JP4389514B2 - Method for forming thin film semiconductor - Google Patents

Method for forming thin film semiconductor Download PDF

Info

Publication number
JP4389514B2
JP4389514B2 JP2003290487A JP2003290487A JP4389514B2 JP 4389514 B2 JP4389514 B2 JP 4389514B2 JP 2003290487 A JP2003290487 A JP 2003290487A JP 2003290487 A JP2003290487 A JP 2003290487A JP 4389514 B2 JP4389514 B2 JP 4389514B2
Authority
JP
Japan
Prior art keywords
thin film
silicon thin
laser
laser beam
crystalline silicon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003290487A
Other languages
Japanese (ja)
Other versions
JP2005064134A (en
Inventor
史人 岡
正治 新沢
信一 村松
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Cable Ltd
Original Assignee
Hitachi Cable Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Cable Ltd filed Critical Hitachi Cable Ltd
Priority to JP2003290487A priority Critical patent/JP4389514B2/en
Publication of JP2005064134A publication Critical patent/JP2005064134A/en
Application granted granted Critical
Publication of JP4389514B2 publication Critical patent/JP4389514B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Landscapes

  • Photovoltaic Devices (AREA)
  • Recrystallisation Techniques (AREA)

Description

本発明は、結晶性シリコン薄膜を有する薄膜半導体の形成方法に関するものである。 The present invention relates to a method for forming a thin film semiconductor having a crystalline silicon thin film.

近年、非導電性の異種基板、例えばガラス基板等の上に、シリコン結晶薄膜を形成する研究が盛んに行なわれている。このガラス基板上に形成したシリコン結晶薄膜の用途は広く、液晶デバイス用TFT(Thin Film Transistor)や薄膜光電変換素子などに用いられている。   In recent years, research on forming a silicon crystal thin film on a non-conductive dissimilar substrate such as a glass substrate has been actively conducted. The silicon crystal thin film formed on the glass substrate is widely used for liquid crystal device TFTs (Thin Film Transistors), thin film photoelectric conversion elements, and the like.

薄膜太陽光発電素子は、安価な基板上に、低温プロセスによって良好な結晶性をもつ結晶性シリコン薄膜を形成し、これを光電変換素子に用いて、低コスト化と高性能化を図ったものである。この結晶性シリコン薄膜を光電変換素子に用いた結晶シリコン光電変換素子は、非晶質シリコン光電変換素子の問題点である光劣化が生じることはなく、また、非晶質シリコン光電変換素子では感度のない(変換不能な)長波長光をも、電気的エネルギーに変換することができる。この技術は、光電変換素子だけではなく、光センサ等の光電変換装置への応用も可能であると期待されている。   Thin-film photovoltaic power generation elements are made by forming a crystalline silicon thin film with good crystallinity on a low-cost substrate using a low-temperature process, and using this as a photoelectric conversion element to reduce costs and improve performance. It is. The crystalline silicon photoelectric conversion element using the crystalline silicon thin film as a photoelectric conversion element does not cause light degradation, which is a problem of the amorphous silicon photoelectric conversion element. Even long-wavelength light without (unconvertible) light can be converted into electrical energy. This technology is expected to be applicable not only to photoelectric conversion elements but also to photoelectric conversion devices such as optical sensors.

この結晶シリコン光電変換素子の一般的な製造方法として、基板上に、プラズマCVD法により結晶性シリコン薄膜を直接堆積させる手法が用いられている。これによって、基板上に、結晶性シリコン薄膜を比較的低温で形成することができ、低コストで結晶性シリコン薄膜を成膜することができる。プラズマCVD法による成膜条件は、水素でシラン系原料ガスを約15倍以上に希釈し、プラズマ反応室内圧力を1.33〜1.33×103Pa(10mTorr〜10Torr)、基板温度を150〜550℃、望ましくは150〜400℃の範囲内に制御するものであり、これによって、基板上に結晶性シリコン薄膜を形成することができる。 As a general manufacturing method of this crystalline silicon photoelectric conversion element, a method of directly depositing a crystalline silicon thin film on a substrate by a plasma CVD method is used. Accordingly, the crystalline silicon thin film can be formed on the substrate at a relatively low temperature, and the crystalline silicon thin film can be formed at a low cost. The film formation conditions by the plasma CVD method are that the silane source gas is diluted about 15 times or more with hydrogen, the pressure in the plasma reaction chamber is 1.33 to 1.33 × 10 3 Pa (10 mTorr to 10 Torr), and the substrate temperature is 150. The crystalline silicon thin film can be formed on the substrate by controlling the temperature within a range of ˜550 ° C., desirably 150 ° C. to 400 ° C.

しかし、このプラズマCVD法による成膜方法では、結晶粒径の大きなポリシリコンを形成することは困難であった。また、発電機能の根幹を担うi層(真性半導体の薄膜)は、素子構造最適化のためにドーピングを行なうと品質が急激に低下するという問題があった。これらのことから、低コスト化に有利なシングルセルで、10%を大きく上回る高い変換効率を達成することは困難であった。   However, it has been difficult to form polysilicon having a large crystal grain size by this plasma CVD method. In addition, the i layer (intrinsic semiconductor thin film), which is the basis of the power generation function, has a problem that the quality is drastically lowered when doping is performed to optimize the device structure. For these reasons, it has been difficult to achieve high conversion efficiency greatly exceeding 10% with a single cell advantageous for cost reduction.

結晶性シリコン薄膜の他の形成方法として、レーザ光を照射しながら走査することによって、結晶性シリコン薄膜の結晶化を行う試みも種々検討されている。この方法は、異種基板上に非晶質シリコン層を形成し、この非晶質シリコン層に帯状の連続波レーザ光を照射しながら走査することで、非晶質シリコン層を融解・結晶化させて多結晶シリコン層を得るものであり、走査方向に長い結晶粒を成長させることができる(例えば、特許文献1参照)。   As other methods for forming the crystalline silicon thin film, various attempts have been made to crystallize the crystalline silicon thin film by scanning while irradiating laser light. In this method, an amorphous silicon layer is formed on a heterogeneous substrate, and the amorphous silicon layer is scanned while being irradiated with a continuous band laser beam, thereby melting and crystallizing the amorphous silicon layer. Thus, a polycrystalline silicon layer is obtained, and crystal grains that are long in the scanning direction can be grown (see, for example, Patent Document 1).

この連続波レーザ光の照射による結晶化方法は、ディスプレイ用TFT基板向けに開発が進められている。ディスプレイ用TFT基板の表面にはMOSFETを形成する必要があることから、この結晶化方法により得られた結晶性シリコン薄膜には平坦であることが求められている。ここで、固体レーザを用いることで、非常に平坦な結晶性シリコン薄膜が得られることが報告されている(例えば、非特許文献1参照)。   This crystallization method by irradiation with continuous wave laser light is being developed for display TFT substrates. Since it is necessary to form a MOSFET on the surface of the display TFT substrate, the crystalline silicon thin film obtained by this crystallization method is required to be flat. Here, it has been reported that a very flat crystalline silicon thin film can be obtained by using a solid-state laser (see, for example, Non-Patent Document 1).

また、TFT等の電子デバイスで用いる表面に凹凸を有する結晶性シリコン薄膜を、レーザ光を用いて形成する場合、膜厚50nmのアモルファスシリコンにエキシマレーザ光を照射することで、表面に、平均二乗根(RMS)が最大50nmの凹凸を有する結晶性シリコン薄膜が得られることが報告されている(例えば、非特許文献2参照)。   In addition, when a crystalline silicon thin film having unevenness on the surface used for an electronic device such as a TFT is formed using laser light, the surface of the surface is average squared by irradiating the excimer laser light to amorphous silicon having a thickness of 50 nm. It has been reported that a crystalline silicon thin film having irregularities with a root (RMS) of up to 50 nm can be obtained (for example, see Non-Patent Document 2).

特開平2001−351863号公報JP 2001-351863 A 佐々木伸夫、外6名,「CWラテラル結晶化(CLC)技術による移動度500cm2/Vsを超える新低温ポリSiTFT技術」,電子情報通信学会論文誌,C vol.J85-C,No.8,2002年8月,p.601-608Nobuo Sasaki and 6 others, “New low-temperature poly-Si TFT technology with mobility exceeding 500 cm 2 / Vs by CW lateral crystallization (CLC) technology”, IEICE Transactions, C vol.J85-C, No.8, 2002 August, p.601-608 菅勝行 外4名,「エキシマレーザアニールpoly-Si膜におけるレーザ照射雰囲気と照射回数が表面モフォロジーに与える影響」,電子情報通信学会論文誌,C vol.J85-C,No.8,2002年8月,p.630-638Katsuyuki Tsuji, 4 others, “Effect of laser irradiation atmosphere and number of irradiation on surface morphology in excimer laser annealed poly-Si film”, IEICE Transactions, C vol.J85-C, No.8, 2002 8 Moon, p.630-638

ところで、非特許文献2記載の凹凸を有する結晶性シリコン薄膜は、エキシマレーザを用いて500回のパルス照射を行うことで得られたものであり、非常に極端な製造条件であることから生産性が悪く、量産に適した製造方法ではなかった。また、このレーザ光によるアニール後の結晶シリコンは凝集し、かつ、点在していることから、電子デバイスとしての使用に適したものではなかった。   By the way, the crystalline silicon thin film having irregularities described in Non-Patent Document 2 is obtained by performing 500 times of pulse irradiation using an excimer laser, and is a very extreme manufacturing condition. However, it was not a production method suitable for mass production. Further, since the crystalline silicon after annealing by the laser beam is aggregated and scattered, it is not suitable for use as an electronic device.

以上の事情を考慮して創案された本発明の目的は、表面に凹凸を有する結晶性シリコン薄膜を備えた薄膜半導体の形成方法を提供することにある。 An object of the present invention was developed in view of the above circumstances, it is to provide a method of forming a thin film semiconductor body provided with a crystalline silicon thin film having an uneven surface.

上記目的を達成すべく本発明に係る薄膜半導体の形成方法は、基板上に設けた非単結晶シリコン薄膜にレーザ幅方向に光の強度分布を有する連続波レーザ光をレーザ幅方向に垂直な方向に所定の間隔を隔てて複数回走査させながら照射し、上記非単結晶シリコン薄膜のレーザ光照射部を完全に融解し結晶化させ、表面に複数の凸条を形成し、次に上記凸条の長手方向と直交する方向に上記連続波レーザ光を所定の間隔を隔てて複数回走査させながら照射し、上記凸条の長手方向の一部を上記凸条よりも更に隆起させ、四角錐状の凸部が所定パターンで複数配列された結晶性シリコン薄膜に形成するものである。 In order to achieve the above object, a method for forming a thin film semiconductor according to the present invention is a method in which a continuous wave laser beam having a light intensity distribution in a laser width direction is applied to a non-single crystal silicon thin film provided on a substrate in a direction perpendicular to the laser width direction. Irradiating a plurality of scans at predetermined intervals to completely melt and crystallize the laser light irradiation part of the non-single crystal silicon thin film, and form a plurality of protrusions on the surface, and then the protrusions The continuous wave laser beam is irradiated while scanning a plurality of times at a predetermined interval in a direction orthogonal to the longitudinal direction of the ridge, and a part of the ridge in the longitudinal direction is further raised from the ridge, thereby forming a quadrangular pyramid shape. Are formed on a crystalline silicon thin film in which a plurality of protrusions are arranged in a predetermined pattern.

ここで、連続波レーザ光はガウシアン分布を有し、その光源は固体レーザである。 Here, the continuous wave laser light has a Gaussian distribution, and its light source is a solid-state laser.

以上によれば、結晶性シリコン薄膜の表面に、表面粗さの平均二乗根が60nm以上の凸条又は凸部を形成することができる。   According to the above, it is possible to form protrusions or protrusions having an average square root of surface roughness of 60 nm or more on the surface of the crystalline silicon thin film.

本発明によれば、基板上に、表面に凸条を有する結晶性シリコン薄膜を設けることで、光閉じ込め効果が大きな薄膜半導体を得ることができるという優れた効果を発揮する。   According to the present invention, by providing a crystalline silicon thin film having protrusions on the surface on a substrate, an excellent effect is obtained that a thin film semiconductor having a large light confinement effect can be obtained.

以下、本発明の好適一実施の形態を添付図面に基づいて説明する。   DESCRIPTION OF EXEMPLARY EMBODIMENTS Hereinafter, a preferred embodiment of the invention will be described with reference to the accompanying drawings.

本発明の好適な一実施形態に係る薄膜半導体の斜視図を図1に示す。   A perspective view of a thin film semiconductor according to a preferred embodiment of the present invention is shown in FIG.

図1に示すように、本実施の形態に係る薄膜半導体10は、基板11上の少なくとも一部に、表面に所定間隔Pで断面鋸刃状の凸条12を複数有する結晶性シリコン薄膜14を設けたものである。凸条12の群が凹凸部13を形成する。   As shown in FIG. 1, the thin film semiconductor 10 according to the present embodiment includes a crystalline silicon thin film 14 having a plurality of saw-toothed ridges 12 with a predetermined interval P on the surface at least partially on a substrate 11. It is provided. The group of ridges 12 forms the concavo-convex portion 13.

凹凸部13の表面粗さの平均二乗根は、60nm以上、好ましくは100nm以上である。   The mean square root of the surface roughness of the uneven portion 13 is 60 nm or more, preferably 100 nm or more.

次に、本実施の形態に係る薄膜半導体10の製造方法を、添付図面に基づいて説明する。   Next, a method for manufacturing the thin film semiconductor 10 according to the present embodiment will be described with reference to the accompanying drawings.

図2に示すように、ガラス基板等の異種基板11上に、非晶質シリコンや微結晶シリコン等の非単結晶シリコン薄膜24を形成する。次に、この非単結晶シリコン薄膜24に、領域Aで示す矩形状のレーザ光(半導体レーザ光)を照射する。その後、レーザ光を照射しながら、矢印DSの方向に走査する。このレーザ光の照射、走査によってレーザアニールがなされ、図3に示すように、レーザ光が照射された部分の非単結晶シリコン薄膜24が融解、結晶化し、多結晶シリコン等の結晶性シリコン薄膜34となる。この時、レーザ光に、走査方向DSと垂直なレーザ幅方向(図3中では左右方向)に強度分布を持たせることで、結晶性シリコン薄膜34の表面に凸条12が形成される。 As shown in FIG. 2, a non-single-crystal silicon thin film 24 such as amorphous silicon or microcrystalline silicon is formed on a heterogeneous substrate 11 such as a glass substrate. Next, the non-single-crystal silicon thin film 24 is irradiated with a rectangular laser beam (semiconductor laser beam) indicated by the region A. Then, while irradiating the laser beam to scan in the direction of arrow D S. Laser annealing is performed by this laser light irradiation and scanning, and as shown in FIG. 3, the non-single crystal silicon thin film 24 in the portion irradiated with the laser light is melted and crystallized to form a crystalline silicon thin film 34 such as polycrystalline silicon. It becomes. At this time, the laser beam, the scanning direction D S perpendicular laser width direction (the in Figure 3 the left-right direction) can be performed by providing the intensity distribution, ridges 12 are formed on the surface of the crystalline silicon thin film 34.

その後、レーザ光を照射する領域A(図2参照)を、矢印DMの方向に所定間隔Pで順次ずらしていくことで、基板11上の少なくとも一部に、表面に所定間隔Pで断面鋸刃状の凸条12を有する結晶性シリコン薄膜14が形成され、図1に示した薄膜半導体10が得られる。 Thereafter, the region irradiated with the laser beam A (see FIG. 2), by sequentially shifting at predetermined intervals P in the direction of arrow D M, on at least a portion of the substrate 11, cross saw on the surface at predetermined intervals P A crystalline silicon thin film 14 having blade-like ridges 12 is formed, and the thin film semiconductor 10 shown in FIG. 1 is obtained.

ここで、非単結晶シリコン薄膜24に対する照射に用いるレーザ光として、レーザ幅方向に、弱→強→弱→…→弱(図3中では弱→強→弱→強→弱)のような強度分布を形成することで、強度が強いレーザ光が照射された部分が隆起して凸部となる。レーザ光を走査することで、凸部が連続的につながって凸条12となる。   Here, as a laser beam used for irradiation to the non-single crystal silicon thin film 24, an intensity such as weak → strong → weak → ... → weak (in FIG. 3, weak → strong → weak → strong → weak) in the laser width direction. By forming the distribution, the portion irradiated with the laser beam having a high intensity is raised and becomes a convex portion. By projecting the laser beam, the convex portions are continuously connected to form the ridge 12.

弱→強→弱→…→弱のような強度分布には、一般的にガウシアン分布がある。レーザ光の光源として、固体レーザ(例えば、Nd:YAGレーザやNd:YVO4レーザ)を用いる場合、発振されるレーザ光は、円形のガウシアン分布を有する。従って、これらの固体レーザから発振されるレーザ光は、もともと強度分布を有していることから、レーザ光に光学的な加工を施すことなく、そのまま用いることができるという利点がある。また、レーザ光の光源として、半導体レーザを用いる場合、図5に示すように、矩形の照射領域(例えば、0.1mm×0.2mm)51を有するレーザ光を発振することができる。この場合、レーザ光の光路上に、部分的にスリツトやNDフィルタ等を配することで、レーザ光のレーザ幅方向(図5中では左右方向)に強度分布を持たせることが可能となる。尚、レーザ照射に用いるレーザ光としては、固体レーザや半導体レーザに特に限定するものではなく、非単結晶シリコン薄膜24を融解、結晶化することができる波長のレーザ光であれば全て適用可能である。 The intensity distribution such as weak → strong → weak → ... → weak is generally a Gaussian distribution. When a solid-state laser (for example, Nd: YAG laser or Nd: YVO 4 laser) is used as the laser light source, the oscillated laser light has a circular Gaussian distribution. Therefore, since the laser light oscillated from these solid-state lasers originally has an intensity distribution, there is an advantage that the laser light can be used as it is without being optically processed. Further, when a semiconductor laser is used as a light source of laser light, laser light having a rectangular irradiation region (for example, 0.1 mm × 0.2 mm) 51 can be oscillated as shown in FIG. In this case, it is possible to provide an intensity distribution in the laser width direction (left and right direction in FIG. 5) of the laser light by partially arranging a slit, an ND filter, or the like on the optical path of the laser light. The laser beam used for laser irradiation is not particularly limited to a solid laser or a semiconductor laser, and any laser beam having a wavelength capable of melting and crystallizing the non-single-crystal silicon thin film 24 can be applied. is there.

次に、本実施の形態の作用を説明する。   Next, the operation of the present embodiment will be described.

非単結晶シリコン薄膜24に、レーザ幅方向に強度分布を有するレーザ光を照射させながら走査し、その後、レーザ光を照射する領域を所定間隔Pで順次ずらしていくことにより、凸条12を規則的に、所定間隔Pで形成することが可能となる。これによって、結晶性シリコン薄膜34の凹凸部13における各凸条12間に、所望の幅のV字型の溝を形成することができ、大きな光閉じ込め効果を有する結晶性シリコン薄膜34を得ることが可能となる。よって、本実施の形態に係る薄膜半導体10を、太陽電池等のデバイスに適用することで、10%を大きく上回る高い変換効率を容易に達成することができる。   The non-single crystal silicon thin film 24 is scanned while being irradiated with a laser beam having an intensity distribution in the laser width direction, and then the region to be irradiated with the laser beam is sequentially shifted by a predetermined interval P, whereby the ridges 12 are regulated. Therefore, it can be formed at a predetermined interval P. As a result, a V-shaped groove having a desired width can be formed between the ridges 12 in the concavo-convex portion 13 of the crystalline silicon thin film 34, and a crystalline silicon thin film 34 having a large light confinement effect is obtained. Is possible. Therefore, by applying the thin film semiconductor 10 according to the present embodiment to a device such as a solar cell, high conversion efficiency greatly exceeding 10% can be easily achieved.

また、凹凸部13の表面粗さは、レーザ光の形状(領域Aの形状)はそのままの状態でレーザ光の強度を調整することで、自在に調整可能である。具体的にはレーザ光のレーザ強度を大きくすることで凸条12の高さを高く、レーザ光のレーザ強度を小さくすることで凸条12の高さを低く調整することができる。結晶性シリコン薄膜34における凸条12の高さの平均二乗根を60nm以上、好ましくは100nm以上に調整することで、表面が平坦な結晶性シリコン薄膜と比較して光吸収量を増大させることができる。ここで、レーザ光の強度は、非単結晶シリコン薄膜24のレーザ光照射部を完全に融解できる範囲であり、非単結晶シリコン薄膜24の材質、膜厚などに応じて適宜決定される。   Further, the surface roughness of the concavo-convex portion 13 can be freely adjusted by adjusting the intensity of the laser beam while keeping the shape of the laser beam (the shape of the region A) as it is. Specifically, the height of the ridge 12 can be increased by increasing the laser intensity of the laser beam, and the height of the ridge 12 can be decreased by decreasing the laser intensity of the laser beam. By adjusting the average square root of the height of the ridges 12 in the crystalline silicon thin film 34 to 60 nm or more, preferably 100 nm or more, the amount of light absorption can be increased as compared with a crystalline silicon thin film having a flat surface. it can. Here, the intensity of the laser beam is within a range in which the laser beam irradiated portion of the non-single-crystal silicon thin film 24 can be completely melted, and is appropriately determined according to the material, film thickness, etc. of the non-single-crystal silicon thin film 24.

また、凹凸部13を備えた結晶性シリコン薄膜34の製造は、連続波レーザ光を用いていることから、生産性が良好であり、量産に適している。また、このレーザ光によるアニール後の結晶性シリコン薄膜34は、連続して、かつ、全面に亘って均一に形成されていることから、電子デバイスとしての使用に適している。   Moreover, since the crystalline silicon thin film 34 provided with the concavo-convex portion 13 is produced using continuous wave laser light, the productivity is good and suitable for mass production. Further, the crystalline silicon thin film 34 after annealing by this laser beam is suitable for use as an electronic device because it is formed continuously and uniformly over the entire surface.

また、レーザ照射に用いるレーザ光として、照射領域が矩形で、かつ、レーザ幅方向が非常に長いものを用いることで、1回の走査で、大面積の非単結晶シリコン薄膜24を融解、結晶化することができる。これによって、結晶性シリコン薄膜34の製造工程の作業性が大幅に向上し、延いては薄膜半導体10の製造コストの低減を図ることができる。   Further, as the laser light used for laser irradiation, a non-single-crystal silicon thin film 24 having a large area is melted and crystallized in one scan by using a laser beam having a rectangular irradiation region and a very long laser width direction. Can be Thereby, the workability of the manufacturing process of the crystalline silicon thin film 34 is greatly improved, and the manufacturing cost of the thin film semiconductor 10 can be reduced.

また、レーザ照射に用いるレーザ光として、Nd:YAGやNd:YVO4等の固体レーザを用い、結晶性シリコン薄膜34の結晶化を行なうことで、ランニングコストを大幅に低減させることができ、かつ、品質の高い結晶性シリコン薄膜34(多結晶シリコン)を形成することが可能となる。 Further, by using a solid-state laser such as Nd: YAG or Nd: YVO 4 as the laser light used for laser irradiation, the crystalline silicon thin film 34 is crystallized, so that the running cost can be significantly reduced. It is possible to form a high-quality crystalline silicon thin film 34 (polycrystalline silicon).

次に、本発明の他の実施の形態を添付図面に基づいて説明する。   Next, another embodiment of the present invention will be described with reference to the accompanying drawings.

本発明の他の好適な一実施形態に係る薄膜半導体の斜視図を図4に示す。   FIG. 4 shows a perspective view of a thin film semiconductor according to another preferred embodiment of the present invention.

図4に示すように、本実施の形態に係る薄膜半導体40は、基板41上の少なくとも一部に、表面に四角錐状の凸部42が所定間隔Pで複数配列された結晶性シリコン薄膜44を設けたものである。凸部42の群が凹凸部43を形成する。   As shown in FIG. 4, the thin film semiconductor 40 according to the present embodiment has a crystalline silicon thin film 44 in which a plurality of quadrangular pyramidal protrusions 42 are arranged at a predetermined interval P on at least a part of a substrate 41. Is provided. A group of convex portions 42 forms the concave and convex portions 43.

凹凸部43の表面粗さの平均二乗根は、60nm以上、好ましくは100nm以上である。   The mean square root of the surface roughness of the uneven portion 43 is 60 nm or more, preferably 100 nm or more.

次に、本実施の形態に係る薄膜半導体40の製造方法を、添付図面に基づいて説明する。   Next, a method for manufacturing the thin film semiconductor 40 according to the present embodiment will be described with reference to the accompanying drawings.

先ず、図1に示した薄膜半導体10を形成する。次に、薄膜半導体10を、凸条12の長手方向に対して90°水平に回転させる。その後、前実施の形態で説明した結晶性シリコン薄膜34の形成手順と同様の手順で、凸条の長手方向と直交する方向に再びレーザ光を照射させながら走査する。この時、各凸条12の長手方向の一部で、強度が強いレーザ光が照射された部分が更に隆起する。これによって、各凸条12の長手方向の一部が凸条12よりも更に隆起した四角錐状の凸部42に形成される。   First, the thin film semiconductor 10 shown in FIG. 1 is formed. Next, the thin film semiconductor 10 is rotated 90 ° horizontally with respect to the longitudinal direction of the ridges 12. Thereafter, scanning is performed while irradiating the laser beam again in the direction orthogonal to the longitudinal direction of the ridges in the same procedure as the procedure for forming the crystalline silicon thin film 34 described in the previous embodiment. At this time, the portion irradiated with the laser beam having a high intensity is further raised at a part of the longitudinal direction of each ridge 12. Thereby, a part of the longitudinal direction of each ridge 12 is formed into a quadrangular pyramid-shaped convex portion 42 that is further raised than the ridge 12.

その後、レーザ光を照射する領域を、新たなレーザ光の走査方向と直交する方向に所定間隔Pで順次移動させていくことを繰り返すことで、基板41上の少なくとも一部に、表面に四角錐状の凸部42が所定間隔Pで複数配列された結晶性シリコン薄膜44が形成され、図4に示した薄膜半導体40が得られる。   Thereafter, by sequentially moving the region to be irradiated with the laser beam at a predetermined interval P in a direction orthogonal to the scanning direction of the new laser beam, at least part of the substrate 41 has a quadrangular pyramid on the surface. A crystalline silicon thin film 44 in which a plurality of convex portions 42 are arranged at a predetermined interval P is formed, and the thin film semiconductor 40 shown in FIG. 4 is obtained.

本実施の形態に係る薄膜半導体40においても、前実施の形態に係る薄膜半導体10と同様の作用効果が得られる。   Also in the thin film semiconductor 40 according to the present embodiment, the same effects as the thin film semiconductor 10 according to the previous embodiment can be obtained.

それに加え、本実施の形態に係る薄膜半導体40によれば、結晶性シリコン薄膜44の凹凸部43における各凸部42間に、所望の幅のV字型の溝を有しており、これらの溝の数は、前実施の形態に係る薄膜半導体10における溝の数の約2倍に達する。また、結晶性シリコン薄膜44の凹凸部43における各凸部42の表面粗さの平均二乗根は、前実施の形態に係る薄膜半導体10の凹凸部13における各凸条12のそれよりも大きい。これらにより、前実施の形態に係る薄膜半導体10の結晶性シリコン薄膜34よりも、更に大きな光閉じ込め効果を有する結晶性シリコン薄膜44が得られる。   In addition, the thin film semiconductor 40 according to the present embodiment has a V-shaped groove having a desired width between the convex portions 42 of the concave and convex portions 43 of the crystalline silicon thin film 44. The number of grooves reaches about twice the number of grooves in the thin film semiconductor 10 according to the previous embodiment. Moreover, the mean square root of the surface roughness of each convex part 42 in the uneven part 43 of the crystalline silicon thin film 44 is larger than that of each convex line 12 in the uneven part 13 of the thin film semiconductor 10 according to the previous embodiment. As a result, a crystalline silicon thin film 44 having a greater light confinement effect than the crystalline silicon thin film 34 of the thin film semiconductor 10 according to the previous embodiment can be obtained.

以上、本発明の実施の形態は、上述した実施の形態に限定されるものではなく、他にも種々のものが想定されることは言うまでもない。   As mentioned above, it cannot be overemphasized that embodiment of this invention is not limited to embodiment mentioned above, and various things are assumed in addition.

次に、本発明の実施の形態について、実施例に基づいて説明するが、本発明の実施の形態はこれらの実施例に限定されるものではない。   Next, embodiments of the present invention will be described based on examples, but the embodiments of the present invention are not limited to these examples.

1×10-7PaのUHV(Ultra High Vacuum)雰囲気下、真空蒸着法を用いて、石英基板上に300nmの膜厚の非晶質シリコン薄膜を形成した。この非晶質シリコン薄膜に、半導体レーザを発振源としたレーザ光を照射した。この半導体レーザ光はガウシアン分布を有しており、波長は800nmのものを使用した。このレーザ光を、走査速度1cm/secで直線状に走査させたところ、非晶質シリコン薄膜は融解、その後結晶化し、多結晶シリコン薄膜が得られた。この多結晶シリコン薄膜は、幅が数μm以上、長さが数十μm以上であった。 An amorphous silicon thin film having a thickness of 300 nm was formed on a quartz substrate using a vacuum deposition method in a UHV (Ultra High Vacuum) atmosphere of 1 × 10 −7 Pa. The amorphous silicon thin film was irradiated with laser light using a semiconductor laser as an oscillation source. This semiconductor laser beam has a Gaussian distribution and has a wavelength of 800 nm. When this laser beam was scanned linearly at a scanning speed of 1 cm / sec, the amorphous silicon thin film was melted and then crystallized to obtain a polycrystalline silicon thin film. This polycrystalline silicon thin film had a width of several μm or more and a length of several tens of μm or more.

この多結晶シリコン薄膜は、レーザ光の走査方向と垂直なレーザ幅方向の膜厚が異なっており、図6に示すように、レーザ光照射部の中心部分が高さ1μm程度に隆起した凸条となっていることが、段差測定から分かった。なお、この凸条は、レーザ光を照射した箇所が完全融解するようなレーザ強度とした場合に出現した。また、レーザ光の形状を変えずにレーザ強度を小さくすることで、高さが100nm(0.1μm)の凸条の作製も可能であつた。   This polycrystalline silicon thin film has a different film thickness in the laser width direction perpendicular to the scanning direction of the laser beam. As shown in FIG. 6, the central portion of the laser beam irradiation portion is raised to a height of about 1 μm. It was found from the step measurement. This ridge appeared when the laser intensity was such that the portion irradiated with the laser beam was completely melted. Further, by reducing the laser intensity without changing the shape of the laser beam, it was possible to produce a protrusion with a height of 100 nm (0.1 μm).

[実施例1]と同様の非晶質シリコン薄膜が形成された石英基板に、Nd:YVO4レーザを発振源としたレーザ光を照射した。この半導体レーザ光はガウシアン分布を有しており、波長は532nm、レーザ光の径は10μmのものを使用した。このレーザ光を、走査速度2cm/secで直線状に走査させたところ、非晶質シリコン薄膜は融解、その後結晶化し、多結晶シリコン薄膜が得られた。その後、レーザ光の照射領域をレーザ幅方向に9μmずらし、レーザ光を照射しながら走査するということを100回繰り返した。その結果、900μmの幅で、結晶化された領域が形成された。この結晶化された領域は、レーザ光の走査方向と垂直なレーザ幅方向に、9μmのピッチで凸条が連続的に形成されていた。 A quartz substrate on which an amorphous silicon thin film similar to that in Example 1 was formed was irradiated with laser light using an Nd: YVO 4 laser as an oscillation source. This semiconductor laser beam has a Gaussian distribution, and has a wavelength of 532 nm and a laser beam diameter of 10 μm. When this laser beam was scanned linearly at a scanning speed of 2 cm / sec, the amorphous silicon thin film was melted and then crystallized to obtain a polycrystalline silicon thin film. Thereafter, the laser beam irradiation region was shifted by 9 μm in the laser width direction, and scanning while irradiating the laser beam was repeated 100 times. As a result, a crystallized region having a width of 900 μm was formed. In the crystallized region, ridges were continuously formed at a pitch of 9 μm in the laser width direction perpendicular to the laser beam scanning direction.

プラズマCVD法を用いて、石英基板上に1μmの膜厚の微結晶シリコン薄膜を形成した。原料ガスは、モノシラン1ccmに対して、水素50ccmを用い、基板温度は400℃とした。その後、この石英基板に600℃×30minの熱処理を行った。次に、半導体レーザ光を用いて微結晶シリコン薄膜にレーザアニールを行った。ここで、半導体レーザ光は、長さが0.1mm×幅が0.2mmの矩形状であり、長さ方向を走査方向とした。また、レーザ光の光路中に周期的にNDフィルターを100本挿入し、出力されるレーザ光が幅方向に100回の周期的な強弱を有するようにした。   A microcrystalline silicon thin film having a thickness of 1 μm was formed on a quartz substrate by plasma CVD. The source gas was 50 ccm of hydrogen relative to 1 ccm of monosilane, and the substrate temperature was 400 ° C. Thereafter, the quartz substrate was heat-treated at 600 ° C. for 30 minutes. Next, laser annealing was performed on the microcrystalline silicon thin film using semiconductor laser light. Here, the semiconductor laser light has a rectangular shape with a length of 0.1 mm and a width of 0.2 mm, and the length direction is taken as the scanning direction. Further, 100 ND filters are periodically inserted in the optical path of the laser beam so that the output laser beam has a periodic strength of 100 times in the width direction.

このようなレーザ光を用いて走査を行ったところ、図1に示したような、光の強弱に対応した周期的な凸条を有する多結晶シリコン薄膜(結晶性シリコン薄膜)が形成された。この多結晶シリコン薄膜の吸収スペクトルを測定した結果、図7に示すように、表面が平坦な多結晶シリコン薄膜と比較して、凸条の高さが高くなるにつれて光吸収量が著しく増大した。凸条の高さは、レーザパワーを変えることで60〜500nmの範囲で自在に調節することができた。また、波長300〜1200nmの領域において、1.2倍程度の光閉じ込め効果が確認できた。吸収スペクトルの測定結果より、凸条の高さの平均二乗根が100nm以上において、光吸収量が増加することが確認できた。   When scanning was performed using such a laser beam, a polycrystalline silicon thin film (crystalline silicon thin film) having periodic ridges corresponding to the intensity of light as shown in FIG. 1 was formed. As a result of measuring the absorption spectrum of this polycrystalline silicon thin film, as shown in FIG. 7, the light absorption increased remarkably as the height of the ridges increased as compared with the polycrystalline silicon thin film having a flat surface. The height of the ridge could be freely adjusted in the range of 60 to 500 nm by changing the laser power. In addition, a light confinement effect of about 1.2 times was confirmed in the wavelength region of 300 to 1200 nm. From the measurement result of the absorption spectrum, it was confirmed that the light absorption amount increased when the average square root of the height of the ridge was 100 nm or more.

[実施例3]の多結晶シリコン膜を有する石英基板を、凸条の長手方向に対して90°回転させる。その後、実施例3と同様の手順で、凸条の長手方向と直交する方向に再び半導体レーザ光を適切な出力で発振させ、照射させながら走査する。   The quartz substrate having the polycrystalline silicon film of [Example 3] is rotated by 90 ° with respect to the longitudinal direction of the ridges. Thereafter, in the same procedure as in Example 3, the semiconductor laser light is again oscillated with an appropriate output in the direction orthogonal to the longitudinal direction of the ridges, and scanning is performed while irradiating.

その結果、図4に示したような、表面に四角錐状の凸部が所定間隔で複数配列された多結晶シリコン薄膜が形成された。この多結晶シリコン薄膜の吸収スペクトルを測定した結果、表面が平坦な多結晶シリコン薄膜と比較して、波長300〜1200nmの領域において、1.27倍程度の光閉じ込め効果が確認できた。   As a result, a polycrystalline silicon thin film having a plurality of quadrangular pyramidal projections arranged at predetermined intervals on the surface as shown in FIG. 4 was formed. As a result of measuring the absorption spectrum of this polycrystalline silicon thin film, an optical confinement effect of about 1.27 times was confirmed in the wavelength region of 300 to 1200 nm as compared with the polycrystalline silicon thin film having a flat surface.

本発明の好適な一実施形態に係る薄膜半導体の斜視図である。1 is a perspective view of a thin film semiconductor according to a preferred embodiment of the present invention. 図1の薄膜半導体の製造方法を説明するための図である。It is a figure for demonstrating the manufacturing method of the thin film semiconductor of FIG. 図1の薄膜半導体の製造方法を説明するための図である。It is a figure for demonstrating the manufacturing method of the thin film semiconductor of FIG. 本発明の他の好適な一実施形態に係る薄膜半導体の斜視図である。It is a perspective view of the thin film semiconductor which concerns on other suitable one Embodiment of this invention. 非単結晶シリコン薄膜のレーザアニールに用いる半導体レーザ光の模式図である。It is a schematic diagram of the semiconductor laser beam used for laser annealing of a non-single crystal silicon thin film. レーザ照射部のレーザ幅方向における隆起状態を示す図である。It is a figure which shows the protruding state in the laser width direction of a laser irradiation part. 凸条の高さと光吸収量との関係を表す図である。縦軸は、平坦な多結晶シリコン薄膜の光吸収量を1.0とした時の相対値である。It is a figure showing the relationship between the height of a protruding item | line and the amount of light absorption. The vertical axis represents the relative value when the light absorption amount of the flat polycrystalline silicon thin film is 1.0.

符号の説明Explanation of symbols

10 薄膜半導体
11 基板
12 凸条
14 結晶性シリコン薄膜
P 所定間隔
DESCRIPTION OF SYMBOLS 10 Thin-film semiconductor 11 Substrate 12 Projection 14 Crystalline silicon thin film P Predetermined interval

Claims (2)

基板上に設けた非単結晶シリコン薄膜にレーザ幅方向に光の強度分布を有する連続波レーザ光をレーザ幅方向に垂直な方向に所定の間隔を隔てて複数回走査させながら照射し、上記非単結晶シリコン薄膜のレーザ光照射部を完全に融解し結晶化させ、表面に複数の凸条を形成し、次に上記凸条の長手方向と直交する方向に上記連続波レーザ光を所定の間隔を隔てて複数回走査させながら照射し、上記凸条の長手方向の一部を上記凸条よりも更に隆起させ、四角錐状の凸部が所定パターンで複数配列された結晶性シリコン薄膜に形成することを特徴とする薄膜半導体の形成方法。 A non-single-crystal silicon thin film provided on a substrate is irradiated with a continuous wave laser beam having a light intensity distribution in the laser width direction while scanning a plurality of times at predetermined intervals in a direction perpendicular to the laser width direction. The laser light irradiation part of the single crystal silicon thin film is completely melted and crystallized to form a plurality of ridges on the surface, and then the continuous wave laser light is spaced at a predetermined interval in a direction perpendicular to the longitudinal direction of the ridges. Irradiated while scanning a plurality of times apart from each other, a part in the longitudinal direction of the ridge is raised further than the ridge, and formed into a crystalline silicon thin film in which a plurality of quadrangular pyramidal protrusions are arranged in a predetermined pattern A method for forming a thin film semiconductor. 上記連続波レーザ光の光源は固体レーザであり、さらに上記連続波レーザ光はガウシアン分布を有する請求項1に記載の薄膜半導体の形成方法。2. The method of forming a thin film semiconductor according to claim 1, wherein the light source of the continuous wave laser beam is a solid-state laser, and the continuous wave laser beam has a Gaussian distribution.
JP2003290487A 2003-08-08 2003-08-08 Method for forming thin film semiconductor Expired - Fee Related JP4389514B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003290487A JP4389514B2 (en) 2003-08-08 2003-08-08 Method for forming thin film semiconductor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003290487A JP4389514B2 (en) 2003-08-08 2003-08-08 Method for forming thin film semiconductor

Publications (2)

Publication Number Publication Date
JP2005064134A JP2005064134A (en) 2005-03-10
JP4389514B2 true JP4389514B2 (en) 2009-12-24

Family

ID=34368505

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003290487A Expired - Fee Related JP4389514B2 (en) 2003-08-08 2003-08-08 Method for forming thin film semiconductor

Country Status (1)

Country Link
JP (1) JP4389514B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012146191A1 (en) * 2011-04-29 2012-11-01 河南思可达光伏材料股份有限公司 Concentration photovoltaic glass with linear-shaped pattern

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5438986B2 (en) * 2008-02-19 2014-03-12 株式会社半導体エネルギー研究所 Method for manufacturing photoelectric conversion device
JP4684306B2 (en) * 2008-03-14 2011-05-18 三菱電機株式会社 Method for manufacturing thin film solar cell
KR101368369B1 (en) * 2010-06-17 2014-02-28 파나소닉 주식회사 Polycrystalline-type solar cell panel and process for production thereof
JP5351132B2 (en) * 2010-12-06 2013-11-27 パナソニック株式会社 Method for producing polycrystalline silicon solar cell panel
KR101781044B1 (en) * 2011-09-28 2017-09-26 주성엔지니어링(주) Solar cell and method for manufacturing the same
JP2013187261A (en) * 2012-03-06 2013-09-19 Japan Science & Technology Agency Microcrystalline silicon, method for producing the same, and solar cell provided with the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012146191A1 (en) * 2011-04-29 2012-11-01 河南思可达光伏材料股份有限公司 Concentration photovoltaic glass with linear-shaped pattern

Also Published As

Publication number Publication date
JP2005064134A (en) 2005-03-10

Similar Documents

Publication Publication Date Title
JP3306258B2 (en) Method for manufacturing semiconductor device
US20080087895A1 (en) Polysilicon thin film transistor and method of fabricating the same
KR20020045497A (en) Thin film transistor and method of manufacturing the same
JP4389514B2 (en) Method for forming thin film semiconductor
JP2000260709A (en) Method of crystallizing semiconductor thin film and semiconductor device using the same
JP2004273887A (en) Crystalline thin film semiconductor device and solar cell element
JP4594601B2 (en) Method for manufacturing crystalline silicon-based thin film solar cell and solar cell formed using the same
US8003423B2 (en) Method for manufacturing a poly-crystal silicon photovoltaic device using horizontal metal induced crystallization
US5279686A (en) Solar cell and method for producing the same
JP2006093212A (en) Method of forming polycrystal layer, semiconductor device, and its manufacturing method
JP4586585B2 (en) Method for manufacturing thin film semiconductor device
JP4947667B2 (en) Method for manufacturing crystalline semiconductor film
JP2006295097A (en) Crystallizing method, thin-film transistor manufacturing method, crystallized substrate, thin-film transistor, and display device
JP4032553B2 (en) Semiconductor manufacturing equipment
JP4534585B2 (en) Thin film semiconductor substrate and manufacturing method thereof
WO2011161901A1 (en) Method for forming polycrystalline silicon thin film, polycrystalline silicon thin film substrate, silicon thin film solar cell, and silicon thin film transistor device
JP4365757B2 (en) Method for forming polycrystalline silicon film of polycrystalline silicon thin film transistor
JP2001168363A (en) Method of manufacturing solar battery
JP4581764B2 (en) Method for manufacturing thin film semiconductor device
JPH09293872A (en) Manufacture of thin-film transistor
KR101120045B1 (en) Method for manufacturing poly crystalline silicon layer
JP2001332494A (en) Semiconductor element and method of manufacturing the same
KR100501701B1 (en) Method of Forming Crystalline Silicon Thin Film
CN114068307A (en) Low-temperature polycrystalline silicon film, preparation method thereof, array substrate and display device
JP2006261183A (en) Thin film semiconductor device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050916

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080411

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080422

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080620

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090224

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090326

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20090507

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090915

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090928

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121016

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees