JP4391480B2 - Control device for electric motor for vehicle - Google Patents

Control device for electric motor for vehicle Download PDF

Info

Publication number
JP4391480B2
JP4391480B2 JP2006005093A JP2006005093A JP4391480B2 JP 4391480 B2 JP4391480 B2 JP 4391480B2 JP 2006005093 A JP2006005093 A JP 2006005093A JP 2006005093 A JP2006005093 A JP 2006005093A JP 4391480 B2 JP4391480 B2 JP 4391480B2
Authority
JP
Japan
Prior art keywords
voltage
converter
energization
phase
terminal voltage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2006005093A
Other languages
Japanese (ja)
Other versions
JP2007189807A (en
Inventor
暢彦 藤田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2006005093A priority Critical patent/JP4391480B2/en
Priority to FR0752597A priority patent/FR2897211B1/en
Publication of JP2007189807A publication Critical patent/JP2007189807A/en
Application granted granted Critical
Publication of JP4391480B2 publication Critical patent/JP4391480B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P6/00Arrangements for controlling synchronous motors or other dynamo-electric motors using electronic commutation dependent on the rotor position; Electronic commutators therefor
    • H02P6/14Electronic commutators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02NSTARTING OF COMBUSTION ENGINES; STARTING AIDS FOR SUCH ENGINES, NOT OTHERWISE PROVIDED FOR
    • F02N11/00Starting of engines by means of electric motors
    • F02N11/08Circuits or control means specially adapted for starting of engines
    • F02N11/0862Circuits or control means specially adapted for starting of engines characterised by the electrical power supply means, e.g. battery
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P1/00Arrangements for starting electric motors or dynamo-electric converters
    • H02P1/16Arrangements for starting electric motors or dynamo-electric converters for starting dynamo-electric motors or dynamo-electric converters
    • H02P1/18Arrangements for starting electric motors or dynamo-electric converters for starting dynamo-electric motors or dynamo-electric converters for starting an individual dc motor
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P1/00Arrangements for starting electric motors or dynamo-electric converters
    • H02P1/16Arrangements for starting electric motors or dynamo-electric converters for starting dynamo-electric motors or dynamo-electric converters
    • H02P1/46Arrangements for starting electric motors or dynamo-electric converters for starting dynamo-electric motors or dynamo-electric converters for starting an individual synchronous motor
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P27/00Arrangements or methods for the control of AC motors characterised by the kind of supply voltage
    • H02P27/04Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage
    • H02P27/06Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage using dc to ac converters or inverters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P6/00Arrangements for controlling synchronous motors or other dynamo-electric motors using electronic commutation dependent on the rotor position; Electronic commutators therefor
    • H02P6/14Electronic commutators
    • H02P6/15Controlling commutation time
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P6/00Arrangements for controlling synchronous motors or other dynamo-electric motors using electronic commutation dependent on the rotor position; Electronic commutators therefor
    • H02P6/20Arrangements for starting
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P9/00Arrangements for controlling electric generators for the purpose of obtaining a desired output
    • H02P9/14Arrangements for controlling electric generators for the purpose of obtaining a desired output by variation of field
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P9/00Arrangements for controlling electric generators for the purpose of obtaining a desired output
    • H02P9/14Arrangements for controlling electric generators for the purpose of obtaining a desired output by variation of field
    • H02P9/26Arrangements for controlling electric generators for the purpose of obtaining a desired output by variation of field using discharge tubes or semiconductor devices
    • H02P9/30Arrangements for controlling electric generators for the purpose of obtaining a desired output by variation of field using discharge tubes or semiconductor devices using semiconductor devices
    • H02P9/302Brushless excitation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02NSTARTING OF COMBUSTION ENGINES; STARTING AIDS FOR SUCH ENGINES, NOT OTHERWISE PROVIDED FOR
    • F02N11/00Starting of engines by means of electric motors
    • F02N11/04Starting of engines by means of electric motors the motors being associated with current generators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02NSTARTING OF COMBUSTION ENGINES; STARTING AIDS FOR SUCH ENGINES, NOT OTHERWISE PROVIDED FOR
    • F02N11/00Starting of engines by means of electric motors
    • F02N11/08Circuits or control means specially adapted for starting of engines
    • F02N2011/0881Components of the circuit not provided for by previous groups
    • F02N2011/0896Inverters for electric machines, e.g. starter-generators
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P2101/00Special adaptation of control arrangements for generators
    • H02P2101/45Special adaptation of control arrangements for generators for motor vehicles, e.g. car alternators
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P2201/00Indexing scheme relating to controlling arrangements characterised by the converter used
    • H02P2201/03AC-DC converter stage controlled to provide a defined DC link voltage
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P2209/00Indexing scheme relating to controlling arrangements characterised by the waveform of the supplied voltage or current
    • H02P2209/07Trapezoidal waveform
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P2209/00Indexing scheme relating to controlling arrangements characterised by the waveform of the supplied voltage or current
    • H02P2209/13Different type of waveforms depending on the mode of operation

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Control Of Eletrric Generators (AREA)
  • Motor And Converter Starters (AREA)
  • Control Of Motors That Do Not Use Commutators (AREA)

Abstract

The device has a rotor position detector circuit (24) e.g. resolver, detecting a position of a rotor (1F) e.g. field magnet, and a direct current-alternating current converter (2) arranged to input/output current in/from a synchronous triphase motor generator. The converter has an arithmetic unit (21) calculating a restarting angle of excitation on a phase of a stator (1A) e.g. armature, based on a voltage at terminals. A direct current supply source (3) e.g. battery, supplies the phase with the voltage having rectangular waves such that voltage is higher than a preset voltage.

Description

この発明は、直流交流変換機によって制御される車両用電動機の制御装置に関するものである。   The present invention relates to a control device for a vehicle motor controlled by a DC / AC converter.

例えば、特開2004−320861では、電動発電機に流れる電流の最大値を制限するPWM制御方式を廃止し、直流交流変換機において電動発電機を作動させる電流の通電角と進相角を制御することでMOSトランジスタの最大電流容量や最大許容損失を低減してMOSトランジスタと制御回路を低コスト化し、安価な3相電動発電機の制御装置を提供することを提案している。そのために車両用電動発電機の制御装置は、車両用電動発電機の電機子巻線と直流電源との間に介在し、スイッチング手段の断続により、前記電機子巻線に交流を供給する直流交流変換機において、スイッチング手段を電気角で略180度区間通電駆動する180度通電角制御方式および電気角で略120度区間通電駆動する120度通電角制御方式の2つの通電方式と、始動時にスイッチング手段に流れる電流を推定する電流推定手段を備え、電動発電機による始動動作中、電流推定手段により電流が所定値より大きく流れると推定した時は120度通電角制御方式を選択し、電流が所定値より小さく流れると推定した時は180度通電角制御方式を選択する構成としている。   For example, in Japanese Patent Application Laid-Open No. 2004-320661, the PWM control method for limiting the maximum value of the current flowing through the motor generator is abolished, and the current conduction angle and the phase advance angle for operating the motor generator in the DC / AC converter are controlled. Therefore, it is proposed to reduce the maximum current capacity and the maximum allowable loss of the MOS transistor, reduce the cost of the MOS transistor and the control circuit, and provide an inexpensive control device for the three-phase motor generator. For this purpose, a control device for a motor generator for a vehicle is interposed between an armature winding of the motor generator for a vehicle and a DC power supply, and supplies alternating current to the armature winding by intermittent switching means. In the converter, there are two energization methods: a 180 degree conduction angle control system that drives the switching means with an electrical angle of about 180 degrees and a 120 degree conduction angle control system that drives with an electrical angle of about 120 degrees, and switching at startup Current estimation means for estimating the current flowing in the means, and during the starting operation by the motor generator, when the current estimation means estimates that the current flows larger than a predetermined value, the 120-degree conduction angle control method is selected and the current is predetermined. When it is estimated that the flow will be smaller than the value, the 180-degree conduction angle control method is selected.

特開2004−320861号公報(図1及びその説明)Japanese Patent Laying-Open No. 2004-320661 (FIG. 1 and description thereof)

ここで、従来から直流電源として使用されている12Vの鉛バッテリは低温時や劣化時に内部抵抗が増大する事が知られている。上記の従来の技術では、直流電源の電圧を考慮していないために、直流電源の状態などによって内部抵抗が増大したときにバッテリ端子電圧の低下を招き、直流交流変換機の制御回路が停止してしまう問題がある。
電流を推定する方式ではバッテリの状態による実際の電流がずれてしまう。
直流電源の電圧低下によってラジオやカーナビゲーションシステムなどの他の電気機器が停止してしまい、アイドルストップするたびに再起動する問題がある。
上記問題を防止するために並列にもう一つの直流電源を使用することも可能であるが、直流電源追加のために車両コストが増加し、重量も増加する問題がある。
Here, it is known that the internal resistance of a 12V lead battery conventionally used as a DC power source increases when the temperature is low or when the battery is deteriorated. In the above conventional technology, since the voltage of the DC power supply is not taken into consideration, when the internal resistance increases due to the state of the DC power supply, etc., the battery terminal voltage is lowered, and the control circuit of the DC / AC converter stops. There is a problem.
In the method of estimating the current, the actual current varies depending on the battery state.
There is a problem that other electric devices such as a radio and a car navigation system are stopped due to a voltage drop of the DC power source and are restarted every time an idle stop is performed.
In order to prevent the above problem, another DC power supply can be used in parallel. However, the addition of the DC power supply increases the vehicle cost and the weight.

この発明は、前述のような実情に鑑みてなされたもので、確実にエンジンを始動することができるようにすることを目的とするものである。   The present invention has been made in view of the above circumstances, and an object of the present invention is to make it possible to start the engine with certainty.

この発明に係る車両用電動機の制御装置は、直流交流変換機によって車両用電動機を通電制御する車両用電動機の制御装置において、バッテリから直流交流変換機に入力される直流端子電圧あるいは直流電源端子電圧が所定の電圧より大きい定常時には固定子各相に電圧利用率の大きい通電角度幅の矩形波電圧を通電し、バッテリから直流交流変換機に入力される直流端子電圧あるいは直流電源端子電圧が所定の電圧以下になった場合には電圧利用率の小さい矩形波電圧通電制御に切り替えて直流電流を小さくし前記直流交流変換機の制御回路の動作電圧を確保する車両用電動機の制御装置である。 A control device for a vehicle motor according to the present invention is a control device for a vehicle motor that controls energization of the vehicle motor by a DC / AC converter, and is a DC terminal voltage or a DC power supply terminal voltage input from a battery to the DC / AC converter. When the phase is larger than a predetermined voltage, a rectangular wave voltage having a large voltage utilization rate is applied to each phase of the stator, and the DC terminal voltage or the DC power supply terminal voltage input from the battery to the DC / AC converter is a predetermined voltage. If it becomes a voltage below a control device for a vehicular electric motor that to ensure the operating voltage of the control circuit of the DC-AC converter to reduce the direct current is switched to a small square-wave voltage energization control with voltage utilization factor.

この発明は、直流交流変換機によって車両用電動機を通電制御する車両用電動機の制御装置において、バッテリから直流交流変換機に入力される直流端子電圧あるいは直流電源端子電圧が所定の電圧より大きい定常時には固定子各相に電圧利用率の大きい通電角度幅の矩形波電圧を通電し、バッテリから直流交流変換機に入力される直流端子電圧あるいは直流電源端子電圧が所定の電圧以下になった場合には電圧利用率の小さい矩形波電圧通電制御に切り替えて直流電流を小さくし前記直流交流変換機の制御回路の動作電圧を確保するので、確実にエンジンを始動することができる効果がある。 The present invention relates to a control apparatus for a vehicle motor that controls energization of a vehicle motor with a DC / AC converter, and when the DC terminal voltage or DC power supply terminal voltage input from the battery to the DC / AC converter is larger than a predetermined voltage. When a rectangular wave voltage with a large energization angle width is applied to each phase of the stator and the DC terminal voltage or DC power supply terminal voltage input from the battery to the DC / AC converter falls below a predetermined voltage Runode to ensure to reduce the direct current is switched to a small square-wave voltage energization control of the rate of voltage use the operating voltage of the control circuit of the DC-AC converter, there is an effect that can be reliably start the engine.

実施の形態1.
以下この発明の実施の形態1を図1〜図5により説明する。図1は巻線界磁式突極型発電電動機と直流交流変換機の回路図の事例を示す図、図2は回転子位置と180°矩形波通電電圧波形の事例を示す図、図3は回転子位置と120°矩形波通電電圧波形の事例を示す図、図4は矩形波通電時の電気回路の事例を示す図、図5は抵抗の温度依存性で事例を示す図 である。なお、各図中、同一符合は同一部分を示す。
Embodiment 1 FIG.
Embodiment 1 of the present invention will be described below with reference to FIGS. 1 is a diagram showing an example of a circuit diagram of a wound field type salient pole generator motor and a DC / AC converter, FIG. 2 is a diagram showing an example of a rotor position and a 180 ° rectangular wave conduction voltage waveform, and FIG. FIG. 4 is a diagram showing an example of the rotor position and a 120 ° rectangular wave energization voltage waveform, FIG. 4 is a diagram showing an example of an electric circuit when the rectangular wave is energized, and FIG. 5 is a diagram showing an example of the temperature dependence of resistance. In addition, in each figure, the same code | symbol shows the same part.

図1には、巻線界磁式突極型発電電動機1とそれに電流を入出力する直流交流変換機2、バッテリ等の直流電源3、及び平滑コンデンサ4の回路図を示す。 FIG. 1 shows a circuit diagram of a wound field type salient pole generator motor 1, a DC / AC converter 2 that inputs and outputs current thereto, a DC power source 3 such as a battery, and a smoothing capacitor 4.

巻線界磁式突極型発電電動機1は、Y結線の巻線を有した固定子(通常は電機子)1Aと、巻線を有する回転子(通常は界磁)1Fと、回転子位置検出装置1RPSとを有している。   A wound field type salient pole generator motor 1 includes a stator (usually an armature) 1A having a Y-connection winding, a rotor (usually a field) 1F having a winding, and a rotor position. And a detection device 1RPS.

直流交流変換機2は、演算装置21と、3相ゲートドライバ22と、界磁ゲートドライバ23と、回転子位置検出回路24とを有している。   The DC / AC converter 2 includes an arithmetic device 21, a three-phase gate driver 22, a field gate driver 23, and a rotor position detection circuit 24.

演算装置21は直流交流変換機2の入力電圧であるPN間電圧と、回転子位置検出回路信号から演算した発電電動機の回転速度とによって固定子各相の通電開始角度を計算し、3相ゲートドライバに信号を送る。3相ゲートドライバは3相上下アームのスイッチ素子(ここではMOS FET)をON/OFFすることで、UVW端子に電圧を印加し、3相電流を流す。   The arithmetic unit 21 calculates the energization start angle of each phase of the stator based on the voltage between the PNs, which is the input voltage of the DC / AC converter 2, and the rotational speed of the generator motor calculated from the rotor position detection circuit signal. Send a signal to the driver. The three-phase gate driver applies a voltage to the UVW pin and allows a three-phase current to flow by turning on and off the switch element (here MOS FET) of the three-phase upper and lower arms.

図1に、エンジン始動用電動機とそれに電流を入力する直流交流変換機の回路図を示す。演算装置は直流交流変換機の入力電圧であるPN間電圧を検出し、所定値以下になると電圧利用率の大きい制御から電圧利用率の小さい制御に切り替えて、3相ゲートドライバに信号を送る。3相ゲートドライバは3相上下アームのスイッチ素子(ここではMOS FET)をON/OFFすることで、UVW端子に電圧を印加し、3相電流を流す。図では巻線界磁式の電動機であるが、永久磁石式の電動機でも良い。   FIG. 1 shows a circuit diagram of a motor for starting an engine and a DC / AC converter for inputting current thereto. The arithmetic unit detects the PN voltage that is the input voltage of the DC / AC converter, and when it falls below a predetermined value, switches the control with a high voltage utilization rate to the control with a low voltage utilization rate, and sends a signal to the three-phase gate driver. The three-phase gate driver applies a voltage to the UVW pin and allows a three-phase current to flow by turning on and off the switch element (here MOS FET) of the three-phase upper and lower arms. In the figure, a winding field type electric motor is shown, but a permanent magnet type electric motor may be used.

図2に、180°矩形波通電時の回転子位置と直流交流変換機相電圧、線間電圧の一例を示す。ここで、δはU相通電開始角度(回転子位置に対する相対角)である。   FIG. 2 shows an example of the rotor position, the DC / AC converter phase voltage, and the line voltage when the 180 ° rectangular wave is energized. Here, δ is a U-phase energization start angle (relative angle with respect to the rotor position).

図3に、120°矩形波通電時の回転子位置と直流交流変換機相電圧、線間電圧の一例を示す。ここで、δはU相通電開始角度(回転子位置に対する相対角)である。   FIG. 3 shows an example of the rotor position, DC / AC converter phase voltage, and line voltage when a 120 ° rectangular wave is energized. Here, δ is a U-phase energization start angle (relative angle with respect to the rotor position).

図4、に180°矩形波通電時の通電回路を示す。図中inverterとして点線で囲まれた部分は、180°区間通電する駆動方式の場合、図2で示したように、各相(図では3相)で上アームか下アームのいずれかがONされており、他方はOFFされているため、図中のVdcで示した位置より左側(AC回路)では、どの運転状態においても2相が並列回路をなしている。よって、速度0におけるDCライン電流Idc0は、次式(式1)で表される。

Figure 0004391480
ここで、Vbo:バッテリ等の直流電源の端子電圧
Rb:バッテリ等の直流電源の内部抵抗
Rdc:DCラインの抵抗
Rinv:インバータの各アームの抵抗
Rac:ACラインの抵抗
Rst:電動機1の固定子の各相の抵抗である。 FIG. 4 shows an energization circuit when energizing a 180 ° rectangular wave. In the figure, the area surrounded by a dotted line as the inverter is the drive system that energizes the 180 ° section. As shown in Fig. 2, either the upper arm or the lower arm is turned on in each phase (three phases in the figure). Since the other is OFF, on the left side (AC circuit) from the position indicated by V dc in the figure, the two phases form a parallel circuit in any operating state. Therefore, the DC line current I dc0 at the speed 0 is expressed by the following formula (Formula 1).
Figure 0004391480
Where Vbo: terminal voltage of a DC power source such as a battery
Rb: Internal resistance of DC power supply such as battery
Rdc: DC line resistance
Rinv: Resistance of each arm of the inverter
Rac: AC line resistance
Rst: resistance of each phase of the stator of the electric motor 1.

120°区間通電する駆動方式の場合、図3で示したように、3相のうち1相の上アームと下アームが両方OFFであり、残りの2相では上アームか下アームの一方がONとなるため、同様に速度0におけるDCライン電流Idc0は、次式(式2)で表される。

Figure 0004391480
As shown in Fig. 3, in the case of a drive system that energizes 120 °, both the upper and lower arms of one phase are OFF in the three phases, and either the upper arm or the lower arm is ON in the remaining two phases. Therefore , similarly, the DC line current I dc0 at the speed 0 is expressed by the following expression (Expression 2).
Figure 0004391480

直流電源(バッテリ)端子電圧は次式(式3)で表される。

Figure 0004391480
The DC power supply (battery) terminal voltage is expressed by the following equation (Equation 3).
Figure 0004391480

直流交流変換機の入力電圧は次式(式4)で表される。

Figure 0004391480
なお、図4において、発電電動機(MG)の固定子巻線はY結線であるが、Δ結線の場合は等価Y結線として考えるものとし、通常の周知のデルタ/スター変換式を使うものとする。また、Rdcはプラス側とマイナス側の配分は1/2でなくても良い The input voltage of the DC / AC converter is expressed by the following equation (Equation 4).
Figure 0004391480
In FIG. 4, the stator winding of the generator motor (MG) is Y-connected, but in the case of Δ connection, it is considered as equivalent Y-connection, and the usual well-known delta / star conversion formula is used. . Also, R dc does not have to be a 1/2 distribution between the plus and minus sides

図5に、各部の抵抗値の温度特性を示す。例えば図5の抵抗値を式(1)、(3)に適用すると、20℃の時は

Figure 0004391480
FIG. 5 shows the temperature characteristics of the resistance value of each part. For example, if the resistance value shown in Fig. 5 is applied to equations (1) and (3),
Figure 0004391480

ここで、直流交流変換機の制御回路の電源を直流電源から取っているとし、その最低動作電圧を6Vとすると、Vbは8.4Vであるため動作はする。ところが、-30℃の場合の抵抗値を式(1)、(3)に適用すると、

Figure 0004391480
Here, assuming that the power supply of the control circuit of the DC / AC converter is taken from the DC power supply and the minimum operating voltage is 6V, the operation is performed because Vb is 8.4V. However, when the resistance value at -30 ° C is applied to equations (1) and (3),
Figure 0004391480

となり、最低動作電圧を下回るため、動作しなくなってしまう。この時、電源電圧の閾値として8Vを設定し、直流電源電圧が8V以下では120°矩形波通電に切り替えたとすれば、図5の-30℃の抵抗値を式(2)、(3)に適用して、   Therefore, since it is below the minimum operating voltage, it will not operate. At this time, if the threshold value of the power supply voltage is set to 8V, and the DC power supply voltage is 8V or less and switched to 120 ° rectangular wave energization, the resistance value of −30 ° C. in FIG. Apply

Figure 0004391480
Figure 0004391480

となり、最低動作電圧を下回らないために動作できる。   Therefore, it can operate so as not to fall below the minimum operating voltage.

実施の形態2.
以下、この発明の実施の形態2を図6により説明する。第1の実施例では回転速度はゼロであったが、エンジン始動時に初期にエンジンがロックせずに回りだした場合は、電流が過渡状態にあるため、電圧もゼロ回転時の最低電圧まで下がらない場合がある。回転しだした場合は、通電開始角の位相をずらすことで、電機子反作用電圧を変化させることができる。したがって、位相をずらすことで電圧を増加させることも可能となる。図6に、180°矩形波通電時の直流交流変換機のU相通電開始角度を変化させたときのトルクと直流交流変換機の入力電圧の特性を示す。U相の通電開始位相角度を遅らせることでトルクは低下するが電圧を増加させられることがわかる。ここで、U相通電開始角度δは、増加させる方向で通電開始を早める(進角)ものである。また、V相、W相はそれぞれ、U相に対して120°、240°遅れて通電している
Embodiment 2. FIG.
A second embodiment of the present invention will be described below with reference to FIG. In the first embodiment, the rotational speed was zero. However, when the engine starts at the initial stage without being locked when the engine is started, since the current is in a transient state, the voltage is also lowered to the lowest voltage at zero rotation. There may not be. When rotation starts, the armature reaction voltage can be changed by shifting the phase of the energization start angle. Therefore, the voltage can be increased by shifting the phase. FIG. 6 shows the characteristics of the torque and the input voltage of the DC / AC converter when the U-phase energization start angle of the DC / AC converter when the 180 ° rectangular wave is energized is changed. It can be seen that delaying the U-phase energization start phase angle decreases the torque but increases the voltage. Here, the U-phase energization start angle δ is for increasing the energization start (advance angle) in the increasing direction. The V phase and W phase are energized with a 120 ° and 240 ° delay from the U phase, respectively.

実施の形態3.
以下、この発明の実施の形態3を図7により説明する。第2の実施例と同様に、回転しだした場合は巻線界磁式の界磁電流を変化させることで、直流交流変換機の入力電圧を増加させることができる。図7に界磁電流を変化させたときのトルクと直流交流変換機入力電圧の特性を示す。
Embodiment 3 FIG.
A third embodiment of the present invention will be described below with reference to FIG. As in the second embodiment, when the motor starts rotating, the input voltage of the DC / AC converter can be increased by changing the winding field type field current. FIG. 7 shows the characteristics of torque and DC / AC converter input voltage when the field current is changed.

実施の形態4.
以下、この発明の実施の形態4を図11、12により説明する。図11、12は、ホールICスイッチを使用した時の通電波形を示し、図11は回転速度がゼロ付近でのホールICスイッチによる位置置センサ波形と各相矩形波電圧波形を、図12は回転速度が上昇した時のホールICスイッチによる位置置センサ波形と各相矩形波電圧波形を、夫々示している。
Embodiment 4 FIG.
The fourth embodiment of the present invention will be described below with reference to FIGS. 11 and 12 show energization waveforms when the Hall IC switch is used. FIG. 11 shows the position sensor waveform and each phase rectangular wave voltage waveform by the Hall IC switch when the rotation speed is near zero. FIG. The position sensor waveform by the Hall IC switch and the phase square wave voltage waveform when the speed is increased are shown.

なお、図8はこの発明の実施の形態1を示す図で、PWM正弦波駆動と矩形波駆動のトルク特性比較の事例を示す図であり、図9はこの発明の実施の形態1を示す図で、PWM正弦波駆動と矩形波駆動のPN端子電圧特性比較の事例を示す図であり、図10はこの発明の実施の形態1を示す図で、PWM正弦波通電と矩形波通電の波形と電圧利用率の事例を示す図である。   FIG. 8 is a diagram showing the first embodiment of the present invention, showing an example of comparison of torque characteristics between PWM sine wave driving and rectangular wave driving, and FIG. 9 is a diagram showing the first embodiment of the present invention. FIG. 10 is a diagram showing an example of comparison of PN terminal voltage characteristics between PWM sine wave driving and rectangular wave driving, and FIG. 10 is a diagram showing Embodiment 1 of the present invention. It is a figure which shows the example of a voltage utilization factor.

前述のこの発明の実施の形態1〜7に記載の要点、及び前述のこの発明の実施の形態1〜7に記載されていない要点は、以下の通りとなる。   The main points described in the first to seventh embodiments of the present invention and the main points not described in the first to seventh embodiments of the present invention are as follows.

1.直流交流変換機によって車両用電動機を通電制御する車両用電動機の制御装置において、バッテリから直流交流変換機に入力される直流端子電圧あるいは直流電源端子電圧が所定の電圧より大きい定常時には固定子各相に電圧利用率の大きい通電角度幅の矩形波電圧を通電し、バッテリから直流交流変換機に入力される直流端子電圧あるいは直流電源端子電圧が所定の電圧以下になった場合には電圧利用率の小さい矩形波電圧通電制御に切り替えることを特徴とする車両用電動機の制御装置。開放時の電圧がおよそ12Vのバッテリを使用した車両の、エンジンを始動するための電動機を制御する直流交流変換機において、相電圧は通常電圧利用率の大きい通電角度幅の矩形波電圧通電で制御されており、バッテリから直流交流変換機に入力される直流端子電圧あるいは直流電源端子電圧が所定の電圧以下になった場合に電圧利用率の小さい矩形波電圧通電制御に切り替える。これにより、次の効果が生じる。
(1)最大トルクが出るように制御された場合、電圧利用率が小さい方が直流電流は小さくなるので、バッテリ内部抵抗と配線の抵抗による電圧低下を小さくできて、直流交流変換機の制御部に入力される端子電圧が大きくなり、直流交流変換機の制御回路の動作電圧を確保できるので運転を継続可能であり、確実にエンジンを始動することができる。
(2)アイドルストップ後の再始動時に、バッテリ電圧が所定値以下に低下しないので、ラジオやナビゲーションシステムが停止せず、快適である。
1. In a vehicular motor control apparatus that controls energization of a vehicular motor with a DC / AC converter, each phase of the stator is steady when the DC terminal voltage or DC power supply terminal voltage input from the battery to the DC / AC converter is larger than a predetermined voltage. When a rectangular wave voltage with a large energization angle width is energized to the DC terminal voltage or the DC power supply terminal voltage input from the battery to the DC / AC converter, the voltage utilization ratio is reduced. A control device for an electric motor for a vehicle, wherein the control is switched to small rectangular wave voltage energization control. In a DC / AC converter that controls an electric motor for starting an engine of a vehicle using a battery with an open voltage of approximately 12V, the phase voltage is controlled by energizing a rectangular wave voltage with an energization angle width that normally has a large voltage utilization rate. When the DC terminal voltage or the DC power supply terminal voltage input from the battery to the DC / AC converter becomes a predetermined voltage or lower, switching to rectangular wave voltage energization control with a small voltage utilization factor is performed. This produces the following effects.
(1) When the maximum torque is controlled, the DC current becomes smaller when the voltage utilization rate is smaller. Therefore, the voltage drop due to the battery internal resistance and the wiring resistance can be reduced, and the control unit of the DC / AC converter Since the terminal voltage input to the terminal becomes larger and the operating voltage of the control circuit of the DC / AC converter can be secured, the operation can be continued and the engine can be started reliably.
(2) When restarting after an idle stop, the battery voltage does not drop below a predetermined value, so the radio and navigation system do not stop and are comfortable.

2.直流交流変換機によって車両用電動機を通電制御する車両用電動機の制御装置において、固定子各相相電圧は最大トルクが出力されるように通電開始角度を制御されており、バッテリから直流交流変換機に入力される直流端子電圧あるいは直流電源端子電圧が所定の電圧以下になった場合に、直流電圧を増やす方向に通電開始角度がずらされることを特徴とする車両用電動機の制御装置。開放時の電圧がおよそ12Vのバッテリを使用した車両の、エンジンを始動するための電動機を制御する直流交流変換機において、相電圧は最大トルクが出力されるように通電開始角度を制御されており、バッテリから直流交流変換機に入力される直流端子電圧あるいは直流電源端子電圧が所定の電圧以下になった場合に、直流電圧を増やすように通電開始角度がずらされる。これにより、次の効果が生じる。
(1)通電開始位相角をずらすことで、直流電流が小さくなるので、バッテリ内部抵抗と配線の抵抗による電圧低下を小さくできて、直流交流変換機の制御部に入力される端子電圧が大きくなり、直流交流変換機の制御回路の動作電圧を確保できるので運転を継続可能であり、確実にエンジンを始動することができる。
(2)アイドルストップ後の再始動時に、バッテリ電圧が所定値以下に低下しないので、ラジオやナビゲーションシステムが停止せず、快適である。
2. In a vehicular motor control apparatus that controls energization of a vehicular motor using a DC / AC converter, the energization start angle is controlled so that a maximum torque is output for each phase phase voltage of the stator. When the direct current terminal voltage or direct current power supply terminal voltage input to the voltage becomes equal to or lower than a predetermined voltage, the energization start angle is shifted in a direction to increase the direct current voltage. In a DC / AC converter that controls a motor for starting an engine of a vehicle using a battery with an open voltage of approximately 12V, the energization start angle is controlled so that a maximum torque is output for the phase voltage. The energization start angle is shifted so as to increase the DC voltage when the DC terminal voltage or the DC power supply terminal voltage input from the battery to the DC / AC converter becomes a predetermined voltage or lower. This produces the following effects.
(1) Since the DC current is reduced by shifting the energization start phase angle, the voltage drop due to the battery internal resistance and the wiring resistance can be reduced, and the terminal voltage input to the controller of the DC AC converter is increased. Since the operating voltage of the control circuit of the DC / AC converter can be secured, the operation can be continued and the engine can be started reliably.
(2) When restarting after an idle stop, the battery voltage does not drop below a predetermined value, so the radio and navigation system do not stop and are comfortable.

3.直流交流変換機によって車両用電動機を通電制御する車両用電動機の制御装置において、バッテリから直流交流変換機に入力される直流端子電圧あるいは直流電源端子電圧が所定の電圧より大きい定常時には固定子各相に電圧利用率の大きい通電角度幅の矩形波電圧を通電し、バッテリから直流交流変換機に入力される直流端子電圧あるいは直流電源端子電圧が所定の電圧以下になった場合には界磁電流を変化させることを特徴とする車両用電動機の制御装置。開放時の電圧がおよそ12Vのバッテリを使用した車両の、エンジンを始動するための巻線界磁式電動機を制御する直流交流変換機において、相電圧は通常電圧利用率の大きい通電角度幅の矩形波電圧通電で制御されており、バッテリから直流交流変換機に入力される直流端子電圧あるいは直流電源端子電圧が所定の電圧以下になった場合に界磁電流を変化させる。これにより、次の効果が生じる。
(1)界磁電流を変化させることで、直流電流が小さくできるので、バッテリ内部抵抗と配線の抵抗による電圧低下を小さくできて、直流交流変換機の制御部に入力される端子電圧が大きくなり、直流交流変換機の制御回路の動作電圧を確保できるので運転を継続可能であり、確実にエンジンを始動することができる。
(2)アイドルストップ後の再始動時に、バッテリ電圧が所定値以下に低下しないので、ラジオやナビゲーションシステムが停止せず、快適である。
3. In a vehicular motor control apparatus that controls energization of a vehicular motor with a DC / AC converter, each phase of the stator is steady when the DC terminal voltage or DC power supply terminal voltage input from the battery to the DC / AC converter is larger than a predetermined voltage. When a rectangular wave voltage with a large energization angle width is applied to the DC terminal voltage or DC power supply terminal voltage input from the battery to the DC / AC converter, the field current is reduced. A control device for an electric motor for a vehicle characterized by being changed. In a DC / AC converter that controls a wound-field motor for starting an engine of a vehicle using a battery with an open voltage of approximately 12V, the phase voltage is a rectangle with a normal energization angle width with a large voltage utilization factor. The field current is changed when the DC terminal voltage or the DC power supply terminal voltage input from the battery to the DC / AC converter becomes equal to or lower than a predetermined voltage. This produces the following effects.
(1) Since the DC current can be reduced by changing the field current, the voltage drop due to the internal resistance of the battery and the resistance of the wiring can be reduced, and the terminal voltage input to the control unit of the DC / AC converter increases. Since the operating voltage of the control circuit of the DC / AC converter can be secured, the operation can be continued and the engine can be started reliably.
(2) When restarting after an idle stop, the battery voltage does not drop below a predetermined value, so the radio and navigation system do not stop and are comfortable.

4.前記1項〜3項の何れか一に記載の車両用電動機の制御装置において、初期の相電圧の通電幅は180°であることを特徴とする車両用電動機の制御装置。これにより、次の効果が生じる。
(1)180°矩形波通電により電圧を最大利用でき、トルクを向上することができるので、エンジンを迅速に始動できる。
4). 4. The vehicle motor control device according to any one of claims 1 to 3, wherein the initial phase voltage energization width is 180 °. This produces the following effects.
(1) The maximum voltage can be utilized by energizing the 180 ° rectangular wave, and the torque can be improved, so that the engine can be started quickly.

5.前記1項に記載の車両用電動機の制御装置おいて、初期の相電圧の通電幅は180°、切り替え後の相電圧の通電幅は120°であることを特徴とする車両用電動機の制御装置。これにより、次の効果が生じる。
(1)180°と120°矩形波通電は比較的簡単なので制御が簡便になり、システムコストが低下する。
5. 2. The vehicle motor control device according to claim 1, wherein the initial phase voltage energization width is 180 ° and the phase voltage energization width after switching is 120 °. . This produces the following effects.
(1) Since 180 ° and 120 ° rectangular wave energization is relatively simple, the control becomes simple and the system cost decreases.

6.前記2項に記載の車両用電動機の制御装置において、通電開始角度は60°ずらされることを特徴とする車両用電動機の制御装置。これにより、次の効果が生じる。
(1)60°ごとの切り替えで済めば、回転センサをホールスイッチ式とすることができるので安価になり、システムコストが低下する。
6). 3. The vehicle motor control device according to claim 2, wherein the energization start angle is shifted by 60 degrees. This produces the following effects.
(1) If switching is performed every 60 °, the rotation sensor can be a Hall switch type, so that the cost is reduced and the system cost is reduced.

7.前記1項〜5項の何れか一に記載の車両用電動機の制御装置において、回転子位置検出手段はレゾルバであることを特徴とする車両用電動機の制御装置。これにより、次の効果が生じる。
(1)レゾルバなので高精度に位置検出でき、通電開始角の分解能が向上して細かく位相を制御できるので特性を向上しつつ、電圧を維持することができる。
7). 6. The vehicle motor control device according to claim 1, wherein the rotor position detecting means is a resolver. This produces the following effects.
(1) Since it is a resolver, the position can be detected with high accuracy, the resolution of the energization start angle is improved and the phase can be finely controlled, so that the voltage can be maintained while improving the characteristics.

この発明の実施の形態1を示す図で、巻線界磁式突極型発電電動機と直流交流変換機の回路図の事例を示す図である。BRIEF DESCRIPTION OF THE DRAWINGS It is a figure which shows Embodiment 1 of this invention, and is a figure which shows the example of the circuit diagram of a winding field type salient pole type generator motor and a DC / AC converter. この発明の実施の形態1を示す図で、回転子位置と180°矩形波通電電圧波形の事例を示す図である。It is a figure which shows Embodiment 1 of this invention, and is a figure which shows the example of a rotor position and a 180 degrees rectangular wave energization voltage waveform. この発明の実施の形態1を示す図で、回転子位置と120°矩形波通電電圧波形の事例を示す図である。It is a figure which shows Embodiment 1 of this invention, and is a figure which shows the example of a rotor position and a 120 degrees rectangular wave energization voltage waveform. この発明の実施の形態1を示す図で、矩形波通電時の電気回路の事例を示す図である。It is a figure which shows Embodiment 1 of this invention, and is a figure which shows the example of the electric circuit at the time of rectangular wave energization. この発明の実施の形態1を示す図で、抵抗の温度依存性で事例を示す図ある。It is a figure which shows Embodiment 1 of this invention, and is a figure which shows an example by the temperature dependence of resistance. この発明の実施の形態2を示す図で、トルクと直流交流変換機入力電圧の通電開始角度ずらしに対する特性の事例を示す図である。It is a figure which shows Embodiment 2 of this invention, and is a figure which shows the example of the characteristic with respect to the energization start angle shift of a torque and a DC / AC converter input voltage. この発明の実施の形態3を示す図で、トルクと直流交流変換機入力電圧の界磁電流に対する特性の事例を示す図である。It is a figure which shows Embodiment 3 of this invention, and is a figure which shows the example of the characteristic with respect to the field current of a torque and a DC / AC converter input voltage. この発明の実施の形態1を示す図で、PWM正弦波駆動と矩形波駆動のトルク特性比較の事例を示す図である。It is a figure which shows Embodiment 1 of this invention, and is a figure which shows the example of a torque characteristic comparison of PWM sine wave drive and rectangular wave drive. この発明の実施の形態1を示す図で、PWM正弦波駆動と矩形波駆動のPN端子電圧特性比較の事例を示す図である。It is a figure which shows Embodiment 1 of this invention, and is a figure which shows the example of the PN terminal voltage characteristic comparison of a PWM sine wave drive and a rectangular wave drive. この発明の実施の形態1を示す図で、PWM正弦波通電と矩形波通電の波形と電圧利用率の事例を示す図である。It is a figure which shows Embodiment 1 of this invention, and is a figure which shows the example of the waveform and voltage utilization factor of PWM sine wave energization and rectangular wave energization. この発明の実施の形態4を示す図で、回転速度がゼロ付近でのホールICスイッチによる位置置センサ波形と各相矩形波電圧波形の事例を示す図である。It is a figure which shows Embodiment 4 of this invention, and is a figure which shows the example of the position sensor waveform by a Hall IC switch in the rotation speed vicinity of zero, and each phase rectangular wave voltage waveform. この発明の実施の形態4を示す図で、回転速度が上昇した時のホールICスイッチによる位置置センサ波形と各相矩形波電圧波形の事例を示す図である。It is a figure which shows Embodiment 4 of this invention, and is a figure which shows the example of the position sensor waveform by a Hall IC switch when a rotational speed rises, and each phase rectangular wave voltage waveform.

符号の説明Explanation of symbols

1 巻線界磁式突極型発電電動機、
1A 固定子(通常は電機子)、
1F 回転子(通常は界磁)、
1RPS 回転子位置検出装置、
2 直流交流変換機、
21 演算装置、
22 3相ゲートドライバ、
23 界磁ゲートドライバ、
24 回転子位置検出回路、
3 直流電源、
4 平滑コンデンサ、
5 シャント抵抗、
6 界磁スイッチ素子。
1 winding field salient pole generator motor,
1A stator (usually armature),
1F rotor (usually field),
1RPS rotor position detector,
2 DC / AC converter,
21 arithmetic unit,
22 3-phase gate driver,
23 Field gate driver,
24 rotor position detection circuit,
3 DC power supply,
4 Smoothing capacitor,
5 Shunt resistance,
6 Field switch element.

Claims (7)

直流交流変換機によって車両用電動機を通電制御する車両用電動機の制御装置において、バッテリから直流交流変換機に入力される直流端子電圧あるいは直流電源端子電圧が所定の電圧より大きい定常時には固定子各相に電圧利用率の大きい通電角度幅の矩形波電圧を通電し、バッテリから直流交流変換機に入力される直流端子電圧あるいは直流電源端子電圧が所定の電圧以下になった場合には電圧利用率の小さい矩形波電圧通電制御に切り替えて直流電流を小さくし前記直流交流変換機の制御回路の動作電圧を確保することを特徴とする車両用電動機の制御装置。 In a vehicular motor control apparatus that controls energization of a vehicular motor with a DC / AC converter, each phase of the stator is steady when the DC terminal voltage or DC power supply terminal voltage input from the battery to the DC / AC converter is larger than a predetermined voltage. When a rectangular wave voltage with a large energization angle width is energized to the DC terminal voltage or the DC power supply terminal voltage input from the battery to the DC / AC converter, the voltage utilization ratio is reduced. control device of a small square-wave voltage is switched to the energization control to reduce the DC current vehicle motor according to claim placed on maintaining the operating voltage of the control circuit of the DC-AC converter. 直流交流変換機によって車両用電動機を通電制御する車両用電動機の制御装置において、固定子各相相電圧は最大トルクが出力されるように通電開始角度を制御されており、バッテリから直流交流変換機に入力される直流端子電圧あるいは直流電源端子電圧が所定の電圧以下になった場合に直流電圧を増やす方向に通電開始角度がずらされて直流電流を小さくし前記直流交流変換機の制御回路の動作電圧を確保することを特徴とする車両用電動機の制御装置。 In a vehicular motor control apparatus that controls energization of a vehicular motor using a DC / AC converter, the energization start angle is controlled so that a maximum torque is output for each phase phase voltage of the stator. DC terminal voltage or a DC power source terminal voltage is input to the control circuit of the DC-AC converter to reduce the direct current offset is power distribution start angle in the direction of increasing the DC voltage when it becomes less than a predetermined voltage a control device for a vehicle electric motor, characterized in placed on maintaining the operating voltage. 直流交流変換機によって車両用電動機を通電制御する車両用電動機の制御装置において、バッテリから直流交流変換機に入力される直流端子電圧あるいは直流電源端子電圧が所定の電圧より大きい定常時には固定子各相に電圧利用率の大きい通電角度幅の矩形波電圧を通電し、バッテリから直流交流変換機に入力される直流端子電圧あるいは直流電源端子電圧が所定の電圧以下になった場合には界磁電流を変化させて直流電流を小さくし前記直流交流変換機の制御回路の動作電圧を確保することを特徴とする車両用電動機の制御装置。 In a vehicular motor control apparatus that controls energization of a vehicular motor with a DC / AC converter, each phase of the stator is steady when the DC terminal voltage or DC power supply terminal voltage input from the battery to the DC / AC converter is larger than a predetermined voltage. When a rectangular wave voltage with a large energization angle width is applied to the DC terminal voltage or DC power supply terminal voltage input from the battery to the DC / AC converter, the field current is reduced. a control device for a vehicle electric motor, characterized in placed on maintaining the operating voltage of the control circuit of the DC-AC converter to reduce the direct current is varied. 請求項1〜請求項3の何れか一記載の車両用電動機の制御装置において、初期の相電圧の通電幅は180°であることを特徴とする車両用電動機の制御装置。   4. The vehicle motor control device according to claim 1, wherein the initial phase voltage energization width is 180 degrees. 請求項1に記載の車両用電動機の制御装置おいて、初期の相電圧の通電幅は180°、切り替え後の相電圧の通電幅は120°であることを特徴とする車両用電動機の制御装置。   2. The vehicle motor control device according to claim 1, wherein the initial phase voltage conduction width is 180 ° and the phase voltage conduction width after switching is 120 °. . 請求項2に記載の車両用電動機の制御装置において、通電開始角度は60°ずらされることを特徴とする車両用電動機の制御装置。   3. The control apparatus for a vehicle motor according to claim 2, wherein the energization start angle is shifted by 60 degrees. 請求項1〜請求項5の何れか一に記載の車両用電動機の制御装置において、回転子位置検出手段はレゾルバであることを特徴とする車両用電動機の制御装置。
6. The control apparatus for a vehicle motor according to claim 1, wherein the rotor position detecting means is a resolver.
JP2006005093A 2006-01-12 2006-01-12 Control device for electric motor for vehicle Active JP4391480B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2006005093A JP4391480B2 (en) 2006-01-12 2006-01-12 Control device for electric motor for vehicle
FR0752597A FR2897211B1 (en) 2006-01-12 2007-01-10 DEVICE FOR CONTROLLING MOTOR VEHICLE MOTOR

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006005093A JP4391480B2 (en) 2006-01-12 2006-01-12 Control device for electric motor for vehicle

Publications (2)

Publication Number Publication Date
JP2007189807A JP2007189807A (en) 2007-07-26
JP4391480B2 true JP4391480B2 (en) 2009-12-24

Family

ID=38310065

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006005093A Active JP4391480B2 (en) 2006-01-12 2006-01-12 Control device for electric motor for vehicle

Country Status (2)

Country Link
JP (1) JP4391480B2 (en)
FR (1) FR2897211B1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102010030318A1 (en) 2010-06-21 2011-12-22 Robert Bosch Gmbh Method for controlling commutated electromotor e.g. brushless direct current motor for car, involves adjusting block width by adjustment of commutation time during starting and/or rotation speed change of electromotor continuously
CN105610359B (en) * 2016-01-19 2018-08-24 北京航天发射技术研究所 Generator power output control method, apparatus and system

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000354392A (en) * 1999-06-09 2000-12-19 Denso Corp Brushless motor
JP2002058279A (en) * 2000-08-07 2002-02-22 Sanyo Electric Co Ltd Drive control circuit of brushless motor
US6707278B2 (en) * 2002-04-22 2004-03-16 Delphi Technologies, Inc. Transition voltage start regulator
EP1466779A3 (en) * 2003-04-10 2006-09-06 Hitachi, Ltd. Motor control device

Also Published As

Publication number Publication date
JP2007189807A (en) 2007-07-26
FR2897211B1 (en) 2016-05-06
FR2897211A1 (en) 2007-08-10

Similar Documents

Publication Publication Date Title
JP4256392B2 (en) Control device for vehicle generator motor
JP4906369B2 (en) Method and apparatus for controlling synchronous motor
JP4609474B2 (en) Rotating electrical machine equipment
US8054030B2 (en) Permanent magnet AC motor systems and control algorithm restart methods
JP5630474B2 (en) Inverter
JP4406552B2 (en) Electric motor control device
JP6217554B2 (en) Inverter device
WO2015129590A1 (en) Supercharger and ship
US8890451B2 (en) Sensorless control unit for brushless DC motor
JP2014204451A (en) Controller of vehicular generator motor and method thereof
JP5635032B2 (en) Synchronous motor drive device and blower using the same
JP2010045941A (en) Motor control circuit, fan driver for vehicle and motor control method
US8729840B2 (en) Sensorless control unit for brushless DC motor
JP6463966B2 (en) Motor driving device, motor driving module and refrigeration equipment
JP4391480B2 (en) Control device for electric motor for vehicle
JP2018160972A (en) Control device of motor drive circuit and diagnostic method of motor drive circuit
CN111279607B (en) Control device for rotating electrical machine
JP2011030385A (en) Motor drive and method of determining relative position of rotor equipped in motor
JP2007300767A (en) Ac generator and motor drive system for vehicle
JP6578789B2 (en) Control device for rotating electrical machine
JP5998656B2 (en) Electric motor control device
CN112930648B (en) Power conversion device
JP2012223026A (en) Driving device
JP6719588B2 (en) Electric motor control device
JP6091571B1 (en) Rotating electric machine and method for controlling rotating electric machine

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090120

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090323

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090929

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20091007

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121016

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4391480

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121016

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131016

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250