas-liquid two-phase flow which raises each lattice flow path 11a-1 of the lower lattice structure 11-1 without developing to the flow pattern of a churn flow is the upper and lower lattice structures 11-1 and 11-2. The flow cross-sectional area formed between the divided end faces 28 and 29 is branched by different branch / merging regions 37 and mixed by being merged to convert the flow.
In other words, the liquid film flow along the inner wall surface of each lattice channel 11a-1 of the lower lattice structure 11-1 becomes a droplet state above, and each lattice channel 11a- of the upper lattice structure 11-2. 2 or distributed along the flow path partition wall 1b side of each of the lattice flow paths 11a-3 and flows so as to adhere to the inner wall surface of the flow path partition wall 1b and form a liquid film liquid. In addition, the vapor bubbles at the center in the channel cross section of each grid channel 11a-1 of the lower grid structure 11-1 are converted into each grid channel 11a-2 or each grid flow of the upper grid structure 11-2. It is subdivided by the flow path partition wall 11b that divides the path 11a-3, is divided into small-volume vapor bubbles, and flows into each lattice flow path 11a-2 or each lattice flow path 11a-3. Thereby, generation | occurrence | production of the pressure fluctuation resulting from the churn flow caused in the process in which a gas-liquid two-phase flow rises can be suppressed, and the hydrodynamic vibration load can be reduced.

また、分岐・合流領域37は、上下の格子構造体11−1,11−2の段積み組み合わせによって容易に実現することができる。つまり、上下の格子構造体11−1,11−2又は各格子流路11a−3の横断面において下部格子構造体11−1の各格子流路11a−1の配置に対し、上部格子構造体11−2の各格子流路11a−2又は各格子流路11a−3の配置を変更するなどによって実現することができる。   Further, the branching / merging region 37 can be easily realized by a stacked combination of the upper and lower lattice structures 11-1 and 11-2. That is, the upper and lower lattice structures 11-1 and 11-2 or the upper lattice structure with respect to the arrangement of the respective lattice channels 11a-1 of the lower lattice structure 11-1 in the cross section of each lattice channel 11a-3. This can be realized by changing the arrangement of the lattice channels 11a-2 of 11-2 or the lattice channels 11a-3.

また、上下の格子構造体11−1,11−2の各格子流路11a−1,11a−2又は各格子流路11a−3は、分割端面28,29の間に設けた隙間30によって連通していることにより、各格子流路11a−1,11a−2又は各格子流路11a−3に発生する位相が相違する圧力変動は隙間30を介して干渉し合うこととなる。これにより、隣り合う各格子流路11a−1,11a−2又は各格子流路11a−3において位相が相違する圧力変動の均一化を図ることが可能となり、流力振動荷重をより一層効果的に低減させることが期待できる。   Further, the lattice channels 11a-1, 11a-2 or the lattice channels 11a-3 of the upper and lower lattice structures 11-1, 11-2 communicate with each other through a gap 30 provided between the divided end surfaces 28, 29. By doing so, pressure fluctuations with different phases generated in each of the lattice channels 11a-1, 11a-2 or each of the lattice channels 11a-3 interfere with each other through the gap 30. As a result, it is possible to equalize pressure fluctuations having different phases in each of the adjacent lattice channels 11a-1, 11a-2 or each of the lattice channels 11a-3, so that the hydrodynamic vibration load can be made even more effective. It can be expected to be reduced.

さらに、チムニ11の高さ方向に直立する複数の格子流路11a−1,11a−2又は各格子流路11a−3を、チムニ11の高さ方向に分割された上下の格子構造体11−1,11−2によって構成するようにしていることで、例えば、原子炉1の建設現場へと格子構造体11−1,11−2を搬送、そして、格子構造体11−1,11−2を圧力容器6内に吊り下げ収容したり、定期点検などのときに圧力容器6から引き上げるなどの作業性の向上が期待できる。   Further, a plurality of lattice channels 11 a-1, 11 a-2 or each lattice channel 11 a-3 standing upright in the height direction of the chimney 11 are divided into upper and lower lattice structures 11-divided in the height direction of the chimney 11. 1 and 11-2, for example, the lattice structures 11-1 and 11-2 are transported to the construction site of the nuclear reactor 1, and the lattice structures 11-1 and 11-2 are transferred. It is possible to expect improvement in workability such as suspending and storing the inside of the pressure vessel 6 or pulling it up from the pressure vessel 6 at the time of periodic inspection.

しがたって、各実施形態によれば、格子流路11a−1,11a−2の流路隔壁11bにかかる流力振動荷重を効果的に低減することができ、原子炉運転期間中のチムニ11や格子流路11a−1,11a−2又は格子流路11a−3における位相が相違する圧力変動が、上部格子構造体11−2の1本の格子流路11a−2又は格子流路11a−3において合流の損傷の可能性を小さくすることができる。これにより、長期間の使用にも耐えられ、原子炉の定期点検時の点検・保守の手間も省け、万一の場合のチムニ11や格子流路11a−1,11a−2又は格子流路11a−3を有する上下の格子構造体11−1,11−2の交換などの回数を減らすことができる。また、交換時のプラント停止による経済損失を最小限に抑えることができる。
さらに、複数の直立した格子流路11a−1,11a−2又は格子流路11a−3に仕切ってチムニ11の内側を冷却材の上昇流路とする格子構造をチムニ11の内側の備えても、定期検査などの点検の際に、チムニ11を圧力容器6の内部に設置したまま、上下の格子構造体11−1,11−2の高さ方向につながる各格子流路11a−1,11a−2又は格子流路11a−3を通して燃料集合体21又は制御棒24を引き上げ、そして装荷するなどの交換作業を行うことができる。つまり、燃料交換時の工程の増加を招くなどの不具合が生じることはない。
Therefore, according to each embodiment, the hydrodynamic vibration load applied to the flow path partition walls 11b of the lattice flow paths 11a-1 and 11a-2 can be effectively reduced, and the chimney 11 during the reactor operation period can be effectively reduced. Or pressure fluctuations with different phases in the lattice flow paths 11a-1, 11a-2 or the lattice flow paths 11a-3 cause one lattice flow path 11a-2 or lattice flow path 11a- in the upper lattice structure 11-2. 3, the possibility of merging damage can be reduced. As a result, it can withstand long-term use, saves the trouble of inspection and maintenance at the time of periodic inspection of the reactor, and in the unlikely event, the chimney 11, the lattice channels 11a-1, 11a-2, or the lattice channel 11a The number of exchanges of the upper and lower lattice structures 11-1 and 11-2 having -3 can be reduced. Moreover, the economic loss due to the plant stop at the time of replacement can be minimized.
Further, a grid structure may be provided inside the chimney 11 that is divided into a plurality of upright grid channels 11 a-1, 11 a-2 or a grid channel 11 a-3 so that the inside of the chimney 11 is the coolant ascending channel. In the inspection such as the periodic inspection, the lattice channels 11a-1 and 11a connected in the height direction of the upper and lower lattice structures 11-1 and 11-2 while the chimney 11 is installed inside the pressure vessel 6. -2 or the lattice channel 11a-3, the fuel assembly 21 or the control rod 24 can be lifted and loaded. That is, there is no problem such as an increase in the number of processes during fuel replacement.

なお、本発明の実施形態の具体的な構成は、前記した各実施形態に限られるものではなく、請求項1から請求項3に記載の本発明の要旨を逸脱しない範囲で設計変更などがあっても本発明に含まれるものである。
例えば、複数の直立した格子流路を有するチムニの上下の格子構造体の分割は、下部格子構造体と上部格子構造体との上下二段の組み合わせに限らず、上下三段(図5参照)、四段など数段に分割することができる。つまり、チムニの高さに応じて任意に設定することが可能である。
The specific configuration of the embodiment of the present invention is not limited to each of the above-described embodiments, and there are design changes and the like without departing from the gist of the present invention described in claims 1 to 3. However, it is included in the present invention.
For example, the division of the upper and lower lattice structures of the chimney having a plurality of upright lattice channels is not limited to the combination of the lower and upper lattice structures in two upper and lower stages, but three upper and lower stages (see FIG. 5). Can be divided into several stages such as four stages. That is, it can be arbitrarily set according to the height of the chimney.

また、下部格子構造体と上部格子構造体との分割高さは同じである必要はない。例えば、下部格子構造体側を上部格子構造体側よりも高く形成することができる。
また、数段に分割した場合には炉心の上に載置される一段目から高さ方向に至るにしたがって段階的に格子構造体の高さを低くするなどが可能である。つまり、炉心から高さ方向に至るにしたがって格子流路の流路横断面が異なる領域を段階的に増やすなどの設計が可能になる。
これは、気液が混合した飽和状態の気液二相流は上方へと垂直に上昇するにしたがって発達する傾向にあることから、炉心から高さ方向に至るにしたがって格子流路の流路横断面が異なる領域を段階的に増やすことで、気液二相流の分岐や合流などによる混合又は干渉が繰り返されることになり、チャーン流の発生を抑制(圧力変動を抑制)して流力振動荷重をより一層効果的に低減させることが期待できる。但し、格子流路の高さ方向に流路横断面が異なる領域(分離・合流領域など)を過剰に設けることは、冷却材を自然循環させる際の圧力損失の増加を招くおそれがあるので必要最小限に抑えることが望ましい。
Moreover, the division | segmentation height of a lower lattice structure and an upper lattice structure does not need to be the same. For example, the lower lattice structure side can be formed higher than the upper lattice structure side.
Further, when divided into several stages, the height of the lattice structure can be lowered step by step from the first stage placed on the core to the height direction. That is, it is possible to design in such a manner that the areas where the cross sections of the lattice flow paths are different from each other in the height direction from the core are increased step by step.
This is because the gas-liquid two-phase flow in a saturated state mixed with gas-liquid tends to develop as it rises vertically upward, so that the grid crosses the flow path from the core to the height direction. By gradually increasing the areas with different surfaces, mixing or interference due to the branching or confluence of gas-liquid two-phase flow will be repeated, suppressing the generation of churn flow (suppressing pressure fluctuation) and hydrodynamic vibration It can be expected to reduce the load even more effectively. However, it is necessary to provide an excessive area (separation / merging area, etc.) with different channel cross-sections in the height direction of the grid channel because it may cause an increase in pressure loss when the coolant is naturally circulated. It is desirable to keep it to a minimum.

また、上下の格子構造体の横断面における中心から半径方向の外側に至るにしたがって格子流路の流路横断面の大きさを段階的に大きくするなどの格子流路の配列構造とすることができる。つまり、格子構造体の中心部位の内側領域における格子流路群の流路横断面よりもその外側領域における格子流路群の流路横断面を大きめに、そして、この外側領域の格子流路群の流路横断面よりもその最外周領域における格子流路群の流路横断面をさらに大きめに形成するなど、中心から半径方向の外側に至るにしたがって格子流路の配列群の流路横断面を変えることができる。   In addition, the grid channel arrangement structure may be such that the size of the channel cross section of the grid channel gradually increases from the center in the cross section of the upper and lower grid structures to the outside in the radial direction. it can. That is, the grid cross section of the grid channel group in the outer region is larger than the channel cross section of the grid channel group in the inner region of the central part of the grid structure, and the grid channel group of the outer region The cross section of the array of grid channels from the center to the outside in the radial direction, such as forming a larger cross section of the grid channels in the outermost peripheral region than the cross section of Can be changed.

また、格子流路の流路横断面は、正方形に限らず、例えば、長方形、三角形、そして六角形など多角形に形成することが可能である。但し、高さ方向につながる格子流路を通じて燃料集合体又は制御棒を引き上げ、そして装荷するなどの交換作業を行うことができるようにするなどを配慮する必要がある。   Further, the cross section of the lattice channel is not limited to a square, and can be formed in a polygon such as a rectangle, a triangle, and a hexagon. However, it is necessary to consider that it is possible to perform an exchange operation such as pulling up and loading the fuel assembly or control rod through the grid channel connected in the height direction.

本発明は、自然循環式沸騰水型原子炉に適用され、炉心の上に設置されるチムニの内側の上昇流路内での気液二相流のチャーン流に起因する流力振動(圧力変動)を低減するのに有効に利用される。   The present invention is applied to a natural circulation boiling water nuclear reactor, and hydrodynamic vibration (pressure fluctuation) caused by a gas-liquid two-phase churn flow in an ascending flow channel inside a chimney installed on the core ) Effectively.

第1の実施形態に係るチムニを備えた本発明の自然循環式沸騰水型原子炉の概略を示す縦断面図である。1 is a longitudinal sectional view showing an outline of a natural circulation boiling water reactor of the present invention provided with a chimney according to a first embodiment. 原子炉圧力容器を省略して示す図1のII−II線横断面図である。FIG. 2 is a cross-sectional view taken along the line II-II of FIG. 1 with the reactor pressure vessel omitted. 第1の実施形態に係るチムニの格子流路を有する上下の格子構造体を示す斜視図である。It is a perspective view which shows the upper and lower lattice structures which have the chimney lattice channel which concerns on 1st Embodiment. 第1の実施形態に係るチムニの上下の格子構造体を段積み組み合わせた状態の一部を拡大して示す横断面図である。It is a cross-sectional view which expands and shows a part of the state which stacked and combined the upper and lower lattice structures of the chimney according to the first embodiment. 第1の実施形態に係るチムニの格子流路における気液二相流の流れを説明するために供した概念図である。It is the conceptual diagram provided in order to demonstrate the flow of the gas-liquid two-phase flow in the lattice flow path of the chimney which concerns on 1st Embodiment. 第2の実施形態に係るチムニを備えた本発明の自然循環式沸騰水型原子炉の概略を示す縦断面図である。It is a longitudinal cross-sectional view which shows the outline of the natural circulation type boiling water reactor of this invention provided with the chimney which concerns on 2nd Embodiment. 第2実施形態に係るチムニの格子流路を有する上下の格子構造体を示す斜視図である。It is a perspective view which shows the upper and lower lattice structure which has a chimney lattice channel which concerns on 2nd Embodiment. 第2の実施形態に係るチムニの上下の格子構造体を段積み組み合わせた状態の一部を拡大して示す横断面図である。It is a cross-sectional view which expands and shows a part of the state where the upper and lower lattice structures of the chimney according to the second embodiment are stacked and combined. チムニの格子流路内における気液二相流のチャーン流の流動様式を調べるために、格子流路を模擬した実験装置に供した格子流路の概念図である。FIG. 3 is a conceptual diagram of a grid channel used in an experimental apparatus that simulates a grid channel in order to investigate the flow mode of a churn flow of gas-liquid two-phase flow in the chimney grid channel.

符号の説明Explanation of symbols

1 自然循環式沸騰水型原子炉
2 タービン
6 原子炉圧力容器
7 炉心
8 炉心シュラウド
9 ダウンカマ(下降流路)
10 炉心下部プレナム
11 チムニ
11−1 下部格子構造体
11−2 上部格子構造体
11a−1,11a−2又は11a−3 格子流路(上昇流路)
11b 流路隔壁
11c 上部プレナム
11d チムニ胴
21 燃料集合体
28,29 分割端面
30 隙間
31 制御棒セル
37 分岐・合流領域(流路横断面が異なる領域)
1 Natural Circulation Boiling Water Reactor 2 Turbine 6 Reactor Pressure Vessel 7 Core 8 Core Shroud 9 Down Comb (Down Channel)
10 Core Lower Plenum 11 Chimney 11-1 Lower Lattice Structure 11-2 Upper Lattice Structure 11a-1, 11a-2 or 11a-3 Lattice Channel (Upward Channel)
11b Channel partition 11c Upper plenum 11d Chimney cylinder 21 Fuel assembly 28, 29 Split end face 30 Gap 31 Control rod cell 37 Branch / merging area (area with different channel cross-section)

Claims (3)

原子炉圧力容器内の炉心の上に設置されるチムニによって内側に上昇流路を、外側に下降流路を有する冷却材の循環流路を備えている自然循環式沸騰水型原子炉であって、
前記チムニは、格子状に仕切られた複数の直立した格子流路を備え、該格子流路の流路横断面が、高さ方向において異なる領域を有していることを特徴とする自然循環式沸騰水型原子炉。
A natural circulation boiling water nuclear reactor having a coolant circulation channel having an ascending channel inside and a descending channel outside by chimney installed on the core in the reactor pressure vessel. ,
The chimney is provided with a plurality of upright grid channels partitioned in a grid pattern, and the cross section of the grid channels has different regions in the height direction. Boiling water reactor.
前記格子流路が、分割された上下の格子構造体によって高さ方向に構成されていることを特徴とする請求項1に記載の自然循環式沸騰水型原子炉。   2. The natural circulation boiling water reactor according to claim 1, wherein the lattice flow path is configured in a height direction by divided upper and lower lattice structures. 前記上下の格子構造体の分割端面の間に、隙間が設けられていることを特徴とする請求項2に記載の自然循環式沸騰水型原子炉。   The natural circulation boiling water reactor according to claim 2, wherein a gap is provided between the divided end faces of the upper and lower lattice structures.
JP2006053346A 2006-02-28 2006-02-28 Natural circulation boiling water reactor Pending JP2007232518A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006053346A JP2007232518A (en) 2006-02-28 2006-02-28 Natural circulation boiling water reactor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006053346A JP2007232518A (en) 2006-02-28 2006-02-28 Natural circulation boiling water reactor

Publications (1)

Publication Number Publication Date
JP2007232518A true JP2007232518A (en) 2007-09-13

Family

ID=38553247

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006053346A Pending JP2007232518A (en) 2006-02-28 2006-02-28 Natural circulation boiling water reactor

Country Status (1)

Country Link
JP (1) JP2007232518A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010175284A (en) * 2009-01-27 2010-08-12 Hitachi-Ge Nuclear Energy Ltd Natural circulation boiling water reactor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010175284A (en) * 2009-01-27 2010-08-12 Hitachi-Ge Nuclear Energy Ltd Natural circulation boiling water reactor

Similar Documents

Publication Publication Date Title
KR101366218B1 (en) Nuclear reactor and method of cooling reactor core of a nuclear reactor
KR101129735B1 (en) Nuclear reactor
JP5497454B2 (en) Pressurized water reactor skirt rectifier
KR102200640B1 (en) Heavy radial neutron reflector for pressurized water reactors
US3425907A (en) Nuclear energy reactor plant having one or more heat exchangers
US7907695B2 (en) Natural circulation boiling water reactor and handling method thereof
JP4458489B2 (en) Channel forming device and natural circulation boiling water reactor
KR101744319B1 (en) Externally Integrated Steam generator Small Modular Reactor
JP2007232519A (en) Natural circulation boiling water reactor
US10249393B2 (en) Modular reactor steam generator configured to cover a reactor outer wall circumference
JP2007232518A (en) Natural circulation boiling water reactor
JP5898783B2 (en) Natural circulation boiling water reactor and its chimney
JP4392412B2 (en) Channel forming device and natural circulation boiling water reactor
US5857006A (en) Chimney for enhancing flow of coolant water in natural circulation boiling water reactor
JP2007232423A (en) Natural circulation boiling water reactor
JP4500276B2 (en) Chimney structure of natural circulation boiling water reactor
JP5191913B2 (en) Natural circulation boiling water reactor
EP0125326B1 (en) Nuclear reactor
TWI672707B (en) Nuclear reactor
JP2010002246A (en) Boiling water reactor of natural circulation system
JP2011069751A (en) Chimney of natural circulation type boiling water reactor, fuel exchange method of natural circulation type boiling water reactor using the same, inspection method of natural circulation type boiling water reactor using the same, and natural circulation type boiling water reactor using the same
US3359175A (en) Nuclear reactor
JPH05215878A (en) Fuel bundle of boiling water type nuclear reactor
JPH0815476A (en) Incore lower structure of pressurized water reactor
US10049775B2 (en) Steam separation system and nuclear boiling water reactor including the same

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20071204