JP4385433B2 - Manufacturing operation control method by near infrared analysis - Google Patents

Manufacturing operation control method by near infrared analysis Download PDF

Info

Publication number
JP4385433B2
JP4385433B2 JP10470499A JP10470499A JP4385433B2 JP 4385433 B2 JP4385433 B2 JP 4385433B2 JP 10470499 A JP10470499 A JP 10470499A JP 10470499 A JP10470499 A JP 10470499A JP 4385433 B2 JP4385433 B2 JP 4385433B2
Authority
JP
Japan
Prior art keywords
value
calibration curve
control
analysis
infrared
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP10470499A
Other languages
Japanese (ja)
Other versions
JP2000140619A (en
Inventor
敏治 三谷
保男 三好
正己 鶴岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Chemicals Inc
Original Assignee
Mitsui Chemicals Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Chemicals Inc filed Critical Mitsui Chemicals Inc
Priority to JP10470499A priority Critical patent/JP4385433B2/en
Publication of JP2000140619A publication Critical patent/JP2000140619A/en
Application granted granted Critical
Publication of JP4385433B2 publication Critical patent/JP4385433B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は近赤外分析(近赤外線分光分析)による製造運転の制御方法、特に検量線の評価・補完を行いながら製造運転の制御を行う方法に関するものである。
【0002】
【従来の技術】
化学工業の分野において、化学品の製造を制御する際、原料、溶媒、水分、中間品、製品、副生物等を近赤外分析により分析し、その測定値に基づいて製造運転の制御を行うことが提案されている。近赤外分析では特定の領域の近赤外線スペクトルを測定し、このスペクトルに含まれる特定の波長の吸光度の組合せから、予め作成した検量線に基づいて目的とする成分値が算出され、測定値(予測値)が得られる。
【0003】
近赤外分析の測定値による製造運転の制御は上記により得られる測定値が一定幅の品質目標に定められた管理のための許容範囲内の値であって、運転制御を行う目標値である管理値(以下、単に管理値と言う場合がある)を外れたときにプラントの運転条件を変え、測定値が管理値を維持するように制御装置により制御信号を出してプラントの制御を行っている。この場合、近赤外分析は間欠的または連続的に試料を採取して分析を行い、管理値を外れる異常値が得られた段階で条件変更等の制御アクションがとられている。
【0004】
ところで近赤外スペクトルは複数の成分情報が含まれていて試料中に含まれる他の成分、水、濃度、温度、粒度などの複数の要因が複雑に組合わされスペクトルが形成されており、これらの要因が変化すると、ピークの位置や高さが変化するため、線形重回帰分析法(Multiple Linear Regression…MLR)や部分最小二乗法(Partial Least Squares…PLS)等の統計的手法により検量線が作成されている。
【0005】
上記の検量線の作成は複数の試料について、クロマトグラフィ等の一般分析法による分析と近赤外分析の両方法の分析を行い、近赤外分析で得られるスペクトルから目的成分ごとに決められる複数のピークの吸光度のデータを選び、これらのデータと一般分析法の測定値とを用いて上記の統計的手法によるキャリブレーションを行い、検量線が作成される。この場合、成分ごとに同様の操作を行って別々の検量線が作成される。
【0006】
ところがこのようにして作成される検量線は、キャリブレーションに使用された試料の数が限られているため、またキャリブレーションの過程における説明変数や目的変数の選択等が適切でない場合があることなどにより、一般性のある式が得られているとは限らない。このため作成した検量線の評価、確認を行い、より一般性の高い検量線を選択してルーチン分析に供すことが行われる。
【0007】
それにもかかわらず、近赤外スペクトルの複雑性から、季節、環境その他の製造条件に影響を与える状況の変化に伴い、すでに作成した検量線により得た測定値が一般分析法による測定値と一致しなくなることがあり、検量線の補完が必要になる。ところが検量線の補完には相当の時間と労力を要するので、無駄な補完作業をなくし、必要なときに効率よく補完を行うことが要求される。
【0008】
【発明が解決しようとする課題】
本発明の課題は、近赤外分析法による測定値に基づいて製造運転を制御する際、無駄な補完作業を省略し、検量線の補完が必要になった時点において効率よく検量線を補完しながらルーチン分析を行い、その測定値に基づいてプラントを制御することが可能な近赤外分析による製造運転制御方法を提案することである。
【0009】
【課題を解決するための手段】
本発明は次の近赤外分析による製造運転制御方法である。
(1) 試料を近赤外分析して得た測定値に基づいて製造運転を制御する方法であって、
予め作成した検量線に基づいて試料を近赤外分析し、
品質目標に定められた管理のための許容範囲内の値であって、運転制御を行う目標値である管理値外の測定値が得られたとき一般分析法による測定値を、前記管理値と比較し、
一般分析法の測定値が前記管理値内の場合は、過去の近赤外分析のデータを制御装置に入力し、使用中の検量線により過去の近赤外分析のデータに対応する予測値を求め、
過去の近赤外分析のデータに対応する予測値が前記管理値外の場合は近赤外分析装置の点検を行い、
過去の近赤外分析のデータに対応する予測値が前記管理値内の場合は検量線の補完・評価を行う
ことを特徴とする近赤外分析による製造運転制御方法。
(2) 一般分析法の測定値が品質目標に定められた管理のための許容範囲内の値であって、運転制御を行う目標値である管理値外の場合は制御アクションを行う上記(1)記載の方法。
(3) 試料の近赤外分析により品質目標に定められた管理のための許容範囲内の値であって、運転制御を行う目標値である管理値外の測定値が得られたとき、近赤外分析を再度行い、再分析により前記管理値外の測定値が得られたときに、一般分析法による測定値を前記管理値と比較するようにした上記(1)または(2)記載の方法。
(4) 検量線補完後、異常発生時の測定値と対比して検量線の評価、確認を行う上記(1)ないし(3)記載の方法。
(5) 検量線補完後、過去の近赤外分析のデータを制御装置に入力して、補完後の検量線の評価・確認を行う上記(1)ないし(4)のいずれかに記載の方法。
(6) 定期的に一般分析法による測定値を近赤外分析法の測定値と比較し、差が出たときに検量線の補完・評価を行う上記(1)ないし(5)のいずれかに記載の方法。
(7) 定期的に一般分析法による測定値を近赤外分析法の測定値と比較し、差が出たときにデータベースから対応する製品のデータを入力し、前記差が出た製品とのパターンの比較確認を定性的に行い、製品パターンに差がない場合に検量線の有効性を確認する上記(6)記載の方法。
【0010】
近赤外分析は一般に波長400〜2500nm、好ましくは800〜2500nm、さらに好ましくは1000〜2000nmの近赤外線を試料に照射して透過光または反射光を検出し、その吸収スペクトルから予め作成した検量線により、試料の物性、成分等の分析を行う方法である。本発明の制御方法では試料を前処理することなく、製造工程において採取したものをそのまま試料として分析を行い、その測定値に基づいて制御を行う。制御はコンピュータ等の制御装置を用い、近赤外分析による測定値が所定の範囲内となるように制御する。
【0011】
この方法に用いる近赤外分光分析装置は、ノイズレベルが30×10-6Abs以下、好ましくは20×10-6Abs以下、波長の再現性が±0.3nm以下、好ましくは±0.01nm以下の高精度のものが使用できる。ノイズレベルおよび波長再現性の測定方法は次の通りである。
【0012】
ノイズレベルの測定方法
測定方法が反射式であればセラミック板を、透過式であれば空気中で2回測定し、前後の吸光度を2nm毎に20組測定する。1回目の測定値と2回目の測定値の差(実効値)の標準偏差をノイズレベルとしている。
【0013】
波長再現性の測定方法
JIS K0117−1979赤外分光分析通則を用い、標準ポリスチレンフィルムを光路に入れ測定する。この時、基準の近赤外吸収波長は1143.6330nm、1684.2700nm、2166.4000nm及び2305.9300nmの各4つである。10回の標準偏差が波長再現性の値である。
【0014】
近赤外分析の測定対象となるのは、製造工程に用いられる原料、溶媒、水分、中間品、製品、副生物など、制御に用いられるすべてのものを含む。近赤外線は紫外線に比べるとエネルギーが小さいので試料成分を変化させることがない。また可視光の場合とは異なり吸収スペクトルによる分析であるため、試料の透明性その他の形態による影響を受けないので、膜厚等の調整が不要となる。
【0015】
このような試料について近赤外分析装置で分光分析を行うことにより、近赤外スペクトルを得る。このスペクトルは前述の通り複数の情報が含まれており、予め作成した検量線により、特定のピークのデータの組合せから目的とする測定成分の測定値(予測値)を算出する。この場合、同じスペクトルから複数の測定成分の測定値を得ることができる。
【0016】
検量線(Calibration equation)はスペクトルデータと測定成分の分析値との間の数学的関係式であり、前述のように複数の試料について、クロマトグラフィ等の一般分析法による分析と近赤外分析の両方法の分析を行い、近赤外分析で得られるスペクトルから目的成分ごとに決められる複数のピークの吸光度のデータを選び、これらのデータと一般分析法の測定値とを用いて前述のMLR法やPLS法等の統計的手法により作成される。
【0017】
この場合、測定成分ごとに同様の操作を行って別々の検量線を作成することができる。このようなキャリブレーションに用いる統計的手法は測定成分、その精度等により任意に決められるが、MLR法およびPLS法が好ましい。また一般分析法としては比色分析、ガスクロマトグラフィーのような従来から用いられている測定成分の分析法が含まれる。
【0018】
本発明の製造運転制御方法は、目的とする製品の製造を行いながら、ルーチン分析において近赤外分析により制御に用いる測定成分を分析しながら、異常値が発生したときに効率よく検量線の補完・評価を行い、このような補完された検量線を用いて測定を行い、その測定値により運転制御を行う。本発明において制御の対象となるものは化学品、食料品など、近赤外分析により測定が可能なものの製造運転であるが、化学品、特にポリエステル、フェノール類の製造運転に適している。本発明において管理値とは品質目標に定められた管理のための許容範囲内の値であって、測定値がこの管理値内に維持されるように運転制御を行う目標値である。
【0019】
この場合、ルーチン分析において、予め作成した検量線に基づいて試料を近赤外分析し、管理値外の測定値が得られたとき、一般分析法による分析を行って測定値を管理値と比較し、一般分析法の測定値が管理値外の場合は反応条件を変え、測定値が管理値内に戻るようにプラント制御を行い、反応条件等を変更する。一般分析法の測定値が管理値を大きく外れているときはプラントの点検を行うこともできる。一般分析法の測定値が管理値内の場合は過去の近赤外分析のデータを制御装置に入力し、使用中の検量線により過去の近赤外分析のデータに対応する予測値を求め、過去の近赤外分析のデータに対応する予測値が管理値外の場合は近赤外分析装置の点検を行う。過去の近赤外分析のデータに対応する予測値が管理値内の場合は検量線の補完作業を行う。検量線の補完は、異常のデータを検量線作成用データに加えて、前記MLR法、PLS法等の統計的手法により再度検量線を作成、評価を行う。
【0020】
上記の場合、試料の近赤外分析により管理値外の測定値が得られたときは近赤外分析を再度行い、再分析により管理値外の測定値が得られたときに、一般分析法による測定値を管理値と比較することにより突発的なデータ異常による無駄な検量線の作成を避けることができる。
【0021】
検量線補完後、異常発生時の測定値と対比して検量線の評価、確認を行うことにより、正確な補完検量線を得ることができる。また検量線補完後、過去の近赤外分析のデータを制御装置に入力して、補完後の検量線の評価・確認を行うことにより、不適切な補完を避けることができる。
【0022】
このようなルーチン分析による検量線の補完に加えて、定期的に一般分析法による測定値を近赤外分析法の測定値と比較し、差が出たときに検量線の補完を行うことにより、検量線が不適切となる事態を早く認識し、これに対応して検量線の補完を行い、制御を適正に行うことができる。
この場合、定期的に一般分析法による測定値を近赤外分析法の測定値と比較し、差が出たときにデータベースから対応する製品のデータを入力し、前記差が出た製品とのパターンの比較確認を定性的に行い、製品パターンに差がない場合に検量線の有効性を確認することにより、突発的な異常による検量線の作成を避けることが可能になる。
【0023】
【発明の効果】
本発明によれば、近赤外分析による測定値に異常値が出た場合に一般分析法による測定値を品質目標に定められた管理のための許容範囲内の値であって、運転制御を行う目標値である管理値と比較してその結果により検量線を補完するようにしたので、近赤外分析法による測定値に基づいて製造運転を制御する際、無駄な補完作業を省略し、検量線の補完が必要になった時点において効率よく検量線を補完しながらルーチン分析を行い、その測定値に基づいてプラントを制御することが可能である。
【0024】
またさらに定期的に一般分析法による測定値を近赤外分析法の測定値と比較し、差が出たときに検量線の補完を行うことにより、検量線が不適切となる事態を早く認識し、これに対応して検量線の補完を行い、制御を適正に行うことができる。
【0025】
【発明の実施の形態】
以下、本発明の発明の実施の形態を図面により説明する。
図1は実施形態の製造装置を示すフロー図、図2は制御方法を示すフロー図である。
【0026】
図1において、1はプラントであって、原料2を供給して製品3を製造するように構成されている。4は制御装置、5は近赤外分析装置、6は一般分析装置である。制御装置4はプラント1からの検出信号1aを受け、制御信号4aをプラントに送って反応条件等を制御するように構成されている。近赤外分析装置5は制御装置4からの制御信号4bにより近赤外分析を行い測定信号5aを制御装置4に送るように構成されている。一般分析装置6はクロマトグラフィ等からなり、制御装置4からの制御信号4cにより分析を行い、測定信号6aを制御装置4に送るように構成されている。
【0027】
上記の装置による製造運転方法は、制御装置4の制御信号4aによりプラント1に原料2を供給して製品3を製造する。この間プラント1から検出信号1aを制御装置4に送る。一定のインターバルで制御装置4からの制御信号4bにより近赤外分析装置5がプラント1からサンプリングして近赤外分析を行い、その測定信号5aを制御装置4に送る。制御装置4では予め作成された検量線から測定値を演算し、その結果に基づいて制御信号4aをプラント1に送ってプラント1の製造条件を制御する。また制御信号4cにより一般分析装置6により分析を行い、その結果を制御装置4に送る。制御装置4ではその結果により検量線の補完を行う。
【0028】
上記の制御方法を図2により詳細に説明する。
まずS101において近赤外分析装置の点検を行い、S102で近赤外分析装置の診断を行う。診断は前記ノイズレベルおよび波長再現性を測定し、波長再現性が±0.3nm以内、ノイズレベルが30×10-6abs以下であれば正常と判定する。S103において診断結果を判定し、正常であればS104の標品の測定を行い、正常でなければS101に戻り装置の点検、診断を繰り返す。S104の標品の測定は、標品について近赤外分析と一般分析法による測定値を比較し、近赤外分析法の測定値が一般分析法の測定値の±3σ(σは標準偏差値)以内であれば合格とする。S105において合否を判定し、合格であればS111のルーチン分析およびS131の定期的に一般法と比較するステップに移る。不合格であればS101以下のステップを繰り返す。
【0029】
上記により近赤外分析装置が正常であることを確認した状態で、S111のルーチン分析に移る。このステップでは近赤外分析装置で近赤外スペクトルを測定し、その結果を制御装置に入力し、ここで予めMLR法、PLS法等の統計的手法により作成された検量線により測定成分の測定値(予測値)を演算し、これをS112の結果として出力する。そしてS113においてその測定値が一定幅の管理値内かどうかを判定する。この管理値は各製品の品質目標に定められた管理のための許容範囲の値であり、この管理値内であればS114のようにプラント制御ノーアクション、すなわち制御アクションを行わない。
【0030】
S113で測定値が管理値外と判定した場合は、S115に移り近赤外分析装置により再測定を行う。これは異常値が突発的な誤動作等によるものでなく、継続的なものであることを確認し、無駄な検量線の補完作業を省略するために行う。S115の測定の結果はS116で管理値内かどうかを判定し、管理値内であればS114に示すようにプラント制御ノーアクションとなる。
【0031】
S116で再測定結果が管理値外と判定されたときは、S117においてガスクロマトグラフィ等の一般分析法による測定が行われ、その測定値がS118で管理値内かどうか判定される。ここで管理値外と判定されたときは、異常の発生が近赤外分析法と一般分析法で二重に確認されたことになるので、S119に示すようにプラント制御アクションをとる。プラント制御アクションは原料供給量、濃度、反応温度、圧力、時間等の反応条件を変え、測定値が管理値内に戻るように制御を行う。このような制御アクションを行い、次回の測定において測定値が管理値内に入ったときは、変更された反応条件をそのまま継続し、次回の測定値が管理値外となったときはさらに制御アクションが行われる。
【0032】
S118で管理値内と判定されたときは、S120において過去の近赤外分析のデータを入力して近赤外分析装置が正常であるかどうかを判断する。過去のデータはすでに管理値内であることが確認されたものであるから、S121で管理値外の判定が出たときは近赤外分析装置の誤動作の可能性があり、S101、S102に戻って装置の点検、診断を行い、故障部分を修理する。このような操作によって無駄な検量線補完・評価の作業が省略される。
【0033】
S121において管理値内の判定があったときは、一般法による測定値および過去のデータが管理値内であるにもかかわらず、近赤外分析の測定値が管理値外となっているから、S122において検量線の補完を行う。検量線の補完は最初に検量線を作成したときと同じ手法、例えばMLR法、PLS法等の統計的手法により検量線を作りなおす。最初の検量線作成は、複数の試料についての近赤外分析法の測定値と一般分析法の測定値を説明変数として多変量解析法により行われるが、検量線の補完は最初の検量線作成時に使用した試料の測定値に加えて、今回異常値が出た試料について近赤外分析および一般法で分析した測定値を新たに説明変数として、検量線を作成する。
【0034】
こうして新たな検量線を作成した後、S123において新検量線の評価・確認を行う。この評価、確認は通常検量線作成時に行われる操作に加えて、異常発生時に分析した測定値で検量線の補完に使用しなかった測定値を使用して、これが正当な値に算出されるかどうかをS124で判定する。ここで不合格の場合はS122に戻って再度検量線の補完を行う。S124で合格の場合は、S125において過去のデータを入力し評価、確認を行う。過去のデータはすでに管理値内と判定されているので、新検量線によっても同じ結果が出ると、S126で合格と判定され、S127で補完検量線を新検量線として供用し、以後のルーチン分析を新検量線で行う。不合格の場合はS122に戻って検量線の補完を再度行う。
【0035】
上記のようなルーチン分析において異常が発生したときに異常の対応策として検量線の補完を行うと、一般分析法による測定を常に行っていなくてもよい上、異常に対する対応を迅速に行うことができる。近赤外分析の測定値が管理値内であっても、一般分析法による測定値が管理値を外れる場合があり得るが、このような場合は管理値を適切な幅に設定することにより近赤外法の測定値も管理値外になるので、容易に異常を発見することができる。
【0036】
上記のような近赤外法の測定値が管理値内にもかかわらず、一般法の測定値が管理値を外れる事態が生じるのを防止するためには、S131以下の一般分析法との比較を定期的に行うのが好ましい。この操作はS111以下のルーチン分析と並行して行うものであり、ルーチン分析の頻度より少ない例えば1週間に1〜2回程度の頻度で一般分析を行い、S131においてその測定値を近赤外分析法の測定値と比較し、管理値以上の差があるかどうかを判定する。
【0037】
S132において管理値以上の差がないと判定したときはS111以下のルーチン分析を続行する。管理値以上の差があると判定したときは、S133において製品のパターンの定性的比較、確認を行う。これはデータベースから対応する製品のデータを入力して前記差が出た製品のパターンと定期的に比較し、得られた測定値がその製品のパターンを有しているかどうかを定性的に判定し、突発的な異常データかどうかを判定する。
【0038】
S134において従来品と同等であると判定された場合は検量線が不適切になっていることを示すから、S122以下の検量線補完の操作に入る。またS134において従来品と同等でないと判定されたときはS115以下の操作に移り、近赤外分析法により再測定を行い、検量線補完・評価の必要性を検討する。
【0039】
このようにS111以下のルーチン分析による検量線の補完を行いながら、S131以下の定期的な一般法との比較を行うことにより、検量線が不適切になった事態を早急に検知して対応することができ、これにより制御の精度は高くなる。また一般法による分析は長時間を必要とするため、S131以下の操作を頻繁に行うのは困難であるが、これらの操作を組合せて行うことにより一般法による分析の頻度を少なくして効率よく検量線の補完を行うことができる。
【図面の簡単な説明】
【図1】実施形態の製造装置のフロー図である。
【図2】実施形態の制御方法を示すフロー図である。
【符号の説明】
1 プラント
2 原料
3 製品
4 制御装置
5 近赤外分析装置
6 一般分析装置
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a manufacturing operation control method by near-infrared analysis (near-infrared spectroscopy), and more particularly to a method for controlling manufacturing operation while evaluating and supplementing a calibration curve.
[0002]
[Prior art]
In the chemical industry, when controlling the production of chemical products, raw materials, solvents, moisture, intermediate products, products, by-products, etc. are analyzed by near-infrared analysis, and the production operation is controlled based on the measured values. It has been proposed. In near-infrared analysis, a near-infrared spectrum in a specific region is measured, and a target component value is calculated based on a calibration curve prepared in advance from a combination of absorbances at specific wavelengths included in the spectrum, and a measured value ( Predicted value) is obtained.
[0003]
The control of the manufacturing operation based on the measurement value of the near infrared analysis is a target value for performing the operation control, in which the measurement value obtained by the above is within the allowable range for management defined in the quality target of a certain range. Control the plant by changing the operating conditions of the plant when the control value (hereinafter sometimes referred to simply as the control value) is deviated, and outputting a control signal from the control device so that the measured value maintains the control value. Yes. In this case, in the near infrared analysis, samples are taken intermittently or continuously for analysis, and control actions such as changing conditions are taken when an abnormal value that deviates from the control value is obtained.
[0004]
By the way, the near-infrared spectrum contains a plurality of component information, and other components included in the sample, water, concentration, temperature, particle size, etc. are combined in a complex manner to form a spectrum. As the factor changes, the peak position and height change, so a calibration curve is created by statistical methods such as multiple linear regression (MLR) and partial least squares (PLS). Has been.
[0005]
The above calibration curve is created by analyzing both general analysis methods such as chromatography and near-infrared analysis for multiple samples, and multiple spectra determined for each target component from the spectrum obtained by near-infrared analysis. A calibration curve is created by selecting peak absorbance data and performing calibration using the above statistical method using these data and the measured values of the general analysis method. In this case, a separate calibration curve is created by performing the same operation for each component.
[0006]
However, the calibration curve created in this way has a limited number of samples used for calibration, and there are cases where the selection of explanatory variables and objective variables in the calibration process is not appropriate. Therefore, a general formula is not always obtained. For this reason, the prepared calibration curve is evaluated and confirmed, and a calibration curve with higher generality is selected and used for routine analysis.
[0007]
Nonetheless, due to the complexity of the near-infrared spectrum, the measured values obtained from the calibration curve already created are consistent with those measured by the general analysis method as the season, environment, and other conditions that affect manufacturing conditions change. The calibration curve may need to be supplemented. However, since a considerable amount of time and labor is required for complementing the calibration curve, it is required to eliminate wasteful complementation work and efficiently perform complementation when necessary.
[0008]
[Problems to be solved by the invention]
The problem of the present invention is that when controlling the manufacturing operation based on the measurement value obtained by the near infrared analysis method, the unnecessary supplementary work is omitted, and the calibration curve is efficiently supplemented when the calibration curve needs to be supplemented. It is to propose a manufacturing operation control method by near-infrared analysis that can perform routine analysis while controlling the plant based on the measured value.
[0009]
[Means for Solving the Problems]
The present invention is a manufacturing operation control method by the following near infrared analysis.
(1) A method for controlling a manufacturing operation based on a measurement value obtained by performing near-infrared analysis of a sample,
Analyze the sample based on a calibration curve prepared in advance,
A value within the allowable range for managing defined quality objectives, when the measured value of the control value outside a target value controlling operation is obtained, the measurements by the general analytical method, the management Compare to the value,
If the measured value of the general analytical methods in the management value, the predicted value by entering the data of the past near infrared analyzer to the control device, a calibration curve in use corresponding to data from the last of the near-infrared analysis Seeking
If the predicted value corresponding to the data of the past near infrared analysis is out of the control value subjected to inspection of the near-infrared analyzer,
A manufacturing operation control method by near-infrared analysis, wherein a calibration curve is complemented and evaluated when a predicted value corresponding to past near-infrared analysis data is within the control value.
(2) When the measurement value of the general analysis method is a value within the allowable range for management set in the quality target and is outside the control value that is the target value for operation control, the control action is performed (1 ) The method described.
(3) When near-infrared analysis of the sample yields a measured value outside the control value that is within the permissible range for control specified in the quality target and is the target value for operation control , It performs infrared analysis again when the measured value outside the control value was obtained by re-analyzing the measured values according to the general analysis was to compare with the control value (1) or (2) according Method.
(4) The method according to the above (1) to (3), wherein the calibration curve is evaluated and confirmed in comparison with the measured value at the time of occurrence of the abnormality after the calibration curve is supplemented.
(5) The method according to any one of (1) to (4) above, wherein after the calibration curve is supplemented, past near-infrared analysis data is input to the control device, and the calibration curve after supplementation is evaluated and confirmed. .
(6) One of the above (1) to (5), which periodically compares the measurement values obtained by the general analysis method with the measurement values of the near-infrared analysis method, and supplements and evaluates the calibration curve when a difference appears. The method described in 1.
(7) Periodically compare the measured values of the general analysis method with the measured values of the near-infrared analysis method, and enter the corresponding product data from the database when a difference is found. The method according to the above (6), wherein the pattern comparison is confirmed qualitatively and the validity of the calibration curve is confirmed when there is no difference in the product pattern.
[0010]
In general, near-infrared analysis is performed by irradiating a sample with near-infrared light having a wavelength of 400-2500 nm, preferably 800-2500 nm, more preferably 1000-2000 nm to detect transmitted light or reflected light, and a calibration curve prepared in advance from the absorption spectrum. This is a method for analyzing the physical properties and components of the sample. In the control method of the present invention, the sample collected in the manufacturing process is analyzed as it is without pre-processing the sample, and control is performed based on the measured value. The control is performed using a control device such as a computer so that the measurement value obtained by the near-infrared analysis is within a predetermined range.
[0011]
The near infrared spectroscopic analyzer used in this method has a noise level of 30 × 10 −6 Abs or less, preferably 20 × 10 −6 Abs or less, and a wavelength reproducibility of ± 0.3 nm or less, preferably ± 0.01 nm. The following high precision can be used. The measurement method of noise level and wavelength reproducibility is as follows.
[0012]
If the measurement method is a reflection type, the ceramic plate is measured twice in the air. If the measurement method is a reflection type, the absorbance before and after is measured 20 pairs every 2 nm. The standard deviation of the difference (effective value) between the first measured value and the second measured value is used as the noise level.
[0013]
Measurement method of wavelength reproducibility Using a general rule of JIS K0117-1979 infrared spectroscopy, a standard polystyrene film is placed in an optical path and measured. At this time, the reference near-infrared absorption wavelengths are four each of 1143.6330 nm, 1684.2700 nm, 2166.44000 nm, and 2305.9300 nm. The standard deviation of 10 times is the wavelength reproducibility value.
[0014]
Measurement targets for near-infrared analysis include all materials used for control, such as raw materials, solvents, moisture, intermediate products, products, and by-products used in the manufacturing process. Near-infrared light has less energy than ultraviolet light, so sample components are not changed. Further, unlike the case of visible light, the analysis is based on an absorption spectrum, so that it is not affected by the transparency of the sample and other forms, so that adjustment of the film thickness and the like is not necessary.
[0015]
A near-infrared spectrum is obtained by performing spectral analysis on such a sample with a near-infrared analyzer. As described above, this spectrum includes a plurality of information, and a measured value (predicted value) of a target measurement component is calculated from a combination of specific peak data by using a calibration curve prepared in advance. In this case, measurement values of a plurality of measurement components can be obtained from the same spectrum.
[0016]
A calibration equation is a mathematical relationship between the spectral data and the analytical value of the measured component. As described above, both a general analytical method such as chromatography and a near-infrared analysis of a plurality of samples. Analyzing the method, selecting absorbance data of a plurality of peaks determined for each target component from the spectrum obtained by near infrared analysis, and using these data and the measured values of the general analysis method, It is created by a statistical method such as the PLS method.
[0017]
In this case, a separate calibration curve can be created by performing the same operation for each measurement component. The statistical method used for such calibration is arbitrarily determined depending on the measurement component, its accuracy, etc., but the MLR method and the PLS method are preferable. General analysis methods include colorimetric analysis and conventional analysis methods for measurement components such as gas chromatography.
[0018]
The manufacturing operation control method according to the present invention efficiently complements a calibration curve when an abnormal value occurs while analyzing a measurement component used for control by near infrared analysis in a routine analysis while manufacturing a target product.・ Evaluate and measure using the supplemented calibration curve, and control the operation using the measured value. The object of control in the present invention is a manufacturing operation of chemicals, foods, and the like that can be measured by near infrared analysis, but is suitable for manufacturing operations of chemicals, particularly polyesters and phenols. In the present invention, the management value is a value within an allowable range for management defined in the quality target, and is a target value for performing operation control so that the measured value is maintained within this management value.
[0019]
In this case, in the routine analysis, near infrared analysis is performed on the sample based on the calibration curve prepared in advance, and when the measured value outside the control value is obtained, the analysis is performed by the general analysis method and the measured value is compared with the control value. When the measurement value of the general analysis method is outside the control value, the reaction condition is changed, and the plant control is performed so that the measurement value returns to the control value, thereby changing the reaction condition and the like. When the measurement value of the general analysis method is significantly different from the control value, the plant can be inspected. If the measured value of the general analysis method is within the control value , the past near infrared analysis data is input to the control unit, and the predicted value corresponding to the past near infrared analysis data is obtained from the calibration curve in use. If the predicted value corresponding to past near-infrared analysis data is outside the control value, the near-infrared analyzer is inspected. If the predicted value corresponding to past near-infrared analysis data is within the control value, the calibration curve is supplemented. To complement the calibration curve, add the abnormal data to the calibration curve creation data, and create and evaluate the calibration curve again by a statistical method such as the MLR method or the PLS method.
[0020]
In the above case, when the measurement value outside the control value is obtained by the near infrared analysis of the sample, the near infrared analysis is performed again, and when the measurement value outside the control value is obtained by the reanalysis, the general analysis method is used. By comparing the measured value with the control value, it is possible to avoid creating a useless calibration curve due to a sudden data abnormality.
[0021]
After complementing the calibration curve, an accurate complementary calibration curve can be obtained by evaluating and confirming the calibration curve in comparison with the measured value at the time of occurrence of abnormality. In addition , after completion of the calibration curve, inappropriate pasting can be avoided by inputting past near-infrared analysis data to the control device and evaluating and confirming the calibration curve after complementation.
[0022]
In addition to supplementing the calibration curve by such routine analysis, periodically compare the measured value of the general analysis method with the measured value of the near-infrared analysis method, and supplement the calibration curve when a difference appears. Therefore, it is possible to quickly recognize the situation where the calibration curve becomes inappropriate, and to compensate the calibration curve in response to this, and to perform the control appropriately.
In this case, the measured value by the general analysis method is periodically compared with the measured value of the near infrared analysis method, and when the difference is found, the corresponding product data is input from the database, qualitatively compares confirmation pattern, by confirming the validity of the calibration curve when there is no difference in product pattern, it is possible to avoid the creation of a calibration curve by sudden abnormalities.
[0023]
【The invention's effect】
According to the present invention, when an abnormal value appears in the measured value by the near infrared analysis, the measured value by the general analysis method is a value within the allowable range for management defined in the quality target, and the operation control is performed. Compared with the control value that is the target value to be performed, the calibration curve is complemented by the result, so when controlling the manufacturing operation based on the measurement value by the near infrared analysis method, unnecessary supplementary work is omitted, When the calibration curve needs to be supplemented, it is possible to perform routine analysis while efficiently supplementing the calibration curve, and to control the plant based on the measured values.
[0024]
In addition, by periodically comparing the measured values of the general analysis method with the measured values of the near infrared analysis method, and supplementing the calibration curve when there is a difference, the situation where the calibration curve becomes inappropriate can be recognized quickly. In response to this, the calibration curve is complemented and control can be performed appropriately.
[0025]
DETAILED DESCRIPTION OF THE INVENTION
Embodiments of the present invention will be described below with reference to the drawings.
FIG. 1 is a flowchart showing a manufacturing apparatus according to an embodiment, and FIG. 2 is a flowchart showing a control method.
[0026]
In FIG. 1, reference numeral 1 denotes a plant configured to supply a raw material 2 to produce a product 3. 4 is a control device, 5 is a near-infrared analyzer, and 6 is a general analyzer. The control device 4 is configured to receive the detection signal 1a from the plant 1 and send the control signal 4a to the plant to control reaction conditions and the like. The near-infrared analyzer 5 is configured to perform near-infrared analysis based on a control signal 4 b from the control device 4 and send a measurement signal 5 a to the control device 4. The general analyzer 6 is composed of chromatography or the like, and is configured to perform analysis based on a control signal 4 c from the control device 4 and send a measurement signal 6 a to the control device 4.
[0027]
In the manufacturing operation method by the above apparatus, the raw material 2 is supplied to the plant 1 by the control signal 4 a of the control apparatus 4 to manufacture the product 3. During this time, the detection signal 1 a is sent from the plant 1 to the control device 4. The near-infrared analyzer 5 samples from the plant 1 by the control signal 4b from the controller 4 at a constant interval, performs near-infrared analysis, and sends the measurement signal 5a to the controller 4. The control device 4 calculates a measured value from a calibration curve prepared in advance, and sends a control signal 4a to the plant 1 based on the result to control the manufacturing conditions of the plant 1. Further, the analysis is performed by the general analyzer 6 based on the control signal 4 c and the result is sent to the controller 4. The control device 4 complements the calibration curve based on the result.
[0028]
The above control method will be described in detail with reference to FIG.
First, in S101, the near-infrared analyzer is inspected, and in S102, the near-infrared analyzer is diagnosed. In the diagnosis, the noise level and the wavelength reproducibility are measured. If the wavelength reproducibility is within ± 0.3 nm and the noise level is 30 × 10 −6 abs or less, it is determined as normal. In S103, the diagnosis result is determined. If the result is normal, the standard is measured in S104. If not normal, the process returns to S101 to repeat the inspection and diagnosis. In the measurement of the standard in S104, the measurement values of the near infrared analysis and the general analysis method are compared with respect to the standard, and the measurement value of the near infrared analysis method is ± 3σ (σ is the standard deviation value) of the measurement value of the general analysis method. ) Pass if it is within. In S105, it is determined whether or not the product is acceptable, and if it is acceptable, the routine proceeds to a routine analysis in S111 and a regular comparison in S131. If it fails, the steps from S101 are repeated.
[0029]
After confirming that the near-infrared analyzer is normal as described above, the routine proceeds to the routine analysis of S111. In this step, a near-infrared spectrum is measured with a near-infrared analyzer, and the result is input to a control device, where the measurement components are measured using a calibration curve prepared in advance by a statistical method such as the MLR method or the PLS method. A value (predicted value) is calculated and output as the result of S112. In S113, it is determined whether or not the measured value is within a management value having a certain width. This control value is a value within an allowable range for management defined in the quality target of each product. If it is within this control value, no plant control no action, that is, no control action is performed as in S114.
[0030]
If it is determined in S113 that the measured value is outside the control value, the process proceeds to S115, and remeasurement is performed by the near-infrared analyzer. This is performed in order to confirm that the abnormal value is not continuous due to a sudden malfunction or the like, but is continuous, and to omit unnecessary calibration curve complementation. It is determined whether or not the measurement result in S115 is within the management value in S116, and if it is within the management value, the plant control no action is performed as shown in S114.
[0031]
When it is determined in S116 that the remeasurement result is outside the control value, in S117, measurement is performed by a general analysis method such as gas chromatography, and it is determined in S118 whether the measurement value is within the control value. If it is determined that the value is outside the control value, the occurrence of abnormality has been double confirmed by the near infrared analysis method and the general analysis method, so that a plant control action is taken as shown in S119. The plant control action changes the reaction conditions such as the raw material supply amount, concentration, reaction temperature, pressure, and time, and performs control so that the measured value returns to the control value. When such a control action is performed and the measured value falls within the control value in the next measurement, the changed reaction condition is continued, and when the next measurement value falls outside the control value, the control action is further controlled. Is done.
[0032]
If it is determined in S118 that the value is within the management value, in S120, past near-infrared analysis data is input to determine whether the near-infrared analyzer is normal. Since the past data has already been confirmed to be within the management value, if the determination is outside the management value in S121, there is a possibility that the near-infrared analyzer may malfunction, and the process returns to S101 and S102. Inspect and diagnose the equipment and repair the defective part. Such an operation eliminates unnecessary calibration curve supplementation and evaluation.
[0033]
When there is a determination within the management value in S121, the measurement value of the near-infrared analysis is outside the management value even though the measurement value by the general method and the past data are within the management value. In S122, the calibration curve is complemented. The calibration curve is complemented by re-creating the calibration curve by the same method as that used when the calibration curve was first created, for example, by statistical methods such as the MLR method and the PLS method. The first calibration curve is created by multivariate analysis using the measured values of the near infrared analysis method and the general analysis method for multiple samples as explanatory variables. In addition to the measurement values of the samples used at times, a calibration curve is created using the measurement values analyzed by the near-infrared analysis and the general method for the samples with abnormal values this time as new explanatory variables.
[0034]
After creating a new calibration curve in this way, the new calibration curve is evaluated and confirmed in S123. In addition to the operations that are normally performed when creating a calibration curve, this evaluation and confirmation is performed using measured values that were analyzed when an abnormality occurred and that were not used to supplement the calibration curve. Whether or not is determined in S124. Here, in the case of failure, the process returns to S122 and the calibration curve is complemented again. If the result is S124, the past data is input and evaluated in S125. Since the past data has already been determined to be within the control value, if the same result is obtained with the new calibration curve, it is determined to be acceptable in S126, the complementary calibration curve is used as the new calibration curve in S127, and the subsequent routine analysis To the new calibration curve. In the case of failure, the process returns to S122 and the calibration curve is complemented again.
[0035]
When an abnormality occurs in the routine analysis as described above, if a calibration curve is complemented as a countermeasure against the abnormality, measurement by the general analysis method may not always be performed, and the abnormality can be quickly dealt with. it can. Even if the measured value of the near-infrared analysis is within the control value, the measurement value by the general analysis method may deviate from the control value. In such a case, the control value is set close to the appropriate value. Since the measurement value of the infrared method is also outside the control value, an abnormality can be easily found.
[0036]
In order to prevent a situation in which the measurement value of the general method deviates from the control value even though the measurement value of the near infrared method is within the control value, the comparison with the general analysis method of S131 and below Is preferably performed periodically. This operation is performed in parallel with the routine analysis after S111. The general analysis is performed at a frequency that is less than the frequency of the routine analysis, for example, once or twice a week, and the measured value is analyzed in the near infrared in S131. Compare with the measured value of the method and determine whether there is a difference greater than the control value.
[0037]
If it is determined in S132 that there is no difference equal to or greater than the management value, the routine analysis from S111 is continued. If it is determined that there is a difference greater than the control value, a qualitative comparison and confirmation of product patterns is performed in S133. This is done by inputting the data of the corresponding product from the database and comparing it periodically with the product pattern from which the difference has occurred, and qualitatively judging whether the obtained measurement value has the product pattern. Determine whether it is sudden abnormal data.
[0038]
If it is determined in S134 that it is equivalent to the conventional product, it indicates that the calibration curve is inappropriate, and therefore, the calibration curve complementing operation in S122 and after is entered. If it is determined in S134 that the product is not equivalent to the conventional product, the operation proceeds to S115 and the subsequent steps, and remeasurement is performed by the near infrared analysis method to examine the necessity of calibration curve complementation / evaluation.
[0039]
As described above, the calibration curve is complemented by the routine analysis from S111 onward, and by comparing with the regular general method from S131 onward, the situation where the calibration curve becomes improper is detected and dealt with promptly. This can increase the accuracy of the control. In addition, since the analysis by the general method requires a long time, it is difficult to frequently perform the operations from S131 onward. However, by performing these operations in combination, the frequency of the analysis by the general method can be reduced efficiently. Calibration curve can be complemented.
[Brief description of the drawings]
FIG. 1 is a flowchart of a manufacturing apparatus according to an embodiment.
FIG. 2 is a flowchart showing a control method of the embodiment.
[Explanation of symbols]
1 Plant 2 Raw material 3 Product 4 Control device 5 Near-infrared analyzer 6 General analyzer

Claims (7)

試料を近赤外分析して得た測定値に基づいて製造運転を制御する方法であって、
予め作成した検量線に基づいて試料を近赤外分析し、
品質目標に定められた管理のための許容範囲内の値であって、運転制御を行う目標値である管理値外の測定値が得られたとき一般分析法による測定値を、前記管理値と比較し、
一般分析法の測定値が前記管理値内の場合は、過去の近赤外分析のデータを制御装置に入力し、使用中の検量線により過去の近赤外分析のデータに対応する予測値を求め、
過去の近赤外分析のデータに対応する予測値が前記管理値外の場合は近赤外分析装置の点検を行い、
過去の近赤外分析のデータに対応する予測値が前記管理値内の場合は検量線の補完・評価を行う
ことを特徴とする近赤外分析による製造運転制御方法。
A method for controlling a manufacturing operation based on a measurement value obtained by performing near-infrared analysis of a sample,
Analyze the sample based on a calibration curve prepared in advance,
A value within the allowable range for managing defined quality objectives, when the measured value of the control value outside a target value controlling operation is obtained, the measurements by the general analytical method, the management Compare to the value,
If the measured value of the general analytical methods in the management value, the predicted value by entering the data of the past near infrared analyzer to the control device, a calibration curve in use corresponding to data from the last of the near-infrared analysis Seeking
If the predicted value corresponding to the data of the past near infrared analysis is out of the control value subjected to inspection of the near-infrared analyzer,
A manufacturing operation control method by near-infrared analysis, wherein a calibration curve is complemented and evaluated when a predicted value corresponding to past near-infrared analysis data is within the control value.
一般分析法の測定値が品質目標に定められた管理のための許容範囲内の値であって、運転制御を行う目標値である管理値外の場合は制御アクションを行う請求項1記載の方法。2. The method according to claim 1, wherein the control action is performed when the measurement value of the general analysis method is a value within an allowable range for management set in the quality target and is outside the control value that is a target value for operation control. . 試料の近赤外分析により品質目標に定められた管理のための許容範囲内の値であって、運転制御を行う目標値である管理値外の測定値が得られたとき、近赤外分析を再度行い、再分析により前記管理値外の測定値が得られたときに、一般分析法による測定値を前記管理値と比較するようにした請求項1または2記載の方法。When a near-infrared analysis of the sample yields a value that is within the acceptable range for management defined by the quality target and is outside the control value that is the target value for operation control , the near-infrared analysis again performed, when the measured value outside the control value was obtained by re-analysis method according to claim 1 or 2 wherein the measured value by the general analysis was to compare with the control value a. 検量線補完後、異常発生時の測定値と対比して検量線の評価、確認を行う請求項1ないし3記載の方法。  The method according to any one of claims 1 to 3, wherein the calibration curve is evaluated and confirmed in comparison with the measured value at the time of occurrence of abnormality after the calibration curve is supplemented. 検量線補完後、過去の近赤外分析のデータを制御装置に入力して、補完後の検量線の評価・確認を行う請求項1ないし4のいずれかに記載の方法。  The method according to any one of claims 1 to 4, wherein after the calibration curve is complemented, past near-infrared analysis data is input to the control device, and the calibration curve after complementation is evaluated and confirmed. 定期的に一般分析法による測定値を近赤外分析法の測定値と比較し、差が出たときに検量線の補完・評価を行う請求項1ないし5のいずれかに記載の方法。  6. The method according to any one of claims 1 to 5, wherein a measurement value obtained by a general analysis method is periodically compared with a measurement value obtained by a near-infrared analysis method, and a calibration curve is supplemented and evaluated when a difference occurs. 定期的に一般分析法による測定値を近赤外分析法の測定値と比較し、差が出たときにデータベースから対応する製品のデータを入力し、前記差が出た製品とのパターンの比較確認を定性的に行い、製品パターンに差がない場合に検量線の有効性を確認する請求項6記載の方法。  Periodically compare the measured values of the general analysis method with the measured values of the near-infrared analysis method, and input the data of the corresponding product from the database when a difference is found, and compare the pattern with the product having the difference The method according to claim 6, wherein the verification is performed qualitatively and the validity of the calibration curve is confirmed when there is no difference in the product pattern.
JP10470499A 1998-09-04 1999-04-13 Manufacturing operation control method by near infrared analysis Expired - Lifetime JP4385433B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10470499A JP4385433B2 (en) 1998-09-04 1999-04-13 Manufacturing operation control method by near infrared analysis

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP25162998 1998-09-04
JP10-251629 1998-09-04
JP10470499A JP4385433B2 (en) 1998-09-04 1999-04-13 Manufacturing operation control method by near infrared analysis

Publications (2)

Publication Number Publication Date
JP2000140619A JP2000140619A (en) 2000-05-23
JP4385433B2 true JP4385433B2 (en) 2009-12-16

Family

ID=26445112

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10470499A Expired - Lifetime JP4385433B2 (en) 1998-09-04 1999-04-13 Manufacturing operation control method by near infrared analysis

Country Status (1)

Country Link
JP (1) JP4385433B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012165532A1 (en) 2011-06-01 2012-12-06 出光興産株式会社 Process for producing hydrogenated petroleum resin
CN106248621A (en) * 2016-08-31 2016-12-21 上海创和亿电子科技发展有限公司 A kind of evaluation methodology and system

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6552221B1 (en) * 1998-12-18 2003-04-22 Millenium Petrochemicals, Inc. Process control for acetic acid manufacture
WO2002012969A1 (en) * 2000-08-07 2002-02-14 Mitsui Chemicals, Inc. Production control method
JP2003035668A (en) * 2000-08-23 2003-02-07 Sumitomo Chem Co Ltd Quantitative determination method for protective rate of hydroxyl group in polymer compound
JP4581039B2 (en) * 2000-09-11 2010-11-17 オプト技研株式会社 Grade identification method for polymer materials
JP2002145966A (en) * 2000-11-07 2002-05-22 Mitsui Chemicals Inc Method for producing aromatic petroleum resin
JP2019151753A (en) * 2018-03-05 2019-09-12 東ソー株式会社 Production method of aliphatic-aromatic petroleum resin

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012165532A1 (en) 2011-06-01 2012-12-06 出光興産株式会社 Process for producing hydrogenated petroleum resin
JP2012251050A (en) * 2011-06-01 2012-12-20 Idemitsu Kosan Co Ltd Production method for hydrogenated petroleum resin
CN106248621A (en) * 2016-08-31 2016-12-21 上海创和亿电子科技发展有限公司 A kind of evaluation methodology and system
CN106248621B (en) * 2016-08-31 2019-04-02 上海创和亿电子科技发展有限公司 A kind of evaluation method and system

Also Published As

Publication number Publication date
JP2000140619A (en) 2000-05-23

Similar Documents

Publication Publication Date Title
US9903711B2 (en) Feed forward of metrology data in a metrology system
Burger et al. Hyperspectral NIR image regression part II: dataset preprocessing diagnostics
US20080216956A1 (en) Plasma processing apparatus
TW201510518A (en) Methods and apparatus for patterned wafer characterization
US20160041090A1 (en) Method for manufacturing film, film-manufacturing process monitor device, and method for inspecting film
JP4385433B2 (en) Manufacturing operation control method by near infrared analysis
SE503101C2 (en) Ways of determining the wet strength of paper and process control means using the method
TW542909B (en) The method for controlling production process
US20080042064A1 (en) Method and apparatus on-line measurement of polymer properties
US6795193B2 (en) Scatterometer including an internal calibration system
JP5572955B2 (en) Absorbance calculation method using approximate equation
US20110068261A1 (en) Method and apparatus for on-line web property measurement
JP3959887B2 (en) Plant operation control method by near infrared analysis
JP2017203658A (en) Inspection method and optical measurement device
JP7199697B2 (en) Inspection device, inspection method, program, recording medium and powder molding manufacturing device
US7826072B1 (en) Method for optimizing the configuration of a scatterometry measurement system
US20230102813A1 (en) Open-loop/closed-loop process control on the basis of a spectroscopic determination of undetermined substance concentrations
EP1726929A1 (en) Method for standardizing system response of spectrophotometer
JP2000321201A (en) Operation control method of plant by near infrared analysis
CN113795748A (en) Method for configuring a spectrometric device
US20230011975A1 (en) Method of determining an optical pathlength through a cuvette
JPH10311792A (en) Method and equipment for measuring moisture of tea leaf
US20030028329A1 (en) Method and device for measuring characteristics of a sample
US20230194416A1 (en) Preparation method for preparing spectrometric determinations of at least one measurand in a target application
WO2023189656A1 (en) Substrate processing status monitoring device and substrate processing status monitoring method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040408

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20061208

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071002

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071130

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090630

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090820

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090908

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090921

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121009

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121009

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131009

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131009

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term