JP2013050107A - Heat insulator - Google Patents

Heat insulator Download PDF

Info

Publication number
JP2013050107A
JP2013050107A JP2012205693A JP2012205693A JP2013050107A JP 2013050107 A JP2013050107 A JP 2013050107A JP 2012205693 A JP2012205693 A JP 2012205693A JP 2012205693 A JP2012205693 A JP 2012205693A JP 2013050107 A JP2013050107 A JP 2013050107A
Authority
JP
Japan
Prior art keywords
heat insulator
width
rigidity
dimension
irregularities
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012205693A
Other languages
Japanese (ja)
Inventor
Takashi Ando
崇 安藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Topre Corp
Original Assignee
Topre Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Topre Corp filed Critical Topre Corp
Priority to JP2012205693A priority Critical patent/JP2013050107A/en
Publication of JP2013050107A publication Critical patent/JP2013050107A/en
Pending legal-status Critical Current

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a high rigidity structure of a heat insulator capable of achieving thinning and weight-reduction by efficiently increasing rigidity in a required direction without causing cost increase.SOLUTION: As the heat insulator, an aluminum plate or a steel plate is press-formed so that its cross section in the width direction is curved in a chevron shape, the curved and formed surface is formed with a plurality of irregularities 3 in a trapezoidal wave shape extended along the width direction and having continuous convex parts and concave parts, the width of the convex part and the width of the concave part in the cross section in a longitudinal direction orthogonal to the width direction have the same dimension, in the plurality of irregularities 3, and the depth dimension h of the convex part and the concave part is formed smaller than a pitch dimension P, characteristically.

Description

本発明は、ヒートインシュレータの剛性を高めるための構造に関する。   The present invention relates to a structure for increasing the rigidity of a heat insulator.

例えば、自動車用ヒートインシュレータ101は図11に示すようにアルミニウム板又は鋼板を山形に屈曲成形して構成され、これは主に自動車の床下に設置される触媒コンバータ等からの熱を遮断する目的で使用される。このヒートインシュレータ101の板面には、剛性を高める目的でビード104が山形に沿って突出成形されている。   For example, as shown in FIG. 11, an automotive heat insulator 101 is formed by bending an aluminum plate or a steel plate into a mountain shape, and this is mainly for the purpose of blocking heat from a catalytic converter or the like installed under the floor of the automobile. used. A bead 104 is formed on the plate surface of the heat insulator 101 so as to protrude along a mountain shape in order to increase rigidity.

しかし、上記ヒートインシュレータ101は床下と触媒コンバータの間の隙間に設置されるため、ビード104の形状及び個数はヒートインシュレータ101に所要の剛性を確保するには不十分であった。   However, since the heat insulator 101 is installed in the gap between the underfloor and the catalytic converter, the shape and number of the beads 104 are insufficient to ensure the required rigidity for the heat insulator 101.

そこで、図12に示すように、板厚を厚くすることなく十分な剛性を確保するため、エンボス成形によって予め多数の円形凸部201aが形成された金属プレートを型隙間を有する金型によって成形されたヒートインシュレータ201とその製造方法が提案されている(特開2000−136720公報参照)。   Therefore, as shown in FIG. 12, in order to ensure sufficient rigidity without increasing the plate thickness, a metal plate on which a large number of circular convex portions 201a are formed in advance by embossing is formed by a mold having a mold gap. In addition, a heat insulator 201 and a manufacturing method thereof have been proposed (see Japanese Patent Laid-Open No. 2000-136720).

特開2000−136720号公報JP 2000-136720 A

ところが、図11に示すようなビード104が形成されたヒートインシュレータ101にあっては、十分な剛性を確保するためにビード104の大きさと個数を確保する場合は、その成形時に材料を呼び込むために断面の線長が増加し、結果的に使用する材料の寸法が大きくなるという問題がある。   However, in the heat insulator 101 in which the beads 104 as shown in FIG. 11 are formed, in order to secure the size and number of the beads 104 in order to ensure sufficient rigidity, in order to attract the material during the molding. There is a problem that the line length of the cross section increases, resulting in an increase in the size of the material used.

又、図12に示すヒートインシュレータ201にあっては、エンボス成形によって金属プレートに予め円形凸部201aを形成する必要があるため、加工工数が増えてコストアップが避けられないという問題がある。そして、エンボス成形による円形凸部201aの形成は全方位に亘って剛性を高めることを目的としているため、ヒートインシュレータのように方向によって強化すべき剛性が異なる部品の場合には、どの方向も同じ割合でしか剛性アップが望めず、効率が悪いという問題もあった。   Further, in the heat insulator 201 shown in FIG. 12, since it is necessary to form the circular convex portion 201a on the metal plate in advance by embossing, there is a problem that the number of processing steps increases and cost increase cannot be avoided. Since the formation of the circular convex portion 201a by embossing is intended to increase the rigidity in all directions, in the case of a part having a different rigidity to be strengthened depending on the direction, such as a heat insulator, any direction is the same. There was also a problem that the rigidity could be increased only at a ratio and the efficiency was poor.

本発明は上記問題に鑑みてなされたもので、その目的とする処は、コストアップを招くことなく必要とする方向の剛性を効率良く高めて薄肉化と軽量化を図ることができるヒートインシュレータの高剛性構造を提供することにある。   The present invention has been made in view of the above problems, and the purpose of the heat insulator is to reduce the thickness and weight by efficiently increasing the rigidity in the required direction without incurring a cost increase. The object is to provide a highly rigid structure.

上記目的を達成するため、請求項1記載のヒートインシュレータは、幅方向の断面が山形形状に湾曲して形成された面に、幅方向に沿って延在し、凸部と凹部が連続する台形波型形状の複数の凹凸が形成され、この複数の凹凸は、前記幅方向に直交する長さ方向の断面における前記凸部の幅と前記凹部の幅が同寸法とされ、前記凸部と凹部の深さ寸法がピッチ寸法より小さく形成されたことを特徴とする。   In order to achieve the above object, the heat insulator according to claim 1 is a trapezoid in which a cross section in the width direction extends along the width direction on a surface formed in a chevron shape, and a convex portion and a concave portion are continuous. A plurality of corrugated irregularities are formed, and the plurality of irregularities have the same width of the convex portion and the width of the concave portion in the cross section in the length direction perpendicular to the width direction, and the convex portion and the concave portion The depth dimension is smaller than the pitch dimension.

また、請求項2記載のヒートインシュレータは、前記山形形状に湾曲形成された面に、座面が平滑な取付ボスを備え、前記複数の凹凸の前記ピッチ寸法が、前記取付ボスの座面寸法より小さいことを特徴とする。   The heat insulator according to claim 2 is provided with a mounting boss having a smooth seating surface on the surface curved and formed in the chevron shape, and the pitch dimension of the plurality of irregularities is larger than the seating surface dimension of the mounting boss. It is small.

さらに、請求項3記載のヒートインシュレータは、前記山形形状に湾曲形成された面に、表面が平滑で径方向の外側に向けて突出して延在するビードを備え、前記複数の凹凸の前記ピッチ寸法が、前記ビードにおける延在する長さ方向と直交する方向の幅寸法よりも小さいことを特徴とする。   Furthermore, the heat insulator according to claim 3 is provided with a bead having a smooth surface and protruding outward in a radial direction on a surface curved and formed in the chevron shape, and the pitch dimension of the plurality of irregularities Is smaller than the width dimension in the direction perpendicular to the extending length direction of the bead.

従って、請求項1記載の発明によれば、ヒートインシュレータの幅方向の剛性を効率よく高めることができ、ヒートインシュレータの薄肉化と軽量化を図ることができる。   Therefore, according to the first aspect of the present invention, the rigidity in the width direction of the heat insulator can be efficiently increased, and the heat insulator can be reduced in thickness and weight.

請求項2記載の発明によれば、取付ボスの座面が平滑に形成されているため、ビードと同様にヒートインシュレータの長さ方向の剛性を高めることができる。また、凹凸のピッチ寸法が取付ボスの座面寸法よりも小さく形成されているため、取付ボスに隣接する湾曲面におけるヒートインシュレータの幅方向の剛性を高めることができる。すなわち、ビードの形状及び個数が取付スペース等の制約のために十分確保できない場合であっても剛性を高めることができる。   According to the second aspect of the present invention, since the seating surface of the mounting boss is formed smoothly, the rigidity in the length direction of the heat insulator can be increased similarly to the bead. Moreover, since the pitch dimension of the unevenness is smaller than the seating surface dimension of the mounting boss, the rigidity in the width direction of the heat insulator on the curved surface adjacent to the mounting boss can be increased. That is, the rigidity can be increased even when the shape and number of beads cannot be sufficiently ensured due to restrictions such as mounting space.

以上の説明で明らかなように、本発明によれば、波型形状の凹凸をプレス成形品に形成すると、該プレス成形品の凹凸が延びる方向の剛性が高められるため、コストアップを招くことなく必要な方向の剛性を効率良く高めることができ、プレス成形品の薄肉化と軽量化を図ることができるという効果が得られる。   As is apparent from the above description, according to the present invention, when corrugated irregularities are formed on a press-molded product, the rigidity in the direction in which the irregularities of the press-molded product extend is increased, so there is no cost increase. The rigidity in the required direction can be increased efficiently, and the effect of reducing the thickness and weight of the press-formed product can be obtained.

また、本発明によれば、凹凸とビードとを組み合わせて形成することによってプレス成形品の剛性を複数の方向に亘って高めることができるという効果が得られる。   Moreover, according to this invention, the effect that the rigidity of a press molded product can be improved over a some direction by combining an unevenness | corrugation and a bead is acquired.

さらに、取付ボスの座面を平滑に形成することで、ビードと同様にヒートインシュレータの長さ方向の剛性を高めることができる。また、凹凸のピッチ寸法を取付ボスの座面寸法よりも小さく形成することにより、取付ボスに隣接する湾曲面におけるヒートインシュレータの幅方向の剛性を高めることができる。   Furthermore, by forming the seating surface of the mounting boss smoothly, the rigidity in the length direction of the heat insulator can be increased similarly to the bead. Further, by forming the uneven pitch dimension smaller than the seating surface dimension of the mounting boss, the rigidity in the width direction of the heat insulator on the curved surface adjacent to the mounting boss can be increased.

本発明に係る高剛性構造を備える自動車用ヒートインシュレータの斜視図である。It is a perspective view of the heat insulator for motor vehicles provided with the highly rigid structure concerning this invention. 本発明に係る高剛性構造を備える自動車用ヒートインシュレータの側面図である。It is a side view of the heat insulator for motor vehicles provided with the highly rigid structure concerning the present invention. 本発明に係る高剛性構造を備える自動車用ヒートインシュレータの平面図である。It is a top view of the heat insulator for motor vehicles provided with the highly rigid structure concerning this invention. 図3のA−A線断面図である。FIG. 4 is a sectional view taken along line AA in FIG. 3. 波型形状の凹凸の断面形状を示す拡大断面図である。It is an expanded sectional view which shows the cross-sectional shape of a corrugated shape. エンボス形状と波型形状を有する平板の直交する方向(X,Y方向)剛性値を示す図である。It is a figure which shows the orthogonal | vertical direction (X, Y direction) rigidity value of the flat plate which has an emboss shape and a waveform shape. 平板とエンボス形状及び波型形状を有するインシュレータの直交する方向(X,Y方向)剛性値を示す図である。It is a figure which shows the orthogonal | vertical direction (X, Y direction) rigidity value of the insulator which has a flat plate, an emboss shape, and a wave shape. 波型形状の凹凸とビードとの組み合わせ例を示すヒートインシュレータの部分斜視図である。It is a fragmentary perspective view of the heat insulator which shows the example of a combination of corrugated unevenness and a bead. 本発明のフロアヒートインシュレータへの適用例を示す斜視図である。It is a perspective view which shows the example of application to the floor heat insulator of this invention. 本発明のサイレンサインシュレータへの適用例を示す斜視図である。It is a perspective view which shows the example of application to the silencer insulator of this invention. 従来例1に係るヒートインシュレータの斜視図である。It is a perspective view of the heat insulator which concerns on the prior art example 1. FIG. 従来例2に係るヒートインシュレータの斜視図である。It is a perspective view of the heat insulator which concerns on the prior art example 2. FIG.

以下に本発明の実施の形態を添付図面に基づいて説明する。   Embodiments of the present invention will be described below with reference to the accompanying drawings.

図1は本発明に係る高剛性構造を備える自動車用ヒートインシュレータの斜視図、図2は同ヒートインシュレータの側面図、図3は同ヒートインシュレータの平面図、図4は図3のA−A線断面図、図5は波型形状の凹凸の断面形状を示す拡大断面図である。   1 is a perspective view of a heat insulator for an automobile having a highly rigid structure according to the present invention, FIG. 2 is a side view of the heat insulator, FIG. 3 is a plan view of the heat insulator, and FIG. 4 is a line AA in FIG. Sectional drawing and FIG. 5 are enlarged sectional views showing the sectional shape of corrugated irregularities.

本実施の形態に係る自動車用ヒートインシュレータ(遮熱板)1は、図1に示すように、自動車の床下に設置された触媒コンバータ2を上方から覆って該触媒コンバータ2からの熱(触媒と排気ガスとの反応熱)の車体への伝達を遮断するものであって、これは鋼板又はアルミニウム板のプレス成形によって得られる。即ち、このヒートインシュレータ1は、円筒状の前記触媒コンバータ2の外形形状に沿って山形(断面略円弧状)に屈曲成形され、その幅方向(図示Y方向)両端縁1aはU字状にカール成形されている(図4参照)。   As shown in FIG. 1, an automotive heat insulator (heat shield plate) 1 according to the present embodiment covers a catalytic converter 2 installed under the floor of an automobile from above, and heat (catalyst and catalyst) from the catalytic converter 2 is covered. The transmission of heat (reaction heat with exhaust gas) to the vehicle body is interrupted, and this is obtained by press forming a steel plate or an aluminum plate. In other words, the heat insulator 1 is bent into a mountain shape (substantially arcuate in cross section) along the outer shape of the cylindrical catalytic converter 2, and both edges 1a in the width direction (Y direction in the drawing) are curled in a U shape. Molded (see FIG. 4).

又、ヒートインシュレータ1の上面の長さ方向(図示X方向)両端部と中間部の3箇所には取付ボス1bが一体に突設されており、各取付ボス1bの中央部にはボルト挿通孔1cがそれぞれ穿設されている。この取付ボス1bは、座面が平滑に形成され、後述する凹凸3の複数段に跨って形成されている。   In addition, mounting bosses 1b are integrally projected at three positions, both ends and an intermediate portion in the length direction (X direction in the drawing) of the upper surface of the heat insulator 1, and bolt insertion holes are provided at the center of each mounting boss 1b. 1c is perforated. The mounting boss 1b has a seating surface that is smooth and is formed across a plurality of steps of unevenness 3 to be described later.

而して、本実施の形態に係るヒートインシュレータ1には、波型形状を成す多数の凹凸3が山型形状に沿って幅方向(図示Y方向)全幅に亘って一体に形成されるとともに、所定幅の複数のビード4が幅方向に沿って形成されている。   Thus, in the heat insulator 1 according to the present embodiment, a large number of irregularities 3 having a corrugated shape are integrally formed over the entire width direction (Y direction in the drawing) along the mountain shape, A plurality of beads 4 having a predetermined width are formed along the width direction.

ところで、ヒートインシュレータ1が設置される触媒コンバータ2と自動車の床下との間の隙間は狭く、ビード4の形状と個数ではヒートインシュレータ1に要求される剛性を満足することは困難である。   By the way, the gap between the catalytic converter 2 where the heat insulator 1 is installed and the under floor of the automobile is narrow, and it is difficult to satisfy the rigidity required for the heat insulator 1 with the shape and number of the beads 4.

そこで、本実施の形態では、ビード4の形状に対して大きさ(高さ、幅、ピッチ等)が小さな波型形状を成す前記凹凸3を要求される剛性を満足する方向に必要個数だけ形成するようにした。   Therefore, in the present embodiment, a necessary number of the irregularities 3 having a corrugated shape having a small size (height, width, pitch, etc.) with respect to the shape of the bead 4 are formed in a direction satisfying the required rigidity. I tried to do it.

以上の構成を有するヒートインシュレータ1は、鋼板又はアルミニウム板のプレス成形によって一体に形成されるが、これに形成された波型形状を成す前記凹凸3の寸法は材料を呼び込むことなく張り出し成形が可能な値に設定されている。従って、波型形状を成す凹凸3の成形工程には新たな工程を追加する必要はなく、既存の工程内で凹凸3の成形を行うことができる(例えば、ビード4の成形と同時加工することができる)ため、工程の増加及び材料寸法の変更に伴うコストアップを避けることができる。   The heat insulator 1 having the above configuration is integrally formed by press forming of a steel plate or an aluminum plate, but the dimensions of the corrugations 3 forming the corrugated shape formed on the heat insulator 1 can be formed without drawing materials. It is set to a valid value. Therefore, it is not necessary to add a new process to the forming process of the corrugations 3 having a corrugated shape, and the unevenness 3 can be formed within the existing process (for example, simultaneous processing with the forming of the beads 4). Therefore, it is possible to avoid an increase in cost due to an increase in the number of processes and a change in material dimensions.

ここで、波型形状を成す凹凸3の断面形状の詳細を図5に示すが、同図に示すように、凹凸3のピッチをP、高さをh、材料の伸びをδ(%)とすると、材料を呼び込むことなく張り出し成形が可能であるためには、P、h、δの間に下式が満足される必要がある。   Here, FIG. 5 shows the details of the cross-sectional shape of the corrugations 3 forming a corrugated shape. As shown in FIG. 5, the pitch of the corrugations 3 is P, the height is h, and the elongation of the material is δ (%). Then, in order to be able to perform overmolding without attracting materials, the following formula needs to be satisfied among P, h, and δ.

h≦P(δ(δ+100))1/2 /200 …(1)
従って、材料が鉄である場合において伸びδ=30%とすると、(1)式より、
h≦0.312P …(2)
を満足する必要がある。
h ≦ P (δ (δ + 100)) 1/2 / 200 (1)
Therefore, when the material is iron and the elongation is δ = 30%, from the equation (1),
h ≦ 0.312P (2)
Need to be satisfied.

又、材料がアルミニウム(3000系、5000系、6000系)である場合において伸びを18%とすると、(1)式より、
h≦0.230P …(3)
を満足する必要がある。
Further, when the material is aluminum (3000 series, 5000 series, 6000 series) and the elongation is 18%, from the formula (1),
h ≦ 0.230P (3)
Need to be satisfied.

而して、鋼板又はアルミニウム板のプレス成形によって一体に形成されたヒートインシュレータ1は、前記取付ボス1bに形成されたボルト挿通孔1cに下方から挿通する不図示のボルトによって車体の下面に取り付けられ、前述のように触媒コンバータ2を上方から覆って該触媒コンバータ2からの熱の車体への伝達を遮断する機能を果たす。   Thus, the heat insulator 1 integrally formed by press forming of a steel plate or an aluminum plate is attached to the lower surface of the vehicle body by a bolt (not shown) inserted from below into a bolt insertion hole 1c formed in the mounting boss 1b. As described above, the catalytic converter 2 is covered from above and functions to block the transfer of heat from the catalytic converter 2 to the vehicle body.

ところで、一般に製品の剛性は下式で表される。   By the way, the rigidity of a product is generally expressed by the following equation.

I×E …(4)
ここに、I:断面2次モーメント(製品の形状によって決まる値)
E:ヤング率(材料の性質によって決まる係数)
製品の剛性を高めるために従来から採用されているビードは、製品の形状を変えて断面2次モーメントの値を高める効果を狙っている。
I × E (4)
Where I: secondary moment of inertia (value determined by product shape)
E: Young's modulus (coefficient determined by material properties)
Conventionally employed beads to increase the rigidity of a product aim to increase the value of the moment of inertia by changing the shape of the product.

これに対して、エンボス成形による凸部(以下、「エンボス形状」と称する)や本発明に係る波型形状の凹凸(以下、「波型形状」と称する)は、ビードよりも寸法を十分小さく設定した場合、製品の形状を大きく変更することなく剛性を高める効果が得られるため、ヤング率Eの値を疑似的に高めるものと見なすことができる。   On the other hand, a convex portion by embossing (hereinafter referred to as “embossed shape”) and a corrugated unevenness according to the present invention (hereinafter referred to as “corrugated shape”) are sufficiently smaller than the bead. When set, since the effect of increasing the rigidity can be obtained without greatly changing the shape of the product, it can be considered that the value of the Young's modulus E is artificially increased.

従って、ビードの形状及び個数が取付スペース等の制約のために十分確保できない場合、コストアップとなる素材の板厚アップを避けたい場合には、エンボス形状や本発明に係る波型形状は、剛性を高める方法として有効である。 Therefore, when the shape and number of beads cannot be secured sufficiently due to restrictions such as mounting space, and when it is desired to avoid an increase in the plate thickness of the material, which increases costs, the embossed shape and the corrugated shape according to the present invention are rigid. This is an effective way to increase

ところが、エンボス形状と波型形状とでは剛性値の方向性に大きな違いがある。ここで、金属平板に対するエンボス形状と波型形状についての直交する2方向(X,Y方向)の剛性値を平板の剛性値を1として図6(a),(b)にそれぞれ示す。   However, there is a great difference in the directionality of the stiffness value between the embossed shape and the corrugated shape. Here, the rigidity values in the two orthogonal directions (X and Y directions) for the embossed shape and the corrugated shape with respect to the metal flat plate are shown in FIGS. 6A and 6B, where the rigidity value of the flat plate is 1. FIG.

図6(a)に示すように、エンボス形状においては、剛性値は方向性を示さず、全方位に亘って同じ値(1.6)を示す。尚、剛性値は平板のそれを1として、その比で表している。これに対して、波型形状では、図6(b)に示すように、波に平行な方向(Y方向)では剛性値は非常に高い値(12)を示す反面、それと直交する方向(X方向)では剛性値は低い値(0.85)を示す。   As shown in FIG. 6A, in the embossed shape, the stiffness value does not indicate directionality, and shows the same value (1.6) over all directions. The rigidity value is represented by the ratio of the flat plate as 1. On the other hand, in the corrugated shape, as shown in FIG. 6B, the rigidity value is very high (12) in the direction parallel to the wave (Y direction), but the direction orthogonal to the direction (X (Direction) shows a low stiffness value (0.85).

而して、ヒートインシュレータの形状には山形形状が多く採用されており、このような形状を有するヒートインシュレータの剛性値は方向によって大きく異なる。   Therefore, many chevron shapes are adopted as the shape of the heat insulator, and the rigidity value of the heat insulator having such a shape varies greatly depending on the direction.

ここで、平板のままのヒートインシュレータ、エンボス形状を有するヒートインシュレータ、波型形状を有するヒートインシュレータについての直交する2方向(X,Y方向)の剛性値を平板の剛性値を1として図7(a),(b),(c)にそれぞれ示す。   Here, the rigidity values in two orthogonal directions (X and Y directions) of the heat insulator as a flat plate, the heat insulator having an embossed shape, and the heat insulator having a corrugated shape are set to 1 as the rigidity value of the flat plate as shown in FIG. They are shown in a), (b), and (c), respectively.

図7(a)に示す平板のヒートインシュレータにおいては、長さ方向(X方向)の剛性値は高い値(104)を示す反面、幅方向(Y方向)の剛性値は非常に低い値(2)を示す。   In the flat plate heat insulator shown in FIG. 7A, the rigidity value in the length direction (X direction) shows a high value (104), while the rigidity value in the width direction (Y direction) shows a very low value (2 ).

又、図7(b)に示すエンボス形状を有するヒートインシュレータにおいては、長さ方向(X方向)及び幅方向(Y方向)の剛性値が図7(a)に示す平板のヒートインシュレータの剛性値に対してほぼ同じ割合で増加し、長さ方向(X方向)の剛性値が高い値(166)を示すのに対して、幅方向(Y方向)の剛性値は非常に低い値(3)を示し、図7(a)に示す平板のヒートインシュレータと同様に剛性値が強い方向性を示す。   In the heat insulator having the embossed shape shown in FIG. 7B, the rigidity values in the length direction (X direction) and the width direction (Y direction) are the rigidity values of the flat plate heat insulator shown in FIG. The stiffness value in the length direction (X direction) shows a high value (166), whereas the stiffness value in the width direction (Y direction) shows a very low value (3). In the same manner as the flat plate heat insulator shown in FIG.

これに対して、図7(c)に示す波型形状を有する本発明に係るヒートインシュレータにおいては、幅方向(Y方向)の剛性値の増加率が高められて高い値(25)を示し、長さ方向(X方向)の剛性値は図7(a)に示す平板のヒートインシュレータ及び図7(b)に示すエンボス形状を有するヒートインシュレータのそれ(104,166)に対して低い値(88)を示している。   On the other hand, in the heat insulator according to the present invention having the corrugated shape shown in FIG. 7C, the rate of increase in the rigidity value in the width direction (Y direction) is increased to show a high value (25), The rigidity value in the length direction (X direction) is lower than that of the flat plate heat insulator shown in FIG. 7A and the heat insulator having the embossed shape shown in FIG. 7B (104, 166) (88). ).

而して、本実施の形態に係るヒートインシュレータ1においては、従来から剛性が低い幅方向(Y方向)に沿って波型形状の凹凸3をプレス成形によって一体に形成したため、コストアップを招くことなく幅方向(Y方向)の剛性が効率良く高められ、剛性がアップした分だけ素材である鋼板又はアルミニウム板の薄肉化を図ってヒートインシュレータ1の軽量化を実現することができる。具体的には、従来は素材である鋼板又はアルミニウム板の板厚として0.5mmが必要であったが、本実施の形態では板厚を0.35〜0.4mmに薄くすることができた。   Thus, in the heat insulator 1 according to the present embodiment, the corrugated irregularities 3 are integrally formed by press molding along the width direction (Y direction), which has conventionally been low in rigidity, leading to an increase in cost. Therefore, the rigidity in the width direction (Y direction) can be efficiently increased, and the weight of the heat insulator 1 can be reduced by reducing the thickness of the steel plate or aluminum plate as the material by the amount of the increased rigidity. Specifically, the thickness of the steel plate or aluminum plate, which is a material, was conventionally required to be 0.5 mm, but in this embodiment, the plate thickness could be reduced to 0.35 to 0.4 mm. .

又、本実施の形態では、波型形状の凹凸3のピッチPと高さhを前記(2)式又は(3)式を満足するよう設定したため、材料を呼び込むことなく張り出し成形によってヒートインシュレータ1に波型形状の凹凸3を形成することができる。又、従来のようにエンボス成形等の加工工程を追加する必要がないため、材料の増加を防いでコストダウンと軽量化を図ることができる。さらに、(2)式及び(3)式を満足することでP>hを満足するため、ヒートインシュレータの幅方向の剛性を効率よく高めることができ、ヒートインシュレータの薄肉化と軽量化を図ることができる。   In the present embodiment, the pitch P and the height h of the corrugated irregularities 3 are set so as to satisfy the formula (2) or the formula (3). Therefore, the heat insulator 1 is formed by overhang molding without calling in the material. The corrugated irregularities 3 can be formed. Further, since it is not necessary to add a processing step such as embossing as in the prior art, an increase in material can be prevented, and cost reduction and weight reduction can be achieved. Furthermore, since P> h is satisfied by satisfying the expressions (2) and (3), the rigidity in the width direction of the heat insulator can be increased efficiently, and the heat insulator can be made thinner and lighter. Can do.

尚、図8に示すように、幅方向に沿って多数の波型形状の凹凸3が形成されたヒートインシュレータ1の頂部に所定幅のビード5を長さ方向に形成すれば、幅方向に加えて長さ方向の剛性も高めることができる。又、ビード5に代え、波型形状の凹凸3を用いても剛性を高めることができる。   In addition, as shown in FIG. 8, if a bead 5 having a predetermined width is formed in the length direction on the top of the heat insulator 1 in which a large number of corrugated irregularities 3 are formed along the width direction, Thus, the rigidity in the length direction can be increased. Also, the rigidity can be increased by using corrugated irregularities 3 instead of the beads 5.

ここで、本発明を自動車用のフロアヒートインシュレータ11に適用した形態を図9に示し、サイレンサインシュレータ21に適用した形態を図10に示すが、本発明の適用に際しては、これらのフロアヒートインシュレータ11やサイレンサインシュレータ21の強度解析を予め行い、剛性アップが必要な板面及び方向を見極めてその方向に沿って波型形状の凹凸3を形成する。   Here, a form in which the present invention is applied to a floor heat insulator 11 for an automobile is shown in FIG. 9, and a form in which the present invention is applied to a silencer insulator 21 is shown in FIG. 10, but when applying the present invention, these floor heat insulators 11 are applied. In addition, the strength analysis of the silencer insulator 21 is performed in advance, the plate surface and the direction that need to be increased in rigidity are identified, and the corrugated irregularities 3 are formed along that direction.

尚、以上の実施の形態は本発明を特にヒートインシュレータ等の自動車用プレス成形品に対して適用した形態について述べたが、本発明は他の任意のプレス成形品に対しても同様に適用可能であることは勿論である。   In the above embodiment, the present invention has been described with reference to an embodiment in which the present invention is applied particularly to an automotive press-molded product such as a heat insulator. However, the present invention can be applied to any other press-formed product as well. Of course.

1 ヒートインシュレータ(プレス成形品)
1a ヒートインシュレータの幅方向両端縁
1b 取付ボス
1c ボルト挿通孔
2 触媒コンバータ
3 波型形状を成す凹凸
4,5 ビード
11 フロアヒートインシュレータ(プレス成形品)
21 サイレンサインシュレータ(プレス成形品)
1 Heat insulator (press-molded product)
1a Width direction edge 1b of heat insulator 1b Mounting boss 1c Bolt insertion hole 2 Catalytic converter 3 Concavity and convexity 4 and 5 Bead 11 Floor heat insulator (press-molded product)
21 Silencer insulator (press-molded product)

Claims (3)

アルミニウム板または鋼板を、幅方向の断面が山形形状に湾曲して形成されたヒートインシュレータであって、
湾曲して形成された面に、前記幅方向に沿って延在し、凸部と凹部が連続する台形波型形状の複数の凹凸が形成され、
該複数の凹凸は、前記幅方向に直交する長さ方向の断面における前記凸部の幅と前記凹部の幅が同寸法とされ、前記凸部と凹部の深さ寸法がピッチ寸法より小さく形成されたことを特徴とするヒートインシュレータ。
An aluminum plate or a steel plate is a heat insulator formed by bending the cross section in the width direction into a chevron shape,
A plurality of irregularities having a trapezoidal corrugated shape extending along the width direction and having convex portions and concave portions continuous are formed on the curved surface.
The plurality of concaves and convexes are formed such that the width of the convex part and the width of the concave part in the cross section in the length direction perpendicular to the width direction are the same dimension, and the depth dimension of the convex part and the concave part is smaller than the pitch dimension. A heat insulator characterized by that.
前記山形形状に湾曲形成された面に、座面が平滑な取付ボスを備え、
前記複数の凹凸の前記ピッチ寸法が、前記取付ボスの座面寸法より小さいことを特徴とする請求項1に記載のヒートインシュレータ。
The surface formed curved in the chevron shape includes a mounting boss with a smooth seating surface,
The heat insulator according to claim 1, wherein the pitch dimension of the plurality of irregularities is smaller than a seating surface dimension of the mounting boss.
前記山形形状に湾曲形成された面に、表面が平滑で径方向の外側に向けて突出して延在するビードを備え、
前記複数の凹凸の前記ピッチ寸法が、前記ビードにおける延在する長さ方向と直交する方向の幅寸法よりも小さいことを特徴とする請求項1又は請求項2に記載のヒートインシュレータ。
The surface curved and formed in the chevron shape includes a bead extending and projecting toward the outside in the radial direction with a smooth surface,
3. The heat insulator according to claim 1, wherein the pitch dimension of the plurality of irregularities is smaller than a width dimension in a direction orthogonal to the extending length direction of the bead.
JP2012205693A 2012-09-19 2012-09-19 Heat insulator Pending JP2013050107A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012205693A JP2013050107A (en) 2012-09-19 2012-09-19 Heat insulator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012205693A JP2013050107A (en) 2012-09-19 2012-09-19 Heat insulator

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2011055571A Division JP5412455B2 (en) 2011-03-14 2011-03-14 Press molded product

Publications (1)

Publication Number Publication Date
JP2013050107A true JP2013050107A (en) 2013-03-14

Family

ID=48012321

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012205693A Pending JP2013050107A (en) 2012-09-19 2012-09-19 Heat insulator

Country Status (1)

Country Link
JP (1) JP2013050107A (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0970624A (en) * 1995-09-06 1997-03-18 Mitsubishi Materials Corp Method and equipment for pressing corrugated plate
JPH1150839A (en) * 1997-08-06 1999-02-23 Suzuki Motor Corp Cover for catalyst converter
JP2000136720A (en) * 1998-11-04 2000-05-16 Toyota Auto Body Co Ltd Heat insulator and manufacture therefor
JP2011156592A (en) * 2011-03-14 2011-08-18 Topre Corp Press formed article

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0970624A (en) * 1995-09-06 1997-03-18 Mitsubishi Materials Corp Method and equipment for pressing corrugated plate
JPH1150839A (en) * 1997-08-06 1999-02-23 Suzuki Motor Corp Cover for catalyst converter
JP2000136720A (en) * 1998-11-04 2000-05-16 Toyota Auto Body Co Ltd Heat insulator and manufacture therefor
JP2011156592A (en) * 2011-03-14 2011-08-18 Topre Corp Press formed article

Similar Documents

Publication Publication Date Title
JP4388558B2 (en) Heat insulator
JP5723382B2 (en) Vehicle door reinforcement beam
JP3332353B2 (en) Heat insulator
US9090288B2 (en) Sheet material having a concave-convex part, and vehicle panel and laminated structure using the same
JP4988993B2 (en) Heat insulator
WO2012046647A1 (en) Bumper for vehicle
JP6265292B1 (en) Method for producing metal embossed plate
JP4402745B2 (en) Heat insulator
WO2019167793A1 (en) Production method for pressed components, press molding device, and metal plate for press molding
EP2311712B1 (en) Plate-like body
JP5412455B2 (en) Press molded product
JPWO2017022301A1 (en) Metal plate and metal cover using it
JP2013050107A (en) Heat insulator
JP2002060878A (en) Embossed plate with excellent formability
JPWO2015137482A1 (en) panel
JP2011143918A (en) Core metal for weatherstrip
JP6368962B1 (en) Method for producing metal embossed plate
CN215922341U (en) Vehicle panel structure
JP2010023326A (en) Synthetic resin platy body
JP5750357B2 (en) Roof panel and method for manufacturing the roof panel
JP5263375B2 (en) undercover
JP2000016763A (en) Crane boom
JP5912593B2 (en) Manufacturing method of energy absorbing member
JP4358399B2 (en) Exhaust manifold flange
CN218228622U (en) Storage battery tray assembly and vehicle with same

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130917

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140218

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20140701