JP4388558B2 - Heat insulator - Google Patents

Heat insulator Download PDF

Info

Publication number
JP4388558B2
JP4388558B2 JP2007013469A JP2007013469A JP4388558B2 JP 4388558 B2 JP4388558 B2 JP 4388558B2 JP 2007013469 A JP2007013469 A JP 2007013469A JP 2007013469 A JP2007013469 A JP 2007013469A JP 4388558 B2 JP4388558 B2 JP 4388558B2
Authority
JP
Japan
Prior art keywords
width
convex
convex portions
heat insulator
convex portion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2007013469A
Other languages
Japanese (ja)
Other versions
JP2008180125A (en
Inventor
行 須永
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
FUKAI MFG. CO., LTD.
Original Assignee
FUKAI MFG. CO., LTD.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by FUKAI MFG. CO., LTD. filed Critical FUKAI MFG. CO., LTD.
Priority to JP2007013469A priority Critical patent/JP4388558B2/en
Publication of JP2008180125A publication Critical patent/JP2008180125A/en
Application granted granted Critical
Publication of JP4388558B2 publication Critical patent/JP4388558B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、多数のエンボス成形による凸部を形成してなるヒートインシュレータに関し、特に自動車の触媒コンバータやマフラなどの断熱に好適に使用できるヒートインシュレータに関する。   The present invention relates to a heat insulator formed with a plurality of embossed projections, and more particularly to a heat insulator that can be suitably used for heat insulation of automobile catalytic converters and mufflers.

この種のヒートインシュレータは、自動車の車両フロア下方の空きスペースに設置されることが多いため、フューエルチューブ等との干渉を避けるためにビードを十分突出させることができない場合やビードを板面全体には形成できない場合があるので、ヒートインシュレータの板厚を厚くすることで剛性を確保するのが一般的である。また、剛性を高めるために、凹凸を形成することも知られている(特許文献1参照)。
特開2002−60878号公報
Since this type of heat insulator is often installed in an empty space below the vehicle floor of an automobile, the bead cannot be sufficiently protruded to avoid interference with a fuel tube or the like, or the bead is placed over the entire plate surface. In some cases, it is not possible to form, so that the rigidity is generally secured by increasing the thickness of the heat insulator. It is also known to form irregularities in order to increase rigidity (see Patent Document 1).
Japanese Patent Laid-Open No. 2002-60878

しかしながら、ヒートインシュレータの板厚を増すことは重量増とコストアップが避けられないという問題があり、凹凸を形成する場合に凹溝間に平板部が直線状に残るように配列するのでは、剛性が十分には確保できない。   However, increasing the plate thickness of the heat insulator inevitably increases the weight and increases the cost, and when forming irregularities, it is difficult to arrange the flat plate portions to remain linearly between the concave grooves. Is not enough.

そこで、本発明はこのような課題を解決するもので、板厚を厚くすることなく十分な剛性を確保することができるヒートインシュレータを提供することを目的とする。   Therefore, the present invention solves such problems, and an object of the present invention is to provide a heat insulator that can ensure sufficient rigidity without increasing the plate thickness.

このため本発明は、多数のエンボス成形による凸部を形成してなるヒートインシュレータにおいて、前記凸部は平面視六角形を呈し且つ対角を形成する頂点を通る縦断面が円弧状を呈し、前記凸部同士の間に平板部が直線状に残らないように配列し、前記凸部は凸部の高さH/凸部の幅W1が12%以上〜20%以内となるように形成すると共に、前記凸部の幅W1が10mm以上〜16mm以内で且つ前記凸部同士の間隔Cが間隔C/2と前記凸部の幅W1との和であるベース幅W2の75%以下に形成したことを特徴とする。 For this reason, the present invention is a heat insulator formed with a plurality of embossed convex portions, wherein the convex portions have a hexagonal shape in plan view, and a longitudinal section passing through a vertex forming a diagonal has an arc shape, The flat plate portions are arranged so as not to remain in a straight line between the convex portions, and the convex portions are formed so that the height H of the convex portions / the width W1 of the convex portions are not less than 12% and not more than 20%. The width W1 of the protrusions is 10 mm to 16 mm and the distance C between the protrusions is 75% or less of the base width W2 which is the sum of the distance C / 2 and the width W1 of the protrusions. It is characterized by.

本発明は、板厚を厚くすることなく十分な剛性を確保することができるヒートインシュレータを提供することができる。   The present invention can provide a heat insulator that can ensure sufficient rigidity without increasing the plate thickness.

以下図面に基づき、本発明の第1の実施形態を説明する。図1は凸部2を形成する前のヒートインシュレータ1の斜視図、図2は凸部2を形成した後のヒートインシュレータ1の部分斜視図、図3は凸部2を形成した後のヒートインシュレータ1の部分平面図である。   Hereinafter, a first embodiment of the present invention will be described with reference to the drawings. FIG. 1 is a perspective view of the heat insulator 1 before forming the convex portion 2, FIG. 2 is a partial perspective view of the heat insulator 1 after forming the convex portion 2, and FIG. 3 is a heat insulator after forming the convex portion 2. 1 is a partial plan view of FIG.

前記ヒートインシュレータ1は、長方形状のアルミニウム製の板体を下方へ山形に成形したもので、その板面にはこれを横断するように長手方向へ間隔をおいて所定幅の複数のビード3が突出形成されている。そして、ヒートインシュレータ1の両側に沿って形成された側縁部4、5を除き、このヒートインシュレータ1の板面のほとんどの部分には多数の凸部2が形成されている。そして、このヒートインシュレータ1は前記一方の側縁部5の垂直片部5Aに形成された取付孔5B内にボルトを挿通して車体に取りつけられる。   The heat insulator 1 is formed by forming a rectangular aluminum plate into a mountain shape downward, and a plurality of beads 3 having a predetermined width are provided on the plate surface at intervals in the longitudinal direction so as to cross the plate. Protrusions are formed. Except for the side edge portions 4 and 5 formed along both sides of the heat insulator 1, a large number of convex portions 2 are formed on most of the plate surface of the heat insulator 1. The heat insulator 1 is attached to the vehicle body by inserting a bolt into a mounting hole 5B formed in the vertical piece 5A of the one side edge 5.

次に、前記ヒートインシュレータ1の製造方法について説明するが、初めにアルミニウム製の平板にエンボス成形によって多数の凸部2を該凸部2同士の間に平板部が直線状に残らないような配列状態で形成する。この凸部2は等間隔で形成されるが、平面視が正六角形を呈し、対角を形成する頂点を通る縦断面が円弧状を呈している。   Next, the manufacturing method of the heat insulator 1 will be described. First, an array is formed so that a large number of convex portions 2 are not left in a straight line between the convex portions 2 by embossing on an aluminum flat plate. Form in state. The convex portions 2 are formed at equal intervals, but the plan view has a regular hexagonal shape, and the longitudinal section passing through the apex forming the diagonal has an arc shape.

そして、前記凸部2を形成した平板を、ヒートインシュレータの最終形状に倣った所定の型間隙を有する上下のプレス型(図示せず)内に装入して成形する。この際、この平板の大部分は、上下の型面が所定の間隙を有することによって板面の凸部2が潰されることなく、所望の形状に成形される。   And the flat plate in which the said convex part 2 was formed is inserted and shape | molded in the up-and-down press type | mold (not shown) which has the predetermined | prescribed type | mold space | gap which followed the final shape of the heat insulator. At this time, most of the flat plate is formed into a desired shape without causing the convex portions 2 of the plate surface to be crushed because the upper and lower mold surfaces have a predetermined gap.

以上のような製造をする過程で、以下のような23例の製作を行った。先ず、図4に示すように、アルミニウム製の板体の板厚を0.3mmとして、凸部2の幅W1を8mm、ベース幅W2を10mm、平面寸法(C/2)を1mmとして、凸部2の高さHを0.8mm〜3.0mmの間の0.1mm毎に変化させて製作した23例の最大変位量から性能向上率を調査した。   In the process of manufacturing as described above, the following 23 cases were manufactured. First, as shown in FIG. 4, the thickness of the aluminum plate is 0.3 mm, the width W1 of the convex portion 2 is 8 mm, the base width W2 is 10 mm, and the planar dimension (C / 2) is 1 mm. The performance improvement rate was investigated from the maximum displacement amount of 23 cases manufactured by changing the height H of the portion 2 every 0.1 mm between 0.8 mm and 3.0 mm.

図4によれば、この第1例の凸部高さH/凸部幅W1は約10.0%、最大変位量が0.845であり、第2例の高さH/幅W1は約11.3%で、最大変位量が0.779で、性能向上率(845/779)は約108%であり、第3例の高さH/幅W1は12.5%で、最大変位量が0.725で、性能向上率(779/725)は約107%であり、第4例の性能向上率(725/677)は約107%であり、以下同様に、第16例の性能向上率(396/390)は約101%であって、第23例の性能向上率(2800/2712)は約103%である。なお、凸部2の円弧部分の実際の長さや、材料の伸び率については、ここでは説明は省略する。   According to FIG. 4, the height H / width W1 of the first example is about 10.0%, the maximum displacement is 0.845, and the height H / width W1 of the second example is about 11.3%, the maximum displacement is 0.779, the performance improvement rate (845/779) is about 108%, the height H / width W1 of the third example is 12.5%, the maximum displacement Is 0.725, the performance improvement rate (779/725) is about 107%, the performance improvement rate of the fourth example (725/677) is about 107%, and so on. The rate (396/390) is about 101%, and the performance improvement rate (2800/2712) of the 23rd example is about 103%. In addition, description is abbreviate | omitted here about the actual length of the circular arc part of the convex part 2, and the elongation rate of material.

従って、凸部高さH/凸部幅W1の最適値は、性能向上率の鈍化が始まる直前の約16.3%の第6例目であるが、満足できる性能向上率は105%以上と考えられ、凸部高さH/凸部幅W1が12%以上〜20.0%以内が適当な範囲であると考えられる。   Therefore, the optimum value of the convex portion height H / the convex portion width W1 is the sixth example of about 16.3% immediately before the start of the slowdown of the performance improvement rate, but the satisfactory performance improvement rate is 105% or more. It is conceivable that the convex height H / convex width W1 is 12% to 20.0% within a suitable range.

次に、前述の凸部高さH/凸部幅W1の最適値は、図4の第6例目の性能向上率が約16.3%であるが、この凸部高さH/凸部幅W1の最適値が決まれば、最適な凸部2の幅W1が存在するはずであり、この幅W1が小さ過ぎても絶対的な高さが不足して強度はでないであろうし、かといって大き過ぎても板厚に対して平面的な要素が強くなってしまい強度は低下すると考えられるので、図5に示すように、アルミニウム製の板体の板厚を0.35mmとして、凸部2の幅W1を6mm〜20mmの間の2mm毎に変化させて製作した6例の最大変位量からベースに対する性能差を調査した。   Next, the optimum value of the above-described convex portion height H / convex portion width W1 is that the performance improvement rate of the sixth example in FIG. 4 is about 16.3%, but this convex portion height H / convex portion. If the optimum value of the width W1 is determined, there should be an optimum width W1 of the convex portion 2, and even if this width W1 is too small, the absolute height will be insufficient and the strength will not be. Even if it is too large, it is thought that the planar element becomes stronger with respect to the plate thickness and the strength is lowered. Therefore, as shown in FIG. 5, the plate thickness of the aluminum plate is set to 0.35 mm and the convex portion The performance difference with respect to the base was investigated from the maximum displacement amount of six cases manufactured by changing the width W1 of 2 every 2 mm between 6 mm and 20 mm.

この図5に示す第1例の凸部幅W1は6mm、凸部高さHは0.975、凸部高さH/凸部幅W1は約16.3%、ベース幅W2は7.5mm、平面寸法(C/2)を0.75mmであり、第2例の凸部幅W1は8mm、凸部高さHは1.300、凸部高さH/凸部幅W1は約16.3%、ベース幅W2は10.0mm、平面寸法(C/2)を1.0mmで、最大変位量が0.427で、ベースに対する性能差(413/427)は約97%であり、第3例の凸部幅W1は10mm、凸部高さHは1.625、凸部高さH/凸部幅W1は約16.3%、ベース幅W2は12.5mm、平面寸法(C/2)を1.25mmで、最大変位量が0.323で、ベースに対する性能差(413/323)は約128%であり、以下同様に、第6例の凸部幅W1は20mm、凸部高さHは3.250、凸部高さH/凸部幅W1は約16.3%、ベース幅W2は25.0mm、平面寸法(C/2)を2.50mmで、最大変位量が0.163で、ベースに対する性能差(413/163)は約254%である。なお、アルミニウム製の板体の板厚の0.3mmの時や、0.5mmの時の変位量については、説明は省略する。   In the first example shown in FIG. 5, the convex portion width W1 is 6 mm, the convex portion height H is 0.975, the convex portion height H / the convex portion width W1 is about 16.3%, and the base width W2 is 7.5 mm. The planar dimension (C / 2) is 0.75 mm, the convex width W1 of the second example is 8 mm, the convex height H is 1.300, and the convex height H / convex width W1 is about 16.2. 3%, the base width W2 is 10.0 mm, the plane dimension (C / 2) is 1.0 mm, the maximum displacement is 0.427, and the performance difference (413/427) with respect to the base is about 97%. In three examples, the protrusion width W1 is 10 mm, the protrusion height H is 1.625, the protrusion height H / the protrusion width W1 is about 16.3%, the base width W2 is 12.5 mm, and the plane dimension (C / 2) is 1.25 mm, the maximum displacement is 0.323, and the performance difference (413/323) with respect to the base is about 128%. The width W1 is 20 mm, the convex height H is 3.250, the convex height H / the convex width W1 is about 16.3%, the base width W2 is 25.0 mm, and the planar dimension (C / 2) is 2. At 50 mm, the maximum displacement is 0.163, and the performance difference (413/163) with respect to the base is about 254%. In addition, description is abbreviate | omitted about the displacement amount when the plate | board thickness of aluminum plate body is 0.3 mm, or 0.5 mm.

以上から、凸部幅W1を変化させていくと、ある幅W1で変位量が小さくなる割合が低下するところがあり、性能の向上が望める凸部幅W1は4例目の12mmであり、満足できる凸部幅W1は10mm以上〜16mm以内が適当な範囲であると考えられる。   From the above, when the convex portion width W1 is changed, there is a place where the ratio of the amount of displacement decreasing with a certain width W1 decreases, and the convex portion width W1 that can be expected to improve performance is 12 mm in the fourth example, which is satisfactory. The convex portion width W1 is considered to be within a suitable range of 10 mm to 16 mm.

最後に、凸部2の密度について説明するが、凸部2同士の間隔が離れれば、それだけエンボス加工により材料が伸びる割合が減り、後工程の成形性では有利になる反面、剛性は低下する。そこで、剛性(変位量の小ささ)に注目して検証する。即ち、アルミニウム製の板体の板厚を0.3mm、凸部幅W1は8.0mm、凸部高さHは0.8mm、凸部高さH/凸部幅W1は10.0%として、ベース幅W2を10mm〜16mmの間の1mm毎の7例の最大変位量から性能向上率を調査した。   Finally, the density of the protrusions 2 will be described. If the distance between the protrusions 2 is increased, the proportion of the material to be extended by the embossing is reduced, and the formability in the subsequent process is advantageous, but the rigidity is reduced. Therefore, verification is made by paying attention to rigidity (small displacement). That is, the thickness of the aluminum plate is 0.3 mm, the convex width W1 is 8.0 mm, the convex height H is 0.8 mm, and the convex height H / the convex width W1 is 10.0%. The performance improvement rate was investigated from the maximum displacement amount of 7 cases for each 1 mm of the base width W2 between 10 mm and 16 mm.

この図6に示す第1例のベース幅W2は10.0mm、平面寸法(C/2)は1.0mm、最大変位量が0.738、材料伸び率は102.1%であり、第2例のベース幅W2は11.0mm、平面寸法(C/2)は1.5mm、最大変位量が0.772で、性能向上率(738/772)は約96%、材料伸び率は101.9%であり、第3例のベース幅W2は12.0mm、平面寸法(C/2)は2.0mm、最大変位量が0.786、性能向上率(772/786)は約98%、材料伸び率は101.8%であり、第4例のベース幅W2は13.0mm、平面寸法(C/2)は2.5mm、最大変位量が0.883、性能向上率(786/883)は約89%、材料伸び率は101.6%であり、第5例のベース幅W2は14.0mm、平面寸法(C/2)は3.0mm、最大変位量が0.915、性能向上率(883/915)は約97%、材料伸び率は101.5%であり、第6例のベース幅W2は15.0mm、平面寸法(C/2)は3.5mm、最大変位量が1.008、性能向上率(915/1008)は約91%、材料伸び率は101.4%であり、最後の第7例のベース幅W2は16.0mm、平面寸法(C/2)は4.0mm、最大変位量が0.951、性能向上率(1008/951)は約106%、材料伸び率は101.3%である。なお、凸部2の円弧部分の実際の長さや、材料の伸び率については、ここでは説明は省略する。   The base width W2 of the first example shown in FIG. 6 is 10.0 mm, the plane dimension (C / 2) is 1.0 mm, the maximum displacement is 0.738, the material elongation is 102.1%, The base width W2 of the example is 11.0 mm, the plane dimension (C / 2) is 1.5 mm, the maximum displacement is 0.772, the performance improvement rate (738/772) is about 96%, and the material elongation rate is 101. The base width W2 of the third example is 12.0 mm, the plane dimension (C / 2) is 2.0 mm, the maximum displacement is 0.786, and the performance improvement rate (772/786) is about 98%. The material elongation is 101.8%, the base width W2 of the fourth example is 13.0 mm, the planar dimension (C / 2) is 2.5 mm, the maximum displacement is 0.883, and the performance improvement rate (786/883) ) Is about 89%, the material elongation is 101.6%, and the base width W2 of the fifth example is 14.0 mm. The plane dimension (C / 2) is 3.0 mm, the maximum displacement is 0.915, the performance improvement rate (883/915) is about 97%, the material elongation is 101.5%, and the base width of the sixth example W2 is 15.0 mm, the plane dimension (C / 2) is 3.5 mm, the maximum displacement is 1.008, the performance improvement rate (915/1008) is about 91%, and the material elongation is 101.4%. The base width W2 of the last seventh example is 16.0 mm, the plane dimension (C / 2) is 4.0 mm, the maximum displacement is 0.951, the performance improvement rate (1008/951) is about 106%, and the material elongation rate Is 101.3%. In addition, description is abbreviate | omitted here about the actual length of the circular arc part of the convex part 2, and the elongation rate of material.

以上から凸部2の密度が高くなる、即ち平面寸法が小さくなるに従い、変位量が小さくなる傾向がある。但し、ベース幅W2が15mm(凸部幅W1の2倍弱)となると、性能向上率が逆転することとなり、この辺りが上限と考えられる。そこで、平面寸法(C/2)の2倍である凸部2同士の間隔(6.0mm)がベース幅W2(8.0mm)の75%以下が適切と考えられる。   From the above, the displacement amount tends to decrease as the density of the convex portions 2 increases, that is, as the planar dimension decreases. However, when the base width W2 is 15 mm (a little less than twice the convex portion width W1), the performance improvement rate is reversed, and this area is considered the upper limit. Accordingly, it is considered appropriate that the interval (6.0 mm) between the convex portions 2 that is twice the plane dimension (C / 2) is 75% or less of the base width W2 (8.0 mm).

また、密度を変化させた際の材料伸び率については、実施する凸部の範囲では、絶対量は極僅かであり、成形性には大きな影響はなく、剛性だけを考えれば凸部同士の間隔を小さくゼロにするのが望ましい。この場合、正六角形はこの間隔を限りなく狭くできる効率の良い形状でもある。しかし、実際の製作加工を行う上では、平面部は必要である。しかも、この平面部は凸部2同士間に直線状に残らないように配列するので(図3参照)、力学的な方向性が無くなり、剛性を大きく向上させることができる。   In addition, regarding the material elongation when changing the density, the absolute amount is extremely small in the range of the convex portion to be implemented, there is no significant effect on the moldability, and if only the rigidity is considered, the spacing between the convex portions It is desirable to make the value small and zero. In this case, the regular hexagon is also an efficient shape that can narrow this interval as much as possible. However, a plane portion is necessary for actual production processing. In addition, since the flat portions are arranged so as not to remain linearly between the convex portions 2 (see FIG. 3), the dynamic directionality is lost, and the rigidity can be greatly improved.

なお、凸部20を形成した後のヒートインシュレータ1の部分斜視図である図7及び凸部20を形成した後のヒートインシュレータ1の部分平面図である図8に基づいて、第2の実施形態について説明する。ヒートインシュレータ1に形成した凸部20は凸部20同士の間に平板部が直線状に残らないように配列状態で形成され、この凸部20は平面視が円形を呈し、縦断面が円弧状を呈しており、球の一部を構成する形状である。   In addition, based on FIG. 7 which is a partial perspective view of the heat insulator 1 after forming the convex portion 20, and FIG. 8 which is a partial plan view of the heat insulator 1 after forming the convex portion 20, the second embodiment. Will be described. The convex portions 20 formed on the heat insulator 1 are formed in an arrayed state so that the flat plate portions do not remain linearly between the convex portions 20, and the convex portions 20 have a circular shape in plan view and an arc-shaped longitudinal section. It is the shape which comprises some spheres.

但し、この第2の実施形態も第1の実施形態と同様に、凸部高さ/凸部幅W3は12%以上〜20.0%以内であり、凸部幅W3は10mm以上〜16mm以内であり、平面寸法(C/2)の2倍である凸部20同士の間隔がベース幅W4の75%以下である。   However, in the second embodiment, similarly to the first embodiment, the convex portion height / the convex portion width W3 is 12% to 20.0%, and the convex portion width W3 is 10 mm to 16 mm. The interval between the convex portions 20 that is twice the plane dimension (C / 2) is 75% or less of the base width W4.

以上の第1、第2の実施形態のように、凸部2や20を形成すると、0.4mm厚のアルミニウム板でも0.5mm厚のアルミニウム板と同程度以上の剛性を発揮することができる。従って、ビードを十分突出させることができない場合やビードを板面全体には形成できない場合にも、凸部を形成することによって、ヒートインシュレータの板厚を厚くすることなく必要な剛性を確保することができ、重量の増大とコストアップを避けることができる。特に、凸部同士の間に平板部が直線状に残らないようにすると、力学的な方向性が無くなり、剛性を大きく向上させることができる。   When the convex portions 2 and 20 are formed as in the first and second embodiments, a 0.4 mm thick aluminum plate can exhibit the same or higher rigidity as a 0.5 mm thick aluminum plate. . Therefore, even when the bead cannot be sufficiently protruded or when the bead cannot be formed on the entire plate surface, the necessary rigidity can be secured without increasing the thickness of the heat insulator by forming the convex portion. And increase in weight and cost can be avoided. In particular, if the flat plate portion is not left in a straight line between the convex portions, the dynamic directionality is lost, and the rigidity can be greatly improved.

以上本発明の実施態様について説明したが、上述の説明に基づいて当業者にとって種々の代替例、修正又は変形が可能であり、本発明はその趣旨を逸脱しない範囲で前述の種々の代替例、修正又は変形を包含するものである。   Although the embodiments of the present invention have been described above, various alternatives, modifications, and variations can be made by those skilled in the art based on the above description, and the present invention is not limited to the various alternatives described above without departing from the spirit of the present invention. It includes modifications or variations.

凸部を形成する前のヒートインシュレータの斜視図である。It is a perspective view of the heat insulator before forming a convex part. 第1の実施形態の凸部を形成した後のヒートインシュレータの部分斜視図である。It is a fragmentary perspective view of the heat insulator after forming the convex part of a 1st embodiment. 第1の実施形態の凸部を形成した後のヒートインシュレータの部分平面図である。It is a fragmentary top view of the heat insulator after forming the convex part of a 1st embodiment. アルミニウム製の板体の板厚等を固定して、凸部の高さHを0.8mm〜3.0mmの間の0.1mm毎に変化させて製作した23例の最大変位量から性能向上率を調査した調査表である。Performance improvement from the maximum displacement amount of 23 cases manufactured by fixing the plate thickness etc. of aluminum plate and changing the height H of the convex part every 0.1 mm between 0.8 mm and 3.0 mm It is the investigation table which investigated the rate. アルミニウム製の板体の板厚を固定して、凸部の幅W1を6mm〜20mmの間の2mm毎に変化させて製作した6例の最大変位量からベースに対する性能差を調査した調査表である。In the investigation table which investigated the performance difference with respect to the base from the maximum displacement amount of 6 cases manufactured by fixing the plate thickness of the aluminum plate and changing the width W1 of the convex portion every 2 mm between 6 mm and 20 mm. is there. アルミニウム製の板体の板厚等を固定して、ベース幅W2を10mm〜16mmの間の1mm毎に変化させて製作した6例の最大変位量からベースに対する性能向上率を調査した調査表である。In a survey table investigating the performance improvement rate for the base from the maximum displacement amount of 6 cases manufactured by fixing the plate thickness etc. of the aluminum plate and changing the base width W2 every 1 mm between 10 mm and 16 mm is there. 第2の実施形態の凸部を形成した後のヒートインシュレータの部分斜視図である。It is a fragmentary perspective view of the heat insulator after forming the convex part of a 2nd embodiment. 第2の実施形態の凸部を形成した後のヒートインシュレータの部分平面図である。It is a fragmentary top view of the heat insulator after forming the convex part of a 2nd embodiment.

符号の説明Explanation of symbols

1 ヒートインシュレータ
2、20 凸部
1 Heat insulator 2, 20 Convex part

Claims (1)

多数のエンボス成形による凸部を形成してなるヒートインシュレータにおいて、前記凸部は平面視六角形を呈し且つ対角を形成する頂点を通る縦断面が円弧状を呈し、前記凸部同士の間に平板部が直線状に残らないように配列し、前記凸部は凸部の高さH/凸部の幅W1が12%以上〜20%以内となるように形成すると共に、前記凸部の幅W1が10mm以上〜16mm以内で且つ前記凸部同士の間隔Cが間隔C/2と前記凸部の幅W1との和であるベース幅W2の75%以下に形成したことを特徴とするヒートインシュレータ。 In the heat insulator formed by forming a plurality of convex portions by embossing, the convex portion has a hexagonal shape in plan view, and a longitudinal section passing through the apex forming the diagonal has an arc shape, and the convex portions are between the convex portions. The flat plate portions are arranged so as not to remain linear, and the convex portions are formed such that the height H of the convex portions / the width W1 of the convex portions are within a range of 12% to 20%, and the width of the convex portions. W1 is 10 mm or more and within 16 mm, and the interval C between the convex portions is formed to be 75% or less of the base width W2 which is the sum of the interval C / 2 and the width W1 of the convex portions. .
JP2007013469A 2007-01-24 2007-01-24 Heat insulator Active JP4388558B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007013469A JP4388558B2 (en) 2007-01-24 2007-01-24 Heat insulator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007013469A JP4388558B2 (en) 2007-01-24 2007-01-24 Heat insulator

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2009185198A Division JP4402745B2 (en) 2009-08-07 2009-08-07 Heat insulator

Publications (2)

Publication Number Publication Date
JP2008180125A JP2008180125A (en) 2008-08-07
JP4388558B2 true JP4388558B2 (en) 2009-12-24

Family

ID=39724215

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007013469A Active JP4388558B2 (en) 2007-01-24 2007-01-24 Heat insulator

Country Status (1)

Country Link
JP (1) JP4388558B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8714631B2 (en) 2011-01-17 2014-05-06 Sumitomo Light Metal Industries, Ltd. Raised and recessed sheet material, and vehicle panel and laminated structure using the same
US8920908B2 (en) 2011-01-17 2014-12-30 Uacj Corporation Sheet material having a concave-convex part, and vehicle panel and laminated structure using the same
US8927089B2 (en) 2011-01-11 2015-01-06 Uacj Corporation Sheet material having a concave-convex part, and a vehicle panel and laminated structure using the same
US9090288B2 (en) 2010-09-08 2015-07-28 Sumitomo Light Metal Industries, Ltd. Sheet material having a concave-convex part, and vehicle panel and laminated structure using the same
US9108239B2 (en) 2009-11-13 2015-08-18 Sumitomo Light Metal Industries, Ltd. Sheet material having concave-convex section, and laminated structure and vehicle panel using the same

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102046449B (en) 2008-07-17 2014-02-12 株式会社深井制作所 Heat insulator
RU2466817C1 (en) * 2009-01-23 2012-11-20 Фукаи Сеисакусё Ко., Лтд. Method of extruding steel plate
JP2012255454A (en) * 2009-10-06 2012-12-27 Fukai Seisakusho:Kk Plate-shaped body
BR112012016859A2 (en) 2010-01-13 2023-11-21 Nippon Steel Corp "PANEL"
WO2013011824A1 (en) * 2011-07-20 2013-01-24 新日鐵住金株式会社 Panel
JP5609830B2 (en) * 2011-09-15 2014-10-22 新日鐵住金株式会社 Panel material
JP2019150837A (en) * 2018-03-01 2019-09-12 株式会社三五 Method for manufacturing heat insulator
CN110000274A (en) * 2019-03-27 2019-07-12 临沂华太电池有限公司 A kind of battery zinc cake and its processing mold, processing method

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9108239B2 (en) 2009-11-13 2015-08-18 Sumitomo Light Metal Industries, Ltd. Sheet material having concave-convex section, and laminated structure and vehicle panel using the same
US9090288B2 (en) 2010-09-08 2015-07-28 Sumitomo Light Metal Industries, Ltd. Sheet material having a concave-convex part, and vehicle panel and laminated structure using the same
US8927089B2 (en) 2011-01-11 2015-01-06 Uacj Corporation Sheet material having a concave-convex part, and a vehicle panel and laminated structure using the same
US8714631B2 (en) 2011-01-17 2014-05-06 Sumitomo Light Metal Industries, Ltd. Raised and recessed sheet material, and vehicle panel and laminated structure using the same
US8920908B2 (en) 2011-01-17 2014-12-30 Uacj Corporation Sheet material having a concave-convex part, and vehicle panel and laminated structure using the same
JP5901542B2 (en) * 2011-01-17 2016-04-13 株式会社Uacj Plate material having concavo-convex part, vehicle panel and laminated structure using the same

Also Published As

Publication number Publication date
JP2008180125A (en) 2008-08-07

Similar Documents

Publication Publication Date Title
JP4388558B2 (en) Heat insulator
JP4402745B2 (en) Heat insulator
KR101214593B1 (en) Plate-like body
JP5723382B2 (en) Vehicle door reinforcement beam
US20130183498A1 (en) Sheet material having a concave-convex part, and vehicle panel and laminated structure using the same
KR20140063771A (en) Hybrid component and method for producing a hybrid component
WO2012046647A1 (en) Bumper for vehicle
US9751478B2 (en) Bumper reinforcement
JP5926089B2 (en) Press molded product
US20180281040A1 (en) Method of manufacturing metal embossed plate
CN102387945B (en) Structured metal heat shield
JP4988993B2 (en) Heat insulator
JP2010023326A (en) Synthetic resin platy body
JP5412455B2 (en) Press molded product
JP6074900B2 (en) Metal plate and automotive body parts
JP5700767B2 (en) Plate material having concavo-convex part, vehicle panel and laminated structure using the same
JP5904161B2 (en) Bus bar
JP2011143918A (en) Core metal for weatherstrip
JP2018176271A (en) Method for manufacturing metal embossed plate
JP5781707B2 (en) Bearing wall using corrugated steel
RU2463191C1 (en) Laminated body
JP6647835B2 (en) Metal sheet for strength reinforcement
JP6156432B2 (en) Air conditioner outdoor unit
JP2013050107A (en) Heat insulator
WO2011043197A1 (en) Plate-shaped body

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090206

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20090216

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20090402

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090616

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090807

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090929

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20091002

R150 Certificate of patent or registration of utility model

Ref document number: 4388558

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121009

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151009

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250