JP2011069751A - Chimney of natural circulation type boiling water reactor, fuel exchange method of natural circulation type boiling water reactor using the same, inspection method of natural circulation type boiling water reactor using the same, and natural circulation type boiling water reactor using the same - Google Patents

Chimney of natural circulation type boiling water reactor, fuel exchange method of natural circulation type boiling water reactor using the same, inspection method of natural circulation type boiling water reactor using the same, and natural circulation type boiling water reactor using the same Download PDF

Info

Publication number
JP2011069751A
JP2011069751A JP2009221817A JP2009221817A JP2011069751A JP 2011069751 A JP2011069751 A JP 2011069751A JP 2009221817 A JP2009221817 A JP 2009221817A JP 2009221817 A JP2009221817 A JP 2009221817A JP 2011069751 A JP2011069751 A JP 2011069751A
Authority
JP
Japan
Prior art keywords
chimney
boiling water
natural circulation
water reactor
lattice
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009221817A
Other languages
Japanese (ja)
Inventor
Teppei Kubota
哲平 久保田
Masaaki Tsubaki
正昭 椿
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi GE Nuclear Energy Ltd
Original Assignee
Hitachi GE Nuclear Energy Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi GE Nuclear Energy Ltd filed Critical Hitachi GE Nuclear Energy Ltd
Priority to JP2009221817A priority Critical patent/JP2011069751A/en
Publication of JP2011069751A publication Critical patent/JP2011069751A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Landscapes

  • Monitoring And Testing Of Nuclear Reactors (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To improve structural stiffness of a cross-sectional periphery of a chimney and to facilitate mounting and dismounting, while maintaining a structure that enables removal of only a lattice part at the time of fuel exchange or inspection. <P>SOLUTION: The chimney structure of a natural circulation type boiling water reactor including a core loaded with a plurality of fuel assemblies forming a circular cross section and a chimney 11 located above the core has the following characteristics. The chimney includes: a chimney trunk 11d; and a plurality of lattice channels 11a and lattice channels partitioned by channel bulkheads 11b1 removable from the chimney structure and channel bulkheads 11b2 joined to the chimney trunk 11d, which are vertically disposed in the chimney trunk 11d; wherein all of the channel bulkheads 11b1 make angles and have a closed structure. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、自然循環式沸騰水型原子炉に備えられるチムニに関するものである。   The present invention relates to a chimney provided in a natural circulation boiling water reactor.

これまでに商業運転されている強制循環式の沸騰水型原子炉(以下、BWRという)では、円筒状の炉心シュラウド内に、横断面が正方形の燃料集合体をX軸方向,Y方向(ともに水平方向)に並べて林立させて炉心を構成している。そして、横断面が略十字型の制御棒が、その周囲を囲む4体の燃料集合体の間に挿入可能に配置され、この制御棒を囲む4体の燃料集合体の単位を制御棒セルという。   In a forced circulation boiling water reactor (hereinafter referred to as BWR) that has been commercially operated so far, a fuel assembly having a square cross section is placed in a X axis direction and a Y direction (both in a cylindrical core shroud). The core is composed of forests arranged horizontally. A control rod having a substantially cross-shaped cross section is disposed so as to be insertable between four fuel assemblies surrounding the periphery of the control rod. A unit of the four fuel assemblies surrounding the control rod is called a control rod cell. .

近年では、自然循環式BWRが提唱され、その自然循環式BWRでは自然循環の駆動力確保のため、炉心の上に強制循環式BWRには無いチムニが設けられる(例えば、特許文献1参照)。特許文献1に記載のチムニは、仕切り板により流路隔壁を構成して複数の格子流路を有している構成である。その場合、個々の燃料集合体に配分される冷却材流量は、下部プレナムから炉心へ流入時に各燃料集合体に分配され、燃料集合体を冷却して冷却材の気液二相流となり、さらに個々の燃料集合体を出てチムニの格子流路内で合流してチムニを通過後、上部プレナムで各格子流路の気液二相流全体が合流するまでの間の燃料集合体圧損と格子流路の圧損と、格子流路内のボイド率により主にきまる冷却材比重差による駆動力で決まる。   In recent years, a natural circulation type BWR has been proposed. In the natural circulation type BWR, a chimney that does not exist in the forced circulation type BWR is provided on the core in order to secure a driving force for natural circulation (see, for example, Patent Document 1). The chimney described in Patent Document 1 has a configuration in which a flow path partition wall is configured by a partition plate to have a plurality of lattice flow paths. In that case, the coolant flow rate distributed to the individual fuel assemblies is distributed to each fuel assembly when it flows into the core from the lower plenum, cooling the fuel assembly to become a gas-liquid two-phase flow of coolant, Fuel assembly pressure loss and lattice after the individual fuel assemblies are merged in the chimney lattice channels and after passing through the chimney, until the entire gas-liquid two-phase flow in each lattice channel is merged in the upper plenum. It is determined by the driving force due to the difference in specific gravity of the coolant mainly determined by the pressure loss of the flow path and the void ratio in the lattice flow path.

その他、チムニに関しては以下の文献が挙げられる。チムニ胴とチムニ格子の着脱については、流路隔壁の上端に流路開口のある上部支持板と、流路隔壁の下端に流路開口のある下部支持板を設け、上下の支持板とチムニ胴との間にくさびを打ち込んで、チムニの流路形成部分を水平方向に支持するという例もある。(例えば特許文献2参照)
また、チムニ構造の強化については、チムニ横断面矩形の一辺の途中が、隣接する横断面矩形の一辺によって支持される構造にするという例(例えば特許文献3参照)がある。
In addition, the following literature is mentioned about chimney. For the attachment and detachment of the chimney cylinder and the chimney grid, an upper support plate having a channel opening at the upper end of the channel partition wall and a lower support plate having a channel opening at the lower end of the channel partition wall are provided. There is also an example in which a wedge is driven in between and the chimney flow path forming portion is supported in the horizontal direction. (For example, see Patent Document 2)
Further, with regard to the strengthening of the chimney structure, there is an example in which the middle of one side of the chimney cross-sectional rectangle is supported by one side of the adjacent cross-sectional rectangle (for example, see Patent Document 3).

さらに、チムニ格子を部分的に着脱可能とする構造として、角管状とする例もある(例えば特許文献4参照)。   Further, there is an example in which the chimney lattice is partially detachable as a rectangular tube (see, for example, Patent Document 4).

特公平7−27051号公報Japanese Patent Publication No. 7-27051 特開2007−232546号公報JP 2007-232546 A 特開2007−232434号公報JP 2007-232434 A 特開2007−232421号公報JP 2007-232421 A

原子炉はその安全性確保のために、定期的に炉内の点検を行う必要がある。また燃料交換時においても、炉内での作業が必要となる。チムニはこれらの炉内点検や燃料交換時に取外し,取付け作業が必要となる。よってチムニは取外し、取付け性の良いことが必要になる。取外し,取付け作業が容易であるためには、チムニ格子部分のみを取り出せることが望ましい。   In order to ensure the safety of nuclear reactors, it is necessary to periodically inspect the reactor. In addition, work in the furnace is also required when changing fuel. Chimney must be removed and installed during inspections and fuel changes in these furnaces. Therefore, it is necessary to remove the chimney and to have good mountability. For easy removal and installation, it is desirable that only the chimney grid portion can be taken out.

そこで本発明が解決しようとする課題は作業時に取り出すチムニ構造部の重量を低減することである。   Therefore, the problem to be solved by the present invention is to reduce the weight of the chimney structure taken out during work.

本発明では前記課題を解決するため、以下の手段を採用した。複数の燃料集合体を横断面が円形状に装荷した炉心と、前記炉心の上に設置されたチムニを備えた自然循環式沸騰水型原子炉のチムニであって、前記チムニは、チムニ胴と、前記チムニ胴の内部に垂設された流路隔壁により区画される複数の格子流路を含んでなり、前記複数の格子流路を区画する流路隔壁の一部がチムニ胴内面に接合され、前記複数の格子流路を区画する流路隔壁の残りがチムニ構造から着脱可能であることを特徴とする自然循環式沸騰水型原子炉のチムニ。   The present invention adopts the following means in order to solve the above problems. A chimney of a natural circulation boiling water reactor comprising a core in which a cross section of a plurality of fuel assemblies is loaded in a circular shape, and a chimney installed on the core, wherein the chimney has a chimney body A plurality of grid channels defined by channel partitions suspended in the chimney cylinder, and a part of the channel partitions defining the plurality of grid channels are joined to the inner surface of the chimney cylinder. The chimney of a natural circulation boiling water reactor, wherein the remainder of the flow path partition walls that divide the plurality of lattice flow paths is detachable from the chimney structure.

本発明では、燃料交換や点検作業の実施に対して流路隔壁の一部をチムニ胴内面に残存させるため、燃料交換や点検時に取外す格子部分の重量を低減させることができる。   In the present invention, a part of the flow path partition wall is left on the inner surface of the chimney cylinder when the fuel is changed or inspected, so that the weight of the lattice part to be removed at the time of changing the fuel or inspecting can be reduced.

本発明の一実施形態に係る自然循環式沸騰水型原子炉の縦断面図である。1 is a longitudinal sectional view of a natural circulation boiling water reactor according to an embodiment of the present invention. 従来の自然循環式BWRにおけるチムニ構造を示す横断面図である。It is a cross-sectional view showing a chimney structure in a conventional natural circulation type BWR. (a)は本発明の一実施形態に係る自然循環式沸騰水型原子炉のチムニの上面図であり、(b)は(a)の縦断面図である。(A) is a top view of the chimney of the natural circulation type boiling water reactor which concerns on one Embodiment of this invention, (b) is a longitudinal cross-sectional view of (a). 本発明の一実施形態に係る自然循環式沸騰水型原子炉のチムニの横断面図であり、図3のX−X横断面図である。FIG. 4 is a cross-sectional view of a chimney of a natural circulation boiling water reactor according to an embodiment of the present invention, and is an XX cross-sectional view of FIG. 3. 本発明の一実施形態に係る自然循環式沸騰水型原子炉のチムニの横面図であり、(a)はチムニ構造から着脱可能な流路隔壁部の横断面図、(b)は(a)を取り除いた後のチムニの横断面図である。It is a side view of the chimney of the natural circulation type boiling water reactor which concerns on one Embodiment of this invention, (a) is a cross-sectional view of the flow-path partition part which can be attached or detached from a chimney structure, (b) is (a). It is a cross-sectional view of the chimney after removing). (a)は本発明の一実施形態に係る自然循環式沸騰水型原子炉のチムニの上面図であり、(b)は(a)の縦断面図である。(A) is a top view of the chimney of the natural circulation type boiling water reactor which concerns on one Embodiment of this invention, (b) is a longitudinal cross-sectional view of (a). 本発明の一実施形態に係る自然循環式沸騰水型原子炉のチムニの横断面図であり、図6のX−X横断面図である。It is a cross-sectional view of the chimney of the natural circulation boiling water reactor according to an embodiment of the present invention, and is a cross-sectional view taken along the line XX of FIG. 本発明の一実施形態に係る自然循環式沸騰水型原子炉のチムニの横面図であり、(a)はチムニ構造から着脱可能な流路隔壁部の横断面図、(b)は(a)を取り除いた後のチムニの横断面図である。It is a side view of the chimney of the natural circulation type boiling water reactor which concerns on one Embodiment of this invention, (a) is a cross-sectional view of the flow-path partition part which can be attached or detached from a chimney structure, (b) is (a). It is a cross-sectional view of the chimney after removing).

本発明は前述したような特徴を有するが、その他の特徴として以下の点が挙げられる。   The present invention has the above-described features, but other features include the following points.

本発明の他の目的は、チムニ全体を取り出さなくとも燃料交換や点検作業を実施することである。そこでチムニ胴内面に接合される格子隔壁は、前記チムニ胴の内部に垂設された流路隔壁により区画される複数の格子流路のうち、水平断面で見て、前記複数の格子流路のうち格子流路を四辺で囲んでいない格子流路により形成されていること特徴とした自然循環式沸騰水型原子炉のチムニとする手段を採用した。これにより、燃料交換や点検作業の実施に対して影響する流路隔壁のみを取外して作業が行える効果を有する。   Another object of the present invention is to perform a fuel change and inspection work without removing the entire chimney. Therefore, the grid partition bonded to the inner surface of the chimney cylinder is a plurality of grid channels divided by the channel partition walls suspended in the chimney cylinder, as viewed in a horizontal cross section. Among them, a means for making a chimney of a natural circulation boiling water reactor, which is characterized by being formed by a lattice channel that does not surround the lattice channel on all four sides, was adopted. Thereby, there is an effect that the operation can be performed by removing only the flow path partition wall which affects the implementation of the fuel exchange and the inspection work.

本発明の他の目的は、以下の点である。チムニの格子流路に冷却材の気液二相流が流れると、流れによる格子間の差圧や、流体力による振動(流力振動)が発生する。差圧や流力振動は、格子流路を形成する流路隔壁に応力を与えるため、流路隔壁にはこの応力に対抗すべく高い構造健全性が要求される。なお、従来の自然循環式BWRにおけるチムニ構造は、図2に示すように、横断面において格子流路が正方格子状に配列したものである。さらに取外し時に自重で端部が変形しないように高い剛性が要求される。そこで、チムニ胴内面に接合される格子隔壁は、前記チムニ胴の内部に垂設された流路隔壁により区画される複数の格子流路のうち、水平断面で見て、前記複数の格子流路のうち格子流路を四辺で囲んでいない格子流路により形成されていること特徴とした自然循環式沸騰水型原子炉のチムニとすることを特徴とする手段を採用した。これにより格子端部が全て角を成した構造であるため、チムニ周辺部の構造剛性を向上させることができ、燃料交換や点検時等に流路隔壁部を取り出す際及び取付ける際に、吊作業による流路隔壁周辺部のたわみを従来の構造(図2参照)と比較して、両端固定のはりと片側固定、片側自由端のはりのたわみ式との比として考えることができるため、約2%に抑えることができるという効果を有する。   Other objects of the present invention are as follows. When the gas-liquid two-phase flow of the coolant flows through the chimney lattice flow path, differential pressure between the lattices due to the flow and vibration (fluid vibration) due to fluid force occur. Since the differential pressure and the hydrodynamic vibration give stress to the flow path partition walls forming the lattice flow path, the flow path partition walls are required to have high structural integrity to counter this stress. As shown in FIG. 2, the chimney structure in the conventional natural circulation type BWR has lattice channels arranged in a square lattice pattern in the cross section. Furthermore, high rigidity is required so that the end portion is not deformed by its own weight when removed. Therefore, the grid partition bonded to the inner surface of the chimney cylinder is a plurality of grid channels as viewed in a horizontal cross-section among the plurality of grid channels partitioned by the channel partitions suspended inside the chimney cylinder. Among them, a means characterized in that it is a chimney of a natural circulation boiling water reactor, characterized in that it is formed by a lattice channel that does not surround the lattice channel on all four sides. As a result, the lattice ends are all angled, so the structural rigidity of the chimney periphery can be improved, and when removing and installing the flow path partition during fuel replacement or inspection, etc. Compared with the conventional structure (see FIG. 2), the deflection at the periphery of the flow path partition wall can be considered as a ratio between the fixed beam at one end and the fixed type at one end and the free beam at one end. % Can be suppressed to%.

本発明の他の目的は、以下の点である。燃料交換や点検時に取外すチムニの取付け・取外しを容易にすることである。そこでチムニ構造から着脱可能な流路隔壁と前記チムニ胴内面に接合された流路隔壁とがその一部において水平方向を支持していることを特徴とする自然循環式沸騰水型原子炉のチムニとする手段を採用した。これによりチムニ胴の内面に残存させた流路隔壁の一部が、取付けの際に格子部分の水平方向の支持をすることで、格子の位置決めを容易とする効果がある。   Other objects of the present invention are as follows. It is to facilitate the installation and removal of chimneys that are removed during refueling and inspection. Accordingly, a chimney of a natural circulation boiling water reactor characterized in that a channel partition wall detachable from the chimney structure and a channel partition wall joined to the inner surface of the chimney body partially support the horizontal direction. Adopted the means. As a result, a part of the flow path partition walls remaining on the inner surface of the chimney cylinder supports the grid portion in the horizontal direction during the mounting, thereby providing an effect of facilitating the positioning of the grid.

以上述べた各特徴は、本発明の趣旨を脱しない限り、互いに組み合わせることが可能である。   Each of the features described above can be combined with each other without departing from the spirit of the present invention.

以下、図面を参照しながら実施例を説明する。   Hereinafter, embodiments will be described with reference to the drawings.

(原子炉の概要)
一般に,沸騰水型原子炉内の冷却材(軽水)の駆動方法は二通り有り,一方は再循環ポンプを用いて強制循環させる方法であり、他方は再循環ポンプを用いないで自然循環による方法である。本実施形態は、後者の自然循環による方法である。
(Outline of the reactor)
In general, there are two methods of driving coolant (light water) in boiling water reactors, one is forced circulation using a recirculation pump, and the other is natural circulation without using a recirculation pump. It is. This embodiment is the latter method based on natural circulation.

自然循環による方法は、図1に示すように、原子炉圧力容器(以下、圧力容器という)6内に収納する炉心7で発生するボイド、すなわち蒸気(気相)と飽和温度の液相の冷却材の混合した密度の低い冷却材と、給水配管16bから供給される給水と混合された液相の冷却材との比重差によって自然循環に必要な駆動力を得るものである。   As shown in FIG. 1, the natural circulation method is a method of cooling voids generated in a reactor core 7 housed in a reactor pressure vessel (hereinafter referred to as a pressure vessel) 6, that is, vapor (gas phase) and a liquid phase having a saturation temperature. A driving force necessary for natural circulation is obtained by a difference in specific gravity between the coolant having a low density mixed with the material and the liquid phase coolant mixed with the water supplied from the water supply pipe 16b.

図1に示すように本実施形態の自然循環式沸騰水型原子炉(以下、原子炉という)1は、円筒状の圧力容器6内に、炉心シュラウド8が、同心の円筒状に設けられている。この炉心シュラウド8は、その外側面と圧力容器6の内側面との間隙に環状空間を形成し、これをダウンカマ9という。また、炉心シュラウド8の内部には、多数の燃料集合体21が配置された炉心7を収容している。   As shown in FIG. 1, a natural circulation boiling water reactor (hereinafter referred to as “reactor”) 1 according to the present embodiment has a core shroud 8 provided in a cylindrical pressure vessel 6 in a concentric cylindrical shape. Yes. The core shroud 8 forms an annular space in the gap between the outer side surface and the inner side surface of the pressure vessel 6, and this is called a downcomer 9. Further, the core 7 in which a large number of fuel assemblies 21 are arranged is housed inside the core shroud 8.

ダウンカマ9の上方には、復水器3から給水ポンプ4を介して、給水加熱器5で加熱の後、給水入口ノズル17から圧力容器6内に供給される冷却材を圧力容器6内に均等に配分する図示しない給水スパージャが円環状に設けられている。   Above the downcomer 9, the coolant supplied from the feed water inlet nozzle 17 into the pressure vessel 6 after being heated by the feed water heater 5 from the condenser 3 via the feed water pump 4 is evenly placed in the pressure vessel 6. A water supply sparger (not shown) is provided in an annular shape.

炉心シュラウド8は、シュラウドレグ8aによって支持される。ダウンカマ9を下降した冷却材は、シュラウドレグ8a間の流路から、炉心7の下部の炉心下部プレナム(以下、下部プレナムという)10に導き入れられる。   The core shroud 8 is supported by a shroud leg 8a. The coolant descending the downcomer 9 is introduced into the core lower plenum (hereinafter referred to as the lower plenum) 10 below the core 7 from the flow path between the shroud legs 8a.

炉心7の下部には、炉心支持板22を、上部には、上部格子板23を設け、燃料集合体21と制御棒24の横方向の配置を決めている。   A core support plate 22 is provided in the lower part of the core 7 and an upper lattice plate 23 is provided in the upper part, and the lateral arrangement of the fuel assemblies 21 and the control rods 24 is determined.

炉心支持板22には、所定の間隔で円形の図示しない貫通孔が設けられ、その貫通孔に制御棒案内管25が挿入され、制御棒案内管25の下部は、圧力容器6の底部を貫通して制御棒24を上下方向に動かす制御棒駆動機構(以下、CRDという)26を収容する制御棒駆動機構ハウジング(以下、CRDハウジングという)26aの上部に組合わされている。   The core support plate 22 is provided with circular through holes (not shown) at predetermined intervals. A control rod guide tube 25 is inserted into the through holes, and the lower portion of the control rod guide tube 25 penetrates the bottom of the pressure vessel 6. Thus, it is combined with an upper part of a control rod drive mechanism housing (hereinafter referred to as CRD housing) 26a that houses a control rod drive mechanism (hereinafter referred to as CRD) 26 that moves the control rod 24 in the vertical direction.

燃料集合体21は、制御棒案内管25の上端に取付けられた図示しない燃料支持金具の上に据えられ、その荷重は制御棒案内管25およびCRDハウジング26aを介して、圧力容器6の底部に伝えられる。   The fuel assembly 21 is placed on a fuel support bracket (not shown) attached to the upper end of the control rod guide tube 25, and the load is applied to the bottom of the pressure vessel 6 via the control rod guide tube 25 and the CRD housing 26a. Reportedly.

前記の図示しない燃料支持金具は、側面に冷却材入口を有し、そこに図示しないオリフィスが設けられて、冷却材流量を規制している。燃料支持金具の冷却材入口に対応する制御棒案内管25の側面には開口が設けられ、下部プレナム10に導かれた冷却材が燃料支持金具を経て、燃料集合体21内に導かれる。   The fuel support fitting (not shown) has a coolant inlet on a side surface, and an orifice (not shown) is provided there to regulate the coolant flow rate. An opening is provided in the side surface of the control rod guide tube 25 corresponding to the coolant inlet of the fuel support bracket, and the coolant guided to the lower plenum 10 is guided into the fuel assembly 21 through the fuel support bracket.

個々の燃料集合体21は、図示しない四角筒のチャンネルボックスで囲われ軸方向の個別の流路を形成しており、チャンネルボックスは上部格子板23の上面まで到る構成をしている。   Each fuel assembly 21 is surrounded by a rectangular tube channel box (not shown) to form individual flow paths in the axial direction, and the channel box is configured to reach the upper surface of the upper lattice plate 23.

前記制御棒24は図示しない中性子吸収物質を含む有効部を有し、その有効部が前記チャンネルボックスの外面をガイドとして、周囲の4体の燃料集合体21間に挿入される。   The control rod 24 has an effective portion containing a neutron absorbing material (not shown), and the effective portion is inserted between the surrounding four fuel assemblies 21 using the outer surface of the channel box as a guide.

炉心7の上には、炉心から出た冷却材の気液二相流を上方に導き自然循環駆動力を増加させるチムニ11が設けられている。チムニ11は、例えば圧力容器6と同心の円筒状のチムニ胴11dを有し、その内部を仕切り板で格子状に仕切った格子流路11aを有している。以下では、格子流路11aを構成する前記仕切り板を流路隔壁11bという。   Provided on the core 7 is a chimney 11 for guiding the gas-liquid two-phase flow of the coolant coming out of the core upward and increasing the natural circulation driving force. The chimney 11 has, for example, a cylindrical chimney cylinder 11d concentric with the pressure vessel 6, and has a lattice channel 11a in which the inside is partitioned into a lattice shape by a partition plate. Hereinafter, the partition plate constituting the lattice channel 11a is referred to as a channel partition wall 11b.

なお、個々の格子流路11aを上方に流れる冷却材がチムニ11内の上部で合流するように、チムニ11の上部に上部プレナム11cが設けられている。   In addition, the upper plenum 11c is provided in the upper part of the chimney 11 so that the coolant flowing upward through the individual lattice channels 11a merges in the upper part of the chimney 11.

なお、上部格子板23とチムニ11の下端とは、ダウンカマ9を下降する冷却材と、炉心7を出た冷却材とが混じらないような組み合わせ構造となっている。   The upper lattice plate 23 and the lower end of the chimney 11 have a combined structure in which the coolant that descends the downcomer 9 and the coolant that exits the core 7 are not mixed.

チムニ11の上端は、チムニヘッド12aで閉じられる。チムニヘッド12aには、所定の数の冷却材通過用の孔が設けられ、その孔はスタンドパイプ12bを介して気液二相流から飽和蒸気と飽和水とを分離する気水分離器12につながっている。気水分離器12の上方には、蒸気乾燥器13が設けられ、気水分離器12を出た飽和蒸気に含まれる湿分を除去する。蒸気乾燥器13を通過した蒸気は、蒸気ドーム14,蒸気出口ノズル15,主蒸気配管16aを経て、タービン2に送られる。   The upper end of the chimney 11 is closed by a chimney head 12a. The chimney head 12a is provided with a predetermined number of coolant passage holes, and the holes are connected to a steam / water separator 12 that separates saturated steam and saturated water from the gas / liquid two-phase flow through a stand pipe 12b. ing. A steam dryer 13 is provided above the steam / water separator 12 to remove moisture contained in the saturated steam exiting the steam / water separator 12. The steam that has passed through the steam dryer 13 is sent to the turbine 2 via the steam dome 14, the steam outlet nozzle 15, and the main steam pipe 16a.

なお、チムニヘッド12aとスタンドパイプ12bと気水分離器12は一体に組み立てられており、燃料交換時には、一体でチムニ11の上端から着脱可能な構成となっている。   Note that the chimney head 12a, the stand pipe 12b, and the steam / water separator 12 are integrally assembled, and are configured to be detachable from the upper end of the chimney 11 at the time of fuel replacement.

このように、概略説明した原子炉1においては、給水入口ノズル17から供給される冷却材は、気水分離器12で分離された飽和水と混合し、図1中矢印Aで示される冷却材は、ダウンカマ9を下降し、シュラウドレグ8aの図示しない間隙によって構成される流路から、炉心シュラウド8内に流入し、炉心7によって加熱される。炉心7からの加熱によって冷却材Aは、矢印Bで示す飽和状態の気液二相流となり、この気液二相流は格子流路11a,上部プレナム11c,スタンドパイプ12bを経て、気水分離器12によって、矢印Cで示す気相の飽和蒸気と、矢印Dで示す液相の飽和水に分離される。飽和蒸気Cは、蒸気乾燥器13を経て、蒸気出口ノズル15から主蒸気配管16aによってタービン2に導かれ発電に供される。   Thus, in the nuclear reactor 1 schematically described, the coolant supplied from the feed water inlet nozzle 17 is mixed with the saturated water separated by the steam separator 12, and the coolant indicated by the arrow A in FIG. Moves down the downcomer 9, flows into the core shroud 8 from a flow path formed by a gap (not shown) of the shroud leg 8 a, and is heated by the core 7. By the heating from the core 7, the coolant A becomes a gas-liquid two-phase flow in a saturated state indicated by an arrow B. This gas-liquid two-phase flow passes through the lattice channel 11a, the upper plenum 11c, and the stand pipe 12b to separate the water and gas. The vessel 12 separates the gas phase saturated steam indicated by the arrow C and the liquid phase saturated water indicated by the arrow D. The saturated steam C passes through the steam dryer 13, is led from the steam outlet nozzle 15 to the turbine 2 through the main steam pipe 16 a, and is used for power generation.

一方、飽和水Dは、圧力容器6内の冷却材に混合され、給水入口ノズル17から供給される冷却材と更に混合されて、再びダウンカマ9を下降して圧力容器6内を循環する。   On the other hand, the saturated water D is mixed with the coolant in the pressure vessel 6, further mixed with the coolant supplied from the feed water inlet nozzle 17, and descends the downcomer 9 again to circulate in the pressure vessel 6.

(チムニの構造例1)
図3と図4と図5(a)、(b)に本実施形態によるチムニ構造例1を示す。
(Chimni Structure Example 1)
FIGS. 3, 4 and 5A and 5B show a chimney structure example 1 according to the present embodiment.

図3に示すように、チムニ11は、冷却材の上昇流と下降流とを分けるチムニ胴11dと、上昇流が流れる複数の流路を形成する流路形成装置11Aと、流路形成装置11Aを支える台座11gを有する。チムニ胴11dは円筒状の形状をしており、この円筒内に流路形成装置11Aが設置されている。   As shown in FIG. 3, the chimney 11 includes a chimney cylinder 11 d that separates an upward flow and a downward flow of the coolant, a flow path forming device 11 A that forms a plurality of flow paths through which the upward flow flows, and a flow path forming device 11 A. 11g for supporting The chimney cylinder 11d has a cylindrical shape, and a flow path forming device 11A is installed in the cylinder.

図4に示すように、流路形成装置11Aは、チムニ構造から着脱可能な流路隔壁11b1(以下、流路隔壁11b1)およびチムニ胴と溶接等で接合された複数の流路隔壁11b2(以下、流路隔壁11b2)からなる流路隔壁11bを有し、また、図3に示すように、流路隔壁11b1に溶接等で接合された上部支持板11eおよび下部支持板11fと、上部支持板11eに接合されたフック31を有している。   As shown in FIG. 4, the flow path forming apparatus 11A includes a flow path partition wall 11b1 (hereinafter referred to as a flow path partition wall 11b1) that can be attached to and detached from the chimney structure, and a plurality of flow path partition walls 11b2 (hereinafter referred to as “welding” to the chimney cylinder). And an upper support plate 11e and a lower support plate 11f, which are joined to the flow channel partition 11b1 by welding or the like, as shown in FIG. 11e has a hook 31 joined to 11e.

チムニ11は、図4に示すように、圧力容器6(図1参照)と同心の円筒状のチムニ胴11dを有し、その内部を仕切り板等の流路隔壁11b1で横断面矩形の格子状に仕切った格子流路11aを有している。また、格子流路11aを構成する流路隔壁11b1は、その端部が全て角を成していると共に、閉じた構造となっており、そのため、格子流路11aはチムニ胴中心部と比較してチムニ胴付近では小さい矩形の格子形状となっている(図5(a)参照)。流路隔壁11b1は、一体となって着脱が可能なように、流路隔壁が互いに交差する部分及び角は溶接等により接合され、製作される。なお、材質は、例えばステンレス鋼等の金属からなる。   As shown in FIG. 4, the chimney 11 has a cylindrical chimney cylinder 11d concentric with the pressure vessel 6 (see FIG. 1), and the inside of the chimney 11 is a lattice-shaped grid with a flow path partition wall 11b1 such as a partition plate. The grid channel 11a is divided into two. Further, the flow path partition wall 11b1 constituting the lattice flow path 11a has a closed structure with all the corners forming a corner. Therefore, the lattice flow path 11a is compared with the chimney trunk central part. In the vicinity of the chimney cylinder, the lattice shape is a small rectangle (see FIG. 5A). The channel partition wall 11b1 is manufactured by joining portions and corners of the channel partition wall by welding or the like so that the channel partition wall 11b1 can be integrally attached and detached. The material is made of a metal such as stainless steel.

図4に示すように、本実施形態によるチムニ構造は、格子流路11aの横断面において、前記チムニ胴内面に接合された流路隔壁11b2とチムニ構造から着脱可能な流路隔壁11b1により形成される11b1および11b2により形成される格子流路100を有する。流路隔壁11b2の端部は、互いに直交して角を成すか、またはチムニ胴11d内面に接合されており、全て閉じた構造となっている(図5(b)参照)。また、図4に示すように流路隔壁11b2によって流路隔壁11b1の水平面の位置を支持する構造となっている。   As shown in FIG. 4, the chimney structure according to the present embodiment is formed by a channel partition wall 11b2 joined to the inner surface of the chimney cylinder and a channel partition wall 11b1 detachable from the chimney structure in the cross section of the lattice channel 11a. 11b1 and 11b2 have a lattice channel 100. The end portions of the flow path partition 11b2 form an angle perpendicular to each other, or are joined to the inner surface of the chimney cylinder 11d, and all have a closed structure (see FIG. 5B). Moreover, as shown in FIG. 4, it has the structure which supports the position of the horizontal surface of the flow-path partition 11b1 by the flow-path partition 11b2.

流路形成装置11Aの流路隔壁11b1は、チムニ胴11dに取付けられた台座11gに支えられ、流路隔壁11b2はチムニ胴と接合されている。チムニ11設置時には、まずチムニ胴11dが上部格子板23に取付けられる。その後、流路形成装置11Aの流路隔壁11b1は、フック31に掛けてクレーン等によって吊下ろされ、チムニ胴11d内面に接合された流路隔壁11b2に沿うように通す。この際、チムニ胴11dの水平断面における流路隔壁11bの区切り方によって、各流路隔壁11b2が支持する流路隔壁11b1が決定されるため、流路隔壁11b1の配置位置を決めて吊下ろすことができる。   The flow path partition 11b1 of the flow path forming device 11A is supported by a pedestal 11g attached to the chimney cylinder 11d, and the flow path partition 11b2 is joined to the chimney cylinder. When the chimney 11 is installed, first, the chimney cylinder 11 d is attached to the upper lattice plate 23. Thereafter, the flow path partition 11b1 of the flow path forming device 11A is hung on the hook 31 by a crane or the like and passes along the flow path partition 11b2 joined to the inner surface of the chimney cylinder 11d. At this time, since the flow path partition 11b1 supported by each flow path partition 11b2 is determined by the way of dividing the flow path partition 11b in the horizontal cross section of the chimney cylinder 11d, the arrangement position of the flow path partition 11b1 is determined and suspended. Can do.

炉内の燃料交換や点検時には、前記と逆の手順を行うことで、チムニ胴11dを取外さなくても、炉内の燃料交換や点検時の作業に影響を及ぼす流路形成装置11Aの流路隔壁11b1のみを取外すことができる。   The flow of the flow path forming device 11A, which affects the fuel exchange and inspection work in the furnace, can be performed without removing the chimney cylinder 11d by performing the reverse procedure to the above during the fuel replacement and inspection in the furnace. Only the road partition wall 11b1 can be removed.

図2に示すように、従来のチムニ構造においては、流路を形成する隔壁はそれと直交する流路隔壁によって等間隔で支持される構造となっており、流路隔壁端部においてはどこにも支持されない構造、つまり自由端となっている。図4および図5に示すように、チムニ胴側に流路隔壁の一部を残存させることにより、燃料交換や点検時に取外さなければならない流路隔壁部の重量増加を抑えながら、その角を全て閉じた構造とし、横断面内の自由端を無くすことができる。   As shown in FIG. 2, in the conventional chimney structure, the partition wall forming the flow path is supported at equal intervals by the flow path partition perpendicular to it, and is supported anywhere at the end of the flow path partition wall. The structure that is not done, that is, the free end. As shown in FIGS. 4 and 5, by leaving a part of the channel partition wall on the chimney cylinder side, the corner of the channel partition is suppressed while suppressing an increase in the weight of the channel partition unit that must be removed during fuel replacement or inspection. The structure is all closed, and the free end in the cross section can be eliminated.

通常、等分布荷重を受ける辺を考える場合、片側しか固定されていない辺は、両端を固定された辺と比べて、その固定端に発生する最大応力は6倍程大きくなる。図3および図4に示すように、流路隔壁の横断面内の自由端を無くすことで、格子間の差圧荷重や流体振動や自重で発生する最大応力を低減させ、チムニ周辺部の構造剛性を向上させることができる。   Normally, when considering a side that receives an evenly distributed load, the maximum stress generated at the fixed end of a side that is fixed only on one side is about six times greater than that of a side that is fixed at both ends. As shown in FIGS. 3 and 4, by eliminating the free end in the cross section of the flow path partition wall, the differential pressure load between the lattices, the fluid stress and the maximum stress generated by its own weight are reduced, and the structure around the chimney Stiffness can be improved.

流路形成装置11Aはチムニ胴11d内に設置され、非常に近接した位置関係となっている。本発明により流路形成装置11A周辺部の剛性が高くなったことで、前記の炉内の点検時や燃料交換時における流路隔壁11b1の吊作業の際に、その最大たわみを2%程に抑えられるとともに、流路隔壁11b2がガイドサポートの役割を担うことにより、その取り扱い性を向上させることができる。   The flow path forming device 11A is installed in the chimney cylinder 11d and has a very close positional relationship. Since the rigidity of the periphery of the flow path forming device 11A is increased according to the present invention, the maximum deflection is reduced to about 2% when the flow path partition wall 11b1 is suspended at the time of inspection in the furnace or at the time of fuel replacement. In addition to being suppressed, the flow partition wall 11b2 plays the role of a guide support, whereby the handleability can be improved.

(チムニの構造例2)
図6と図7と図8(a),(b)に本実施形態によるチムニ構造例2を示す。
(Chimni structure example 2)
FIGS. 6, 7, 8 (a) and 8 (b) show a chimney structure example 2 according to the present embodiment.

図3と図4と図5に示したチムニ構造例1と比較して、構造例2の異なる点は、チムニ構造から着脱可能な流路隔壁11b1において、チムニ胴中心からみて最も外側の位置に配置される流路隔壁の全てを、水平断面が同心同径の円弧形状の流路隔壁とすることで、流路隔壁11b1を閉じた構造とした点である。また、チムニ胴11dに接合される複数の流路隔壁11b2は、流路隔壁11b1との取り合いにより、水平断面がチムニ胴11dの内面の円形状に対して弦の形状となるように、板状の流路隔壁が垂直に接合されている。なお、流路隔壁11b1の水平方向の支持は、流路隔壁11b2のそれぞれの面が、流路隔壁11b1の格子の角を支持することによって成されている。   Compared with the chimney structure example 1 shown in FIGS. 3, 4, and 5, the structure example 2 is different from the chimney structure in the channel partition wall 11 b 1 that can be detached from the chimney structure. All of the arranged flow path partition walls are arc-shaped flow path partition walls having a concentric diameter and a concentric horizontal cross section, whereby the flow path partition wall 11b1 is closed. Further, the plurality of flow path partition walls 11b2 joined to the chimney cylinder 11d are plate-shaped so that the horizontal cross section has a string shape with respect to the circular shape of the inner surface of the chimney cylinder 11d due to the engagement with the flow path partition wall 11b1. The flow path partition walls are vertically joined. The horizontal support of the flow path partition 11b1 is achieved by supporting the corners of the grid of the flow path partition 11b1 by the respective surfaces of the flow path partition 11b2.

チムニ構造例2とすることで、チムニ構造1に比べて、チムニ胴11dと流路隔壁11b2における溶接等の接合箇所を減少させることができる。一方、流路隔壁11b2は、チムニ胴中心から最も外側となる流路隔壁が曲率を有するため、その加工工程が増える。   By setting it as the chimney structure example 2, compared with the chimney structure 1, the joint location such as welding in the chimney cylinder 11d and the flow path partition wall 11b2 can be reduced. On the other hand, the flow path partition 11b2 has an increased number of processing steps because the flow path partition that is the outermost from the chimney cylinder center has a curvature.

流路形成装置Aの上部支持板11eは、水平断面が円輪状の形状をしており、流路隔壁11b1のチムニ胴中心から最も外側となる流路隔壁の上面が上部支持板11eと全て接合されるように、その内径はチムニ胴中心から最も外側となる流路隔壁の内径と同径とし、外径はチムニ胴中心から最も外側となる流路隔壁の外形よりも少し大きな径となっている。これにより、フック31を用いて流路隔壁11b1の取付けおよび取外しを行う際の流路隔壁11b1の安定性が向上している。   The upper support plate 11e of the flow path forming apparatus A has an annular shape in the horizontal section, and the upper surface of the flow path partition wall that is the outermost side from the chimney cylinder center of the flow path partition wall 11b1 is joined to the upper support plate 11e. The inner diameter is the same as the inner diameter of the channel partition wall that is the outermost from the chimney cylinder center, and the outer diameter is slightly larger than the outer shape of the channel partition wall that is the outermost from the chimney cylinder center. Yes. Thereby, the stability of the flow path partition 11b1 when attaching and removing the flow path partition 11b1 using the hook 31 is improved.

また、流路隔壁11b1の水平方向の位置決めは、流路隔壁11b1の格子の角と流路隔壁11b2の面を対応付けさせることにより行うことができる。   The horizontal positioning of the flow path partition 11b1 can be performed by associating the corners of the grid of the flow path partition 11b1 with the surface of the flow path partition 11b2.

なお、本発明の実施の形態の具体的な構成は、前記した実施の形態とチムニ構造例1とチムニ構造例2とに限られる物ではなく、流路隔壁11b1と流路隔壁11b2との取り合いやチムニ胴内の流路隔壁の区切り方は、炉心に充填された燃料集合体に応じて、異なってもよい。また、チムニ構造例1とチムニ構造例2の特徴を組み合わせた方法を採用してもよい。   The specific configuration of the embodiment of the present invention is not limited to the above-described embodiment, the chimney structure example 1 and the chimney structure example 2, and the relationship between the flow path partition wall 11b1 and the flow path partition wall 11b2. The way of dividing the flow path partition walls in the chimney cylinder may be different depending on the fuel assembly filled in the core. Further, a method combining the features of the chimney structure example 1 and the chimney structure example 2 may be employed.

海外ESBWRに適用可能である。   Applicable to overseas ESBWR.

1 自然循環式沸騰水型原子炉
2 タービン
3 復水器
4 給水ポンプ
5 給水加熱器
6 原子炉圧力容器
7 炉心
8 炉心シュラウド
8a シュラウドレグ
9 ダウンカマ
10 炉心下部プレナム
11 チムニ
11A 流路形成装置
11a 格子流路
11b 流路隔壁
11b1 着脱可能な流路隔壁
11b2 チムニ胴11dに接合された流路隔壁
11c 上部プレナム
11d チムニ胴
11e 上部支持板
11f 下部支持板
11g 台座
12 気水分離器
12a チムニヘッド
12b スタンドパイプ
13 蒸気乾燥器
14 蒸気ドーム
15 蒸気出口ノズル
16a 主蒸気配管
16b 給水配管
17 給水入口ノズル
21 燃料集合体
22 炉心支持板
23 上部格子板
24 制御棒
25 制御棒案内管
26 制御棒駆動機構
26a 制御棒駆動機構ハウジング
31 フック
100 11b1および11b2により形成される格子流路
DESCRIPTION OF SYMBOLS 1 Natural circulation boiling water reactor 2 Turbine 3 Condenser 4 Feed water pump 5 Feed water heater 6 Reactor pressure vessel 7 Core 8 Core shroud 8a Shroud leg 9 Downcomer 10 Core lower plenum 11 Chimney 11A Flow path formation device 11a Grid Channel 11b Channel partition 11b1 Removable channel partition 11b2 Channel partition 11c joined to chimney cylinder 11d Upper plenum 11d Chimney cylinder 11e Upper support plate 11f Lower support plate 11g Base 12 Air / water separator 12a Chimney head 12b Stand pipe 13 Steam dryer 14 Steam dome 15 Steam outlet nozzle 16a Main steam pipe 16b Feed water pipe 17 Feed water inlet nozzle 21 Fuel assembly 22 Core support plate 23 Upper lattice plate 24 Control rod 25 Control rod guide tube 26 Control rod drive mechanism 26a Control rod Drive mechanism housing 31 hook 100 11b1 And a lattice channel formed by 11b2

Claims (7)

複数の燃料集合体を横断面が円形状に装荷した炉心と、前記炉心の上に設置されたチムニを備えた自然循環式沸騰水型原子炉のチムニであって、
前記チムニは、チムニ胴と、前記チムニ胴の内部に垂設された流路隔壁により区画される複数の格子流路を含んでなり、
前記複数の格子流路を区画する流路隔壁の一部がチムニ胴内面に接合され、前記複数の格子流路を区画する流路隔壁の残りがチムニ構造から着脱可能であることを特徴とする自然循環式沸騰水型原子炉のチムニ。
A chimney of a natural circulation boiling water reactor comprising a core loaded with a plurality of fuel assemblies in a circular cross section, and a chimney installed on the core,
The chimney includes a chimney cylinder and a plurality of lattice channels partitioned by a channel partition wall suspended from the chimney cylinder,
A part of the flow path partition walls defining the plurality of lattice flow paths are joined to the inner surface of the chimney body, and the remaining flow path partition walls defining the plurality of lattice flow paths are detachable from the chimney structure. Chimuni is a natural circulation boiling water reactor.
請求項1に記載の自然循環式沸騰水型原子炉のチムニにおいて、
前記チムニ胴内面に接合される格子隔壁は、前記チムニ胴の内部に垂設された流路隔壁により区画される複数の格子流路のうち、水平断面で見て、前記複数の格子流路のうち格子流路を四辺で囲んでいない格子流路により形成されていること特徴とした自然循環式沸騰水型原子炉のチムニ。
In the chimney of a natural circulation boiling water reactor according to claim 1,
The grid partition bonded to the inner surface of the chimney cylinder is a plurality of grid channels partitioned by the channel partition walls suspended in the chimney cylinder, and viewed from a horizontal cross-section, A chimney of a natural circulation boiling water reactor characterized in that it is formed by a lattice channel that does not surround the lattice channel on all sides.
請求項1に記載の自然循環式沸騰水型原子炉のチムニにおいて、
前記チムニから着脱可能な流路隔壁において、
前記流路隔壁の水平断面の端部は全て角をなし、格子流路が閉じた構造であることを特徴とする自然循環式沸騰水型原子炉のチムニ。
In the chimney of a natural circulation boiling water reactor according to claim 1,
In the flow path partition wall removable from the chimney,
A chimney for a natural circulation boiling water reactor, characterized in that all of the ends of the horizontal cross section of the flow channel partition wall are corners and the lattice flow channel is closed.
請求項1に記載の自然循環式沸騰水型原子炉のチムニにおいて、
前記チムニ構造から着脱可能な流路隔壁と前記チムニ胴内面に接合された流路隔壁とがその一部において水平方向を支持していることを特徴とする自然循環式沸騰水型原子炉のチムニ。
In the chimney of a natural circulation boiling water reactor according to claim 1,
A chimney of a natural circulation boiling water reactor characterized in that a flow passage partition detachable from the chimney structure and a flow passage partition joined to the inner surface of the chimney body partially support the horizontal direction. .
請求項1に記載の自然循環式沸騰水型原子炉のチムニを用いて、
前記チムニから着脱可能な流路隔壁部のみを取外し、
その後、燃料交換を行うことを特徴とする自然循環式沸騰水型原子炉の燃料交換方法。
Using the chimney of the natural circulation boiling water reactor according to claim 1,
Remove only the removable partition wall from the chimney,
Then, a fuel replacement method for a natural circulation boiling water reactor, characterized by performing fuel replacement.
請求項1に記載の自然循環式沸騰水型原子炉のチムニを用いて、
前記チムニから着脱可能な流路隔壁部のみを取外し、
その後、点検を行うことを特徴とする自然循環式沸騰水型原子炉の点検方法。
Using the chimney of the natural circulation boiling water reactor according to claim 1,
Remove only the removable partition wall from the chimney,
After that, the inspection method of the natural circulation boiling water reactor characterized by performing the inspection.
請求項1に記載の自然循環式沸騰水型原子炉のチムニを用いて、
前記炉心からの冷却材の複数の格子流路を形成することを特徴とした自然循環式沸騰水型原子炉。
Using the chimney of the natural circulation boiling water reactor according to claim 1,
A natural circulation boiling water reactor characterized by forming a plurality of lattice flow paths for coolant from the core.
JP2009221817A 2009-09-28 2009-09-28 Chimney of natural circulation type boiling water reactor, fuel exchange method of natural circulation type boiling water reactor using the same, inspection method of natural circulation type boiling water reactor using the same, and natural circulation type boiling water reactor using the same Pending JP2011069751A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009221817A JP2011069751A (en) 2009-09-28 2009-09-28 Chimney of natural circulation type boiling water reactor, fuel exchange method of natural circulation type boiling water reactor using the same, inspection method of natural circulation type boiling water reactor using the same, and natural circulation type boiling water reactor using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009221817A JP2011069751A (en) 2009-09-28 2009-09-28 Chimney of natural circulation type boiling water reactor, fuel exchange method of natural circulation type boiling water reactor using the same, inspection method of natural circulation type boiling water reactor using the same, and natural circulation type boiling water reactor using the same

Publications (1)

Publication Number Publication Date
JP2011069751A true JP2011069751A (en) 2011-04-07

Family

ID=44015152

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009221817A Pending JP2011069751A (en) 2009-09-28 2009-09-28 Chimney of natural circulation type boiling water reactor, fuel exchange method of natural circulation type boiling water reactor using the same, inspection method of natural circulation type boiling water reactor using the same, and natural circulation type boiling water reactor using the same

Country Status (1)

Country Link
JP (1) JP2011069751A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2922066A4 (en) * 2012-11-16 2016-07-13 Hitachi Ge Nuclear Energy Ltd Natural-circulation boiling water reactor and chimney therefor

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2922066A4 (en) * 2012-11-16 2016-07-13 Hitachi Ge Nuclear Energy Ltd Natural-circulation boiling water reactor and chimney therefor
US9666312B2 (en) 2012-11-16 2017-05-30 Hitachi-Ge Nuclear Energy, Ltd. Natural-circulation boiling water reactor and chimney therefor

Similar Documents

Publication Publication Date Title
JP5497454B2 (en) Pressurized water reactor skirt rectifier
KR102540327B1 (en) Steam generator with inclined tube sheet
KR101129735B1 (en) Nuclear reactor
US7907695B2 (en) Natural circulation boiling water reactor and handling method thereof
JP4458489B2 (en) Channel forming device and natural circulation boiling water reactor
JP2011069751A (en) Chimney of natural circulation type boiling water reactor, fuel exchange method of natural circulation type boiling water reactor using the same, inspection method of natural circulation type boiling water reactor using the same, and natural circulation type boiling water reactor using the same
JP5898783B2 (en) Natural circulation boiling water reactor and its chimney
US20070274428A1 (en) Natural circulation type boiling water reactor
JP2005099013A (en) Lid assembly
JP2009075001A (en) Nuclear reactor
JP4500276B2 (en) Chimney structure of natural circulation boiling water reactor
JP5191913B2 (en) Natural circulation boiling water reactor
TWI672707B (en) Nuclear reactor
JP2007232497A (en) Flow channel formation device and boiling water reactor of natural circulation type
JP2003294878A (en) Fuel assembly
JP5999890B2 (en) Reactor
JP2010002246A (en) Boiling water reactor of natural circulation system
JP2007232433A (en) Chimney of natural circulation type boiling water reactor
JP2005326335A (en) Boiling water reactor
JP2018179891A (en) Natural circulation-type boiling water reactor
JP2016084971A (en) Steam generator and heat transfer pipe support method
JP4474353B2 (en) Apparatus and method for suppressing flow vibration of gas-liquid two-phase flow in a nuclear reactor, and method for circulating coolant in a natural circulation boiling water reactor using the method
JP2013050401A (en) Initial core of nuclear reactor
JP4944455B2 (en) Natural circulation boiling water reactor
JP2005274336A (en) Nuclear connection parting type shut-down device and nuclear reactor equipped therewith