JP4388667B2 - ラベルスイッチングネットワークにおけるパス設定装置および方法 - Google Patents

ラベルスイッチングネットワークにおけるパス設定装置および方法 Download PDF

Info

Publication number
JP4388667B2
JP4388667B2 JP2000110903A JP2000110903A JP4388667B2 JP 4388667 B2 JP4388667 B2 JP 4388667B2 JP 2000110903 A JP2000110903 A JP 2000110903A JP 2000110903 A JP2000110903 A JP 2000110903A JP 4388667 B2 JP4388667 B2 JP 4388667B2
Authority
JP
Japan
Prior art keywords
label
route
same
lsr
switched path
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000110903A
Other languages
English (en)
Other versions
JP2001298475A (ja
Inventor
徹 榎
好織 青柳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP2000110903A priority Critical patent/JP4388667B2/ja
Priority to US09/754,802 priority patent/US7035226B2/en
Publication of JP2001298475A publication Critical patent/JP2001298475A/ja
Application granted granted Critical
Publication of JP4388667B2 publication Critical patent/JP4388667B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L45/00Routing or path finding of packets in data switching networks
    • H04L45/12Shortest path evaluation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L45/00Routing or path finding of packets in data switching networks
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L45/00Routing or path finding of packets in data switching networks
    • H04L45/12Shortest path evaluation
    • H04L45/122Shortest path evaluation by minimising distances, e.g. by selecting a route with minimum of number of hops

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Data Exchanges In Wide-Area Networks (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、ラベルスイッチングネットワークにおいてラベルスイッチドパス(Label Switched Path ,LSP)を設定する装置および方法に関し、さらに詳しくは、複数のラベルスイッチングルータ(Label Switching Router,LSR)で構成されるIP(Internet Protocol )網において、距離ベクタ型ルーティングプロトコルを用いてLSPを設定する装置および方法に関する。
【0002】
【従来の技術】
図43は、IP網における従来のIPパケット転送を示している。図43において、ルータ#1、#2、および#3によりIPパケット転送を行う場合、各ルータは、IPパケットに設定された宛先アドレスを参照して、OSI(Open Systems Interconnection)の基本参照モデル(basic reference model )の第3層において、ソフトウェアによる転送処理を行う。
【0003】
これに対して、現在、標準化が行われつつあるマルチプロトコルラベルスイッチング(Multi-Protocol Label Switching,MPLS)では、フォワーディングイクイバレンスクラス(Forwarding Equivalence Class,FEC)により指定されるIPパケットフローに対して、20ビットの固定長ラベルが割り当てられる。
【0004】
FECは、例えば、個別のアプリケーションのIPパケットフローや同一の宛先ネットワークを持つIPパケットフローのような、IPパケットのグループを指定する。そして、各ルータは、第2.5層において、ハードウェアにより、固定長ラベルを用いたスイッチングを行う。このようなラベルスイッチングネットワークにおいて、ラベルを用いてパケット転送を行うことのできるパスは、LSPと呼ばれる。
【0005】
図44は、MPLS用ルータによるIPパケット転送を示している。図44において、ルータ#1、ルータ#2、およびルータ#3は、それぞれ、入口(Ingress )LSR、中継(Transit )LSR、および出口(Egress)LSRに相当する。
【0006】
ここで、入口LSRとは、ラベルなしパケットにラベルを付加するLSRのことであり、LSPの入口に位置する。また、出口LSRとは、ラベル付きパケットからラベルを取り除くLSRのことであり、LSPの出口に位置する。中継LSRは、入口LSRと出口LSRの間に位置し、ラベル付きパケットを転送する。
【0007】
例えば、ルータ#1は、入力されたラベルなしIPパケット1にラベル#aを付けてルータ#2に転送し、ルータ#2は、受け取ったIPパケット2のラベルを#bに付け替えてルータ#3に転送する。そして、ルータ#3は、受け取ったIPパケット3からラベルを取り除いて、ラベルなしIPパケット4を宛先ネットワークに転送する。このように、固定長ラベルを用いたスイッチングを行うことで、IPパケットを高速に転送することができる。
【0008】
このMPLSは、ルーティングプロトコルと連携することにより、ネットワークのトポロジを認識し、自動的にLSPを設定することができる。ルータは、MPLS機能の設定を有効にするだけで高速ルーティングの恩恵を得ることができるため、この機能は益々の需要が期待されており、今後、ルータの標準機能となる見込みである。
【0009】
MPLSと連携するルーティングプロトコルとしては、OSPF(Open Shortest Path First)やルーティング情報プロトコル(Routing Information Protocol,RIP)等が挙げられる。
【0010】
OSPFは、例えば、図45のようなネットワーク構成において、図46のような最短パスツリーを生成することにより、宛先ネットワークに対する最短ルートを計算する。図45において、A、B、C、D、E、およびFはルータを表し、a、b、c、d、e、f、およびgはルータ間のネットワークを表す。また、各ネットワークの付随する数値は、そのネットワークの転送コストを示している。
【0011】
また、図46の最短パスツリーは、ルータA内に設けられ、ルータAから他のルータにIPパケットを転送する場合に、コストが最低となる最短ルートを保持する。例えば、ルータAからルータCへの最短ルートは、A−B−Cであり、そのコストは20である。この値は、ルータA、B間のネットワークaのコストと、ルータB、C間のネットワークcのコストを合算することで、求められる。他のルータにも、同様の最短パスツリーが設けられる。
【0012】
このOSPFとMPLSを連携させた場合、各ルータは、最短パスツリーを参照することにより、同一ルータに収容されるネットワークに対して単一のLSPを設定することができる。したがって、LSP数の増加を防ぐことが可能となる。
【0013】
一方、RIPは、距離ベクタ型ルーティングプロトコルに属する。距離ベクタ型ルーティングプロトコルは、フレーム(IPパケット)を宛先ネットワークに到達させるために転送すべき次のルータ(次ホップ)と、宛先ネットワークに到達するまでの距離(ホップ数)のみを管理するルーティングプロトコルである。
【0014】
RIPは、図45のネットワークにおいて、図47のようなルーティングテーブルを生成することにより、次ホップを決定する。図47のルーティングテーブルは、ルータA内に設けられ、宛先ネットワーク毎に、次ホップとコストを管理している。ここでは、コストとして、図45のコスト値の代わりに、ホップ数が用いられている。RIPは、その管理および実装の容易さから、現在、最も使用されているプロトコルであり、今後も継続して使用されるものと考えられる。
【0015】
【発明が解決しようとする課題】
しかしながら、上述した従来のルーティングプロトコルには、次のような問題がある。
【0016】
OSPFは、その仕様の複雑さから、運用時の管理が非常に困難である。このため、現在、あまり普及していない。また、実装自体が困難であるため、MPLSとの連携においてもかなりの複雑さを伴う。
【0017】
一方、RIPのような距離ベクタ型ルーティングプロトコルをMPLSと連携させた場合、入口LSRにおいて、宛先ネットワークを収容するルータを判別することができない。このため、同一の出口LSR配下のネットワークであっても、ネットワークアドレス毎にLSPが設定され、異なるラベルが割り当てられる。したがって、ルータに収容されるネットワークの数が多いと大量のラベルが使用されることになる。
【0018】
ところで、MPLSでは、中継LSRにおいてラベルを付け替えるために、例えば、入力されたIPパケットのラベル(入ラベル)から、次ホップへ出力するIPパケットのラベル(出ラベル)を検索するラベル検索テーブルを用いることが考えられる。
【0019】
しかし、上述のように大量のラベルが使用されると、ラベル検索テーブルのエントリが増えるため、検索処理に要する時間も増大し、ネットワークの転送能力が低下する。
【0020】
本発明の課題は、ラベルスイッチングネットワーク、例えば、MPLSのようなラベルスイッチングと距離ベクタ型ルーティングプロトコルとを連携させて用いるラベルスイッチングネットワークにおいて、使用ラベル数を削減することにより転送能力を向上させるパス設定装置およびその方法を提供することである。
【0021】
【課題を解決するための手段】
図1は、本発明のパス設定装置の原理図である。図1のパス設定装置は、判別手段11およびラベル割当て手段12を備え、複数のルータを含むラベルスイッチングネットワークにおいて、LSPを設定する。
【0022】
判別手段11は、ラベル要求を受け取ったとき、そのラベル要求に対応する経路と同じ経路を有する設定済みLSPがあるか否かを判別する。ラベル割当て手段12は、同じ経路を有する設定済みLSPがあるとき、ラベル要求に対して、その設定済みLSPのラベルと同じラベルを割り当てる。
【0023】
パス設定装置は、例えば、各ルータ内に設けられ、新たなフローに対するLSPの設定時に、他のルータからラベル要求を受け取る。判別手段11は、そのラベル要求に含まれる情報から新たなフローの経路を求め、既に設定されたLSPの経路を参照して、新たなフローの経路と同じ経路を有するLSPがあるか否かを判別し、判別結果をラベル割当て手段12に通知する。ラベル割当て手段12は、受け取った判別結果に基づき、そのようなLSPがあれば、そのLSPと同じラベルを割り当て、そのようなLSPがなければ、新たなラベルを割り当てる。
【0024】
このようなパス設定装置によれば、距離ベクタ型ルーティングプロトコルを用いた場合でも、同一ルータに収容される複数のネットワーク宛のフローに対して、同じラベルを割り当てることが可能になる。これにより、使用ラベル数が減少し、ネットワークの転送能力が向上する。
【0025】
例えば、図1の判別手段11およびラベル割当て手段12は、それぞれ、後述する図3の同一経路判別処理部28およびラベル管理部23に対応する。
【0026】
【発明の実施の形態】
以下、図面を参照しながら、本発明の実施の形態を詳細に説明する。
本実施形態においては、距離ベクタ型ルーティングプロトコルを用いるラベルスイッチングネットワークにおいて、同一経路となる複数のFECに対して同一ラベルを割り当てる。これにより、使用ラベル数が減少し、ネットワークの転送能力が向上する。
【0027】
図2は、LSRにおいて、MPLSと距離ベクタ型ルーティングプロトコルとを連携させた場合のラベル制御を示している。MPLS処理部21は、ラベル管理部23にラベルの割当て/解放を要求し、ラベル管理部23は、要求された処理の結果をMPLS処理部21に通知する。また、MPLS処理部21は、スイッチ設定部22にLSPの設定を依頼し、スイッチ設定部22は、依頼されたLSPを設定する。ルーティングプロトコル処理部24は、ルーティング情報をMPLS処理部21に通知する。
【0028】
図3は、図2のラベル制御において、複数のFECに対して同一ラベルを割り当てて使用ラベル数を削減するための構成を示している。図3においては、経路学習部25が追加され、MPLS処理部21には、ラベル再割当て処理部26および別ラベル割当て処理部27が設けられ、ラベル管理部23には、同一経路判別処理部28が設けられている。
【0029】
新たなFECが追加されるとき、出口LSRがラベル要求(Label Request )メッセージを受信すると、MPLS処理部21は、ラベル管理部23にラベルの割当てを要求する。ラベル管理部23は、同一経路判別処理部28に、同一経路のLSPが存在するかどうかを問い合わせる。
【0030】
ここで、経路とは、フレームの通り道を意味し、入口LSRと出口LSRの間に複数の経路が存在する場合、それぞれの経路上にLSPが存在し得る。このうち、1つの経路上に複数のLSPが存在すれば、それらのLSPは、同一経路のLSPと呼ばれる。これに対して、別の経路上のLSPは、異経路のLSPと呼ばれる。
【0031】
同一経路判別処理部28は、既に設定済みのLSPを検索して、その経路とラベル要求メッセージに含まれる経路とを比較し、それらが同一経路かどうかを自動的に判別する。ここで、2つの経路が同一とは、入口LSRと出口LSRの組合せ(ペア)が同一であり、かつ、入口LSRから出口LSRに至る経路上のLSRが同一であることを意味する。
【0032】
同一経路のLSPが存在しなければ、ラベル管理部23は、新たなラベルを割り当て、それをMPLS処理部21に通知する。同一経路のLSPが存在すれば、ラベル管理部23は、そのLSPと同一のラベルを割り当ててよいかどうかを、経路学習処理部25に問い合わせる。
【0033】
経路学習処理部25は、同一ラベル割当て不可の経路を自動的に学習し、問い合わされた経路が同一ラベル割当て可であるかどうかを回答する。経路学習処理部25からの回答が同一ラベル割当て可か不可かに応じて、ラベル管理部23は、同一ラベルまたは別ラベルを割り当て、それをMPLS処理部21に通知する。
【0034】
MPLS処理部21は、ラベル管理部23から通知されたラベルに基づいて、LSPの設定をスイッチ設定部22に依頼し、スイッチ設定部22は、スイッチにLSPを設定する。また、MPLS処理部21は、ラベルマッピング(Label Mapping )メッセージによりラベルを他のLSRに通知し、そのメッセージを受信したLSRのスイッチ設定部22は、通知されたラベルに基づいてLSPを設定する。
【0035】
このように、同一経路判別処理部28を設けて、追加されるFECと同一経路のLSPが存在するかどうかをチェックし、追加されるFECに、既に存在するLSPと同一のラベルを割り当てることで、複数のFECに同一ラベルを割り当てることが可能となる。これにより、使用ラベル数が減少する。
【0036】
また、MPLS処理部21は、同一ラベルを共有している複数のFECのうち、ある1つのFECについてトポロジ変化が発生した場合に、ラベル再割当て処理部26を用いて、入口LSRからのラベル割当てを再度やり直す処理を行う。
【0037】
出口LSRにおいて、複数のFECに同一ラベルが割り当てられているときに、トポロジ変化が発生してあるFECの経路が変化した場合、ラベル再割当て処理部26は、ラベルとFECの対応関係を変更する。
【0038】
そして、MPLS処理部21は、上流のLSRへラベル取消(Label Withdraw)メッセージを送信して、出口LSRから入口LSRまでにおけるそのFECのすべてのラベルを一旦解放し、入口LSRに対してLSP設定をやり直すように促す。これにより、入口LSRと新たな出口LSRの間で再度ラベル割当てが行われる。このように、ラベル再割当て処理部26を設けることにより、ネットワークのトポロジ変化に対応することができ、LSP再設定後のラベル共有が可能となる。
【0039】
また、MPLS処理部21は、同一ラベル割当て機能をサポートしていないLSRからラベル解放(Label Release )メッセージを受信した場合、別ラベル割当て処理部27を用いて、同一経路に関する次回からのラベル要求メッセージに対しては、異なるラベルを割り当てる処理を行う。
【0040】
出口LSRにおいて、同一ラベルを割り当てたラベルマッピングメッセージを送信した後に、相手LSRからラベル解放メッセージを受信した場合、MPLS処理部21は、その経路上に同一ラベル割当て機能を持たないLSRが存在するものと判断する。そして、別ラベル割当て処理部27は、経路学習処理部25にその経路を通知する。
【0041】
この場合、経路学習処理部25は、通知された経路を、同一ラベル割当て不可の経路として登録し、ラベル管理部23からの問合せに対して、登録された経路は同一ラベル割当て不可であると回答する。したがって、その経路に関する次回のラベル要求メッセージに対しては、別ラベルが割り当てられる。このように、別ラベル割当て処理部27を設けることにより、同一ラベル割当て機能をサポートしないLSRとの間でLSP設定が可能となる。
【0042】
さらに、経路学習処理部25は、同一ラベル割当て機能をサポートしないLSRを自動的に学習することもできる。この場合、経路学習処理部25は、別ラベル割当て処理部27から通知された経路をツリー構造の形で保存しておく。そして、ラベル管理部23からの問合せがあったとき、このツリーを検索することで、問い合わされた経路に同一ラベルを割り当てることができるかどうかをチェックし、結果を通知する。
【0043】
このとき、経路学習処理部25は、問い合わされた経路の少なくとも一部がツリーに登録されていれば、同一ラベル割当て不可と回答する。これにより、このような経路については、1回目のラベル要求メッセージから異なるラベルが割り当てられるので、同一ラベル割当ての失敗を未然に防ぐことが可能となる。
【0044】
図4は、上述したようなLSRの構成図である。図4のLSRは、媒体ドライブ31、CPU(中央処理装置)32、メモリ33、回線インタフェース34、36、スイッチ35、検索LSI(Large Scale Integration )37、および検索テーブルメモリ38を備える。
【0045】
回線インタフェース34は、入力側のネットワークの回線から受信したフレームをスイッチ35に渡し、回線インタフェース36は、スイッチ35から受け取ったフレームを出力側のネットワークの回線上に送信する。
【0046】
スイッチ35は、受信フレームのラベル(入ラベル)を検索LSI37に渡し、送信フレーム用のラベル(出ラベル)を問い合わせる。そして、検索LSI37から渡されたラベルを送信フレームに付けて、それを回線インタフェース36に渡す。
【0047】
検索テーブルメモリ38は、入ラベルから出ラベルを検索するためのラベル検索テーブルを保持する。検索LSI37は、ラベル検索テーブルを参照して、スイッチ35から受け取った入ラベルに対応する出ラベルを決定し、それをスイッチ35に渡す。
【0048】
メモリ33は、例えば、ROM(read only memory)、RAM(random access memory)等を含み、CPU32が処理に用いるプログラムとデータを格納する。CPU32は、メモリ33を利用してプログラムを実行することにより、必要な処理を行う。
【0049】
この場合、図3のMPLS処理部21、スイッチ設定部22、ラベル管理部23、ルーティングプロトコル処理部24、経路学習部25、ラベル再割当て処理部26、別ラベル割当て処理部27、および同一経路判別処理部28は、プログラムにより記述されたソフトウェアコンポーネントとしてメモリ33に格納される。また、メモリ33は、出口(Egress)動作LSPに対応するラベル等の情報をラベルテーブルとして保持する。出口動作LSPについては、後述することにする。
【0050】
媒体ドライブ31は、可搬記録媒体39を駆動し、その記録内容にアクセスする。可搬記録媒体39としては、メモリカード、フロッピーディスク、CD−ROM(compact disk read only memory )、光ディスク、光磁気ディスク等、任意のコンピュータ読み取り可能な記録媒体が用いられる。例えば、ユーザまたは管理者は、この可搬記録媒体39に上述のプログラムとデータを格納しておき、必要に応じて、それらをメモリ33にロードして使用する。
【0051】
次に、図5から図37までを参照しながら、図3および図4の構成に基づくLSRの動作について、より詳細に説明する。まず、図5から図11までは、MPLSと距離ベクタ型ルーティングプロトコルの連携における同一ラベル割当ての例を示している。
【0052】
図5のようなネットワーク構成において、最初にネットワークAへの経路のみが存在し、その後、ネットワークBへの経路が追加される場合を考える。この場合、LSR#1、LSR#2、およびLSR#3は、それぞれ、入口LSR、中継LSR、および出口LSRに相当し、LSR#3は、ネットワークA、B、およびCを収容している。図6は、このときLSR間でやり取りされるメッセージのシーケンスを示している。
【0053】
まず、LSR#1は、ネットワークA宛のフロー(FEC)に対するラベル要求(Label Request )メッセージを送信する。このラベル要求メッセージには、宛先ネットワークの識別情報Aと、そのメッセージが通過したLSRのリストを表すパスベクタ(Path Vector TLV )が含まれている。TLV(Type-Length-Value )は、エンコードされたデータに対応する。
【0054】
LSRのリストは、例えば、IPアドレスのようなLSRの識別情報のリストとして記述される。ここでは、LSR#1、LSR#2、およびLSR#3の識別情報は、それぞれ、#1、#2、および#3であり、LSR#3が受け取るパスベクタは、#2−#1のように記述される。
【0055】
ラベル要求メッセージを受信したLSR#3のMPLS処理部21は、そのメッセージに含まれているLSRのリストを経路情報としてラベル管理部23に渡し、対応するフローに対してラベルの割当てを要求する。この時点では、LSR#3においてLSPが設定されていないため、メモリ33のラベルテーブルには、ラベルは登録されていない。
【0056】
経路情報を受け取ったラベル管理部23の同一経路判別処理部28は、受け取ったLSRのリストの先頭にLSR#3を付加し、リストの向きを逆にして、経路#1−#2−#3を生成する。次に、ラベルテーブルを検索し、生成された経路と同一経路のLSPが存在しないことを確認する。そして、ラベル管理部23は、新規にラベル#aを割り当てることをMPLS処理部21に通知し、そのラベル#aをラベルテーブルに追加する。
【0057】
MPLS処理部21は、LSPの設定をスイッチ設定部22に依頼し、ラベルマッピング(Label Mapping )メッセージを、LSR#2を介してLSR#1に送信する。このラベルマッピングメッセージには、宛先ネットワークの識別情報Aと割り当てられたラベル#aが含まれている。この時点における各LSRのラベルテーブルは、図7のようになる。
【0058】
図7においては、3つのLSRのラベルテーブルがまとめて記載されているが、実際には、各LSRに対応する行の情報のみがそのLSRのラベルテーブルに格納される。ここでは、LSR#3により設定されたLSPは、LSR#3においてのみ出口動作を行い、LSR#1とLSR#2においては出口動作を行わないので、LSR#1とLSR#2のラベルテーブルには情報が格納されず、LSR#3のラベルテーブルに、ラベル#aと、対応するLSPの経路とFECが格納される。
【0059】
LSR#3のラベルテーブルにおいて、経路の欄の“#1−#2−#3”は、ラベル#aの経路が、フレームをLSR#1、LSR#2、LSR#3の順に転送する経路であることを表す。また、FECの欄の“A”は、そのFECがネットワークA宛のフローを指定していることを表す。
【0060】
また、このとき、各LSRのスイッチ設定部22は、検索テーブルメモリ38に、図8のようなラベル検索テーブルを設定する。これにより、LSPが設定される。図8においても、3つのLSRのラベル検索テーブルがまとめて記載されているが、実際には、図7と同様に、各LSRに対応する行の情報のみがそのLSRのラベル検索テーブルに格納される。
【0061】
ここでは、LSR#1は入口LSRに対応するので、そのラベル検索テーブルには出ラベルのみが格納される。また、LSR#3は出口LSRに対応するので、そのラベル検索テーブルには入ラベルのみが格納される。また、LSR#2は中継LSRに対応するので、そのラベル検索テーブルには入ラベルと出ラベルが格納される。
【0062】
この場合、ラベル#aを用いて設定されたLSPは、入口LSR#1では、入口(Ingress )動作LSPと呼ばれ、中継LSR#2では、中継(Transit )動作LSPと呼ばれ、出口LSR#では、出口(Egress)動作LSPと呼ばれる。
【0063】
次に、LSR#1は、ネットワークBへの経路を追加するために、ネットワークA宛のフローの場合と同様に、ネットワークB宛のフローに対するラベル要求メッセージを送信する。そのメッセージを受信したLSR#3のMPLS処理部21は、メッセージに含まれているLSRのリストをラベル管理部23に渡し、ラベルの割当てを要求する。
【0064】
次に、同一経路判別処理部28は、図7のラベルテーブルを検索し、受け取った経路情報と同一経路のLSPが存在すると判断する。そこで、ラベル管理部23は、経路学習処理部25に、同一ラベルの割当てが可能かどうかを問い合わせる。
【0065】
経路学習処理部25は、同一ラベル割当て機能を持たないLSRが途中に存在するような経路によって構成される同一ラベル割当て不可経路ツリーを保持している。そして、ラベル管理部23からの問合せに応じてこのツリーを検索し、問い合わされた経路がツリー上に存在しなければ、同一ラベルの割当てが可能であると判断し、その旨をラベル管理部23に通知する。この検索処理の詳細については、後述することにする。
【0066】
ラベル管理部23は、経路学習処理部25から同一ラベル割当て可という回答を受け取ると、ネットワークB宛のフローに対して、ネットワークA宛のフローと同一のラベル#aを割り当てることを決定する。そして、MPLS処理部21にそのラベルを通知し、ラベルテーブルを更新する。
【0067】
また、MPLS処理部21は、宛先Bとラベル#aを含むラベルマッピングメッセージを、LSR#2を介してLSR#1に送信する。この時点における各LSRのラベルテーブルは、図9のようになる。
【0068】
図9において、LSR#1とLSR#2のラベルテーブルには変化がなく、LSR#3のラベルテーブルのFECとして、“B”が追加されている。これにより、2つの異なるFECに対して同一ラベルが割り当てられたことになる。また、新たなラベルが割り当てられなかったため、図8のラベル検索テーブルは変化しない。
【0069】
図10は、ラベル要求メッセージを受信したMPLS処理部21が行う処理のフローチャートである。MPLS処理部21は、まず、ラベル管理部23にラベル割当てを要求し、割り当てられたラベルを受け取る(ステップS1)。そして、受け取ったラベルが新たなラベルかどうかをチェックする(ステップS2)。
【0070】
受け取ったラベルが新たなラベルであれば、スイッチ設定部22にLSPの設定を要求し(ステップS3)、ラベルマッピングメッセージを送信して(ステップS4)、処理を終了する。また、受け取ったラベルが新たなラベルでなければ、そのままステップS4の処理を行って、処理を終了する。
【0071】
図11は、図10のステップS1において、ラベル割当て要求を受け取ったラベル管理部23が行う処理のフローチャートである。まず、ラベル管理部23の同一経路判別処理部28は、ラベルテーブルを検索して、ラベル要求メッセージに含まれる経路と同一経路のLSPが存在するかどうかをチェックする(ステップS11)。同一経路のLSPが存在すれば、次に、そのLSPと同一のラベルを割り当ててよいかどうかを、経路学習処理部25に問い合わせ(ステップS12)、回答をチェックする(ステップS13)。
【0072】
同一ラベル割当て可であれば、同一ラベルを割り当て(ステップS14)、そのラベルをラベルテーブルに登録する(ステップS15)。そして、登録されたラベルをMPLS処理部21に通知して(ステップS16)、処理を終了する。
【0073】
ステップS11において、同一経路のLSPが存在しなければ、新たなラベルを割り当て(ステップS17)、ステップS15およびS16の処理を行って、処理を終了する。
【0074】
次に、図12から図22までは、同一ラベル割当て時にトポロジ変化が発生した場合のラベル再割当ての例を示している。
図12のようなネットワーク構成において、ネットワークA宛のフローおよびネットワークB宛のフローに対して、既にLSPが設定され、同一ラベルが割当てられているものとする。この場合、LSR#1、LSR#2、およびLSR#3は、それぞれ、入口LSR、中継LSR、および出口LSRに相当し、LSR#3はネットワークAおよびBを収容し、LSR#4はネットワークBを収容している。
【0075】
続いて、LSR#3とネットワークBの間で断線が発生し、ネットワーク構成が変化した場合を考える。図13は、この例において、LSR間でやり取りされるメッセージのシーケンスを示している。
【0076】
図13において、断線が発生する時点までのシーケンスは、図6と同様である。この時点における各LSRのラベルテーブルおよびラベル検索テーブルは、それぞれ、図14および図15のようになる。図14のLSR#3のラベルテーブルにおいては、図9と同様に、2つのFECに対して同一ラベル#aが割り当てられている。
【0077】
ここで、LSR#3が断線の発生を検出し、ルーティングプロトコル処理部24が経路の変化をMPLS処理部21に通知すると、MPLS処理部21は、ネットワークB宛のフローのラベルを解放するようにラベル管理部23に要求する。
【0078】
ラベル管理部23は、宛先Bをキーとして、図14のラベルテーブルを検索し、対応するラベルを解放する。このとき、複数のFECがそのラベルのLSPを共有しているので、ラベル#aのエントリ自体は削除せずに、そのエントリのFECの欄からBだけを削除する。そして、解放したラベル#aをMPLS処理部21に通知する。この時点における各LSRのラベルテーブルは、図16のようになる。
【0079】
MPLS処理部21は、ラベルとFECの対応関係を管理するために、ラベル−FECテーブルをメモリ33に保持しており、ラベル管理部23によるラベル割当ての結果に基づいて、このテーブルを更新する。この時点におけるLSR#3のラベル−FECテーブルは、図17のようになる。
【0080】
ここで、ラベル管理部23からラベル#aの解放を通知されると、MPLS処理部21のラベル再割当て処理部26は、図17のラベル−FECテーブルを参照して、ラベル#aのエントリのFECの欄からBを削除する。そして、LSPを解放する必要がないことを確認する。
【0081】
次に、MPLS処理部21は、宛先Bとラベル#aを含むラベル取消(Label Withdraw)メッセージを送信し、LSR#1に対してLSPの再設定を行うように促す。ラベル取消メッセージを受信したLSR#1は、ラベル解放(Label Release )メッセージを送信する。
【0082】
次に、LSR#1は、ネットワークB宛のフローに対するラベル要求メッセージを送信する。このメッセージを受信したLSR#4の同一経路判別処理部28は、そのメッセージに含まれているLSRのリスト#3−#2−#1の先頭にLSR#4を付加し、リストの向きを逆にして、経路#1−#2−#3−#4を生成する。次に、ラベルテーブルを検索し、その経路と同一経路のLSPが存在しないことを確認する。そして、ラベル管理部23は、新規にラベル#bを割り当てる。
【0083】
そして、MPLS処理部21は、宛先Bとラベル#bを含むラベルマッピングメッセージを送信する。これにより、経路#1−#2−#3−#4上に新たなLSPが確立される。この時点における各LSRのラベルテーブルおよびラベル検索テーブルは、それぞれ、図18および図19のようになる。
【0084】
図20は、ルーティングプロトコル処理部24から経路変更を通知されたMPLS処理部21が行う処理のフローチャートである。MPLS処理部21は、まず、変更された経路の情報に基づいて、ラベルの解放をラベル管理部23に要求する(ステップS21)。次に、解放されたラベルに対応する情報をラベル−FECテーブルから削除するように、ラベル再割当て処理部26に要求する(ステップS22)。そして、ラベル取消メッセージを送信して(ステップS23)、処理を終了する。
【0085】
図21は、図20のステップS21において、MPLS処理部21からラベル解放要求を受け取ったラベル管理部23が行う処理のフローチャートである。ラベル管理部23は、まず、ラベルテーブルを検索して(ステップS31)、解放すべきラベルが複数のFECに割り当てられているかどうかをチェックする(ステップS32)。
【0086】
そのラベルが複数のFECに割り当てられていれば、そのラベルのエントリから変更に対応するFECを削除し(ステップS33)、ラベルをMPLS処理部21に通知して(ステップS34)、処理を終了する。また、そのラベルが単一のFECに割り当てられていれば、そのラベルのエントリをラベルテーブルから削除し(ステップS35)、ステップS34の処理を行って、処理を終了する。
【0087】
図22は、図20のステップS22において、MPLS処理部21から削除要求を受け取ったラベル再割当て処理部26が行う処理のフローチャートである。ラベル再割当て処理部26は、まず、ラベル−FECテーブルを検索して(ステップS41)、解放されたラベルが複数のFECに割り当てられているかどうかをチェックする(ステップS42)。
【0088】
そのラベルが単一のFECに割り当てられていれば、対応するLSPの解放をスイッチ設定部22に要求し(ステップS43)、そのラベルのエントリをラベル−FECテーブルから削除して(ステップS44)、処理を終了する。また、そのラベルが複数のFECに割り当てられていれば、そのラベルのエントリから変更に対応するFECを削除して(ステップS45)、処理を終了する。
【0089】
次に、図23から図28までは、経路上に同一ラベル割当て機能を持たないLSRが存在する場合のラベル割当ての例を示している。
図5に示したようなネットワーク構成において、LSR#2が同一ラベル割当て機能を持たない場合を考える。最初にネットワークAへの経路のみが存在し、既に対応するLSPが設定されているときに、ネットワークBへの経路が追加されるものとする。図23は、この例において、LSR間でやり取りされるメッセージのシーケンスを示している。
【0090】
図23において、ネットワークAに対するLSPが設定される時点までのシーケンスは、図6と同様である。この時点における各LSRのラベルテーブルおよびラベル検索テーブルは、それぞれ、図7および図8のようになる。
【0091】
次に、ネットワークB宛のフローに対するラベル要求メッセージを受信すると、LSR#3は、図6の場合と同様に、ネットワークA宛のフローと同じラベル#aを割り当て、ラベルマッピングメッセージを送信する。この時点における各LSRのラベルテーブルは、図9のようになる。
【0092】
しかし、LSR#2は、同一ラベル割当て機能を持たないので、ラベル#aの割当てを行うことができず、宛先Bを含むラベル解放メッセージをLSR#3に送信する。そして、ラベル解放メッセージを受信したLSR#3のMPLS処理部21は、ラベル#aの経路に対して同一ラベルを割り当てることが不可能と判断し、ラベル管理部23にラベル解放を要求する。
【0093】
これを受けて、ラベル管理部23は、図7のラベルテーブルを検索して、対応するラベル#aを解放し、その経路#1−#2−#3をMPLS処理部21に通知する。次に、MPLS処理部21の別ラベル割当て処理部27は、その経路を経路学習処理部25に通知し、経路学習処理部25は、通知された経路の情報を同一ラベル割当て不可経路ツリーに追加する。
【0094】
この同一ラベル割当て不可経路ツリーは、それを保持するLSR(自ノード)をルートとして、同一ラベルを割当てることのできない経路をツリー構造で表したものである。ここでは、LSR#3をルートノードとして、図24のような同一ラベル割当て不可経路ツリーが生成される。
【0095】
その後、LSR#3は、ネットワークB宛のフローに対して別のラベルBを割り当て、再度、ラベルマッピングメッセージを送信する。こうして、各LSRには、図25のようなラベルテーブルと図26のようなラベル検索テーブルが設定される。
【0096】
図27は、ラベル解放メッセージを受信したMPLS処理部21が行う処理のフローチャートである。MPLS処理部21は、まず、ラベル解放メッセージに基づいて、ラベルの解放をラベル管理部23に要求する(ステップS51)。次に、解放されたラベルに対応する情報をラベル−FECテーブルから削除するように、ラベル再割当て処理部26に要求する(ステップS52)。
【0097】
そして、同一ラベル割当て不可経路の通知を別ラベル割当て処理部27に要求して(ステップS53)、処理を終了する。ステップS51におけるラベル管理部23の処理は、図21と同様であり、ステップS52におけるラベル再割当て処理部26の処理は、図22と同様である。
【0098】
図28は、図27のステップS53において、MPLS処理部21から経路通知要求を受け取った別ラベル割当て処理部27が行う処理のフローチャートである。別ラベル割当て処理部27は、ラベル管理部23から通知された経路を登録するように、経路学習部25に要求して(ステップS61)、処理を終了する。これを受けて、経路学習部25は、その経路を同一ラベル割当て不可経路ツリーに登録する。
【0099】
次に、図29から図31までは、経路上に同一ラベル割当て機能を持たないLSRが存在することを経路学習部25が学習済みである場合のラベル割当ての例を示している。
【0100】
図5のネットワーク構成において、図23のメッセージのシーケンスにより、既にネットワークA宛のフローおよびネットワークB宛のフローに対するLSR#1からのLSPが設定されており、経路#1−#2−#3上に同一ラベル割当て機能を持たないLSRが存在することを学習しているものとする。そして、ネットワークCへの経路が新たに追加される場合を考える。図29は、この例において、LSR間でやり取りされるメッセージのシーケンスを示している。
【0101】
LSR#3のMPLS処理部21は、ネットワークC宛のフローに対するラベル要求メッセージを受信し、ラベル管理部23にラベル割当てを要求する。ラベル管理部23は、同一経路判別処理部28による検索の結果、ラベル要求メッセージの経路#1−#2−#3と同一経路のLSPが存在することを認識し、経路学習処理部25に同一ラベルを割当ててよいかどうかを問い合わせる。
【0102】
経路学習処理部25は、図24の同一ラベル割当て不可経路ツリーを保持しており、このツリーをルートから順に検索して、経路#1−#2−#3が登録されていることを認識する。そして、同一ラベル割当て不可であることをラベル管理部23に通知する。
【0103】
その結果、ラベル管理部23は、新規にラベル#cを割り当てて、MPLS処理部21へ通知し、ラベルテーブルを更新する。MPLS処理部21は、LSPの設定をスイッチ設定部22に依頼し、宛先Cとラベル#cを含むラベルマッピングメッセージを送信する。こうして、各LSRには、図30のようなラベルテーブルと図31のようなラベル検索テーブルが設定される。
【0104】
次に、図32から図37までは、経路学習処理部25による同一ラベル割当て不可経路ツリーの登録/検索処理の例を示している。
図32のようなネットワーク構成において、LSR#3が同一ラベル割当て機能を持たない場合を考える。まず、LSR#2からネットワークA宛のフローに対するLSPを設定するときに、同一ラベルが割り当てられなかったとすると、LSR#4の同一ラベル割当て不可経路ツリーは、図33のようになる。図33では、LSR#4がルートノードに対応する。
【0105】
次に、LSR#1−LSR#2−LSR#3−LSR#4間にLSPを設定するとき、ラベル要求メッセージのパスベクタに基づいて、図33の同一ラベル割当て不可経路ツリーを検索すると、経路#2−#3−#4がツリーにヒットする。この場合、LSPを設定しようとしている経路と同一ラベル割当て不可経路ツリーの経路は完全には一致しないが、後者は前者の部分集合になっている。このような場合にも、経路学習処理部25は、同一ラベル割当て不可と判断する。
【0106】
続いて、LSR#5−LSR#3−LSR#4間にLSPを設定するとき、その経路のうち#3−#4の部分は、同一ラベル割当て不可経路ツリーの経路と一致する。しかし、LSR#3は末端ノードではなく、子ノードLSR#2を持っているため、経路学習処理部25は、経路#5−#3−#4がツリーにヒットしたとはみなさず、同一ラベル割当て可と判断する。
【0107】
ここで、LSR#4はラベルマッピングメッセージを送信するが、LSR#3は同一ラベルを割り当てることができないため、ラベル解放メッセージを送信する。ラベル解放メッセージを受信したLSR#4の別ラベル割当て処理部27は、経路#5−#3−#4を同一ラベル割当て不可経路ツリーに登録するように、経路学習処理部25に要求する。この時点で、同一ラベル割当て不可経路ツリーは、図34のようになる。
【0108】
最後に、LSR#3−LSR#4間にLSPを設定するとき、図34の同一ラベル割当て不可経路ツリーが検索され、LSR#3まで辿ったところで、#3−#4の部分と一致する。しかし、LSR#3には2つの子ノードが存在するので、経路#3−#4が同一ラベル割当て不可と断定することはできない。そこで、経路学習処理部25は、同一ラベル割当て可と判断する。
【0109】
ここで、LSR#4はラベルマッピングメッセージを送信するが、LSR#3は同一ラベルを割り当てることができないため、再び、ラベル解放メッセージを送信する。そして、LSR#4の別ラベル割当て処理部27は、経路#3−#4を同一ラベル割当て不可経路ツリーに登録するように、経路学習処理部25に要求する。
【0110】
このとき、経路学習処理部25は、既に経路#3−#4がツリー上に存在することを知って、LSR#3の子ノードをすべて削除する。この時点で、同一ラベル割当て不可経路ツリーは、図35のようになる。
【0111】
図36は、図11のステップS12において、ラベル管理部23から問合せを受けた経路学習処理部25による同一ラベル割当て不可経路ツリーの検索処理のフローチャートである。経路学習処理部25は、まず、ツリーのルートノードをツリーポインタで指し(ステップS71)、問い合わされた経路に対応するラベル要求メッセージのパスベクタを検索リストとして用いて、ツリーポインタで指されたノードが、検索リストの先頭と一致する子ノードを持っているかどうかをチェックする(ステップS72)。
【0112】
ツリーポインタで指されたノードがそのような子ノードを持っていれば、検索リストの先頭のLSRを削除し(ステップS73)、一致した子ノードにツリーポインタを移動する(ステップS74)。そして、検索リストが残っているかどうかをチェックし(ステップS75)。検索リストが残っていれば、ステップS72以降の処理を繰り返す。
【0113】
ステップS72において、ツリーポインタで指されたノードが、検索リストの先頭と一致する子ノードを持っていなければ、次に、そのノードが末端ノードかどうかをチェックする(ステップS76)。ここでは、子ノードをまったく持たないノードが末端ノードとみなされる。
【0114】
そして、ツリーポインタで指されたノードが末端ノードであれば、問い合わされた経路はツリーに登録されているため、同一ラベル割当て不可と判断して(ステップS77)、処理を終了する。また、ツリーポインタで指されたノードが末端ノードでなければ、問い合わされた経路はツリーに登録されていないので、同一ラベル割当て可と判断して(ステップS78)、処理を終了する。ステップS74において、検索リストが残っていなければ、ステップS76以降の処理を行う。
【0115】
例えば、図33の同一ラベル割当て不可経路ツリーが保持されているときに、経路#1−#2−#3−#4に関する問合せがあったとき、経路学習処理部25は、対応するパスベクタ#3−#2−#1を検索リストとして用いて、ツリーを検索する。
【0116】
まず、ツリーポインタがルートノード#4を指しているとき、このノードは、検索リストの先頭のデータ#3を子ノードとして持っているので、検索リストからデータ#3が削除され、検索リストは#2−#1のようになる。また、ツリーポインタは子ノード#3に移動する。
【0117】
次に、ノード#3は、検索リストの先頭のデータ#2を子ノードとして持っているので、検索リストからデータ#2が削除され、検索リストは#1のようになる。また、ツリーポインタは子ノード#2に移動する。そして、ノード#2は末端ノードであるので、同一ラベル割当て不可と判断される。
【0118】
図37は、図28のステップS61において、経路登録要求を受け取った経路学習処理部25による同一ラベル割当て不可経路ツリーの登録処理のフローチャートである。経路学習処理部25は、まず、ツリーのルートノードをツリーポインタで指し(ステップS81)、通知された経路に対応するラベル要求メッセージのパスベクタを登録リストとして用いて、ツリーポインタで指されたノードが、登録リストの先頭と一致する子ノードを持っているかどうかをチェックする(ステップS82)。
【0119】
ツリーポインタで指されたノードがそのような子ノードを持っていれば、登録リストの先頭のLSRを削除し(ステップS83)、一致した子ノードにツリーポインタを移動する(ステップS84)。そして、登録リストが残っているかどうかをチェックし(ステップS85)、登録リストが残っていれば、ステップS82以降の処理を繰り返す。
【0120】
ステップS82において、ツリーポインタで指されたノードが、登録リストの先頭と一致する子ノードを持っていなければ、登録リストの先頭を子ノードとして追加し(ステップS86)、ステップS83以降の処理を行う。また、ステップS84において、検索リストが残っていなければ、次に、ツリーポインタで指されたノードが末端ノードかどうかをチェックする(ステップS87)。
【0121】
そして、ツリーポインタで指されたノードが末端ノードであれば、そのまま処理を終了する。また、そのノードが末端ノードでなければ、その子ノードをすべて削除して(ステップS88)、処理を終了する。
【0122】
例えば、図34の同一ラベル割当て不可経路ツリーが保持されているときに、経路#3−#4の登録要求を受け取ったとき、経路学習処理部25は、対応するパスベクタ#3を登録リストとして用いて、ツリーを検索する。
【0123】
まず、ツリーポインタがルートノード#4を指しているとき、このノードは、登録リストの先頭のデータ#3を子ノードとして持っているので、登録リストからデータ#3が削除され、登録リストのデータはなくなる。また、ツリーポインタは子ノード#3に移動する。そして、ノード#3は末端ノードではないので、その子ノード#2と#5が削除され、図35のようなツリーが残される。
【0124】
次に、図38から図42までを参照しながら、本発明のLSP設定と従来のRIPを使用したLSP設定において、必要となるLSPの数を比較してみる。
まず、入口LSRと出口LSRが直接接続されており、出口LSRがm個のネットワークを収容している場合、従来のRIPを使用したLSP設定では、入口LSR−出口LSR間に設定されるLSPの数はm個である。これに対して、本発明のLSP設定では、1個で済むので、LSPの数は1/mに削減される。
【0125】
次に、より複雑なネットワーク構成におけるLSPの数を比較してみる。図38は、6台のLSRをスター接続してMPLSドメインを形成し、その周辺の各LSRがそれぞれm個の非MPLSドメイン向けのネットワークを収容しているようなネットワーク構成を示している。ここで、問題をより一般化して、n台のLSRがスター接続された場合を考え、その中心となるLSR#1に関して必要となるLSPの数を算出することにする。
【0126】
まず、従来のRIPを使用したLSP設定では、非MPLSドメイン向けのネットワーク同士の組合せの数は、m(n-1)2 =m(n−1){m(n−1)−1}/2である。そのうち、同一LSR配下のネットワーク同士の組合せの数は、m2 ×(n−1)=m(m−1)(n−1)/2である。したがって、LSR#1において非MPLSドメイン向けに必要とする中継動作LSPの数は、次式により算出される。
中継動作LSP数
=[m(n−1){m(n−1)−1}/2]×2
−[m(m−1)(n−1)/2]×2
=m2 2 −3m2 n+2m2 (1)
また、非MPLSドメイン向けに必要とする入口動作LSPの数は、次式により算出される。
入口動作LSP数
=m(n−1) (2)
(1)、(2)式より、非MPLSドメイン向けに必要とするLSPの数は、次式のようになる。
2 (n2 −3n+2)+m(n−1)
=m2 2 −3m2 n+mn+2m2 −m (3)
また、周辺のLSR#2,...,LSR#nからMPLSドメイン内のネットワークに対するLSPに関しては、LSR#1は出口動作を行うので、必要とするLSPの数は次式により算出される。
出口動作LSP数
=(n−2)×(n−1)
=n2 −3n+2 (4)
よって、LSR#1が必要とするLSPの総数は、(3)式と(4)式の和で与えられ、次式のようになる。
2 2 −3m2 n+mn+2m2 −m+n2 −3n+2
=(m2 +1)n2 −(3m2 −m+3)n+2m2 −m+2 (5)
これに対して、本発明のLSP設定では、LSR#1において、他のLSRとの間で送信用および受信用にそれぞれ1つのLSPを必要とするので、このために必要とするLSPの数は、次式により算出される。
入口動作LSP数+出口動作LSP数
=(n−1)+(n−1)=2n−2 (6)
また、LSR#1以外のLSR同士の組合せの数は、(n-1)2 =(n−1)(n−2)/2なので、それらのLSR間で中継動作を行うために必要となるLSPの数は、次式により算出される。
中継動作LSP数
=[(n−1)(n−2)/2]×2
=n2 −3n+2 (7)
よって、LSR#1が必要とするLSPの総数は、(6)式と(7)式の和で与えられ、次式のようになる。
2n−2+n2 −3n+2
=n2 −n (8)
図39は、m=5として、n=10,20,30,40,50の場合の従来技術および本発明のLSP数を算出した結果を示している。従来技術のLSP数は(5)式により算出され、本発明のLSP数は(8)式により算出されている。ここで、従来技術のLSP数/本発明のLSP数をaとおくと、本発明においては、LSP数が1/aに削減されるため、ラベル検索テーブルの検索時間も同様の比率で短縮される。図39の結果を折れ線グラフで表すと、図40のようになる。
【0127】
また、図41は、m=10として、n=10,20,30,40,50の場合の従来技術および本発明のLSP数を算出した結果を示している。図41の結果を折れ線グラフで表すと、図42のようになる。
【0128】
図40および図42から分かるように、より複雑なネットワーク構成においても、本発明のLSP設定により、必要なLSPの数が大きく削減される。LSP数を減らすことにより、使用ラベル数が減少し、ラベル検索テーブルのエントリ数も減少するため、パケット転送時のラベル検索時間が短縮される。その結果、パケット転送処理にかかる負荷を軽減することが可能となる。
【0129】
図3の同一経路判別処理部28によるラベルテーブルの検索と、経路学習処理部25による同一ラベル割当て不可経路ツリーの検索は、LSPの設定時にのみ行われるため、これらの検索に要する時間は、パケットの転送時間には影響しない。
【0130】
また、本実施形態では、管理対象のLSPの数が少なくなるため、LSPの保守・管理が容易となり、ネットワーク全体を把握することが容易となる。例えば、図41において、LSR数が10の場合、必要なLSP数は、従来技術では7362になるのに対して、本発明では90である。また、設定可能なLSP数が少ない安価なLSRを使用することができるので、システムの導入コスト削減が可能となる。
【0131】
上述の実施形態では、主として、IP網におけるパケット転送の例について説明したが、本発明は、それ以外の任意のラベルスイッチングネットワークにも適用可能である。
【0132】
【発明の効果】
本発明によれば、ラベルスイッチングネットワークにおいて、使用ラベル数が削減され、パケット転送処理の負荷が軽減されるため、ネットワークの転送能力が向上する。したがって、運用時の管理が困難なOSPFの代わりに、比較的管理が容易な距離ベクタ型ルーティングプロトコルを用いて、実用的なラベルスイッチングネットワークを構築することが可能となる。また、LSPの保守・管理が容易となり、システムの導入コストが削減される。
【図面の簡単な説明】
【図1】本発明のパス設定装置の原理図である。
【図2】第1のラベル制御を示す図である。
【図3】第2のラベル制御を示す図である。
【図4】LSRの構成図である。
【図5】第1のネットワーク構成を示す図である。
【図6】第1のメッセージシーケンスを示す図である。
【図7】第1のラベルテーブルを示す図である。
【図8】第1のラベル検索テーブルを示す図である。
【図9】第2のラベルテーブルを示す図である。
【図10】MPLS処理部による第1の処理のフローチャートである。
【図11】ラベル管理部による第1の処理のフローチャートである。
【図12】第2のネットワーク構成を示す図である。
【図13】第2のメッセージシーケンスを示す図である。
【図14】第3のラベルテーブルを示す図である。
【図15】第2のラベル検索テーブルを示す図である。
【図16】第4のラベルテーブルを示す図である。
【図17】ラベル−FECテーブルを示す図である。
【図18】第5のラベルテーブルを示す図である。
【図19】第3のラベル検索テーブルを示す図である。
【図20】MPLS処理部による第2の処理のフローチャートである。
【図21】ラベル管理部による第2の処理のフローチャートである。
【図22】ラベル再割当て処理部の処理のフローチャートである。
【図23】第3のメッセージシーケンスを示す図である。
【図24】第1の同一ラベル割当て不可経路ツリーを示す図である。
【図25】第7のラベルテーブルを示す図である。
【図26】第5のラベル検索テーブルを示す図である。
【図27】MPLS処理部による第3の処理のフローチャートである。
【図28】別ラベル割当て処理部の処理のフローチャートである。
【図29】第4のメッセージシーケンスを示す図である。
【図30】第8のラベルテーブルを示す図である。
【図31】第6のラベル検索テーブルを示す図である。
【図32】第3のネットワーク構成を示す図である。
【図33】第2の同一ラベル割当て不可経路ツリーを示す図である。
【図34】第3の同一ラベル割当て不可経路ツリーを示す図である。
【図35】第4の同一ラベル割当て不可経路ツリーを示す図である。
【図36】検索処理のフローチャートである。
【図37】登録処理のフローチャートである。
【図38】第4のネットワーク構成を示す図である。
【図39】第1のLSP数を示す図である。
【図40】第1のグラフを示す図である。
【図41】第2のLSP数を示す図である。
【図42】第2のグラフを示す図である。
【図43】従来のIPパケット転送を示す図である。
【図44】MPLSによるIPパケット転送を示す図である。
【図45】ネットワークとコストを示す図である。
【図46】最短パスツリーを示す図である。
【図47】ルーティングテーブルを示す図である。
【符号の説明】
1、2、3、4 IPパケット
11 判別手段
12 ラベル割当て手段
21 MPLS処理部
22 スイッチ設定部
23 ラベル管理部
24 ルーティングプロトコル処理部
25 経路学習処理部
26 ラベル再割当て処理部
27 別ラベル割当て処理部
28 同一経路判別処理部
31 媒体ドライブ
32 CPU
33 メモリ
34、36 回線インタフェース
35 スイッチ
37 検索LSI
38 検索テーブルメモリ
39 記録媒体
//

Claims (7)

  1. 複数のルータを含むラベルスイッチングネットワークにおいて、ラベルスイッチドパスを設定するパス設定装置であって、
    設定済みラベルスイッチドパスの経路上のルータのリストを格納する格納手段と、
    通過経路上のルータのリストを含むラベル要求を受け取ったとき、前記格納手段を検索して、該ラベル要求の通過経路と同じ経路を有する設定済みラベルスイッチドパスがあるか否かを判別する判別手段と、
    前記同じ経路を有する設定済みラベルスイッチドパスがあるとき、前記ラベル要求に対して、該設定済みラベルスイッチドパスのラベルと同じラベルを割り当てるラベル割当て手段
    を備えることを特徴とするパス設定装置。
  2. 前記判別手段は、前記ラベル要求の通過経路と設定済みラベルスイッチドパスの経路の間で、入口ルータと出口ルータの組合せと、該入口ルータと該出口ルータの間のルータが一致するとき、該ラベル要求の通過経路は該設定済みラベルスイッチドパスの経路と同じであると判断することを特徴とする請求項1記載のパス設定装置。
  3. 複数のルータを含むラベルスイッチングネットワークにおいて、ラベルスイッチドパスを設定するパス設定装置であって、
    ラベル要求を受け取ったとき、該ラベル要求に対応する経路と同じ経路を有する設定済みラベルスイッチドパスがあるか否かを判別する判別手段と、
    前記同じ経路を有する設定済みラベルスイッチドパスがあるとき、前記ラベル要求に対して、該設定済みラベルスイッチドパスのラベルと同じラベルを割り当てるラベル割当て手段と、
    ラベルを再度割り当てる処理を行うラベル再割当て手段を備え、
    前記ラベル割当て手段は、複数のフォワーディングイクイバレンスクラスに対して同じラベルを割り当て、該複数のフォワーディングイクイバレンスクラスのうちの1つに対して、前記ラベルスイッチングネットワークに変化が発生したとき、該ラベル再割当て手段は、入口ルータと出口ルータの間に割り当てられたラベルを一旦解放し、該入口ルータと新たな出口ルータの間でラベル割当てをやり直すための処理を行うことを特徴とするパス設定装置。
  4. 複数のルータを含むラベルスイッチングネットワークにおいて、ラベルスイッチドパスを設定するパス設定装置であって、
    ラベル要求を受け取ったとき、該ラベル要求に対応する経路と同じ経路を有する設定済みラベルスイッチドパスがあるか否かを判別する判別手段と、
    前記同じ経路を有する設定済みラベルスイッチドパスがあるとき、前記ラベル要求に対して、該設定済みラベルスイッチドパスのラベルと同じラベルを割り当てるラベル割当て手段と、
    前記設定済みラベルスイッチドパスのラベルと同じラベルを通知されたルータから該同じラベルの解放要求を受け取ったとき、前記同じ経路に対応するラベル要求に対して、該設定済みラベルスイッチドパスのラベルとは別のラベルを割り当てるための処理を行う別ラベル割当て手段
    を備えることを特徴とするパス設定装置。
  5. 同じラベルの割当てができない経路を自動的に学習し、学習した経路における同じラベルの割当てを禁止する経路学習手段をさらに備え、前記同じラベルの解放要求を受け取ったとき、前記別ラベル割当て手段は、前記同じ経路を該経路学習手段に通知し、該経路学習手段は、通知された経路を該同じラベルの割当てができない経路として学習することを特徴とする請求項4記載のパス設定装置。
  6. 複数のルータを含むラベルスイッチングネットワークにおいて、ラベルスイッチドパスを設定するコンピュータのためのプログラムを記録した記録媒体であって、
    通過経路上のルータのリストを含むラベル要求を受け取ったとき、設定済みラベルスイッチドパスの経路上のルータのリストを格納する格納手段を検索して、該ラベル要求の通過経路と同じ経路を有する設定済みラベルスイッチドパスがあるか否かを判別し、
    前記同じ経路を有する設定済みラベルスイッチドパスがあるとき、前記ラベル要求に対して、該設定済みラベルスイッチドパスのラベルと同じラベルを割り当てる
    処理を前記コンピュータに実行させることを特徴とするコンピュータ読み取り可能な記録媒体。
  7. 複数のルータを含むラベルスイッチングネットワークにおいて、ラベルスイッチドパスを設定するパス設定方法であって、
    通過経路上のルータのリストを含むラベル要求を受け取ったとき、設定済みラベルスイッチドパスの経路上のルータのリストを格納する格納手段を検索して、該ラベル要求の通過経路と同じ経路を有する設定済みラベルスイッチドパスがあるか否かを判別し、
    前記同じ経路を有する設定済みラベルスイッチドパスがあるとき、前記ラベル要求に対して、該設定済みラベルスイッチドパスのラベルと同じラベルを割り当て、
    前記同じ経路を有する設定済みラベルスイッチドパスがないとき、前記ラベル要求に対して、新たなラベルを割り当てる
    ことを特徴とするパス設定方法。
JP2000110903A 2000-04-12 2000-04-12 ラベルスイッチングネットワークにおけるパス設定装置および方法 Expired - Fee Related JP4388667B2 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2000110903A JP4388667B2 (ja) 2000-04-12 2000-04-12 ラベルスイッチングネットワークにおけるパス設定装置および方法
US09/754,802 US7035226B2 (en) 2000-04-12 2001-01-04 Path setup device and method for label switching network

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000110903A JP4388667B2 (ja) 2000-04-12 2000-04-12 ラベルスイッチングネットワークにおけるパス設定装置および方法

Publications (2)

Publication Number Publication Date
JP2001298475A JP2001298475A (ja) 2001-10-26
JP4388667B2 true JP4388667B2 (ja) 2009-12-24

Family

ID=18623335

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000110903A Expired - Fee Related JP4388667B2 (ja) 2000-04-12 2000-04-12 ラベルスイッチングネットワークにおけるパス設定装置および方法

Country Status (2)

Country Link
US (1) US7035226B2 (ja)
JP (1) JP4388667B2 (ja)

Families Citing this family (57)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB0107639D0 (en) * 2001-03-27 2001-05-16 Marconi Comm Ltd Network tunnelling
AU2002304386A1 (en) * 2001-06-27 2003-03-03 Nokia Corporation Method and system for efficient management and transport of traffic over a network
JP4328478B2 (ja) * 2001-08-27 2009-09-09 富士通株式会社 ラベル転送ネットワークにおける経路変更方法並びにラベルスイッチングノード及び管理ノード
US7120151B1 (en) * 2001-09-27 2006-10-10 Cisco Technology, Inc. Method for fast label switchover with multiprotocol label switching
US7424019B1 (en) 2001-11-27 2008-09-09 Marvell Israel (M.I.S.L) Ltd. Packet header altering device
US7433969B2 (en) * 2001-12-31 2008-10-07 Redback Networks Inc. Method and apparatus for representing label switched paths
US7373401B1 (en) * 2001-12-31 2008-05-13 Nortel Networks Limited Label switched path OAM wrapper
JP3898535B2 (ja) * 2002-03-14 2007-03-28 株式会社日立製作所 データ転送装置
US8014380B2 (en) * 2002-07-03 2011-09-06 Alcatel Lucent Method and system for automatically establishing a return label switched path
US7499404B2 (en) * 2002-08-30 2009-03-03 Nortel Networks Limited Distributed quality of service routing
US7769873B1 (en) 2002-10-25 2010-08-03 Juniper Networks, Inc. Dynamically inserting filters into forwarding paths of a network device
US8176532B1 (en) 2003-03-17 2012-05-08 Sprint Communications Company L.P. Secure access point for scada devices
WO2004102904A1 (ja) * 2003-05-16 2004-11-25 Fujitsu Limited 複数レイヤを介して通信を行う通信網におけるパス設定方法および通信装置
US8078758B1 (en) 2003-06-05 2011-12-13 Juniper Networks, Inc. Automatic configuration of source address filters within a network device
US7860115B1 (en) * 2003-12-18 2010-12-28 Cisco Technology, Inc. Withdrawing multiple advertised routes based on a single tag which may be of particular use in border gateway protocol
US7856509B1 (en) 2004-04-09 2010-12-21 Juniper Networks, Inc. Transparently providing layer two (L2) services across intermediate computer networks
US7558263B1 (en) 2004-08-30 2009-07-07 Juniper Networks, Inc. Reliable exchange of control information for multicast virtual private networks
JP4595469B2 (ja) * 2004-09-29 2010-12-08 ブラザー工業株式会社 接続態様制御装置及び接続態様制御方法並びに接続態様制御用プログラム
US8717899B2 (en) * 2004-10-13 2014-05-06 Cisco Technology, Inc. System and method for reporting out-of-resources (OOR) conditions in a data network
US7496105B2 (en) * 2004-11-05 2009-02-24 Cisco Technology, Inc. System and method for retrieving computed paths from a path computation element using encrypted objects
US7602702B1 (en) 2005-02-10 2009-10-13 Juniper Networks, Inc Fast reroute of traffic associated with a point to multi-point network tunnel
US9166807B2 (en) * 2005-07-28 2015-10-20 Juniper Networks, Inc. Transmission of layer two (L2) multicast traffic over multi-protocol label switching networks
US7990965B1 (en) 2005-07-28 2011-08-02 Juniper Networks, Inc. Transmission of layer two (L2) multicast traffic over multi-protocol label switching networks
US7564803B1 (en) * 2005-08-29 2009-07-21 Juniper Networks, Inc. Point to multi-point label switched paths with label distribution protocol
US7839850B2 (en) * 2006-01-30 2010-11-23 Juniper Networks, Inc. Forming equal cost multipath multicast distribution structures
US8270395B2 (en) * 2006-01-30 2012-09-18 Juniper Networks, Inc. Forming multicast distribution structures using exchanged multicast optimization data
CN101047624B (zh) * 2006-04-27 2010-06-09 华为技术有限公司 标签分配方法以及标签出让方法
US7787380B1 (en) 2006-06-30 2010-08-31 Juniper Networks, Inc. Resource reservation protocol with traffic engineering point to multi-point label switched path hierarchy
US7839862B1 (en) 2006-06-30 2010-11-23 Juniper Networks, Inc. Upstream label assignment for the label distribution protocol
US7742482B1 (en) 2006-06-30 2010-06-22 Juniper Networks, Inc. Upstream label assignment for the resource reservation protocol with traffic engineering
CN101212456A (zh) * 2006-12-27 2008-07-02 华为技术有限公司 一种在gmpls控制pbt中避免标签冲突的方法和装置
US7940695B1 (en) * 2007-06-08 2011-05-10 Juniper Networks, Inc. Failure detection for tunneled label-switched paths
US8125926B1 (en) 2007-10-16 2012-02-28 Juniper Networks, Inc. Inter-autonomous system (AS) virtual private local area network service (VPLS)
JP4885819B2 (ja) * 2007-10-22 2012-02-29 富士通株式会社 通信装置
US8423668B2 (en) * 2007-12-31 2013-04-16 Cisco Technology, Inc. Link state protocol routing message containment
US7936780B1 (en) 2008-03-12 2011-05-03 Juniper Networks, Inc. Hierarchical label distribution protocol for computer networks
US8155028B2 (en) * 2008-03-17 2012-04-10 Alcatel Lucent Method and apparatus for providing full logical connectivity in MPLS networks
US8223669B2 (en) * 2008-04-07 2012-07-17 Futurewei Technologies, Inc. Multi-protocol label switching multi-topology support
US7937492B1 (en) 2008-09-30 2011-05-03 Juniper Networks, Inc. LSP ping and traceroute for bypass tunnels
US7929557B2 (en) * 2008-11-14 2011-04-19 Juniper Networks, Inc. Summarization and longest-prefix match within MPLS networks
US8077726B1 (en) 2008-12-10 2011-12-13 Juniper Networks, Inc. Fast reroute for multiple label switched paths sharing a single interface
US8422514B1 (en) 2010-02-09 2013-04-16 Juniper Networks, Inc. Dynamic configuration of cross-domain pseudowires
US8310957B1 (en) 2010-03-09 2012-11-13 Juniper Networks, Inc. Minimum-cost spanning trees of unicast tunnels for multicast distribution
US8339973B1 (en) 2010-09-07 2012-12-25 Juniper Networks, Inc. Multicast traceroute over MPLS/BGP IP multicast VPN
US9246838B1 (en) 2011-05-27 2016-01-26 Juniper Networks, Inc. Label switched path setup using fast reroute bypass tunnel
US9100213B1 (en) 2011-06-08 2015-08-04 Juniper Networks, Inc. Synchronizing VPLS gateway MAC addresses
CN102437931B (zh) * 2011-12-29 2015-07-08 华为技术有限公司 一种业务路径的探测方法及设备
US8837479B1 (en) 2012-06-27 2014-09-16 Juniper Networks, Inc. Fast reroute between redundant multicast streams
US9049148B1 (en) 2012-09-28 2015-06-02 Juniper Networks, Inc. Dynamic forwarding plane reconfiguration in a network device
WO2014112960A2 (en) * 2013-01-18 2014-07-24 Gokmen Vural Acrylamide-free bakery product and the production method thereof
US8953500B1 (en) 2013-03-29 2015-02-10 Juniper Networks, Inc. Branch node-initiated point to multi-point label switched path signaling with centralized path computation
US20140341016A1 (en) * 2013-05-14 2014-11-20 Telefonaktiebolaget L M Ericsson (Publ) Method and apparatus for enabling efficient resource allocation
CN104796339B (zh) * 2014-01-17 2018-03-20 新华三技术有限公司 快速泛洪处理方法及装置
US9806895B1 (en) 2015-02-27 2017-10-31 Juniper Networks, Inc. Fast reroute of redundant multicast streams
CN106789656B (zh) * 2016-12-16 2019-10-25 北京格林伟迪科技股份有限公司 一种路由请求处理方法和装置
US10476811B2 (en) * 2017-03-10 2019-11-12 Juniper Networks, Inc Apparatus, system, and method for providing node protection across label-switched paths that share labels
CN112019419B (zh) * 2020-07-28 2021-10-26 瑞斯康达科技发展股份有限公司 一种标签转发路径的维护方法、存储介质和电子装置

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6697361B2 (en) * 1998-09-15 2004-02-24 Nortel Networks Limited Method and apparatus for stream aggregation in a multiprotocol label switching network environment
US6408001B1 (en) * 1998-10-21 2002-06-18 Lucent Technologies Inc. Method for determining label assignments for a router
US6735190B1 (en) * 1998-10-21 2004-05-11 Lucent Technologies Inc. Packet transport method device utilizing header removal fields
JP3699837B2 (ja) * 1998-10-30 2005-09-28 株式会社東芝 ルータ装置及びラベルスイッチパス制御方法

Also Published As

Publication number Publication date
JP2001298475A (ja) 2001-10-26
US20010033574A1 (en) 2001-10-25
US7035226B2 (en) 2006-04-25

Similar Documents

Publication Publication Date Title
JP4388667B2 (ja) ラベルスイッチングネットワークにおけるパス設定装置および方法
TWI803687B (zh) 用於路由最佳化的系統及其方法
CN105191215B (zh) 用于双向服务链的数据平面学习的方法和装置
CA2287721C (en) Router device and label switched path control method using upstream initiated aggregation
US7948996B2 (en) Communicating constraint information for determining a path subject to such constraints
CN110401599B (zh) 数据包的处理方法及装置、存储介质、电子装置
US8165038B2 (en) Network physical connection inference for IP tunnels
JP2001333091A (ja) 通信装置
US11646960B2 (en) Controller provided protection paths
US9674072B1 (en) Route topology discovery in data networks
US10904130B2 (en) Method for scalable computer network partitioning
US7133402B2 (en) Link identifier assignment system in connection-oriented communication network
US8750166B2 (en) Route topology discovery in data networks
JP2000278264A (ja) データネットワーク監視方法
JP3591492B2 (ja) パケット振分装置およびパケット振分プログラム
JP3949696B2 (ja) プロトコル高速化装置
CN113141307B (en) Information updating method, device, network equipment and computer readable storage medium
KR100550013B1 (ko) 라우터와 가상근거리통신망간의 패킷 통신 방법
JP2004032173A (ja) 通信経路切替機能付きパケット通信網
Oki et al. Generalized traffic engineering protocol for multi-layer GMPLS networks
JP2004193644A (ja) Mplsにおけるルータおよびパス設定方法およびネットワーク
JP4358244B2 (ja) プロトコル高速化装置
JP2003152775A (ja) 障害発生時のローカル迂回方式
JP4001080B2 (ja) 光カットスルー方法、該方法を実現する光エッジルータ、およびそのためのプログラム、ならびに該プログラムを記録した記録媒体
KR20050036371A (ko) 멀티 프로토콜 레이블 교환망에서의 가상 사설망 서비스방법 및 이를 실현시키기 위한 프로그램을 기록한 컴퓨터판독 가능한 기록매체

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070322

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090302

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090707

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090902

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090929

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20091005

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121009

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121009

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131009

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees