JP4392231B2 - Long fiber nano titanium oxide - Google Patents

Long fiber nano titanium oxide Download PDF

Info

Publication number
JP4392231B2
JP4392231B2 JP2003407824A JP2003407824A JP4392231B2 JP 4392231 B2 JP4392231 B2 JP 4392231B2 JP 2003407824 A JP2003407824 A JP 2003407824A JP 2003407824 A JP2003407824 A JP 2003407824A JP 4392231 B2 JP4392231 B2 JP 4392231B2
Authority
JP
Japan
Prior art keywords
titanium oxide
long
nano
fiber
specific surface
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2003407824A
Other languages
Japanese (ja)
Other versions
JP2005162584A (en
Inventor
聡 内田
義隆 實平
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Niterra Co Ltd
Original Assignee
NGK Spark Plug Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Spark Plug Co Ltd filed Critical NGK Spark Plug Co Ltd
Priority to JP2003407824A priority Critical patent/JP4392231B2/en
Publication of JP2005162584A publication Critical patent/JP2005162584A/en
Application granted granted Critical
Publication of JP4392231B2 publication Critical patent/JP4392231B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

本発明は、例えば活性の高い光触媒や、光電変換効率の高い色素増感太陽電池用電極材料などに利用できる長繊維状ナノ酸化チタンに関する。 The present invention is, for example, high or the photocatalytic active, available like high dye-sensitized solar cell electrode material photoelectric conversion efficiency relates to the filamentous nano titanium oxide emissions.

酸化チタンは、例えば光触媒の用途や色素増感太陽電池の用途などに使用されるが、この酸化チタンとしては、単位塗布面積当たりの反応量を増加させるために、できるだけ大きな比表面積を持った材料が要求されている。   Titanium oxide is used for photocatalyst applications and dye-sensitized solar cell applications, for example. This titanium oxide is a material having a specific surface area as large as possible in order to increase the amount of reaction per unit coating area. Is required.

そこで、従来では、大きな比表面積を得るために、粒状酸化チタン粉末の粒径を数十nmから数nmのサイズに小さくする方向で検討が進められていたが、実際に現在販売されているこれらの粒状粉末では、50〜300m2/g程度までの比表面積しか実現されていない。 Therefore, in the past, in order to obtain a large specific surface area, studies were made in the direction of reducing the particle size of granular titanium oxide powder from several tens of nanometers to several nanometers. In the granular powder, only a specific surface area of about 50 to 300 m 2 / g is realized.

これに対し、近年では、より大きな比表面積を得るために、各種の技術が開発されている(例えば特許文献1参照)。この技術とは、酸化チタン粉末を水酸化ナトリウムでアルカリ処理することにより、直径5〜8nm、長さ50〜150nmのチューブ状酸化チタンを製造するというものである。
特開平10−152323号公報 (第2頁、図1)
On the other hand, in recent years, various techniques have been developed to obtain a larger specific surface area (see, for example, Patent Document 1). This technique is to produce tubular titanium oxide having a diameter of 5 to 8 nm and a length of 50 to 150 nm by subjecting titanium oxide powder to an alkali treatment with sodium hydroxide.
JP-A-10-152323 (second page, FIG. 1)

しかしながら、上述したチューブ状酸化チタンの製造方法では、200〜480m2/g程度の比較的大きな比表面積を実現できると記述されているが、特性の再現性に問題があった。 However, although it has been described that the tube-shaped titanium oxide manufacturing method described above can achieve a relatively large specific surface area of about 200 to 480 m 2 / g, there is a problem in the reproducibility of characteristics.

つまり、前記公報の製造方法によってチューブ状酸化チタンを製造する場合には、常に大きな比表面積を有するチューブ状酸化チタンを実現できるとは限らず、特性の再現性に問題があり、一層の改善が望まれていた。   That is, when producing tubular titanium oxide by the production method of the above publication, it is not always possible to realize tubular titanium oxide having a large specific surface area, and there is a problem in the reproducibility of characteristics, and further improvement is achieved. It was desired.

本発明の目的は、大きな比表面積を有し、従来とは全く異なる長繊維状ナノ酸化チタンを提供することである。 This onset bright object has a large specific surface area, it is to provide a totally different lengths fibrous nano titanium oxide emissions from the traditional.

・かかる目的を達成するためになされた本発明は、 結晶形状が中実かつ長繊維状であり、その長繊維状結晶の組成が、(K、H) 2 Ti 2 5 であることを特徴とする長繊維状ナノ酸化チタンを要旨とする。
本発明の長繊維状ナノ酸化チタンは、いわゆるナノレベルの極めて細い繊維状(ワイヤー状)の酸化チタンである。つまり、酸化チタンの結晶形状が長繊維状である。この長繊維状ナノ酸化チタンは、従来の様な(中空の)チューブ状酸化チタンとは異なり、(中空では無く)中身の詰まった例えば毛髪の様な中実の繊維状の結晶である。
- according the present invention the objective has been made in order to achieve the Ri solid and long fibrous der crystal shape, the composition of the long-fiber crystals, that is 2 Ti 2 O 5 (K, H) The feature is a long-fiber nano-titanium oxide characterized.
The long-fiber nano-titanium oxide of the present invention is a so-called nano-level very thin fibrous (wire-like) titanium oxide. That is, the crystal shape of titanium oxide is long fiber. Unlike the conventional (hollow) tube-like titanium oxide, the long-fiber nano titanium oxide is a solid fibrous crystal such as hair that is packed (not hollow).

この長繊維状ナノ酸化チタンは、ナノレベルの非常に細い結晶構造を有しているので、比表面積が大きく、例えば光触媒の用途及び色素増感太陽電池の用途に使用される場合には、その単位塗布面積当たりの反応量を大きく増加させることができ、好適である。
なお、後述する様に、本発明者らの研究により、この長繊維状結晶の組成が確認されている。
The long fibrous nano-titanium oxide has a very thin crystal structure at the nano level, and therefore has a large specific surface area. For example, when used in photocatalyst applications and dye-sensitized solar cell applications, The reaction amount per unit coating area can be greatly increased, which is preferable.
As will be described later, the composition of the long fibrous crystals has been confirmed by the study of the present inventors.

・前記長繊維状ナノ酸化チタンは、前記長繊維状結晶の直径が、2〜80nmであることを特徴とするように構成することができる。
本発明は、長繊維状ナノ酸化チタンの長繊維状結晶の直径を例示したものである。本発明では、長繊維状結晶の直径が、2〜80nm(例えば主として5〜30nm)と十分に細いので、大きな比表面積を有する。
The long-fiber nano titanium oxide can be configured such that the long-fiber crystal has a diameter of 2 to 80 nm.
The present invention exemplifies the diameter of the long fibrous crystal of the long fibrous nano titanium oxide. In the present invention, since the diameter of the long fibrous crystal is sufficiently thin as 2 to 80 nm (for example, mainly 5 to 30 nm), it has a large specific surface area.

尚、長繊維状ナノ酸化チタンは細長い結晶(即ち繊維が伸びる方向と径方向とのアスペクト比の大きな結晶)であるので、長繊維状結晶の直径とは、その細長い結晶の各位置における直径の平均値を意味している。   Since the long fibrous nano-titanium oxide is an elongated crystal (that is, a crystal having a large aspect ratio between the direction in which the fiber extends and the radial direction), the diameter of the long fibrous crystal is the diameter at each position of the elongated crystal. Mean value.

・前記長繊維状ナノ酸化チタンは、前記長繊維状結晶の長さが、100nm以上であることを特徴とするように構成することができる。
本発明は、長繊維状ナノ酸化チタンの長繊維状結晶の長さを例示したものである。本発明では、長繊維状結晶の長さが、100nm以上と長いので、その長繊維状結晶が集合した集合体は、例えば不織布の繊維が絡みあったような構造となる。
The long fibrous nano-titanium oxide can be configured such that the length of the long fibrous crystal is 100 nm or more.
The present invention illustrates the length of long fibrous crystals of long fibrous nano-titanium oxide. In the present invention, since the length of the long fibrous crystals is as long as 100 nm or more, the aggregate in which the long fibrous crystals are assembled has a structure in which, for example, the fibers of the nonwoven fabric are entangled.

・前記長繊維状ナノ酸化チタンは、比表面積が、300〜450m2/gであることを特徴とするように構成することができる。
本発明は、長繊維状ナノ酸化チタンの比表面積を例示したものである。本発明では、比表面積が300〜450m2/g(例えば主として350〜400m2/g)と大きいので、例えば光触媒の用途及び色素増感太陽電池の用途に使用される場合には、その単位塗布面積当たりの反応量を大きく増加させることができ、好適である。
The long fibrous nano-titanium oxide may have a specific surface area of 300 to 450 m 2 / g.
The present invention exemplifies the specific surface area of long fibrous nano-titanium oxide. In the present invention, since the specific surface area is as large as 300 to 450 m 2 / g (for example, mainly 350 to 400 m 2 / g), for example, when used for a photocatalyst and a dye-sensitized solar cell, the unit coating is performed. The reaction amount per area can be greatly increased, which is preferable.

・また、本発明の長繊維状ナノ酸化チタンは、酸化チタン及び酸化チタン塩の少なくとも1種を主成分とする材料を用いて製造することができるIt also filamentous nano titanium oxide of the present invention can be produced using a material containing as a main component at least one of titanium oxide and titanium salt.

さらに、本発明の長繊維状ナノ酸化チタンは、酸化チタン及び酸化チタン塩の少なくとも1種を主成分とする材料(例えば酸化チタン、酸化チタン塩、又は、酸化チタン及び酸化チタン塩からなる材料)を、水酸化カリウムで水熱処理(アルカリ処理)する工程を利用して製造することができる。 Furthermore, the long fibrous nano-titanium oxide of the present invention is a material mainly comprising at least one of titanium oxide and titanium oxide salt (for example, titanium oxide, titanium oxide salt, or material comprising titanium oxide and titanium oxide salt). Can be produced by utilizing a hydrothermal treatment (alkali treatment) with potassium hydroxide .

なお、前記水熱処理(アルカリ処理)の条件としては、水酸化カリウム濃度10〜25mol/kg、温度70〜150℃の条件を採用できる。 In addition, as the conditions for the hydrothermal treatment (alkali treatment), a potassium hydroxide concentration of 10 to 25 mol / kg and a temperature of 70 to 150 ° C. can be adopted .

ここで、水酸化カリウム濃度が10mol/kgを下回るか25mol/kgを上回ると、比表面積が小さくなる傾向があるので、この濃度範囲が好ましい。また、処理温度が70℃を下回るか150℃を上回る場合には、比表面積が小さくなる傾向があるので、この温度範囲が好ましい。尚、より好ましい範囲は、水酸化カリウム濃度15〜20mol/kg、温度100〜130℃である。   Here, when the potassium hydroxide concentration is less than 10 mol / kg or more than 25 mol / kg, the specific surface area tends to decrease, so this concentration range is preferable. Further, when the processing temperature is lower than 70 ° C. or higher than 150 ° C., the specific surface area tends to be small, so this temperature range is preferable. A more preferable range is a potassium hydroxide concentration of 15 to 20 mol / kg and a temperature of 100 to 130 ° C.

次に、本発明の最良の形態の例(実施例)について説明する。   Next, an example (example) of the best mode of the present invention will be described.

a)まず、本実施例の長繊維状ナノ酸化チタンの構造について説明する。
図1に破断して模式的に示す様に、本実施例の長繊維状ナノ酸化チタン1は、ナノレベルの極細の酸化チタンの結晶であり、その結晶形状は、(中身の詰まった)中実の長繊維状(ワイヤー状)である。
a) First, the structure of the long fibrous nano-titanium oxide of this example will be described.
As shown schematically in FIG. 1, the long-fiber nano-titanium oxide 1 of this example is a nano-level ultra-fine titanium oxide crystal, and its crystal shape is medium (filled) Real long fiber shape (wire shape).

この長繊維状ナノ酸化チタン1の直径(平均値)は、約2〜80nmと極めて細く、その長さは、約100nm以上であり、しかも、その比表面積は、約300〜450m2/gと非常に大きなものである。 The long fibrous nano-titanium oxide 1 has a very thin diameter (average value) of about 2 to 80 nm, a length of about 100 nm or more, and a specific surface area of about 300 to 450 m 2 / g. It is very big.

詳しくは、後述する製造方法にて得られる長繊維状ナノ酸化チタン1は、その多くが、5〜30nmの直径を有するとともに、100nm以上の長さを有しており、長いものでは2〜3μm以上のものがある。つまり、後述する図2〜図4に示す様に、長繊維状ナノ酸化チタン1は、非常に細長い繊維状の結晶である。   Specifically, many of the long fibrous nano-titanium oxides 1 obtained by the manufacturing method described later have a diameter of 5 to 30 nm and a length of 100 nm or more. There are more. That is, as shown in FIGS. 2 to 4 to be described later, the long fibrous nano-titanium oxide 1 is a very elongated fibrous crystal.

b)次に、本実施例の長繊維状ナノ酸化チタン1の製造方法の要部について説明する。
本実施例では、以下に述べる様に、チタニア(TiO2)粉末を水酸化カリウム(KOH)の水溶液を用いて水熱処理することにより、長繊維状ナノ酸化チタン1を製造する。
b) Next, the principal part of the manufacturing method of the long-fiber nano titanium oxide 1 of a present Example is demonstrated.
In the present embodiment, as described below, long-fiber nano titanium oxide 1 is manufactured by hydrothermally treating titania (TiO 2 ) powder using an aqueous solution of potassium hydroxide (KOH).

(1)原料粉末
原料粉末としては、例えば粒径約30nmのアナターゼ型のチタニア粉末を用いる。
(1) Raw material powder As the raw material powder, for example , anatase-type titania powder having a particle size of about 30 nm is used.

(2)水熱処理(アルカリ処理)
濃度10〜25mol/kgの水酸化カリウムの水溶液に前記チタニア粉末を加え、よく攪拌する。その後、温度70〜150℃の条件で、5〜40時間加熱して、水熱処理を行う。
(2) Hydrothermal treatment (alkali treatment)
The titania powder is added to an aqueous solution of potassium hydroxide having a concentration of 10 to 25 mol / kg and stirred well. Thereafter, hydrothermal treatment is performed by heating at a temperature of 70 to 150 ° C. for 5 to 40 hours.

(3)中和処理
前記水熱処理の後に、イオン交換水等を用いて洗浄し、希塩酸等の無機酸を用いて中和処理を行い、余剰のアルカリ分を取り除く。
(3) Neutralization treatment After the hydrothermal treatment, washing is performed using ion exchange water or the like, and neutralization treatment is performed using an inorganic acid such as dilute hydrochloric acid to remove excess alkali.

(4)乾燥処理
前記中和処理後に、遠心分離し、遠心分離した固定分を凍結乾燥器で乾燥して、長繊維状ナノ酸化チタン1が集合した集合体(粉末)を得る。
(4) Drying treatment After the neutralization treatment, the mixture is centrifuged, and the centrifuged fixed portion is dried with a freeze dryer to obtain an aggregate (powder) in which the long fibrous nano-titanium oxide 1 is assembled.

c)この様にして得られた長繊維状ナノ酸化チタン1は、その直径がナノレベルの非常に細い長繊維状であるので、比表面積も十分に大きなものである。
従って、この長繊維状ナノ酸化チタン1を、例えば光触媒の用途及び色素増感太陽電池の用途に使用した場合には、単位塗布面積当たりの反応量を大きく増加させることができるので、その性能が向上することが期待できる。
c) The long-fiber nano-titanium oxide 1 obtained in this way is a very thin long-fiber having a nanometer diameter, and therefore has a sufficiently large specific surface area.
Accordingly, when this long-fiber nano titanium oxide 1 is used for, for example, a photocatalyst and a dye-sensitized solar cell, the reaction amount per unit coating area can be greatly increased. It can be expected to improve.

また、後述する実験例に示される様に、上述した製造方法により、再現性良く本実施例の長繊維状ナノ酸化チタン1を製造することができる。
(実験例)
次に、本発明の効果を確認するために行った具体的な実験例について説明する。
Further, as shown in the experimental examples described later, the long-fiber nano titanium oxide 1 of this example can be manufactured with good reproducibility by the above-described manufacturing method.
(Experimental example)
Next, a specific experimental example performed for confirming the effect of the present invention will be described.

a)まず、テフロン(登録商標)容器にて、10mLの純水に11.2gの水酸化カリウム(純度85%)を混入し、良く攪拌して、濃度(純水1kgに対するKOHのモル数)17.0mol/kgの水酸化カリウム水溶液を調製した。 a) First, in a Teflon (registered trademark) container, 11.2 g of potassium hydroxide (purity 85%) was mixed in 10 mL of pure water, and stirred well to obtain a concentration (number of moles of KOH relative to 1 kg of pure water). A 17.0 mol / kg aqueous potassium hydroxide solution was prepared.

次に、前記容器内に、粒径約30nmの酸化チタンの微粒子(チタニア粉末)を0.21g混入し、良く攪拌した。
次に、前記容器を密閉し、その容器を乾燥機内に配置して、110℃で20時間加熱し、水熱処理(アルカリ処理)を行った。
Next, 0.21 g of titanium oxide fine particles (titania powder) having a particle size of about 30 nm were mixed in the container and stirred well.
Next, the said container was sealed, the container was arrange | positioned in dryer, and it heated at 110 degreeC for 20 hours, and performed the hydrothermal treatment (alkali treatment).

次に、水熱処理によって生成した生成物を、イオン交換水で水洗いし、希塩酸で中和して、余剰のアルカリ分を除去した。
次に、生成物を遠心分離し、その固定分を凍結乾燥器で乾燥して、長繊維状ナノ酸化チタンが集合した集合体(粉末)を得た。
Next, the product produced by the hydrothermal treatment was washed with ion-exchanged water and neutralized with dilute hydrochloric acid to remove excess alkali.
Next, the product was centrifuged, and the fixed part was dried with a freeze dryer to obtain an aggregate (powder) in which long fibrous nano-titanium oxide was aggregated.

b)そして、上述した製造方法で得られた粉末を、走査型電子顕微鏡(SEM)にて観察したところ、図2(10,000倍のSEM写真)、図3(25,000倍のSEM写真)、及び図4(100,000倍のSEM写真)に示す様に、細長い繊維が不織布の様に密集した構造が観察された。尚、各長繊維状の物質がそれぞれ長繊維状ナノ酸化チタンである。   b) Then, when the powder obtained by the above-described manufacturing method was observed with a scanning electron microscope (SEM), FIG. 2 (10,000 times SEM photograph) and FIG. 3 (25,000 times SEM photograph). ) And FIG. 4 (100,000 times SEM photograph), a structure in which elongated fibers are densely packed like a nonwoven fabric was observed. Each long fibrous substance is long fibrous nano-titanium oxide.

また、前記粉末を、透過型電子顕微鏡(TEM)にて観察したところ、図5(150,000倍のTEM写真)に示す様に、長繊維状ナノ酸化チタンが、空洞の無い中実の長繊維状であることが確認できた。   Further, when the powder was observed with a transmission electron microscope (TEM), as shown in FIG. 5 (150,000 times TEM photograph), the long fibrous nano-titanium oxide had a solid length without a cavity. It was confirmed to be fibrous.

更に、前記粉末を構成する長繊維状ナノ酸化チタンの組成を、電子線回折により測定したところ、(K、H)2Ti25であることが確認された。
その上、前記粉末(従って長繊維状ナノ酸化チタン)の比表面積(生成物のBET 比表面積)を、QUANTACHROME NOVA-1000-TSを用いて測定したところ、396.31m2/gと非常に大きな比表面積であることが確認できた。
Further, the composition of the long fibrous nano-titanium oxide constituting the powder was measured by electron diffraction, and it was confirmed that it was (K, H) 2 Ti 2 O 5 .
In addition, the specific surface area (the BET specific surface area of the product) of the powder (and thus the long fibrous nano-titanium oxide) was measured using a QUANTACHROME NOVA-1000-TS, which was as large as 396.31 m 2 / g. The specific surface area was confirmed.

c)次に、前記実験の条件のうち、水酸化カリウムの濃度と水熱処理の温度を変更した各実験を行って、各試料の比表面積[m2/g]を測定した。その結果を、合わせて下記表1に記す。 c) Next, among the experimental conditions, each experiment was performed by changing the concentration of potassium hydroxide and the hydrothermal treatment temperature, and the specific surface area [m 2 / g] of each sample was measured. The results are shown in Table 1 below.

この表1から明らかな様に、粒径約30nmの酸化チタンの微粒を用いた場合には、濃度10〜25mol/kgの水酸化カリウム水溶液を用いて、温度70〜150℃で水熱処理することにより、最大で約400m2/g程度に達する様な大きな比表面積を有する粉末(従って長繊維状ナノ酸化チタン)が得られることが分かる。 As is apparent from Table 1 , when titanium oxide fine particles having a particle diameter of about 30 nm are used, hydrothermal treatment is performed at a temperature of 70 to 150 ° C. using a potassium hydroxide aqueous solution having a concentration of 10 to 25 mol / kg. Thus, it can be seen that a powder having a large specific surface area of about 400 m 2 / g at the maximum (thus, long-fiber nano titanium oxide) can be obtained.

また、前記表1における各試料(粉末)のSEM写真から、全試料の長繊維状ナノ酸化チタンの直径及び長さを測定したところ、長繊維状ナノ酸化チタンの直径は、平均で約2〜80nm(多くは5〜30nm)で、その平均長さは、約100nm以上の非常に細長い繊維であることが確認できた。   Moreover, from the SEM photograph of each sample (powder) in Table 1, the diameter and length of the long fibrous nano-titanium oxide of all the samples were measured. It was confirmed that the average length was 80 nm (many 5 to 30 nm), and the fibers were very long fibers having an average length of about 100 nm or more.

更に、前記表1における各試料(粉末)のTEM写真から、全試料の長繊維状ナノ酸化チタンが中実の長繊維状であることが確認できた。
つまり、上述した実験例から、本発明の長繊維状ナノ酸化チタンは、ナノレベルの極細の非常に長い繊維であり、しかも、比表面積が大きなものであることが分かる。
Furthermore, from the TEM photograph of each sample (powder) in Table 1, it was confirmed that the long fibrous nano-titanium oxide of all the samples was a solid long fiber.
That is, it can be seen from the above-described experimental example that the long-fiber nanotitanium oxide of the present invention is a nano-sized ultra-fine and extremely long fiber and has a large specific surface area.

尚、本発明は前記実施例になんら限定されるものではなく、本発明の要旨を逸脱しない範囲において種々の態様で実施しうることはいうまでもない。
例えば、処理温度、処理時間、水酸化カリウム濃度を調節する等により、長繊維状ナノ酸化チタンの直径、長さ、比表面積などを調整することが可能である。例えば処理時間を適度に長くすることにより、比表面積を大きくする等の調整を行うことが可能である。
In addition, this invention is not limited to the said Example at all, and it cannot be overemphasized that it can implement with a various aspect in the range which does not deviate from the summary of this invention.
For example, it is possible to adjust the diameter, length, specific surface area, and the like of the long fibrous nano-titanium oxide by adjusting the treatment temperature, treatment time, potassium hydroxide concentration, and the like. For example, it is possible to make adjustments such as increasing the specific surface area by appropriately increasing the treatment time.

実施例の長繊維状ナノ酸化チタンを破断して模式的に示す斜視図である。It is a perspective view which fractures | ruptures and shows the long-fiber nano titanium oxide of an Example typically. 実験例における10,000倍のSEM写真である。It is a 10,000 times SEM photograph in an experimental example. 実験例における25,000倍のSEM写真である。It is a 25,000 times SEM photograph in an experimental example. 実験例における100,000倍のSEM写真である。It is a SEM photograph of 100,000 times in an experimental example. 実験例における150,000倍のTEM写真である。It is a 150,000 times TEM photograph in an experimental example.

符号の説明Explanation of symbols

1…長繊維状ナノ酸化チタン   1 ... long fiber nano titanium oxide

Claims (4)

結晶形状が中実かつ長繊維状であり、その長繊維状結晶の組成が、(K、H)2Ti25であることを特徴とする長繊維状ナノ酸化チタン。 A long-fiber nano-titanium oxide characterized in that the crystal shape is solid and long-fiber, and the composition of the long-fiber crystal is (K, H) 2 Ti 2 O 5 . 前記長繊維状結晶の直径が、2〜80nmであることを特徴とする請求項1に記載の長繊維状ナノ酸化チタン。   The long-fiber nano titanium oxide according to claim 1, wherein the long-fiber crystal has a diameter of 2 to 80 nm. 前記長繊維状結晶の長さが、100nm以上であることを特徴とする請求項1又は2に記載の長繊維状ナノ酸化チタン。   The long fibrous nano-titanium oxide according to claim 1 or 2, wherein a length of the long fibrous crystal is 100 nm or more. 比表面積が、300〜450m2/gであることを特徴とする請求項1〜3のいずれかに記載の長繊維状ナノ酸化チタン。 A specific surface area is 300-450 m < 2 > / g, The long-fiber nano titanium oxide in any one of Claims 1-3 characterized by the above-mentioned.
JP2003407824A 2003-12-05 2003-12-05 Long fiber nano titanium oxide Expired - Lifetime JP4392231B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003407824A JP4392231B2 (en) 2003-12-05 2003-12-05 Long fiber nano titanium oxide

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003407824A JP4392231B2 (en) 2003-12-05 2003-12-05 Long fiber nano titanium oxide

Publications (2)

Publication Number Publication Date
JP2005162584A JP2005162584A (en) 2005-06-23
JP4392231B2 true JP4392231B2 (en) 2009-12-24

Family

ID=34729753

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003407824A Expired - Lifetime JP4392231B2 (en) 2003-12-05 2003-12-05 Long fiber nano titanium oxide

Country Status (1)

Country Link
JP (1) JP4392231B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020069438A (en) * 2018-10-31 2020-05-07 株式会社アースクリーンテクノ In-air floating matter collection material, air purifying member with use thereof and air purification device

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100656367B1 (en) * 2005-11-24 2006-12-13 한국전자통신연구원 Composition of semiconductor electrode enable to sintering at low temperature, and dye-sensitized solar cells comprising the composition
JP5007784B2 (en) * 2006-01-30 2012-08-22 ソニー株式会社 Photoelectric conversion device
JP2008279112A (en) * 2007-05-11 2008-11-20 Earth Clean Tohoku:Kk Air cleaning device
JP5320568B2 (en) * 2008-05-07 2013-10-23 石原薬品株式会社 Method for producing fibrous barium titanate
JP2010095417A (en) * 2008-10-17 2010-04-30 Doshisha Fine wire-shaped titanium compound and method for producing the same
BRPI0919906A2 (en) 2008-10-29 2016-02-16 Fujifilm Corp dye, photoelectric conversion element and photoelectrochemical cell each comprising the dye and the process for producing dye.
JP5620081B2 (en) 2009-09-28 2014-11-05 富士フイルム株式会社 Method for manufacturing photoelectric conversion element
JP5524557B2 (en) 2009-09-28 2014-06-18 富士フイルム株式会社 Method for producing photoelectric conversion element, photoelectric conversion element, and photoelectrochemical cell
JP5642007B2 (en) * 2011-03-30 2014-12-17 大阪瓦斯株式会社 Titanium oxide structure
JP6328365B2 (en) * 2012-03-28 2018-05-23 大阪瓦斯株式会社 High crystalline high specific surface area titanium oxide structure
JP5972811B2 (en) 2013-02-22 2016-08-17 富士フイルム株式会社 Photoelectric conversion element, method for producing photoelectric conversion element, and dye-sensitized solar cell
JP6515419B2 (en) * 2014-05-27 2019-05-22 国立大学法人信州大学 Method of manufacturing metal oxide nanowire and nanowire
JP7462930B2 (en) 2020-04-28 2024-04-08 国立大学法人大阪大学 Sheet-shaped ion exchanger and its manufacturing method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020069438A (en) * 2018-10-31 2020-05-07 株式会社アースクリーンテクノ In-air floating matter collection material, air purifying member with use thereof and air purification device
WO2020090937A1 (en) * 2018-10-31 2020-05-07 株式会社アースクリーンテクノ Airborne particle trapping material and air purification member and air purification device using same

Also Published As

Publication number Publication date
JP2005162584A (en) 2005-06-23

Similar Documents

Publication Publication Date Title
JP4392231B2 (en) Long fiber nano titanium oxide
Zhang et al. Microwave-assisted reflux rapid synthesis of MnO2 nanostructures and their application in supercapacitors
Suprabha et al. Microwave-assisted synthesis of titania nanocubes, nanospheres and nanorods for photocatalytic dye degradation
JP4093744B2 (en) Method for producing tubular titanium oxide particles and tubular titanium oxide particles
Yuan et al. Hierarchical interlinked structure of titanium oxide nanofibers
EP2560918A1 (en) Method for producing two-dimensional sandwich nano-materials on the basis of graphene
JP2009506975A (en) Method for synthesizing rutile single-phase titanium oxide with nanostructures
Shi et al. Synthesis of highly porous SiO2–(WO3) x· TiO2 composite aerogels using bacterial cellulose as template with solvothermal assisted crystallization
CN101525152A (en) Mumm-shaped 3D TiO nanometer material and preparation method thereof
WO2014140840A2 (en) Rutile titanium dioxide microspheres and ordered botryoidal shapes of same
Chau et al. Chitin liquid-crystal-templated oxide semiconductor aerogels
JP3232306B2 (en) Method for producing flaky titanium oxide, porous titanium oxide body comprising aggregate of flaky titanium oxide, and method for producing the same
KR100814951B1 (en) Production method of transition metal doped titanate dioxide nano-tube
MXPA04004265A (en) Nanostructured titanium oxide material and method of obtaining same.
Feng et al. Preparation of novel porous hydroxyapatite sheets with high Pb2+ adsorption properties by self-assembly non-aqueous precipitation method
KR101614283B1 (en) Cnt-pzt nanoparticle composite, piezoelectric elememt using the same and manufacturing method thereof
Liu et al. Synthesis of SiO 2–W x TiO 2 composite aerogels via solvothermal crystallization under the guidance of bacterial cellulose followed by freeze drying method
WO2013062491A1 (en) Synthesis method for obtaining anatase nanoparticles of high specific surface area and spherical morphology
Farid et al. Fabrication and characterization of MnO2 based composite sheets for development of flexible energy storage electrodes
KR100664751B1 (en) Preparation of titania nanotubes
JP4214226B2 (en) Titanium oxide nanosheet structure
JP3983533B2 (en) Crystal titania
KR20090087731A (en) N-doped titania nanotubes and preparation method thereof
JP5750662B2 (en) Cerium oxide nanoparticle-zeolite composite, its production method and use as ultraviolet shielding material
CN105460982B (en) A kind of a large amount of methods for preparing porous cobalt acid nickel nano-hollow box of classifying

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050727

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081024

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081111

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090109

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20090109

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090623

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090821

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090915

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20091009

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121016

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4392231

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121016

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121016

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121016

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313114

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121016

Year of fee payment: 3

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131016

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131016

Year of fee payment: 4

R370 Written measure of declining of transfer procedure

Free format text: JAPANESE INTERMEDIATE CODE: R370

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131016

Year of fee payment: 4

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313114

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131016

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131016

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term