JP4474353B2 - Apparatus and method for suppressing flow vibration of gas-liquid two-phase flow in a nuclear reactor, and method for circulating coolant in a natural circulation boiling water reactor using the method - Google Patents

Apparatus and method for suppressing flow vibration of gas-liquid two-phase flow in a nuclear reactor, and method for circulating coolant in a natural circulation boiling water reactor using the method Download PDF

Info

Publication number
JP4474353B2
JP4474353B2 JP2005354296A JP2005354296A JP4474353B2 JP 4474353 B2 JP4474353 B2 JP 4474353B2 JP 2005354296 A JP2005354296 A JP 2005354296A JP 2005354296 A JP2005354296 A JP 2005354296A JP 4474353 B2 JP4474353 B2 JP 4474353B2
Authority
JP
Japan
Prior art keywords
flow
liquid
core
gas
chimney
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005354296A
Other languages
Japanese (ja)
Other versions
JP2007155632A (en
Inventor
文仁 廣川
志郎 高橋
正昭 椿
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi GE Nuclear Energy Ltd
Original Assignee
Hitachi GE Nuclear Energy Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi GE Nuclear Energy Ltd filed Critical Hitachi GE Nuclear Energy Ltd
Priority to JP2005354296A priority Critical patent/JP4474353B2/en
Publication of JP2007155632A publication Critical patent/JP2007155632A/en
Application granted granted Critical
Publication of JP4474353B2 publication Critical patent/JP4474353B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Landscapes

  • Structure Of Emergency Protection For Nuclear Reactors (AREA)

Description

本発明は、原子炉の炉心上方のチムニー内を流れる気液二相流の流動振動を抑える方法及び装置に関する。   The present invention relates to a method and apparatus for suppressing flow vibration of a gas-liquid two-phase flow flowing in a chimney above a reactor core.

自然循環型沸騰水型原子炉は、原子炉圧力容器内の冷却材の循環流路を炉心の上部に設けた円筒状のチムニーと炉心の周囲を囲う炉心シュラウドとを利用して形成されている。炉心シュラウドやチムニーの外周面と原子炉圧力容器内面との間はダウンカマと呼ばれている下降流路に利用され、チムニーの内側は上昇流路として利用されている。   A natural circulation boiling water reactor is formed by using a cylindrical chimney in which a coolant circulation channel in a reactor pressure vessel is provided at the top of the core and a core shroud surrounding the core. . A space between the outer peripheral surface of the core shroud or chimney and the inner surface of the reactor pressure vessel is used as a downward flow path called a downcomer, and the inside of the chimney is used as an upward flow path.

このような循環流路を自然循環型沸騰水型原子炉は原子炉圧力容器内に備えているので、炉心で核反応による熱を受けて加熱された冷却材が蒸気を伴う気液二相流となって炉心からチムニー内に抜け出て上昇流路にて上昇し、その気液二相流は液体と気体に分離装置で分離されて、気体を伴う蒸気は原子炉圧力容器外のタービンなどに供給され、液体は下降流路側に戻される。   Since natural circulation boiling water reactors are equipped with such a circulation channel in the reactor pressure vessel, the gas-liquid two-phase flow with steam is generated by the coolant heated by the nuclear reaction at the core. The gas and liquid two-phase flow is separated into a liquid and a gas by a separation device, and the vapor accompanying the gas is transferred to a turbine outside the reactor pressure vessel, etc. The liquid is supplied and returned to the descending flow path side.

その下降流路では冷却材がチムニー内の冷却材よりも低温で密度が大きいので、その密度差に基づく自然循環力で下降して行く。下降した液体の流れは原子炉圧力容器の底部で上側に反転して再度炉心へ下方から入り加熱される。このように冷却材を取り扱う際にポンプを利用しないで自然循環を繰り返すように原子炉圧力容器内の冷却材は扱われている(例えば、特許文献1及び特許文献2参照)。   In the descending flow path, the coolant has a lower density than the coolant in the chimney and has a higher density, so it descends with a natural circulation force based on the density difference. The descending liquid flow reverses upward at the bottom of the reactor pressure vessel and enters the core again from below and is heated. As described above, the coolant in the reactor pressure vessel is handled so as to repeat natural circulation without using a pump when handling the coolant (see, for example, Patent Document 1 and Patent Document 2).

そのため、自然循環型沸騰水型原子炉は、冷却材をポンプで強制的に循環させる強制循環型沸騰水型原子炉に対しての最大の違いが、冷却材を循環させるための系統及び機器が簡略化されているといえる。   Therefore, the natural circulation boiling water reactor has the biggest difference with the forced circulation boiling water reactor that forcibly circulates the coolant with a pump. It can be said that it is simplified.

その冷却材の効率の良い循環を期待して、炉心の上方に格子構造物でチムニー内の上昇流路を複数の直立した流路(以下、格子流路とも言う。)に仕切って、その複数の格子流路内を炉心から上昇してきた気液二相流を通して上昇させるようにした例もある(例えば、特許文献3参照)。   In anticipation of efficient circulation of the coolant, the ascending flow path in the chimney is partitioned by a lattice structure above the core into a plurality of upright flow paths (hereinafter also referred to as lattice flow paths). There is also an example in which the inside of the lattice channel is raised through a gas-liquid two-phase flow rising from the core (see, for example, Patent Document 3).

特開平08−094793号公報Japanese Patent Laid-Open No. 08-094793 特開平06−265665号公報Japanese Patent Laid-Open No. 06-265665 特公平07−027051号公報Japanese Patent Publication No. 07-027051

このチムニー内に、格子状に仕切られた複数の直立した格子流路を設ける場合、炉心内部には発生熱量(中央部で多く、周辺部で低い。)の違いにより炉心の横断面内で発生蒸気量に分布が存在し、相対的に炉心中央が蒸気量が多く、周辺部が少ない。   When a plurality of upright grid channels partitioned in a grid pattern are provided in this chimney, it is generated in the cross section of the core due to the difference in the amount of heat generated inside the core (large at the center and low at the periphery). There is a distribution in the amount of steam, and there is a relatively large amount of steam in the center of the core, and there is little in the periphery.

炉心の中央部では蒸気量が多い分、その中央部上方のチムニー内の格子流路内でも多くの蒸気が保持されるため、炉心の周辺部に比べ相対的に密度が低くなり、冷却材の下降流路であるダウンカマとの水頭圧差が大きくなって、より多くの冷却水が炉心中央部へと導かれ、炉心の冷却効果の良い冷却材の循環が成せる。   Since the amount of steam in the center of the core is large, a large amount of steam is retained in the lattice channel in the chimney above the center, so the density is relatively low compared to the periphery of the core, and the coolant The water head pressure difference with the downcomer, which is the descending flow path, becomes larger, and more cooling water is guided to the center of the core, allowing the coolant to circulate with a good cooling effect of the core.

このようなチムニー内に格子流路を持つ自然循環型沸騰水型原子炉においては、その下部に位置する炉心での冷却水と蒸気の流量の違いから、チムニーの各格子流路それぞれにも水・蒸気流量に違いが生じる。   In such a natural circulation boiling water reactor with a lattice channel in the chimney, water is also supplied to each chimney lattice channel due to the difference in the flow rate of cooling water and steam in the core located in the reactor core.・ There is a difference in the steam flow rate.

以上を考慮し、格子流路を模擬した実験装置にて、水と空気の流量を変化させ、気液二相流の流動試験を実施したところ、格子流路内面に圧力変動荷重が掛かることが分かった。このような振動は、格子流路間を仕切る格子構造物の板同士の接合部に長期的に悪影響を及ぼす可能性がある。また、原子炉内部機器の損傷は、安全性・経済性の面から憂慮すべき問題である。この問題を解決するには、例えば板厚を厚くする等が考えられるが、構造物量が増加する課題を生じる。   In consideration of the above, when a flow test of gas-liquid two-phase flow was performed by changing the flow rates of water and air with an experimental device simulating a lattice flow path, pressure fluctuation load might be applied to the inner surface of the lattice flow path. I understood. Such vibrations may have a long-term adverse effect on the joints between the lattice structure plates that partition the lattice flow paths. In addition, damage to the reactor internal equipment is a serious problem in terms of safety and economy. In order to solve this problem, for example, it is conceivable to increase the thickness of the plate, but there arises a problem that the amount of the structure increases.

また、チムニーの格子流路と、格子流路内での流動を模擬した実験を行った結果、気液が混合した気液二相流は垂直に上昇するに従い発達し、例えば、図1のように、格子流路内の流路の中央部が気相で占められ、その気相の外側に格子流路内壁面に沿って液相が存在する状態3(このような気相と液層との分離状態での流れを環状流という。)と、流路断面内を液相が満たす状態4とが交互に繰り返されて通過する、チャーン流に近い流動様式となり、このとき格子流路を形成する格子構造物の板の壁に数kPa〜十数kPaの圧力変動荷重がかかることがわかった。   Further, as a result of conducting an experiment simulating the chimney lattice channel and the flow in the lattice channel, the gas-liquid two-phase flow mixed with gas and liquid develops as it rises vertically. For example, as shown in FIG. In the state 3 in which the central portion of the flow path in the lattice flow path is occupied by a gas phase, and a liquid phase exists along the inner wall surface of the lattice flow path outside the vapor phase (such a gas phase and a liquid layer). The flow in the separated state is referred to as an annular flow.) And the state 4 in which the liquid phase is filled in the cross section of the flow path are alternately and repeatedly passed to form a flow mode close to a churn flow. At this time, a lattice flow path is formed. It was found that a pressure fluctuation load of several kPa to several tens of kPa is applied to the wall of the plate of the lattice structure.

またこの実験で、流路入口で水と空気の流れが分離した状態で流れ込み、液相が流路断面内で壁のある一面方向に偏った状態で上昇する流れでは、圧力変動の発生が抑えられ、荷重をなくすあるいは低減できることが分かった。   Also, in this experiment, in the flow that flows in the state where the water and air flows are separated at the inlet of the flow path, and the liquid phase rises in a state where the wall surface is biased toward one side of the wall, the occurrence of pressure fluctuation is suppressed. It was found that the load can be eliminated or reduced.

したがって、本発明の目的は、原子炉の炉心の上方に配備されたチムニーを複数の流路に仕切って冷却材の上昇流路とした際に発生する圧力変動荷重を抑制して原子炉を安全にすることである。   Therefore, an object of the present invention is to make the reactor safe by suppressing the pressure fluctuation load generated when the chimney disposed above the core of the reactor is divided into a plurality of flow paths to be used as the rising flow path of the coolant. Is to do.

本発明の原子炉の気液二相流の流動振動抑制装置の基本的要件は、原子炉圧力容器内の炉心の上方に装備されるチムニーと、前記チムニー内を複数の上下方向の流路に仕切る構造物と、前記構造物から前記流路の横断面内に突き出され、且つ上下方向に傾斜した突起を備えた構成で、前記流路内の流体を攪拌する攪拌手段とを備えた構成にある。 The basic requirements of the gas-liquid two-phase flow vibration suppression device of the present invention are chimneys installed above the core in the reactor pressure vessel, and a plurality of channels in the vertical direction in the chimneys. A structure provided with a partitioning structure, and a stirring means that stirs the fluid in the flow path in a structure including protrusions protruding from the structure into the cross section of the flow path and inclined in the vertical direction. is there.

また、他の装置発明の基本的要件は、原子炉圧力容器内の炉心の上方に装備されるチムニーと、前記チムニー内を複数の上下方向の流路に仕切る構造物と、前記流路の流路内壁に沿って流れる液膜流を前記流路横断面の一方向へ導いて、液相が前記一方向へ偏って上昇させる偏流手段とを備え、前記偏流手段は、前記構造物から前記流路の横断面内に突き出され、且つ上下方向に傾斜した突起を備えた構成にある。 In addition, the basic requirements of the other device invention are as follows: a chimney installed above the core in the reactor pressure vessel, a structure that divides the inside of the chimney into a plurality of vertical channels, and a flow of the channels. directing a liquid film flowing along the road inside wall in one direction of the flow path cross section, and a drift means for liquid phase raises biased to said one direction, said drift means, said flow from said structure It is the structure provided with the protrusion which protruded in the cross section of the path | route and was inclined in the up-down direction .

また、原子炉の気液二相流の流動振動抑制方法の基本的要件は、原子炉圧力容器内の炉心に冷却材を通して気液二相流を発生させ、前記気液二相流を、前記炉心の上方のチムニー内を仕切った複数の流路内に通して上昇させ、前記流路を前記気液二相流が上昇する過程で、チムニー内を複数の上下方向の流路に仕切る構造物から前記流路の横断面内に突き出され且つ上下方向に傾斜した突起により流路内の前記気液二相流を攪拌して環状流の崩壊を成すことにある。 Further, the basic requirement of the flow vibration suppression method of the gas-liquid two-phase flow of the reactor is to generate a gas-liquid two-phase flow through the coolant through the core in the reactor pressure vessel, and the gas-liquid two-phase flow is A structure in which the inside of the chimney is divided into a plurality of vertical channels in the process in which the gas-liquid two-phase flow rises through a plurality of flow paths that divide the chimney above the core . The gas-liquid two-phase flow in the flow path is agitated by protrusions protruding from the flow path into the cross section of the flow path and inclined in the vertical direction, thereby causing the annular flow to collapse.

また、他の方法発明の基本要件は、原子炉圧力容器内の炉心に冷却材を通して気液二相流を発生させ、前記気液二相流を、前記炉心の上方のチムニー内を仕切った複数の流路内に通して上昇させ、前記流路を前記気液二相流が上昇する過程で、前記流路の流路内壁に沿って流れる液膜流を前記流路内壁から前記流路の横断面内に突き出され、且つ上下方向に傾斜した突起により前記流路横断面の一方向へ導いて偏流させて環状流の崩壊を成すことにある。


In addition, the basic requirement of another method invention is that a gas-liquid two-phase flow is generated through a coolant in a reactor pressure vessel, and the gas-liquid two-phase flow is divided into a chimney above the core. In the process of raising the gas-liquid two-phase flow through the flow path, the liquid film flow flowing along the flow path inner wall of the flow path is transferred from the flow path inner wall to the flow path. The projecting into the cross section and the protrusion inclined in the vertical direction leads to one direction of the cross section of the flow path to make it drift, thereby causing the collapse of the annular flow.


本発明によれば、原子炉の炉心の上方に配備されたチムニーを複数の流路に仕切って冷却材の上昇流路とした際に発生する圧力振動荷重を抑制して原子炉の安全維持及び安全を維持するための作業の低減を達成できる。   According to the present invention, the pressure vibration load generated when the chimney disposed above the core of the nuclear reactor is divided into a plurality of flow paths and used as the rising flow path of the coolant is suppressed and the reactor is maintained safely. Reduction of work for maintaining safety can be achieved.

本発明の第1実施例は以下の通りである。即ち、自然循環型沸騰水型原子炉は、図2のように、原子炉圧力容器5内には、複数の燃料集合体15が装荷されている炉心9と、炉心9の外周囲を囲う筒状の炉心シュラウド17と、炉心9の上部を構成している上部格子板10と、上部格子板10上に立設してある筒状のチムニー11と、チムニー11上に装備されてチムニー11の上端を覆うスタンドパイプ付きの気水分離器12と、気水分離器12を下部のスカート部で囲うように気水分離器12の上方に装備された蒸気乾燥器13とを炉内構造物として内蔵している。この原子炉圧力容器5には、主蒸気ノズル14と給水ノズル6とが装備されている。   The first embodiment of the present invention is as follows. That is, in the natural circulation boiling water reactor, as shown in FIG. 2, a reactor core 9 in which a plurality of fuel assemblies 15 are loaded in a reactor pressure vessel 5 and a cylinder that surrounds the outer periphery of the reactor core 9. Core shroud 17, upper lattice plate 10 constituting the upper portion of core 9, cylindrical chimney 11 standing on upper lattice plate 10, and chimney 11 mounted on chimney 11. The steam-water separator 12 with a stand pipe covering the upper end, and the steam dryer 13 installed above the steam-water separator 12 so as to surround the steam-water separator 12 with a lower skirt portion are used as the in-furnace structure. Built-in. The reactor pressure vessel 5 is equipped with a main steam nozzle 14 and a water supply nozzle 6.

チムニー11内の筒状の空間には、上方から見て矩形の格子を有する格子構造物が配備されている。その格子構造物の格子の辺を構成する金属製の板同士は隣接する板同士と溶接等により接合されて、格子構造物は溶接構造となっている。この格子構造物によりチムニー11内の領域が格子状に仕切られて、炉心9の上方に直立した格子流路16が複数形成される。   In the cylindrical space in the chimney 11, a lattice structure having a rectangular lattice as viewed from above is provided. Metal plates constituting the sides of the lattice of the lattice structure are joined to adjacent plates by welding or the like, and the lattice structure has a welded structure. By this lattice structure, the area in the chimney 11 is partitioned into a lattice shape, and a plurality of lattice channels 16 standing upright above the core 9 are formed.

各格子流路16は、流路横断面が矩形を成し、チムニーの上端よりも低い位置に上部の開放端部を有する。各格子流路16の開放端部からチムニーの上端までの間は格子状には仕切られずに横断的には一連の領域とされている。   Each lattice channel 16 has a rectangular channel cross section, and has an open end on the upper side at a position lower than the upper end of the chimney. The space from the open end portion of each lattice channel 16 to the upper end of the chimney is not partitioned in a lattice shape, but is a series of regions across.

原子炉圧力容器5内には、冷却材として軽水が気水分離器12の途中の高さにまで入れられている。その冷却材は、原子炉が運転されることにより、炉心9内で、燃料集合体
15に格納されている核燃料による核反応で生じる熱を受ける。その熱によって加熱された冷却材は、蒸気と水の気液二相流を伴って比重が軽くなるので、自然に上昇して炉心から各格子流路16の下端から各格子流路16内に入って上昇する。
In the reactor pressure vessel 5, light water is put as a coolant up to a height in the middle of the steam separator 12. The coolant receives heat generated by the nuclear reaction by the nuclear fuel stored in the fuel assembly 15 in the core 9 when the nuclear reactor is operated. The coolant heated by the heat becomes light in specific gravity with a vapor-water two-phase flow of steam and water, so that it naturally rises from the lower end of each lattice channel 16 from the core to each lattice channel 16. Enter and rise.

このように、冷却材は炉心9を上昇し通過する際、核反応により発生する熱で加熱されて水と蒸気の気液二相流となる。その後、気液二相流となった冷却材は、炉心9上部の上部格子板10を通りチムニー11へと入る。そして、冷却材は、チムニー11内を上昇し上部の気水分離器12を通過する。気液二相流状態の冷却材は、気水分離器12を通過する際に気液二相流から水と蒸気が分離され、分離された水は、炉心シュラウド17やチムニー11と原子炉圧力容器5内壁面との間の垂直な流路であるダウンカマ7へと導かれる。さらに、分離された水は、ダウンカマ7を下降流路として利用して下方へ流下する。   Thus, when the coolant ascends and passes through the core 9, it is heated by the heat generated by the nuclear reaction and becomes a gas-liquid two-phase flow of water and steam. Thereafter, the coolant that has become a gas-liquid two-phase flow passes through the upper lattice plate 10 above the core 9 and enters the chimney 11. Then, the coolant rises in the chimney 11 and passes through the upper air / water separator 12. When the coolant in the gas-liquid two-phase flow state passes through the steam-water separator 12, water and steam are separated from the gas-liquid two-phase flow, and the separated water is separated from the core shroud 17 and chimney 11 and the reactor pressure. It is led to the downcomer 7 which is a vertical flow path between the inner wall surface of the container 5. Further, the separated water flows downward using the downcomer 7 as a descending flow path.

その一方、気水分離器12で分離された蒸気は、更に湿分を除去するため蒸気乾燥器
13へと導かれ、蒸気乾燥器13で十分に湿分分離された後に上方へ抜け出て、主蒸気ノズル14を通り、蒸気を駆動エネルギーとする蒸気タービンへと送られる。尚、気水分離器12を設けずに、蒸気乾燥器13のみで湿分分離を実施する場合もある。
On the other hand, the steam separated by the steam separator 12 is guided to the steam dryer 13 to further remove moisture, and after being sufficiently separated by the steam dryer 13, it escapes upward. It passes through the steam nozzle 14 and is sent to a steam turbine using steam as driving energy. In some cases, moisture separation may be performed only by the steam dryer 13 without providing the steam / water separator 12.

蒸気タービンで用いられた蒸気は凝縮されて水に戻された上で冷却材として給水ノズル6を通り原子炉圧力容器5内に流入し、ダウンカマ7内の冷却材と混合して下降してゆく。   The steam used in the steam turbine is condensed and returned to water, and then flows into the reactor pressure vessel 5 through the water supply nozzle 6 as a coolant, mixes with the coolant in the downcomer 7 and descends. .

このように原子炉圧力容器5内での冷却材の流れは、ダウンカマ7での下降域と炉心9内側での上昇域に分けられ、冷却水の上昇域では炉心9で発生した蒸気を含むため、下降域と比べ相対的に密度が小さい。そのため、ダウンカマ7での下降域と炉心9内側での上昇域との冷却材間に水頭圧の差ができ、冷却材はダウンカマ7を下降して下部プレナム8領域へ抜けて反転上昇して炉心9下部へと冷却材が流れ込む力が生ずる。   As described above, the flow of the coolant in the reactor pressure vessel 5 is divided into a descending region at the downcomer 7 and an ascending region inside the core 9, and the steam generated in the core 9 is contained in the ascending region of the cooling water. The density is relatively small compared to the descending area. Therefore, there is a head pressure difference between the coolant in the descending region at the downcomer 7 and the ascending region inside the core 9, and the coolant descends the downcomer 7, goes down to the lower plenum 8 region, and reverses and rises. 9 The force that the coolant flows into the lower part is generated.

このように自然循環型沸騰水型原子炉は、冷却材の密度差を利用して自然循環するので、従来の強制循環型沸騰水型原子炉とは相違して、冷却材を循環させるための系統及び機器が無い。また、炉心での冷却材の加熱度合いは、炉心中央部で高く、周辺部で低いという、炉心の横断面内での加熱の分布が発生する。その加熱の分布で冷却材の上昇速度に分布を生じて流れが乱れようとするが、その乱れを冷却材の流れの道を細かく格子流路で仕切って防止し、逆流などを防いで、安定して効率よく冷却材を循環する。   In this way, the natural circulation boiling water reactor is naturally circulated by utilizing the density difference of the coolant, so unlike the conventional forced circulation boiling water reactor, There is no system or equipment. In addition, the heating distribution in the cross section of the core occurs such that the degree of heating of the coolant in the core is high in the center of the core and low in the periphery. The distribution of the heating causes a distribution in the rising speed of the coolant, and the flow tends to be disturbed, but the disturbance is prevented by dividing the coolant flow path finely with a lattice flow path, preventing backflow and the like. And circulate the coolant efficiently.

隣接する格子流路16間を仕切る格子構造物の金属性の板23,24,25,26には、格子流路16の内側に攪拌手段として攪拌装置1が、格子流路16の下端部分ないしは途中高さ部位に配備されている。攪拌装置1の配備個数と配置高さについては、必要に応じて任意に設定する。   In the metallic plates 23, 24, 25, 26 of the lattice structure that partitions the adjacent lattice flow paths 16, the stirring device 1 is provided as a stirring means inside the lattice flow paths 16, and the lower end portion of the lattice flow paths 16 or It is deployed at a height part on the way. About the deployment number and arrangement | positioning height of the stirring apparatus 1, it sets arbitrarily as needed.

攪拌装置1は、図3のように、直角三角形の縦断面を有する突起19を、格子流路16を囲う4辺の各板23,24,25,26に固定して設ける構成を有する。その突起19の断面が直角三角形の斜辺部分は格子流路16の内側斜め下向きに向けられているので、板23,24,25,26に沿って上昇してきた冷却材は、図3の矢印に示す流線のように、格子流路16の中央部に向けて流れが変更させられ中央部を流れている冷却材と混合攪拌させるという機能を発揮する。   As shown in FIG. 3, the stirrer 1 has a configuration in which protrusions 19 having a right-angled triangular longitudinal section are fixed to the four plates 23, 24, 25, and 26 surrounding the lattice channel 16. The oblique side portion of the projection 19 having a right triangle is directed obliquely downward on the inner side of the lattice channel 16, so that the coolant that has risen along the plates 23, 24, 25, and 26 is indicated by an arrow in FIG. As shown by the streamlines shown, the flow is changed toward the central part of the lattice channel 16 and the function of mixing and stirring with the coolant flowing through the central part is exhibited.

このように、格子流路16の流路の内壁を構成する板23,24,25,26に、流路内壁に沿って上昇する液相の流れを流路中央方向へ向かう方向へ導くための突起19を設けている。   As described above, the plates 23, 24, 25, and 26 constituting the inner wall of the lattice channel 16 guide the liquid phase flow that rises along the inner wall in the direction toward the center of the channel. A protrusion 19 is provided.

突起19の形状は、流路入口から遠ざかるほど流路の内壁から突き出るような傾斜をつけている。このような突起19が設けられることで、図1に示すように、流路の内壁に接して流れる液膜が流路横断面中央部側へと強制的に集められ、図1の攪拌装置1の下方で発達した環状流やチャーン流の流動状態が、攪拌装置1より上方のように壊されて混合二相流2となる。   The shape of the protrusion 19 is inclined so as to protrude from the inner wall of the flow path as the distance from the flow path entrance increases. By providing such a projection 19, as shown in FIG. 1, the liquid film flowing in contact with the inner wall of the flow path is forcibly collected toward the central portion of the cross section of the flow path, and the stirring device 1 of FIG. The flow state of the annular flow or the churn flow developed below is broken so as to be above the stirring device 1 to become a mixed two-phase flow 2.

なお、図3では突起19は、格子流路16を囲う前面、即ち流路4面に設置しているが、そうでなくてもよい。突起19の形状は、より円滑に二相流が導かれるように、曲面で構成されてもよい。なお、格子流路横断面内で突起19が占める割合は、小さすぎると攪拌が不十分になってしまうため、適切に設定する必要がある。   In FIG. 3, the protrusions 19 are installed on the front surface surrounding the lattice channel 16, that is, on the surface of the channel 4, but this need not be the case. The shape of the protrusion 19 may be a curved surface so that the two-phase flow can be guided more smoothly. In addition, since the stirring will become inadequate if the ratio for which the processus | protrusion 19 occupies in a grid flow path cross section is too small, it is necessary to set appropriately.

この攪拌装置1により攪拌された気液二相流は、ある程度の高さを上昇すると次第に環状流の規模が発達してチャーン流の流動様式へと戻り、再び圧力変動荷重が増加する。よって、格子流路16にはある程度の上下間隔をおいて攪拌装置1を設置しておくことが好ましい。但し、攪拌装置1を過剰に設置することは、冷却材を循環させる際の圧力損失の増加を招くので必要最小限に抑える。   When the gas-liquid two-phase flow stirred by the stirring device 1 rises to a certain level, the scale of the annular flow gradually develops to return to the flow mode of the churn flow, and the pressure fluctuation load increases again. Therefore, it is preferable to install the stirrer 1 in the lattice channel 16 with a certain vertical distance. However, excessive installation of the stirring device 1 causes an increase in pressure loss when the coolant is circulated.

このように、攪拌装置1の設置場所は、格子流路16内の外周とする。また、チムニー11を格子流路16に区切ることで、気液二相流の液相が格子流路の内壁に沿って流れる状態が作り出さることに成るので、格子流路の内壁側の液相が流れる領域のみに攪拌装置1を設置すればよく、突起19の突き出し長さはそれを考慮して短くなっている。   Thus, the installation place of the stirring device 1 is the outer periphery in the lattice channel 16. Further, dividing the chimney 11 into the lattice flow path 16 creates a state in which the liquid phase of the gas-liquid two-phase flow flows along the inner wall of the lattice flow path, so the liquid phase on the inner wall side of the lattice flow path It is sufficient to install the stirring device 1 only in the region where the flow of the protrusion 19, and the protrusion length of the protrusion 19 is shortened in consideration thereof.

好ましくは、一体の燃料集合体15に対して一本の格子流路16が対応するように各格子流路が炉心9の上方に配置されることが好ましい。このような好ましい形態の場合には、燃料集合体15の炉心9への装荷・引き抜きを上方から行うときに、突起19が装荷・引き抜きのための上下移動中の燃料集合体15に干渉しやすいので、その干渉が無い程度に、格子流路の内壁から突き出る長さを抑える。   Preferably, each grid channel is preferably disposed above the core 9 so that one grid channel 16 corresponds to the integral fuel assembly 15. In the case of such a preferred form, when loading / withdrawing the fuel assembly 15 to / from the core 9 from above, the protrusion 19 is likely to interfere with the fuel assembly 15 moving up and down for loading / withdrawing. Therefore, the length which protrudes from the inner wall of a lattice flow path is suppressed to such an extent that there is no interference.

このように突起19の突き出し長さを抑えることで、突起19が燃料交換作業時の干渉とならないようにすることで、燃料交換作業時の作業工程の増加を抑え、経済性の向上に寄与することができる。また、突起19の突き出し長さを抑えることで、気液二相流が通過する際の圧力損失の増加を抑えることにも寄与できる。   By suppressing the protrusion length of the protrusion 19 in this manner, the protrusion 19 does not interfere with the fuel change work, thereby suppressing an increase in work steps during the fuel change work and contributing to the improvement of economy. be able to. Moreover, by suppressing the protrusion length of the protrusion 19, it is possible to contribute to suppressing an increase in pressure loss when the gas-liquid two-phase flow passes.

本発明の第2実施例は、以下の通りである。即ち、第2実施例は、図4のように、第1実施例の攪拌装置1を偏流装置20に置き換えたものである。その他の構成や作用は第1実施例と同様なので説明を省略する。   The second embodiment of the present invention is as follows. That is, in the second embodiment, as shown in FIG. 4, the stirrer 1 of the first embodiment is replaced with a drift device 20. Since other configurations and operations are the same as those of the first embodiment, the description thereof is omitted.

第2実施例では、図4に示すように、格子流路16の下端である入り口もしくは途中に、格子流路16の内壁に沿って流れる液膜流を流路横断面の一方向へ導いて、液相が流路断面内の一方向へ偏って上昇する状態21を作り出す偏流装置20を設ける。この偏流装置20で気液二相流を偏流させることで、発達した気液二相流が通過する際に生じる、格子流路16の内壁を成す格子構造物の板23,24,25,26に掛かる圧力変動荷重の発生を抑制することができる。   In the second embodiment, as shown in FIG. 4, the liquid film flow that flows along the inner wall of the lattice channel 16 is guided in one direction of the channel cross section at the entrance or in the middle of the lattice channel 16. A drift device 20 is provided that creates a state 21 in which the liquid phase rises in one direction in the cross section of the flow path. By making the gas-liquid two-phase flow drift with the drift device 20, the plates 23, 24, 25, and 26 of the lattice structure forming the inner wall of the lattice flow path 16 generated when the developed gas-liquid two-phase flow passes. It is possible to suppress the occurrence of a pressure fluctuation load applied to the.

第1実施例と同様に、偏流装置20の設置場所は、格子流路16内の内周囲のみとし、大きさに関しては、格子流路16の内壁から格子流路16横断面中央側へ突き出る長さを、燃料集合体の装荷・引き抜きの際干渉しない程度に抑える。   As in the first embodiment, the drifting device 20 is installed only in the inner periphery of the lattice flow path 16, and the size of the drift device 20 protrudes from the inner wall of the lattice flow path 16 toward the center of the cross section of the lattice flow path 16. This should be kept to the extent that there is no interference when the fuel assembly is loaded or withdrawn.

偏流装置20の具体的な構造の一例を図5に示す。ここでは、格子流路16内に、気液二相流の内の液相の流れを板23側に気相の流れを板25側に沿って上昇させるように、板23に近づくに従い高くなる傾斜となる姿勢で板24,25,26に傾斜突起22を固定する。このような傾斜突起22は、金属製の板を上下方向に傾斜して板24,25,
26に結合することで構成できる。
An example of a specific structure of the drift device 20 is shown in FIG. Here, the liquid flow in the gas-liquid two-phase flow is increased in the lattice flow path 16 toward the plate 23 side, and the gas phase flow is increased along the plate 25 side as the plate 23 is approached. The inclined protrusion 22 is fixed to the plates 24, 25, and 26 in an inclined posture. Such inclined protrusions 22 are formed by inclining a metal plate in the vertical direction to form plates 24, 25,
26 can be configured.

このように傾斜がつけられた傾斜突起21を格子流路16内に突き出して設けているので、板24,25,26に沿って下方から上昇してきた気液二相流の内の液膜は、この傾斜に導かれて流れ方向が板23に向かい、偏流装置20上方で液相が格子流路横断面の一方向(板23側)に偏って集合し、板25側に気液二相流の内の気相が偏って集合する状態の気液二相流の流れを作りだす。なお、傾斜突起21の形状は、より円滑に格子流路
16内の流れが導かれるよう、曲線形状で傾斜させてもよい。
Since the inclined projection 21 inclined in this way is provided so as to protrude into the lattice channel 16, the liquid film in the gas-liquid two-phase flow rising from below along the plates 24, 25 and 26 is obtained. The flow direction is directed to the plate 23 guided by this inclination, and the liquid phase is concentrated in one direction (the plate 23 side) in the cross section of the lattice channel above the drift device 20, and the gas-liquid two-phase is gathered on the plate 25 side. A gas-liquid two-phase flow is created in which the gas phase in the flow is concentrated and gathered. In addition, you may make the shape of the inclination protrusion 21 incline in a curve shape so that the flow in the lattice flow path 16 may be guide | induced more smoothly.

本実施例では、図4に示すように、格子流路16内をチャーン流の流動様式で上昇してきた気液二相流の環状流の液相を強制的に偏向させて気相と液相の各流れを左右に分けて環状流を破壊し、偏流装置20の上方で気液二相流の左右分離状態を作り出し、攪拌装置1の上方での環状流の発達やチャーン流の流動様式の発生を抑制する。これにより、気液二相流が格子流路を通過する際に生じる、格子構造物の格子の4辺を成す板23,24,25,26に掛かる圧力変動荷重の発生を抑制することができる。   In the present embodiment, as shown in FIG. 4, the liquid phase of the annular flow of gas-liquid two-phase flow that has risen in the lattice channel 16 in the flow mode of the churn flow is forcibly deflected so that the gas phase and the liquid phase The flow is divided into left and right to break the annular flow, creating a left-right separated state of the gas-liquid two-phase flow above the drift device 20, and the development of the annular flow above the stirring device 1 and the flow pattern of the churn flow Suppresses the occurrence. Thereby, generation | occurrence | production of the pressure fluctuation load applied to the board 23, 24, 25, 26 which comprises the four sides of the grating | lattice of a grating | lattice structure generated when a gas-liquid two-phase flow passes a grating | lattice flow path can be suppressed. .

このように、本発明の各実施例によれば、チムニー11内を仕切って複数の格子流路
16を採用した原子炉にあっても、格子流路16内の気液二相流を強制的に攪拌、もしくは偏流させる機能を持たせ、環状流への発達を防止することで、チャーン流の流動状態で発生する、圧力変動の発生を抑制することが出来る。
Thus, according to each embodiment of the present invention, the gas-liquid two-phase flow in the lattice channel 16 is forced even in a nuclear reactor that partitions the inside of the chimney 11 and employs the plurality of lattice channels 16. It is possible to suppress the occurrence of pressure fluctuations that occur in the flow state of the churn flow by providing a function of stirring or drifting to prevent the development of the annular flow.

したがって、本発明の各実施例によれば、格子流路13の仕切りを成す構造物にかかる圧力変動荷重をなくす、あるいは十分低減することができ、原子炉運転期間中のチムニー11や格子流路13の損傷の可能性を小さくすることができる。そのため、長期間の使用にも耐えられ、原子炉定期点検時の点検・保守の手間も省け、万一の場合のチムニー11や格子流路13の仕切り構造物の交換の回数をなくすか減らすことができ、交換時のプラント停止による経済損失を最小限に収めることができる。さらに、チムニー11内に格子構造を具備させても、燃料交換時の燃料集合体の移動の邪魔にならないような構造とすることで、燃料交換時の工程の増加を防ぐことができる。   Therefore, according to each embodiment of the present invention, it is possible to eliminate or sufficiently reduce the pressure fluctuation load applied to the structure that forms the partition of the lattice flow path 13, and the chimney 11 and the lattice flow path during the reactor operation period. The possibility of 13 damages can be reduced. For this reason, it can withstand long-term use, eliminates the trouble of inspection and maintenance during the periodic inspection of the reactor, and eliminates or reduces the number of replacements of the chimney 11 and the partition structure of the grid channel 13 in the event of an emergency. It is possible to minimize the economic loss due to the plant stoppage at the time of replacement. Furthermore, even if the chimney 11 is provided with a lattice structure, it is possible to prevent an increase in the number of steps at the time of fuel change by making the structure not to interfere with the movement of the fuel assembly at the time of fuel change.

本発明は、原子力発電所の原子炉に適用され、例えば、炉心上部のチムニー内での気液二相流のチャーン流に起因する圧力変動を抑制するのに利用される。   The present invention is applied to a nuclear power plant nuclear reactor, and is used, for example, to suppress pressure fluctuation caused by a churn flow of a gas-liquid two-phase flow in a chimney in the upper part of the core.

本発明の第1実施例による原子炉炉心上方における格子流路内の気液二相流の流動の様子を表す格子流路の縦断面図である。It is a longitudinal cross-sectional view of the lattice flow path showing the flow state of the gas-liquid two-phase flow in the lattice flow path above the reactor core according to the first embodiment of the present invention. 本発明が実施される自然循環型沸騰水型原子炉の原子炉圧力容器の縦断面図である。1 is a longitudinal sectional view of a reactor pressure vessel of a natural circulation boiling water reactor in which the present invention is implemented. 図1の攪拌装置の一部切り欠き表示による斜視図である。It is a perspective view by the partial notch display of the stirring apparatus of FIG. 本発明の第2実施例による原子炉炉心上方における格子流路内の気液二相流の流動の様子を表す格子流路の縦断面図である。It is a longitudinal cross-sectional view of the lattice flow path showing the flow state of the gas-liquid two-phase flow in the lattice flow path above the reactor core according to the second embodiment of the present invention. 図4の偏流装置の一部切り欠き表示による斜視図である。It is a perspective view by the partial notch display of the drift apparatus of FIG.

符号の説明Explanation of symbols

1…攪拌装置、2…混合二相流、5…原子炉圧力容器、6…給水ノズル、7…ダウンカマ、9…炉心、10…上部格子板、11…チムニー、16…格子流路、17…炉心シュラウド、19…突起、20…偏流装置、22…傾斜突起、23,24,25,26…板。
DESCRIPTION OF SYMBOLS 1 ... Stirrer, 2 ... Mixed two-phase flow, 5 ... Reactor pressure vessel, 6 ... Feed water nozzle, 7 ... Downcomer, 9 ... Core, 10 ... Upper lattice plate, 11 ... Chimney, 16 ... Lattice flow path, 17 ... Core shroud, 19 ... projection, 20 ... drifting device, 22 ... inclined projection, 23, 24, 25, 26 ... plate.

Claims (6)

原子炉圧力容器内の炉心の上方に装備されるチムニーと、
前記チムニー内を複数の上下方向の流路に仕切る構造物と、
前記構造物から前記流路の横断面内に突き出され、且つ上下方向に傾斜した突起を備えた構成で、前記流路内の流体を攪拌する攪拌手段と、
を備えた原子炉の気液二相流の流動振動抑制装置。
A chimney installed above the core in the reactor pressure vessel;
A structure that divides the inside of the chimney into a plurality of vertical channels;
Stirring means that stirs the fluid in the flow path in a configuration that includes protrusions protruding from the structure into the cross section of the flow path and inclined in the vertical direction ;
An apparatus for suppressing gas-liquid two-phase flow vibrations in a nuclear reactor.
原子炉圧力容器内の炉心の上方に装備されるチムニーと、A chimney installed above the core in the reactor pressure vessel;
前記チムニー内を複数の上下方向の流路に仕切る構造物と、A structure that divides the inside of the chimney into a plurality of vertical channels;
前記流路の流路内壁に沿って流れる液膜流を前記流路横断面の一方向へ導いて、液相が前記一方向へ偏って上昇させる偏流手段と、A flow flow unit that guides a liquid film flow that flows along the inner wall of the flow channel in one direction of the flow channel cross-section, and causes the liquid phase to be biased upward in the one direction;
を備え、With
前記偏流手段は、前記構造物から前記流路の横断面内に突き出され、且つ上下方向に傾斜した突起を備えた構成である原子炉の気液二相流の流動振動抑制装置。The flow drift suppression device for a gas-liquid two-phase flow of a nuclear reactor, wherein the drifting means is provided with a protrusion protruding from the structure into a cross section of the flow path and inclined in the vertical direction.
原子炉圧力容器内の炉心の上方に装備されるチムニーと、A chimney installed above the core in the reactor pressure vessel;
前記炉心の周囲に設けられて、前記炉心の内側と外側の流路を分離する炉心シュラウドと、A core shroud provided around the core and separating the inner and outer flow paths of the core;
前記チムニーと前記炉心シュラウドとで前記原子炉圧力容器内に形成された冷却材の再循環流路と、A coolant recirculation channel formed in the reactor pressure vessel by the chimney and the core shroud;
前記チムニーよりも上方の前記原子炉圧力容器内の部位に配置されて、前記炉心での核反応により発生した蒸気を湿分分離する蒸気乾燥器と、A steam dryer that is disposed at a site in the reactor pressure vessel above the chimney and separates the steam generated by the nuclear reaction in the core into moisture;
前記原子炉圧力容器に装備されて、前記蒸気乾燥器で湿分分離した蒸気を前記原子炉圧力容器外へ導く主蒸気ノズルと、A main steam nozzle that is installed in the reactor pressure vessel and guides the steam separated by the steam dryer to the outside of the reactor pressure vessel;
前記原子炉圧力容器に装備されて、前記原子炉圧力容器外から前記原子炉圧力容器内へ給水を導く給水ノズルと、A water supply nozzle that is installed in the reactor pressure vessel and guides water supply from outside the reactor pressure vessel into the reactor pressure vessel;
請求項1または請求項2に記載の原子炉の気液二相流の流動振動抑制装置とを備えた自然循環型沸騰水型原子炉。A natural circulation boiling water reactor comprising the gas-liquid two-phase flow vibration suppression device for a nuclear reactor according to claim 1 or 2.
原子炉圧力容器内の炉心に冷却材を通して気液二相流を発生させ、A gas-liquid two-phase flow is generated through the coolant through the core in the reactor pressure vessel,
前記気液二相流を、前記炉心の上方のチムニー内を仕切った複数の流路内に通して上昇させ、The gas-liquid two-phase flow is raised through a plurality of flow paths that divide the inside of the chimney above the core,
前記流路を前記気液二相流が上昇する過程で、チムニー内を複数の上下方向の流路に仕切る構造物から前記流路の横断面内に突き出され且つ上下方向に傾斜した突起により流路内の前記気液二相流を攪拌して環状流の崩壊を成す原子炉の気液二相流の流動振動抑制方法。In the process of the gas-liquid two-phase flow rising in the flow path, the flow is caused by a protrusion that protrudes from the structure that divides the inside of the chimney into a plurality of vertical flow paths and is inclined in the vertical direction. A method for suppressing flow vibration of a gas-liquid two-phase flow in a nuclear reactor in which the gas-liquid two-phase flow in a passage is agitated to collapse an annular flow.
原子炉圧力容器内の炉心に冷却材を通して気液二相流を発生させ、A gas-liquid two-phase flow is generated through the coolant through the core in the reactor pressure vessel,
前記気液二相流を、前記炉心の上方のチムニー内を仕切った複数の流路内に通して上昇させ、The gas-liquid two-phase flow is raised through a plurality of flow paths that divide the inside of the chimney above the core,
前記流路を前記気液二相流が上昇する過程で、前記流路の流路内壁に沿って流れる液膜流を前記流路内壁から前記流路の横断面内に突き出され、且つ上下方向に傾斜した突起により前記流路横断面の一方向へ導いて偏流させて環状流の崩壊を成す原子炉の気液二相流の流動振動抑制方法。In the process in which the gas-liquid two-phase flow ascends through the flow path, a liquid film flow flowing along the flow path inner wall of the flow path is projected from the flow path inner wall into the cross section of the flow path, and in the vertical direction A flow vibration suppression method for a gas-liquid two-phase flow in a nuclear reactor in which an annular flow is collapsed by being guided in one direction by a projection inclined in the direction of the flow path to cause a drift.
原子炉圧力容器内の炉心周りの炉心シュラウドと前記炉心の上方に装備されたチムニーとによって前記炉心の内側と外側の流路を分けて前記原子炉圧力容器内に前記炉心を通過する冷却材の再循環流路を形成し、A coolant shroud that passes through the core in the reactor pressure vessel by dividing a flow path inside and outside the core by a core shroud around the core in the reactor pressure vessel and a chimney installed above the core. Forming a recirculation channel,
前記炉心に循環して来た前記冷却材を、前記炉心内の核反応による加熱で気液二相流を発生させ、The coolant that circulates in the core generates a gas-liquid two-phase flow by heating by a nuclear reaction in the core,
前記気液二相流を前記チムニー内に通して上昇させるとともに、前記内側と外側の流路内の前記冷却材の密度差によって前冷却材を前記炉心へ自然循環させ、The gas-liquid two-phase flow is raised through the chimney, and the pre-coolant is naturally circulated to the core by the density difference of the coolant in the inner and outer flow paths,
前記自然循環の過程で前記気液二相流を前記チムニー内に通して上昇させ、In the course of the natural circulation, the gas-liquid two-phase flow is raised through the chimney,
前記気液二相流の前記チムニー内での上昇過程で請求項4又は請求項5に記載の原子炉の気液二相流の流動振動抑制方法を適用する自然循環型沸騰水型原子炉の冷却材の循環方法。A natural circulation type boiling water reactor to which the method for suppressing flow vibration of a gas-liquid two-phase flow of a nuclear reactor according to claim 4 or 5 is applied in an ascending process of the gas-liquid two-phase flow in the chimney. Coolant circulation method.
JP2005354296A 2005-12-08 2005-12-08 Apparatus and method for suppressing flow vibration of gas-liquid two-phase flow in a nuclear reactor, and method for circulating coolant in a natural circulation boiling water reactor using the method Expired - Fee Related JP4474353B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005354296A JP4474353B2 (en) 2005-12-08 2005-12-08 Apparatus and method for suppressing flow vibration of gas-liquid two-phase flow in a nuclear reactor, and method for circulating coolant in a natural circulation boiling water reactor using the method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005354296A JP4474353B2 (en) 2005-12-08 2005-12-08 Apparatus and method for suppressing flow vibration of gas-liquid two-phase flow in a nuclear reactor, and method for circulating coolant in a natural circulation boiling water reactor using the method

Publications (2)

Publication Number Publication Date
JP2007155632A JP2007155632A (en) 2007-06-21
JP4474353B2 true JP4474353B2 (en) 2010-06-02

Family

ID=38240192

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005354296A Expired - Fee Related JP4474353B2 (en) 2005-12-08 2005-12-08 Apparatus and method for suppressing flow vibration of gas-liquid two-phase flow in a nuclear reactor, and method for circulating coolant in a natural circulation boiling water reactor using the method

Country Status (1)

Country Link
JP (1) JP4474353B2 (en)

Also Published As

Publication number Publication date
JP2007155632A (en) 2007-06-21

Similar Documents

Publication Publication Date Title
KR101109970B1 (en) Nuclear reactor fuel assemblies
JP5497454B2 (en) Pressurized water reactor skirt rectifier
KR101366218B1 (en) Nuclear reactor and method of cooling reactor core of a nuclear reactor
JP2007229661A (en) Steam-water separator
JP2012220043A (en) Steam generator
JP4474353B2 (en) Apparatus and method for suppressing flow vibration of gas-liquid two-phase flow in a nuclear reactor, and method for circulating coolant in a natural circulation boiling water reactor using the method
US20070274428A1 (en) Natural circulation type boiling water reactor
JP5898783B2 (en) Natural circulation boiling water reactor and its chimney
JP4675829B2 (en) Hydrodynamic vibration test method for natural circulation boiling water reactor
JP2007198997A (en) Super-critical pressure water cooled reactor and super-critical pressure water cooled fuel assembly
JP4504343B2 (en) Natural circulation boiling water reactor
JPH04231897A (en) Boiling water reactor whose steam separating system is improved
JP2011191080A (en) Steam separator for nuclear reactor
JP5191913B2 (en) Natural circulation boiling water reactor
JP2007232519A (en) Natural circulation boiling water reactor
EP3306189A1 (en) Circulating fluidized bed boiler with bottom-supported in-bed heat exchanger
JP2011069751A (en) Chimney of natural circulation type boiling water reactor, fuel exchange method of natural circulation type boiling water reactor using the same, inspection method of natural circulation type boiling water reactor using the same, and natural circulation type boiling water reactor using the same
KR20240103136A (en) Nuclear reactor vessel and nuclear reactor maintenance method
US10049775B2 (en) Steam separation system and nuclear boiling water reactor including the same
JPH04244995A (en) Boiling water reactor
JP4078057B2 (en) Natural circulation boiling water reactor
KR102583804B1 (en) Small modular Reactor including the passive safety system
JP7246295B2 (en) boiling water reactor
KR101085647B1 (en) Head assembly for Integrated type Nuclear Reactor
JP2005069732A (en) Boiling water reactor

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20071122

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080204

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080204

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090909

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090929

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091130

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100302

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100308

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130312

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4474353

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130312

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140312

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees