JP4389374B2 - Pump impeller - Google Patents

Pump impeller Download PDF

Info

Publication number
JP4389374B2
JP4389374B2 JP2000319023A JP2000319023A JP4389374B2 JP 4389374 B2 JP4389374 B2 JP 4389374B2 JP 2000319023 A JP2000319023 A JP 2000319023A JP 2000319023 A JP2000319023 A JP 2000319023A JP 4389374 B2 JP4389374 B2 JP 4389374B2
Authority
JP
Japan
Prior art keywords
impeller
pump
shroud
magnet
opening
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000319023A
Other languages
Japanese (ja)
Other versions
JP2002130178A (en
Inventor
直樹 松尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Electric Works Co Ltd
Original Assignee
Panasonic Corp
Matsushita Electric Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Works Ltd filed Critical Panasonic Corp
Priority to JP2000319023A priority Critical patent/JP4389374B2/en
Publication of JP2002130178A publication Critical patent/JP2002130178A/en
Application granted granted Critical
Publication of JP4389374B2 publication Critical patent/JP4389374B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Structures Of Non-Positive Displacement Pumps (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、被駆動用の磁石を備えたポンプの羽根車に関する。
【0002】
【従来の技術】
近年、特に機器組込み用のポンプは、機器の小型・軽量化の流れの中、羽根車の回転数を高速化することによって小型化が図られている。従来この種のポンプは、ネオジ磁石に代表される希土類の強磁石を被駆動用磁石として羽根車に一体設け、羽根車の回転数を高速化したものが一般的であった。
【0003】
以下に、図5を参照して従来のポンプについて説明する。図5は従来のポンプの概略断面図である。
【0004】
図5に示すように従来のポンプにおける羽根車1は、前面シュラウド1aと後面シュラウド1bを溶着し、前面シュラウド1aと後面シュラウド1b間に形成される通水路に羽根1cを有し、さらに、中心を挿通する固定軸2と、すべり軸受3およびその外側に位置する被駆動用の磁石4を一体にして備えて構成されている。
【0005】
図中の5は羽根車1を収納するケーシング、6は羽根車1のスラスト荷重を受けるスラスト軸受、7はケーシング5の外周部に構成されたステーター、8は羽根車1より送水された流体を案内するボリュートケーシング、9は吸込口、10は吐水口である。
【0006】
上記構成のポンプにおいて、ステーター7に羽根車駆動のために制御電流が印加されると、その磁界および羽根車の被駆動用の磁石4により羽根車1は駆動されて回転し、羽根車1の通水路に構成された羽根1cの回転により、満たされていた流体は吸込口9より羽根車1、ボリュートケーシング8を介して吐水口10へ送水される仕組みである。
【0007】
そして、羽根車1の被駆動用の磁石4にネオジ磁石等の希土類の強磁石を採用して、ポンプ効率の向上を図っていた。
【0008】
【発明が解決しようとする課題】
しかしながら上記のように構成された従来のポンプにおいては、ネオジ磁石に代表される希土類の強磁石が腐食しやすいという欠点があり、さらに、羽根車1における後面シュラウド1bと被駆動用の磁石4を一体成形するため、後面シュラウド1bにノックアウトピンのあとが開口部1dとなって形成され、被駆動用の磁石4の腐食を防止するのに被駆動用の磁石4の露出した開口部1d部に、高価なコーティングまたは専用部材追加等の防錆手段が必要であるという課題を有していた。
【0009】
また、防錆の理由により腐食しないフェライト系のプラスチックマグネットを被駆動用磁石としたポンプもあるが、フェライト系のプラスチックマグネットはネオジ磁石等の希土類の強磁石にくらべると磁力が小さいために、効率の点では不利であった。
【0010】
本発明は前記従来の課題に留意し、被駆動用の磁石にネオジ磁石等の希土類の強磁石を採用でき、その強力な磁力によりポンプ効率を向上させることが可能となるポンプの羽根車を提供することを目的とする。
【0011】
【課題を解決するための手段】
本発明は上記目的を達成するために、被駆動用の磁石が一体成形されたポンプの羽根車であって、被駆動用の磁石を一体成形したことによる羽根車に構造上生じる開口部を別部材のシュラウドを装着することにより閉塞し、その閉塞箇所に循環水の浸入を防止するシール手段を構成したものである。
【0012】
本発明によれば、被駆動用の磁石にネオジ磁石に代表される希土類の強磁石を採用しても、羽根車に構造上生じる開口部を別部材のシュラウドを装着して閉塞し、その閉塞箇所に循環水の浸入を防止するシール手段を構成しているため、被駆動用磁石にネオジ磁石等の希土類の強磁石を採用でき、その強力な磁力によりポンプ効率を向上することが可能となる。
【0013】
【発明の実施の形態】
本発明の請求項1に記載された発明は、被駆動用の磁石が一体成形されたポンプの羽根車であって、被駆動用の磁石の一体成形による羽根車に構造上生じる開口部を、別部材のシュラウドを装着することにより閉塞し、その閉塞箇所に循環水の浸入を防止するシール手段を設けたポンプの羽根車であり、循環水の浸入を防止するシール手段を簡単な構造として安価に製造でき、また、被駆動用磁石にネオジ磁石等の腐食しやすい希土類の強磁石が採用でき、その強力な磁力により高効率のポンプを実現するという作用を有する。
【0014】
本発明の請求項2に記載された発明は、請求項1に記載のポンプの羽根車において、循環水の浸入を防止するシール手段は、開口部の閉塞箇所にシール部材を設けて構成されたものであり、循環水の浸入を防止するシール手段を簡単な構造として安価に製造できるという作用を有する。
【0015】
本発明の請求項3に記載された発明は、請求項1に記載のポンプの羽根車において、循環水の浸入を防止するシール手段は、開口部にシュラウドの凸部を圧入することにより構成されたものであり、同じく循環水の浸入を防止するシール手段を簡単な構造として安価に製造できるという作用を有する。
【0016】
本発明の請求項4に記載された発明は、請求項1に記載のポンプの羽根車ににおいて、循環水の浸入を防止するシール手段は、開口部にシュラウドを接着して閉塞することにより構成されたものであり、同じく循環水の浸入を防止するシール手段を簡単な構造として安価に製造できるという作用を有する。
【0017】
本発明の請求項5に記載された発明は、請求項1に記載のポンプの羽根車において、循環水の浸入を防止すシール手段は、開口部にシュラウドを溶着して閉塞することにより構成されたものであり、同じく循環水の浸入を防止するシール手段を簡単な構造として安価に製造できるという作用を有する。
【0018】
以下、本発明の実施の形態について図面を参照して説明する。
【0019】
(実施の形態1)
図1は、本発明の実施の形態1のポンプの羽根車の概略断面図である。
【0020】
なお、従来の技術の説明で用いた符号およびポンプの動作原理は基本的に従来の技術と同一であるため詳細な説明は従来の技術により省略し、また、従来の技術と異なるのは羽根車の構造のみであるため、以下従来の技術と異なる羽根車の構造についてのみ説明する。
【0021】
図1に示すように本発明の実施の形態1のポンプの羽根車101は、前面シュラウド101aと、後面シュラウド101bと、前面シュラウド101aに構成された羽根101cと、後面シュラウド101bと一体成形された被駆動用の磁石104を主構成部材としている。
【0022】
前記の後面シュラウド101bと前面シュラウド101aに構成さた羽根101cは超音波溶着にて固定され、後面シュラウド101bにおける被駆動用の磁石4を一体成形するのに構造上生じる開口部101dには、羽根101cの底面に形成された凸部101eがOリング等のシール部材110を介在させて嵌めこまれ、すなわち凸部101eで開口部101dが閉塞されている。さらに、ステーター7と被駆動用の磁石4の距離をできるだけ小さくするため、被駆動用の磁石104と一体成形された後面シュラウド101bのステーター側の肉厚は、0.8mmから1.0mmと薄肉に構成されている。
【0023】
以上のように構成された本発明の実施の形態1のポンプの羽根車101において、後面シュラウド101bの開口部101dは、前面シュラウド101aの羽根底面の凸部101eで閉塞され、さらに開口部101dと凸部101e間をシールするのにシール部材110をシール手段として設けているので、後面シュラウド101b内部の被駆動用の磁石104に循環水は浸入することはない。したがって被駆動用の磁石104にネオジ磁石等の腐食しやすい希土類の強磁石が採用でき、その強力な磁力により高効率ポンプを提供することができる。
【0024】
(実施の形態2)
図2は、本発明の実施の形態2のポンプの羽根車の概略断面図である。
【0025】
図2に示すようにこの実施の形態2のポンプの羽根車201の特徴は、後面シュラウド201bの開口部201dに前面シュラウド201aの凸部201eを圧入することにより、開口部201dを閉塞して循環水の浸入を防止するシール手段としたことである。
【0026】
この構成により、被駆動用の磁石204にネオジ磁石等の腐食しやすい希土類の強磁石が採用でき、その強力な磁力により高効率ポンプを提供することができる。
【0027】
(実施の形態3)
図3は、本発明の実施の形態3のポンプの羽根車の概略断面図である。
【0028】
図3に示すようにこの実施の形態3のポンプの羽根車301の特徴は、後面シュラウド301bの開口部301dに前面シュラウド301aの凸部301eを接着することにより開口部301dを閉塞して循環水の浸入を防止するシール手段としたことである。
【0029】
この構成により、被駆動用の磁石304にネオジ磁石等の腐食しやすい希土類の強磁石が採用でき、その強力な磁力により高効率ポンプを提供することができる。
【0030】
(実施の形態4)
図4は、本発明の実施の形態4のポンプの羽根車の概略断面図である。
【0031】
図4に示すようにこの実施の形態4のポンプの羽根車401の特徴は、後面シュラウド401bの開口部401dに前面シュラウド401aの凸部401eを溶着することにより開口部401dを閉塞して循環水の浸入を防止するシール手段としたことである。
【0032】
この構成により、被駆動用の磁石404にネオジ磁石等の腐食しやすい希土類の強磁石が採用でき、その強力な磁力により高効率ポンプを提供することができる。
【0033】
【発明の効果】
以上のように本発明によれば、被駆動用の磁石が一体成形された構造のポンプの羽根車において、羽根車に構造上生じる開口部を別部材のシュラウドを装着することにより閉塞し、さらに閉塞箇所に循環水の浸入を防止するシール手段を構成するので、簡単な構造で安価に製造でき、被駆動用の磁石にネオジ磁石等の腐食しやすい希土類の強磁石が採用でき、その強力な磁力により高効率ポンプを提供することができる。
【図面の簡単な説明】
【図1】本発明の実施の形態1のポンプの羽根車の概略断面図
【図2】本発明の実施の形態2のポンプの羽根車の概略断面図
【図3】本発明の実施の形態3のポンプの羽根車の概略断面図
【図4】本発明の実施の形態4のポンプの羽根車の概略断面図
【図5】従来のポンプの概略断面図
【符号の説明】
101 羽根車
101a 前面シュラウド
101b 後面シュラウド
101c 羽根
101d 開口部
101e 凸部
104 被駆動用の磁石
110 シール部材
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an impeller of a pump provided with a driven magnet.
[0002]
[Prior art]
In recent years, pumps built into devices have been reduced in size by increasing the rotational speed of impellers in the trend of reducing the size and weight of devices. Conventionally, this type of pump is generally one in which a rare earth strong magnet typified by a neodymium magnet is integrally provided in an impeller as a driven magnet, and the rotational speed of the impeller is increased.
[0003]
Hereinafter, a conventional pump will be described with reference to FIG. FIG. 5 is a schematic sectional view of a conventional pump.
[0004]
As shown in FIG. 5, the impeller 1 in the conventional pump has a front shroud 1a and a rear shroud 1b welded, and has a blade 1c in a water passage formed between the front shroud 1a and the rear shroud 1b. The fixed shaft 2 that is inserted therethrough, the slide bearing 3 and the driven magnet 4 positioned outside thereof are integrally provided.
[0005]
In the figure, 5 is a casing that houses the impeller 1, 6 is a thrust bearing that receives the thrust load of the impeller 1, 7 is a stator formed on the outer periphery of the casing 5, and 8 is a fluid fed from the impeller 1. A volute casing for guiding, 9 is a suction port, and 10 is a water discharge port.
[0006]
In the pump configured as described above, when a control current is applied to the stator 7 for driving the impeller, the impeller 1 is driven and rotated by the magnetic field and the driven magnet 4 of the impeller, and the impeller 1 is rotated. By the rotation of the blade 1 c configured in the water passage, the fluid that has been filled is fed from the suction port 9 to the water discharge port 10 through the impeller 1 and the volute casing 8.
[0007]
And the rare earth strong magnets, such as a neodymium magnet, were employ | adopted for the driven magnet 4 of the impeller 1, and the improvement of pump efficiency was aimed at.
[0008]
[Problems to be solved by the invention]
However, the conventional pump configured as described above has a drawback that a rare earth strong magnet represented by a neodymium magnet is easily corroded. Further, the rear shroud 1b and the driven magnet 4 in the impeller 1 are connected to each other. Since it is integrally formed, the rear shroud 1b is formed with an opening 1d after the knockout pin, and in order to prevent corrosion of the driven magnet 4, the exposed opening 1d of the driven magnet 4 is formed. Further, there is a problem that rust prevention means such as expensive coating or addition of a dedicated member is necessary.
[0009]
There are pumps that use a ferrite-based plastic magnet that does not corrode for rust-prevention as a driven magnet, but the ferrite-based plastic magnet has a lower magnetic force than a rare earth strong magnet such as a neodymium magnet. Was disadvantageous.
[0010]
The present invention provides a pump impeller capable of adopting a rare earth strong magnet such as a neodymium magnet as a driven magnet and improving the pump efficiency by its strong magnetic force in consideration of the above-mentioned conventional problems. The purpose is to do.
[0011]
[Means for Solving the Problems]
In order to achieve the above object, the present invention is an impeller of a pump in which a driven magnet is integrally formed, and an opening that is structurally formed in the impeller by integrally forming the driven magnet is separated. The sealing means is configured to be blocked by mounting a shroud of the member, and prevent the intrusion of circulating water at the closed position.
[0012]
According to the present invention, even if a rare earth strong magnet typified by a neodymium magnet is used as a driven magnet, the opening generated in the structure of the impeller is closed by mounting a shroud as a separate member. Since the sealing means that prevents the intrusion of circulating water is configured at the location, a strong magnet of rare earth such as neodymium magnet can be adopted as the driven magnet, and the pump efficiency can be improved by its strong magnetic force .
[0013]
DETAILED DESCRIPTION OF THE INVENTION
The invention described in claim 1 of the present invention is an impeller of a pump in which a driven magnet is integrally formed, and an opening that is structurally formed in the impeller by integral formation of a driven magnet, It is an impeller of a pump that is closed by installing a shroud of another member and has a sealing means for preventing the intrusion of circulating water at the closed position, and the sealing means for preventing the intrusion of circulating water is simple and inexpensive. In addition, it is possible to employ a corrosive rare earth strong magnet such as a neodymium magnet as the driven magnet and to achieve a highly efficient pump by its strong magnetic force.
[0014]
According to a second aspect of the present invention, in the pump impeller according to the first aspect, the sealing means for preventing the intrusion of the circulating water is configured by providing a sealing member at the closed portion of the opening. It has the effect | action that it can manufacture cheaply as a simple structure the sealing means which prevents permeation of circulating water.
[0015]
According to a third aspect of the present invention, in the pump impeller according to the first aspect, the sealing means for preventing the intrusion of circulating water is configured by press-fitting a convex portion of the shroud into the opening. Similarly, the sealing means for preventing the intrusion of circulating water can be manufactured at a low cost with a simple structure.
[0016]
According to a fourth aspect of the present invention, in the pump impeller according to the first aspect, the sealing means for preventing the intrusion of circulating water is configured by adhering and closing the shroud at the opening. Similarly, the sealing means for preventing the intrusion of circulating water can be manufactured at a low cost with a simple structure.
[0017]
According to a fifth aspect of the present invention, in the impeller of the pump according to the first aspect, the sealing means for preventing intrusion of circulating water is formed by welding and closing the shroud in the opening. Similarly, the sealing means for preventing the intrusion of circulating water can be manufactured at a low cost with a simple structure.
[0018]
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
[0019]
(Embodiment 1)
1 is a schematic cross-sectional view of an impeller of a pump according to Embodiment 1 of the present invention.
[0020]
The reference numerals used in the description of the conventional technique and the operating principle of the pump are basically the same as those of the conventional technique, so that the detailed description is omitted according to the conventional technique, and the impeller is different from the conventional technique. Therefore, only the structure of the impeller different from the prior art will be described below.
[0021]
As shown in FIG. 1, the impeller 101 of the pump according to Embodiment 1 of the present invention is integrally formed with the front shroud 101a, the rear shroud 101b, the blades 101c formed on the front shroud 101a, and the rear shroud 101b. The driven magnet 104 is a main constituent member.
[0022]
The blades 101c formed on the rear surface shroud 101b and the front surface shroud 101a are fixed by ultrasonic welding, and the opening 101d that is structurally formed to integrally form the driven magnet 4 in the rear surface shroud 101b has a blade. A convex portion 101e formed on the bottom surface of 101c is fitted with a seal member 110 such as an O-ring interposed, that is, the opening 101d is closed by the convex portion 101e. Further, in order to make the distance between the stator 7 and the driven magnet 4 as small as possible, the thickness on the stator side of the rear shroud 101b formed integrally with the driven magnet 104 is as thin as 0.8 mm to 1.0 mm. It is configured.
[0023]
In the impeller 101 of the pump according to the first embodiment of the present invention configured as described above, the opening 101d of the rear shroud 101b is closed by the convex portion 101e on the blade bottom surface of the front shroud 101a, and further, the opening 101d Since the sealing member 110 is provided as a sealing means for sealing between the convex portions 101e, the circulating water does not enter the driven magnet 104 inside the rear surface shroud 101b. Therefore, a corrosive rare earth strong magnet such as a neodymium magnet can be adopted as the driven magnet 104, and a high-efficiency pump can be provided by its strong magnetic force.
[0024]
(Embodiment 2)
FIG. 2 is a schematic sectional view of the impeller of the pump according to the second embodiment of the present invention.
[0025]
As shown in FIG. 2, the pump impeller 201 of the second embodiment is characterized in that the projection 201e of the front shroud 201a is press-fitted into the opening 201d of the rear shroud 201b to close the opening 201d and circulate. This is a sealing means for preventing water from entering.
[0026]
With this configuration, a corrosive rare earth strong magnet such as a neodymium magnet can be used as the driven magnet 204, and a high-efficiency pump can be provided by its strong magnetic force.
[0027]
(Embodiment 3)
FIG. 3 is a schematic cross-sectional view of an impeller of a pump according to Embodiment 3 of the present invention.
[0028]
As shown in FIG. 3, the pump impeller 301 according to the third embodiment is characterized in that the opening 301d is closed by adhering the projection 301e of the front shroud 301a to the opening 301d of the rear shroud 301b. This is a sealing means for preventing the intrusion of water.
[0029]
With this configuration, a corrosive rare earth strong magnet such as a neodymium magnet can be employed as the driven magnet 304, and a high-efficiency pump can be provided by its strong magnetic force.
[0030]
(Embodiment 4)
FIG. 4 is a schematic sectional view of an impeller of a pump according to Embodiment 4 of the present invention.
[0031]
As shown in FIG. 4, the pump impeller 401 of the fourth embodiment is characterized in that the opening 401d of the front shroud 401a is welded to the opening 401d of the rear shroud 401b to close the opening 401d and circulate water. This is a sealing means for preventing the intrusion of water.
[0032]
With this configuration, a corrosive rare earth strong magnet such as a neodymium magnet can be employed as the driven magnet 404, and a high-efficiency pump can be provided by its strong magnetic force.
[0033]
【The invention's effect】
As described above, according to the present invention, in a pump impeller having a structure in which a driven magnet is integrally formed, an opening that is structurally formed in the impeller is closed by attaching a shroud as a separate member, and Since the sealing means to prevent the intrusion of circulating water at the closed location, it can be manufactured at a low cost with a simple structure, and a strong magnet of corrosive rare earth such as a neodymium magnet can be used as the driven magnet. A highly efficient pump can be provided by magnetic force.
[Brief description of the drawings]
FIG. 1 is a schematic cross-sectional view of a pump impeller according to Embodiment 1 of the present invention. FIG. 2 is a schematic cross-sectional view of a pump impeller according to Embodiment 2 of the present invention. Fig. 4 is a schematic cross-sectional view of a pump impeller of Fig. 3. Fig. 4 is a schematic cross-sectional view of a pump impeller of Embodiment 4 of the present invention. Fig. 5 is a schematic cross-sectional view of a conventional pump.
101 impeller 101a front shroud 101b rear shroud 101c blade 101d opening 101e convex 104 driven magnet 110 seal member

Claims (5)

被駆動用の磁石が一体成形されたポンプの羽根車であって、被駆動用の磁石の一体成形による羽根車に構造上生じる開口部を、別部材のシュラウドを装着することにより閉塞し、その閉塞箇所に循環水の浸入を防止するシール手段を設けたことを特徴とするポンプの羽根車。An impeller of a pump in which a driven magnet is integrally formed, and an opening that is structurally formed in the impeller by integrally forming a driven magnet is closed by attaching a shroud as a separate member. An impeller for a pump, characterized in that a sealing means for preventing intrusion of circulating water is provided at a closed portion. 循環水の浸入を防止するシール手段は、開口部の閉塞箇所にシール部材を設けて構成されたことを特徴とする請求項1記載のポンプの羽根車。2. The impeller for a pump according to claim 1, wherein the sealing means for preventing intrusion of circulating water is configured by providing a sealing member at a closed portion of the opening. 循環水の浸入を防止するシール手段は、開口部にシュラウドの凸部を圧入することにより構成されたことを特徴とする請求項1記載のポンプの羽根車。2. The impeller for a pump according to claim 1, wherein the sealing means for preventing intrusion of circulating water is configured by press-fitting a convex portion of the shroud into the opening. 循環水の浸入を防止するシール手段は、開口部にシュラウドを接着して閉塞することにより構成されたことを特徴とする請求項1記載のポンプの羽根車。2. The impeller of a pump according to claim 1, wherein the sealing means for preventing intrusion of circulating water is constituted by adhering and closing the shroud at the opening. 循環水の浸入を防止すシール手段は、開口部にシュラウドを溶着して閉塞することにより構成されたことを特徴とする請求項1記載のポンプの羽根車。2. The impeller of a pump according to claim 1, wherein the sealing means for preventing intrusion of circulating water is configured by welding and closing a shroud in the opening.
JP2000319023A 2000-10-19 2000-10-19 Pump impeller Expired - Fee Related JP4389374B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000319023A JP4389374B2 (en) 2000-10-19 2000-10-19 Pump impeller

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000319023A JP4389374B2 (en) 2000-10-19 2000-10-19 Pump impeller

Publications (2)

Publication Number Publication Date
JP2002130178A JP2002130178A (en) 2002-05-09
JP4389374B2 true JP4389374B2 (en) 2009-12-24

Family

ID=18797551

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000319023A Expired - Fee Related JP4389374B2 (en) 2000-10-19 2000-10-19 Pump impeller

Country Status (1)

Country Link
JP (1) JP4389374B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4605202B2 (en) * 2007-10-10 2011-01-05 パナソニック電工株式会社 Method for manufacturing rotor part of motor-integrated pump
CN101586868A (en) * 2008-05-20 2009-11-25 浙江三花股份有限公司 Liquid discharging device
US8979504B2 (en) * 2009-08-19 2015-03-17 Moog Inc. Magnetic drive pump assembly with integrated motor
CN104703707B (en) 2012-10-01 2017-09-22 固瑞克明尼苏达有限公司 Impeller for electrostatic gun
WO2022003628A1 (en) * 2020-07-01 2022-01-06 Padmini Vna Mechatronics Pvt. Ltd. Electric water pump with improved impeller assembly

Also Published As

Publication number Publication date
JP2002130178A (en) 2002-05-09

Similar Documents

Publication Publication Date Title
JPH05187382A (en) Motor driven fuel pump
KR20130138505A (en) Water pump
JP4389374B2 (en) Pump impeller
US20040234389A1 (en) Waterpump
JP4863686B2 (en) Drainage pump
JP3638056B2 (en) Fuel pump and manufacturing method thereof
JP2013047502A (en) Pump
JP2010115019A (en) Pump motor
JP3788505B2 (en) Fuel pump
EP1557566B1 (en) Centrifugal pump for washing apparatus
JP4545516B2 (en) Brushless motor
JP4560866B2 (en) pump
JP2009074470A (en) Pump
JPH11218059A (en) Fuel pump
JP4479085B2 (en) Pump impeller and manufacturing method thereof
JP2004150390A (en) Submerged pump
JP2010169033A (en) Fuel pump
JP4670373B2 (en) Self-priming pump
JPH0472481A (en) Roller vane type fuel pump
JPH06241185A (en) Pump
JP2004162609A (en) Electric water pump with check valve
JPH11117890A (en) Fuel pump
JP3203543B2 (en) Magnetic coupling pump
JP2004150386A (en) Pump and ink jet recording device loaded with the pump
JPH11210675A (en) Centrifugal fan

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20070316

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20070322

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20070322

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070711

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090908

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090915

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090928

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121016

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121016

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131016

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees