JP4166910B2 - Pressurized water reactor - Google Patents

Pressurized water reactor Download PDF

Info

Publication number
JP4166910B2
JP4166910B2 JP28151699A JP28151699A JP4166910B2 JP 4166910 B2 JP4166910 B2 JP 4166910B2 JP 28151699 A JP28151699 A JP 28151699A JP 28151699 A JP28151699 A JP 28151699A JP 4166910 B2 JP4166910 B2 JP 4166910B2
Authority
JP
Japan
Prior art keywords
fuel assembly
flow
region
guide member
coolant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP28151699A
Other languages
Japanese (ja)
Other versions
JP2001099975A (en
Inventor
誠 中島
力 栗村
洋子 松島
利郎 市川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP28151699A priority Critical patent/JP4166910B2/en
Publication of JP2001099975A publication Critical patent/JP2001099975A/en
Application granted granted Critical
Publication of JP4166910B2 publication Critical patent/JP4166910B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Description

【0001】
【発明の属する技術分野】
本発明は、加圧水型原子炉に関し、特にその原子炉容器内の炉心槽出口ノズル近傍に設ける温度混合流況安定化構造に関するものである。
【0002】
【従来の技術】
図5は、従来の4ループ型加圧水型原子力発電プラントの原子炉容器1において燃料集合体領域の上方にある上部プレナム部の横断面を示す図であり、同図において、符号2は原子炉容器出口ノズルを示し、3は炉心槽出口ノズルを示している。原子炉の運転中、符号4で総括的に示された燃料集合体領域(便宜的に格子状に表示された領域で、周知のように、格子の各桝目に燃料集合体が装荷される)を上方に通過し高温に加熱された冷却材は、上部プレナム部に入ってそこで転向し、炉心槽出口ノズル3及びこれと整列する原子炉容器出口ノズル2を通って、原子炉容器出口ノズル2と接続する配管に流入する。なお、符号2’は原子炉容器1に形成された入口ノズルである。
【0003】
この場合、燃料集合体領域4の中央部から流出する冷却材の温度は、良く知られているように中性子束分布の関係上、燃料集合体領域4の周辺部から流出する冷却材の温度に比較して高い。このような温度差を有する冷却材を混合して温度差を可及的になくして出口ノズル2、3へ流出させる目的のために、燃料集合体領域4の冷却材流出の直上領域の最外周部に符号5で示す流量混合器もしくは流況安定化構造を2ループにつき7体、合計14体設置している。これらの流量混合器5を図示の位置に設置することで、冷却材の温度混合を行うと共に、冷却材流中の渦発生をある程度制限している。図6に流量混合器5の構造が示されている。流量混合器5は下端が開放した二段筒状の本体部5aを有する。二段筒状の本体部5aは、下端大径部5bで燃料集合体領域4と流体連通可能に上部炉心板9に、そして上端支持軸部5cで上部炉心支持板10にそれぞれ適宜の手段で固定されている。この本体部5aの長筒部5dには、複数の開口5eが分布して形成されている。
【0004】
【発明が解決しようとする課題】
上述したように、図5で示す4ループの従来型においては、燃料集合体領域の直上領域の最外周部に流量混合器5が設けられている。これにより出口ノズル2、3へ流入する冷却材は温度混合が図られ、また、渦の発生に対してもある程度の効果は期待できる。しかし、図5において出口ノズル間に矢印で示すように、相反する方向の流れが生じ、これが渦流に発展するため、十分に満足しうる程度まで冷却材の温度混合及び渦発生を防止しているとは言えず、改善の余地が未だに存在することが分かった。
従って、本発明の目的は、冷却材の温度混合を十分に行い、しかも渦発生を十分に防止しうる加圧水型原子炉を提供することである。
【0005】
【課題を解決するための手段】
この目的から、請求項1に記載の本発明による加圧水型原子炉は、冷却材の入口ノズル及び複数の出口ノズルを有する原子炉容器と、該原子炉容器内の複数の燃料集合体が立設され燃料集合体領域を画成して構成される炉心と、該炉心の上方に配置されプレナム部を画成する炉心支持構造物とを含み、前記プレナム部には、前記燃料集合体領域の直上に制御棒案内筒が各燃料集合体に直線状に整列して設けられ、同燃料集合体の直上領域の外周に、下端が前記燃料集合体領域に流体連通可能でその本体部に形成された複数の開口からなるフローホール部を有する第1流れ案内部材を設けると共に、隣接する前記出口ノズルの冷材流入開口の間において前記第1流れ案内部材よりも半径方向の外側に、その本体部に形成された複数の開口からなるフローホール部を有する第2流れ案内部材を設けている。
【0006】
【発明の実施の形態】
次に、添付図面を参照して、本発明の好適な実施の形態について説明するが、図中、同一符号は同一又は対応部分を示すものとする。また、本発明は、以下の説明から分かるように、この実施形態に限定されるものではなく、種々の改変が可能である。
【0007】
図1は、原子炉容器1において燃料集合体領域4の上方にある上部プレナム部UPを部分的に示す縦断面図であり、この上部プレナム部UP内に、本発明の実施形態に従って出口ノズル内温度混合流況安定化構造6(第2流れ案内部材)が図示のように設置されている。出口ノズル内温度混合流況安定化構造6について説明する前に、それが設置される上部プレナム部UPの構造、即ち炉心支持構造物等について述べると、原子炉容器1内の炉心槽7の上半部(下半部が燃料集合体領域4を画成しており、そこに多数の燃料集合体8が立設され、炉心を構成する。)は、その上部フランジ7aで原子炉容器1の内面に形成された棚部1aに垂下し、上部プレナム部UPを画成している。上部プレナム部UPのほぼ側面中間のレベルに、炉心槽7に形成された出口ノズル3と原子炉容器1に形成された出口ノズル2が横方向に整列して配置されている。
【0008】
従って、ほぼ円筒形の上部プレナム部UPは、その側面が炉心槽7の上半部により画定されており、下端面が周知のように各燃料集合体8に嵌合する上部炉心板9により画定され、上端面が上部炉心支持板10により画定されている。上部炉心支持板10の外周部にはフランジ10aが形成されており、これも原子炉容器1のフランジ1aに支持されている。上部プレナム部UP内には、図示しない多数の上部炉心支持柱が上部炉心板9及び上部炉心支持板10間に立設されていて、上部炉心支持板10は、該上部炉心支持柱を介して炉心を押圧保持するようになっている。このようにして炉心支持構造物が構成される。また、この上部プレナム部UPには、各燃料集合体8に直線状に整列するように、多数の制御棒案内筒11(図には代表的に1体のみを示す)が配設されている。上部プレナム部UP外でこの制御棒案内筒11に整列して配置されているのは周知の制御棒駆動装置12である。
【0009】
上部プレナム部UPを画成する炉心上部構造物は以上のように構成されているので、原子炉運転中、高温高圧の冷却材は、矢印で示すように、燃料集合体領域4を上向きに流れて上部炉心板9を通流し、上部プレナム部UPの中に入りそこで向きを変えて、出口ノズル2、3を介して例えば蒸気発生器(図示せず)に供給される。
【0010】
さて、本発明の実施形態によると、炉心出口ノズル内温度混合流況安定化構造(以下、単に安定化構造と称する)6は、図2及び図3から了解されるように、燃料集合体領域4の直上領域から外れた上部プレナム部UPの最外周領域で、従来の流量混合器5(第1流れ案内部材)よりも半径方向の外側に、即ち、従来の流量混合器5を設けただけでは渦流が発生する可能性がある領域に、隣接するループの出口ノズル間に好ましくは2体、合計4体設置され、これによりその両側の2つの出口ノズルに流れ込む冷却材の温度混合及び渦発生防止は、従来型に比較して著しく改善されることが分かった。
【0011】
図2は、この安定化構造6の詳細を示す立面図で、安定化構造6は下端が開放した筒状の本体部6aからなる。筒状の本体部6aは、下端部で燃料集合体領域4と流体連通可能に上部炉心板9に、そして上端部で上部炉心支持板10にそれぞれ適宜の手段で固定されている。この本体部6aには、実施形態では出口ノズル2、3の冷却材流入側開口に幾分臨むように、複数の開口6bが形成されている。開口6bの数、形状、位置等は、冷却材の温度混合及び渦発生防止を最適化するように実機をシミュレーションして決定しうる。そのため、本体部6aの下端部近傍や上端分近傍にも同様の目的で開口6c,6dを形成してもよい。
【0012】
図3は、4ループ式原子力発電プラントに本発明を適用した例を示すが、図4に示すように3ループ式原子力発電プラントに本発明を適用することもできる。この場合、出口ノズル2,3へ回り込んで流入する冷却材流の中に安定化構造6を設けることによって、平面で見て燃料集合体領域の外側に安定化構造6を設けない従来例に比較して、温度混合及び渦発生防止は著しく改善される。即ち、図5の従来例においては、前述したように、燃料集合体領域の直上領域内の最外周部に設けられた温度混合流況安定化構造5群と炉心槽間の空間に矢印13で示す渦を伴う冷却材の流れが見られるが、従来の流量混合器5(3体を図示)に加え、この冷却材の流れの中に図2で示す温度混合流況安定化構造6を設けることによって、温度混合及び渦発生防止が実現される。
【0013】
以上のように、上述した本発明の実施形態において、従来の流量混合器5に加えて、該流量混合器5を用いても渦流が発生する上部プレナム部領域に安定化構造6を設置している。そのため、原子炉運転中、冷却材が燃料集合体領域から上部プレナム部領域に流入し、そこで流れを転向して炉心槽7及び原子炉容器1にそれぞれ一体的に形成された出口ノズル3及び2内に入る前に、従来の流量混合器5による混合に加え、更に本発明に従って設けられた安定化構造6により混合されてから、出口ノズル3、2に流入する。そのため、温度混合が更に促進され、渦発生のない冷却材が出口ノズルに流入するので、出口ノズル内の温度混合流況が安定化する。
【0014】
【発明の効果】
本発明によれば、加圧水型原子炉は、請求項1に記載のように、冷却材の入口ノズル及び複数の出口ノズルを有する原子炉容器と、該原子炉容器内の複数の燃料集合体が立設され燃料集合体領域を画成して構成される炉心と、該炉心の上方に配置されプレナム部を画成する炉心支持構造物とを含み、前記プレナム部には、前記燃料集合体領域の直上に制御棒案内筒が各燃料集合体に直線状に整列して設けられ、同燃料集合体の直上領域の外周に、下端が前記燃料集合体領域に流体連通可能でその本体部に形成された複数の開口からなるフローホール部を有する第1流れ案内部材を設けると共に、隣接する前記出口ノズルの冷材流入開口の間において前記第1流れ案内部材よりも半径方向の外側に、その本体部に形成された複数の開口からなるフローホール部を有する第2流れ案内部材を設けたので、原子炉運転中、冷却材が燃料集合体領域からプレナム部領域に流入し、そこで流れを転向して原子炉容器に一体的に形成された出口ノズル内に入る前に、従来の第1流れ案内部材による混合に加え、更に本発明に従って設けられた第2流れ案内部材により混合されてから、出口ノズルに流入する。そのため、温度混合が更に促進され、渦発生のない冷却材が出口ノズルに流入するので、出口ノズル内の温度混合流況を安定化させることができる。
【図面の簡単な説明】
【図1】 本発明の第1実施形態による加圧水型原子炉を部分的に示す縦断面図である。
【図2】 図1の加圧水型原子炉で用いられている温度混合流況安定化構造の立面図である。
【図3】 図1の原子炉容器に設けられた出口ノズルの中心軸を通る水平面に沿って切断した上部プレナム部の部分断面図である。
【図4】 本発明の第2実施形態における上部プレナム部の図3に相当する断面図である。
【図5】 従来の加圧水型原子炉における上部プレナム部の図3に相当する断面図である。
【図6】 従来の加圧水型原子炉に使用されている流量混合器の構造を示す立断面図である。
【符号の説明】
1…原子炉容器
2’…原子炉容器の入口ノズル
2…原子炉容器の出口ノズル
3…炉心槽の出口ノズル
4…燃料集合体領域
5…流量混合器(第1流れ案内部材)
6…温度混合流況安定化構造(第2流れ案内部材)
6b〜6d…開口(フローホール)
7…炉心槽
8…燃料集合体
9…上部炉心板(炉心支持構造物)
10…上部炉心支持板(炉心支持構造物)
UP…上部プレナム部
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a pressurized water reactor, and more particularly to a temperature mixed flow state stabilization structure provided in the vicinity of a core tank outlet nozzle in a reactor vessel.
[0002]
[Prior art]
FIG. 5 is a view showing a cross section of the upper plenum portion above the fuel assembly region in the reactor vessel 1 of the conventional four-loop pressurized water nuclear power plant. In FIG. An outlet nozzle is shown, and 3 is a core tank outlet nozzle. During operation of the nuclear reactor, a fuel assembly region generally indicated by reference numeral 4 (a region displayed in a grid for convenience, as is well known, a fuel assembly is loaded in each grid cell) The coolant that has passed through the upper part and is heated to a high temperature enters the upper plenum part and is turned there, and passes through the reactor core outlet nozzle 3 and the reactor vessel outlet nozzle 2 aligned therewith, to the reactor vessel outlet nozzle 2. Flows into the pipe connected to Reference numeral 2 ′ denotes an inlet nozzle formed in the reactor vessel 1.
[0003]
In this case, the temperature of the coolant flowing out from the central portion of the fuel assembly region 4 is, as is well known, the temperature of the coolant flowing out from the peripheral portion of the fuel assembly region 4 due to the neutron flux distribution. High compared. For the purpose of mixing the coolant having such a temperature difference and causing the temperature difference as much as possible to flow out to the outlet nozzles 2 and 3, the outermost periphery of the region immediately above the coolant outflow of the fuel assembly region 4 There are 14 flow mixers or flow stabilization structures indicated by reference numeral 5 in the unit, 7 in 2 loops in total. By installing these flow rate mixers 5 at the positions shown in the figure, the temperature of the coolant is mixed and the generation of vortices in the coolant flow is limited to some extent. FIG. 6 shows the structure of the flow mixer 5. The flow mixer 5 has a two-stage cylindrical main body 5a whose lower end is open. The two-stage cylindrical main body 5a is connected to the upper core plate 9 in fluid communication with the fuel assembly region 4 at the lower end large diameter portion 5b and to the upper core support plate 10 at the upper end support shaft portion 5c by appropriate means. It is fixed. A plurality of openings 5e are distributed and formed in the long cylindrical portion 5d of the main body portion 5a.
[0004]
[Problems to be solved by the invention]
As described above, in the conventional type of four loops shown in FIG. 5, the flow rate mixer 5 is provided at the outermost peripheral portion in the region immediately above the fuel assembly region. As a result, the coolant flowing into the outlet nozzles 2 and 3 is temperature-mixed, and a certain degree of effect can be expected for the generation of vortices. However, as indicated by the arrows between the outlet nozzles in FIG. 5, a flow in the opposite direction occurs, which develops into a vortex flow, so that temperature mixing of the coolant and vortex generation are prevented to a sufficiently satisfactory level. That said, there is still room for improvement.
Accordingly, an object of the present invention is to provide a pressurized water reactor capable of sufficiently mixing the temperature of the coolant and sufficiently preventing the generation of vortices.
[0005]
[Means for Solving the Problems]
For this purpose, the pressurized water reactor according to the present invention as set forth in claim 1 comprises a reactor vessel having a coolant inlet nozzle and a plurality of outlet nozzles, and a plurality of fuel assemblies in the reactor vessel standing upright. a core that consists define a fuel assembly area is, and a core support structure defining a plenum disposed above the heart furnace, the plenum portion, directly above the fuel assembly region Control rod guide cylinders are provided in linear alignment with each fuel assembly , and the lower end is formed in the body portion of the fuel assembly region in fluid communication with the outer periphery of the region directly above the fuel assembly. a plurality of provided with a first flow guide member having a flow hole portion consisting opening was, on the outside of the first flow director radial direction than member between the cooling member influx opening of the outlet nozzle adjacent its Multiple openings formed in the main body And providing the second flow guide member having a flow hole portion made.
[0006]
DETAILED DESCRIPTION OF THE INVENTION
Next, preferred embodiments of the present invention will be described with reference to the accompanying drawings. In the drawings, the same reference numerals denote the same or corresponding parts. Further, as will be understood from the following description, the present invention is not limited to this embodiment, and various modifications are possible.
[0007]
FIG. 1 is a longitudinal sectional view partially showing an upper plenum portion UP above a fuel assembly region 4 in a nuclear reactor vessel 1, and in the outlet nozzle according to the embodiment of the present invention. A temperature mixed flow state stabilization structure 6 (second flow guide member) is installed as shown in the figure. Before describing the temperature mixing flow state stabilization structure 6 in the outlet nozzle, the structure of the upper plenum part UP where it is installed, that is, the core support structure, etc. will be described. The half (the lower half defines the fuel assembly region 4 in which a large number of fuel assemblies 8 are erected and constitute the reactor core). It hangs down on a shelf 1a formed on the inner surface to define an upper plenum portion UP. An outlet nozzle 3 formed in the reactor core tank 7 and an outlet nozzle 2 formed in the reactor vessel 1 are arranged in the lateral direction at a level substantially in the middle of the side surface of the upper plenum portion UP.
[0008]
Accordingly, the substantially cylindrical upper plenum portion UP has a side surface defined by the upper half portion of the core tank 7 and a lower end surface defined by the upper core plate 9 fitted to each fuel assembly 8 as is well known. The upper end surface is defined by the upper core support plate 10. A flange 10 a is formed on the outer periphery of the upper core support plate 10 and is also supported by the flange 1 a of the reactor vessel 1. In the upper plenum part UP, a number of upper core support columns (not shown) are erected between the upper core plate 9 and the upper core support plate 10, and the upper core support plate 10 is interposed via the upper core support column. The core is pressed and held. In this way, the core support structure is configured. The upper plenum portion UP is provided with a large number of control rod guide cylinders 11 (only one is shown in the figure as a representative) so as to be linearly aligned with each fuel assembly 8. . A well-known control rod driving device 12 is arranged in alignment with the control rod guide tube 11 outside the upper plenum portion UP.
[0009]
Since the core superstructure that defines the upper plenum part UP is configured as described above, the high-temperature and high-pressure coolant flows upward in the fuel assembly region 4 as indicated by the arrows during the reactor operation. Then, it flows through the upper core plate 9, enters the upper plenum part UP, changes its direction, and is supplied to, for example, a steam generator (not shown) via the outlet nozzles 2 and 3.
[0010]
Now, according to the embodiment of the present invention, the temperature mixing flow state stabilization structure (hereinafter simply referred to as the stabilization structure) 6 in the core outlet nozzle is provided in the fuel assembly region as understood from FIGS. 2 and 3. In the outermost peripheral region of the upper plenum portion UP that is out of the region directly above 4, the conventional flow mixer 5 is simply provided outside the conventional flow mixer 5 (first flow guide member) in the radial direction. In the region where vortex flow is likely to occur, there are preferably 2 units between the exit nozzles of adjacent loops, for a total of 4 units, whereby temperature mixing of coolant flowing into the two exit nozzles on both sides and vortex generation Prevention has been found to be significantly improved compared to the conventional type.
[0011]
FIG. 2 is an elevational view showing details of the stabilization structure 6, and the stabilization structure 6 includes a cylindrical main body portion 6 a having an open lower end. The cylindrical main body 6a is fixed to the upper core plate 9 so as to be in fluid communication with the fuel assembly region 4 at the lower end and to the upper core support plate 10 at the upper end by appropriate means. In the main body 6a, a plurality of openings 6b are formed so as to face the coolant inflow side openings of the outlet nozzles 2 and 3 in the embodiment. The number, shape, position, etc. of the openings 6b can be determined by simulating the actual machine so as to optimize the temperature mixing of the coolant and the prevention of vortex generation. Therefore, the openings 6c and 6d may be formed in the vicinity of the lower end portion and the upper end portion of the main body portion 6a for the same purpose.
[0012]
FIG. 3 shows an example in which the present invention is applied to a four-loop nuclear power plant, but the present invention can also be applied to a three-loop nuclear power plant as shown in FIG. In this case, by providing the stabilizing structure 6 in the coolant flow that flows around and flows into the outlet nozzles 2 and 3, the conventional structure in which the stabilizing structure 6 is not provided outside the fuel assembly region when seen in a plan view. In comparison, temperature mixing and vortex generation prevention are significantly improved. That is, in the conventional example of FIG. 5, as described above, the space between the temperature mixed flow state stabilization structure 5 group provided in the outermost peripheral portion in the region immediately above the fuel assembly region and the core tank is indicated by the arrow 13. Although the flow of the coolant with the vortex shown is seen, in addition to the conventional flow rate mixer 5 (three bodies shown), the temperature mixed flow state stabilization structure 6 shown in FIG. 2 is provided in the flow of the coolant. Thus, temperature mixing and vortex generation prevention are realized.
[0013]
As described above, in the above-described embodiment of the present invention, in addition to the conventional flow mixer 5, the stabilization structure 6 is installed in the upper plenum region where vortex flow is generated even when the flow mixer 5 is used. Yes. Therefore, during the operation of the reactor, the coolant flows from the fuel assembly region into the upper plenum region, where the flow is redirected and the outlet nozzles 3 and 2 integrally formed in the reactor core tank 7 and the reactor vessel 1 respectively. Before entering the inside, in addition to the mixing by the conventional flow mixer 5, it is further mixed by the stabilization structure 6 provided according to the present invention, and then flows into the outlet nozzles 3 and 2. Therefore, temperature mixing is further promoted, and a coolant without vortex generation flows into the outlet nozzle, so that the temperature mixing flow state in the outlet nozzle is stabilized.
[0014]
【The invention's effect】
According to the present invention, the pressurized water reactor comprises a reactor vessel having a coolant inlet nozzle and a plurality of outlet nozzles, and a plurality of fuel assemblies in the reactor vessel. It includes a core that consists define a erected fuel assembly region, and a core support structure defining a plenum disposed above the heart furnace, the plenum, the fuel assembly region A control rod guide cylinder is provided on each fuel assembly in a straight line directly above the fuel assembly , and the lower end of the fuel assembly is in fluid communication with the fuel assembly region at the outer periphery of the region directly above the fuel assembly. provided with a first flow guide member having a flow hole portion consisting of the formed plural openings, radially outwardly than the first flow guide member between the adjacent cooling medium inflows opening of said outlet nozzle From multiple openings formed in its body It is provided with the second flow guide member having a flow hole portion that, during reactor operation, coolant flows into the plenum region from the fuel assembly region, where integrally formed with the reactor vessel by turning the flow In addition to mixing by the conventional first flow guide member, it is further mixed by the second flow guide member provided according to the present invention before entering the outlet nozzle, and then flows into the outlet nozzle. Therefore, temperature mixing is further promoted, and a coolant without vortex generation flows into the outlet nozzle, so that the temperature mixing flow state in the outlet nozzle can be stabilized.
[Brief description of the drawings]
FIG. 1 is a longitudinal sectional view partially showing a pressurized water reactor according to a first embodiment of the present invention.
2 is an elevational view of a temperature mixed flow state stabilization structure used in the pressurized water reactor of FIG. 1. FIG.
3 is a partial cross-sectional view of an upper plenum section cut along a horizontal plane passing through a central axis of an outlet nozzle provided in the reactor vessel of FIG. 1;
FIG. 4 is a cross-sectional view corresponding to FIG. 3 of an upper plenum portion in a second embodiment of the present invention.
FIG. 5 is a cross-sectional view corresponding to FIG. 3 of an upper plenum portion in a conventional pressurized water reactor.
FIG. 6 is an elevational sectional view showing the structure of a flow mixer used in a conventional pressurized water reactor.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... Reactor vessel 2 '... Reactor vessel inlet nozzle 2 ... Reactor vessel outlet nozzle 3 ... Reactor vessel outlet nozzle 4 ... Fuel assembly region 5 ... Flow rate mixer (first flow guide member)
6 ... Temperature mixing flow stabilization structure (second flow guide member)
6b-6d ... Opening (flow hole)
7 ... Core tank 8 ... Fuel assembly 9 ... Upper core plate (core support structure)
10 ... Upper core support plate (core support structure)
UP ... Upper plenum

Claims (1)

冷却材の入口ノズル及び複数の出口ノズルを有する原子炉容器と、該原子炉容器内の複数の燃料集合体が立設され燃料集合体領域を画成して構成される炉心と、該炉心の上方に配置されプレナム部を画成する炉心支持構造物とを含み、前記プレナム部には、前記燃料集合体領域の直上に制御棒案内筒が各燃料集合体に直線状に整列して設けられ、同燃料集合体の直上領域の外周に、下端が前記燃料集合体領域に流体連通可能でその本体部に形成された複数の開口からなるフローホール部を有する第1流れ案内部材を設けると共に、隣接する前記出口ノズルの冷材流入開口の間において前記第1流れ案内部材よりも半径方向の外側に、その本体部に形成された複数の開口からなるフローホール部を有する第2流れ案内部材を設けた加圧水型原子炉。A reactor vessel having an inlet nozzle and a plurality of outlet nozzles for coolant, a reactor core in which a plurality of fuel assemblies in the atoms furnace vessel Ru is configured to define the erected fuel assembly region, the heart furnace A core support structure that is disposed above and defines a plenum portion, and a control rod guide tube is provided in the plenum portion so as to be linearly aligned with each fuel assembly immediately above the fuel assembly region. And a first flow guide member having a flow hole portion having a plurality of openings formed in a main body portion , the lower end of which is in fluid communication with the fuel assembly region, provided on an outer peripheral portion of a region immediately above the fuel assembly. , outward in a radial direction than the first flow guide member between the cooling member influx opening of the outlet nozzle adjacent a second stream having a flow hole portion consisting of a plurality of openings formed in the body portion Pressurized water mold with guide member Child furnace.
JP28151699A 1999-10-01 1999-10-01 Pressurized water reactor Expired - Lifetime JP4166910B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28151699A JP4166910B2 (en) 1999-10-01 1999-10-01 Pressurized water reactor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28151699A JP4166910B2 (en) 1999-10-01 1999-10-01 Pressurized water reactor

Publications (2)

Publication Number Publication Date
JP2001099975A JP2001099975A (en) 2001-04-13
JP4166910B2 true JP4166910B2 (en) 2008-10-15

Family

ID=17640280

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28151699A Expired - Lifetime JP4166910B2 (en) 1999-10-01 1999-10-01 Pressurized water reactor

Country Status (1)

Country Link
JP (1) JP4166910B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101804560B (en) * 2010-03-17 2012-05-09 烟台台海玛努尔核电设备股份有限公司 Processing method of safety injection tank tube nozzle

Also Published As

Publication number Publication date
JP2001099975A (en) 2001-04-13

Similar Documents

Publication Publication Date Title
JP2642761B2 (en) Fuel bundles for boiling water reactors
KR101129735B1 (en) Nuclear reactor
JPH07253491A (en) Lower tie-plate strainer with duplex plate having offset hole for boiling water nuclear reactor
KR101299067B1 (en) Pressurised water nuclear reactor vessel
US4716013A (en) Nuclear reactor
JPH04286993A (en) Method for augmenting load follow-up or spectrum shift function of nuclear reactor of single sprinkling natural boiled water circulation type
JP2012251977A (en) Reactor internal structure and nuclear reactor
EP2850617B1 (en) Fuel bundle for a liquid metal cooled nuclear reactor
JP3316459B2 (en) Reactor Vessel Internal Structure
JPH0727052B2 (en) A method for providing load following capability to a natural circulation boiling water reactor with free surface vapor separation.
JP4166910B2 (en) Pressurized water reactor
US8358733B2 (en) Helically fluted tubular fuel rod support
US5857006A (en) Chimney for enhancing flow of coolant water in natural circulation boiling water reactor
JP2999124B2 (en) Substructure inside a pressurized water reactor
EP3035338B1 (en) Reactor pressure vessel assembly including a flow barrier structure
TWI672707B (en) Nuclear reactor
JP3035276B1 (en) Reactor vessel core support structure
JP2971460B1 (en) Structure to promote mixing of fluid to be heated in reactor vessel
JPH0862372A (en) Internal structure of pressurized water reactor
JP3626844B2 (en) Radial neutron reflector for nuclear reactors
JP3853415B2 (en) Pressurized water reactor reactor vessel
JPH02168195A (en) Supporting structure of reactor core
JP2000111684A (en) Heating object fluid mixing promoting structure in reactor vessel
US20100246743A1 (en) Steam flow vortex straightener
JPH05249276A (en) Nuclear reactor with core coolant intake of low position

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050218

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20051215

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20070314

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20070606

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20070607

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071120

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080121

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080708

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080731

R151 Written notification of patent or utility model registration

Ref document number: 4166910

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110808

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110808

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120808

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130808

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term