JP2003035668A - Quantitative determination method for protective rate of hydroxyl group in polymer compound - Google Patents

Quantitative determination method for protective rate of hydroxyl group in polymer compound

Info

Publication number
JP2003035668A
JP2003035668A JP2001252806A JP2001252806A JP2003035668A JP 2003035668 A JP2003035668 A JP 2003035668A JP 2001252806 A JP2001252806 A JP 2001252806A JP 2001252806 A JP2001252806 A JP 2001252806A JP 2003035668 A JP2003035668 A JP 2003035668A
Authority
JP
Japan
Prior art keywords
structural unit
polymer compound
group
protection rate
hydroxyl group
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001252806A
Other languages
Japanese (ja)
Inventor
Masayoshi Yoshida
優美 吉田
Isao Yoshida
勲 吉田
Norifumi Yamaguchi
訓史 山口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Chemical Co Ltd
Original Assignee
Sumitomo Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Chemical Co Ltd filed Critical Sumitomo Chemical Co Ltd
Priority to JP2001252806A priority Critical patent/JP2003035668A/en
Publication of JP2003035668A publication Critical patent/JP2003035668A/en
Pending legal-status Critical Current

Links

Landscapes

  • Investigating Or Analysing Materials By Optical Means (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method in which the protective rate of a hydroxyl group can be quantitatively determined in a short time and with satisfactory accuracy without isolating a polymer compound composed of a first structure unit and a second structure unit shown below from a measuring sample: The first structure unit is a structure unit as a structure having a hydroxyl group, e.g. a structure unit (I), and the second structure unit is a structure unit as a structure in which a protecting group is introduced into the hydroxyl group in the first structure unit, e.g. a structure unit (II). SOLUTION: Near-infrared absorption spectra of a plurality of standard samples are principal-regression-analyzed, and a multiple-regression working curve is obtained. By using the multiple-regression working curve, the protective rate of the polymer compound contained in the sample is calculated on the basis of the near-infrared absorption spectrum of the measuring sample. When the polymer compound is manufactured by reacting a protective agent with a raw-material polymer compound or by desorbing the protecting group from the raw-material polymer compound, the protective rate of the polymer compound contained in a reaction mixture in the halfway part of a reaction is measured, and the reaction is stopped on the basis of the protective rate.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、高分子化合物の水
酸基の保護率の定量方法に関する。
TECHNICAL FIELD The present invention relates to a method for quantifying the protection rate of hydroxyl groups of a polymer compound.

【0002】[0002]

【従来の技術】以下の第一の構造単位および第二の構造
単位からなる高分子化合物は、例えばフォトレジストの
樹脂成分として有用である。 第一の構造単位:水酸基を有する構造の構造単位 第二の構造単位:第一の構造単位における水酸基に保護
基が導入された構造の構造単位
2. Description of the Related Art The following polymer compound consisting of a first structural unit and a second structural unit is useful, for example, as a resin component of a photoresist. First structural unit: structural unit having a structure having a hydroxyl group Second structural unit: structural unit having a structure in which a protective group is introduced into the hydroxyl group in the first structural unit

【0003】かかる高分子化合物において、その第一の
構造単位と第二の構造単位との含有量比である水酸基の
保護率は重要であり、かかる保護率の精度の高い定量方
法としては高分子化合物の核磁気共鳴(NMR)スペク
トルから定量するNMR法が知られている(特開平5−
249682号公報、特開平8−123032号公報、
特開平10−147614号公報など)。
In such a polymer compound, the protection rate of hydroxyl groups, which is the content ratio of the first structural unit and the second structural unit, is important. An NMR method for quantifying from the nuclear magnetic resonance (NMR) spectrum of a compound is known (Japanese Patent Laid-Open No. H5-
249682, JP-A-8-123032,
JP-A-10-147614).

【0004】しかし、NMR法は、NMRスペクトルの
測定に比較的長時間を要するという問題があった。ま
た、高分子化合物が夾雑物と共に測定サンプルに含まれ
る場合には、高分子化合物を測定サンプルから単離する
前処理をしたのちにNMRスペクトルを測定する必要が
あった。
However, the NMR method has a problem that it takes a relatively long time to measure an NMR spectrum. Further, when the polymer compound is included in the measurement sample together with the impurities, it was necessary to measure the NMR spectrum after pretreatment for isolating the polymer compound from the measurement sample.

【0005】高分子化合物を測定サンプルから単離する
ことなく短時間で高分子化合物の水酸基の保護率を定量
できる定量方法としては、測定サンプルを熱分解し、生
成したフラグメントをガスクロマトグラフ法によって定
量する熱分解ガスクロマトグラフ法が挙げられるが、か
かる方法は高分子化合物を熱分解して定量する方法であ
るため、精度のよい定量方法ではなかった。
As a quantitative method capable of quantifying the protection rate of the hydroxyl groups of the polymer compound in a short time without isolating the polymer compound from the measurement sample, the measurement sample is thermally decomposed and the produced fragment is quantified by gas chromatography. Pyrolysis gas chromatographic method is used, but such a method is not a highly accurate quantification method because it is a method of thermally decomposing and quantifying a polymer compound.

【0006】[0006]

【発明が解決しようとする課題】そこで本発明者らは、
高分子化合物を測定サンプルから単離することなく、短
時間で精度よく高分子化合物の水酸基の保護率を定量し
得る定量方法を開発するべく鋭意検討した結果、複数の
標準サンプルの近赤外線吸収スペクトルを主成分分析し
て得た重回帰検量線を用いて、高分子化合物を含む測定
サンプルの近赤外線吸収スペクトルから保護率を算出す
ることにより、測定サンプルが夾雑物を含む場合であっ
ても、短時間で精度よく測定サンプルに含まれる高分子
化合物の水酸基の保護率を定量し得ることを見出し、本
発明に至った。
Therefore, the present inventors have found that
As a result of diligent studies to develop a quantitative method that can accurately quantify the protection rate of the hydroxyl group of a polymer compound in a short time without isolating the polymer compound from the measurement sample, the near infrared absorption spectra of multiple standard samples Using a multiple regression calibration curve obtained by principal component analysis, by calculating the protection rate from the near-infrared absorption spectrum of the measurement sample containing a polymer compound, even when the measurement sample contains impurities, The inventors have found that the protection rate of the hydroxyl groups of the polymer compound contained in the measurement sample can be quantified accurately in a short time, and have reached the present invention.

【0007】[0007]

【課題を解決するための手段】すなわち本発明は、以下
の第一の構造単位および第二の構造単位からなる高分子
化合物を含む測定サンプルの近赤外線吸収スペクトルか
ら、複数の標準サンプルの近赤外線吸収スペクトルを主
成分回帰分析して得た重回帰検量線を用いて、該高分子
化合物の水酸基の保護率を算出することを特徴とする高
分子化合物の水酸基の保護率の定量方法を提供するもの
である。 第一の構造単位:水酸基を有する構造の構造単位 第二の構造単位:第一の構造単位における水酸基に保護
基が導入された構造の構造単位
Means for Solving the Problems That is, the present invention is based on the near-infrared absorption spectra of a measurement sample containing a polymer compound consisting of the following first structural unit and second structural unit. A multiple regression calibration curve obtained by subjecting an absorption spectrum to principal component regression analysis is used to calculate a hydroxyl group protection rate of the polymer compound. It is a thing. First structural unit: structural unit having a structure having a hydroxyl group Second structural unit: structural unit having a structure in which a protective group is introduced into the hydroxyl group in the first structural unit

【0008】[0008]

【発明の実施の形態】本発明の定量方法に適用される測
定サンプルは、上記第一の構造単位および第二の構造単
位からなる高分子化合物を含むものである。第一の構造
単位は水酸基を有する構造の構造単位であり、かかる構
造単位としては、例えば式(I) で示される構造単位などのフェノール性水酸基を有する
構造単位などが挙げられる。
BEST MODE FOR CARRYING OUT THE INVENTION A measurement sample applied to the quantification method of the present invention contains a polymer compound composed of the first structural unit and the second structural unit. The first structural unit is a structural unit having a structure having a hydroxyl group, and examples of such a structural unit include those represented by the formula (I) And a structural unit having a phenolic hydroxyl group such as the structural unit represented by.

【0009】第二の構造単位は、第一の構造単位におけ
る水酸基に保護基が導入された構造の構造単位である。
保護基としては、例えばアルコキシアルキル基、アルキ
ルカルボニル基、アリールカルボニル基、アルキル基、
アルコキシカルボニル基などが挙げられる。アルコキシ
アルキル基としては、例えばエトキシエチル基、シクロ
ヘキシロキシエチル基、エトキシプロピル基などが、ア
ルキルカルボニル基としては、例えばピバロイル基など
が、アリールカルボニル基としては、例えばベンゾイル
基などが、アルキル基としては、例えばメチル基、エチ
ル基、イソプロピル基などが、アルコキシカルボニル基
としては、例えばt−ブチルオキシカルボニル基などが
それぞれ挙げられる。かかる保護基は1種類であっても
よいし、2種以上であってもよい。
The second structural unit is a structural unit having a structure in which a protective group is introduced into the hydroxyl group in the first structural unit.
Examples of the protective group include an alkoxyalkyl group, an alkylcarbonyl group, an arylcarbonyl group, an alkyl group,
Examples thereof include an alkoxycarbonyl group. The alkoxyalkyl group includes, for example, an ethoxyethyl group, a cyclohexyloxyethyl group, an ethoxypropyl group, the alkylcarbonyl group includes, for example, a pivaloyl group, and the arylcarbonyl group includes, for example, a benzoyl group, and an alkyl group. Examples thereof include a methyl group, an ethyl group and an isopropyl group, and examples of the alkoxycarbonyl group include a t-butyloxycarbonyl group. The number of such protecting groups may be one, or two or more.

【0010】第一の構造単位が上記式(I)で示される
構造単位である場合の第二の構造単位は式(II) (式中、Zは保護基を示す。)で示される構造単位とな
る。
When the first structural unit is the structural unit represented by the above formula (I), the second structural unit is represented by the formula (II) (In the formula, Z represents a protecting group.).

【0011】かかる第一の構造単位および第二の構造単
位からなる高分子化合物は、他の構造単位を含んでいて
もよい。他の構造単位としては、例えばアクリル酸単
位、メタクリル酸単位、アクリル酸t−ブチル単位、メ
タクリル酸t−ブチル単位、アクリル酸シクロヘキシル
単位、メタクリル酸シクロヘキシル単位、アクリル酸ア
ダマンチル単位、メタクリル酸アダマンチル単位、アク
リル酸2−ヒドロキシアダマンチル単位、メタクリル酸
2−ヒドロキシアダマンチル単位、アクリル酸2−メチ
ルアダマンチル単位、メタクリル酸2−メチルアダマン
チル単位、アクリル酸2−エチルアダマンチル単位、メ
タクリル酸2−エチルアダマンチル単位、アクリル酸1
−(1’−アダマンチル)メチルエチル単位、メタクリ
ル酸1−(1’−アダマンチル)メチルエチル単位、ス
チレン単位などが挙げられる。
The polymer compound consisting of the first structural unit and the second structural unit may contain other structural units. Examples of other structural units include acrylic acid units, methacrylic acid units, t-butyl acrylate units, t-butyl methacrylate units, cyclohexyl acrylate units, cyclohexyl methacrylate units, adamantyl acrylate units, adamantyl methacrylate units, 2-Hydroxyadamantyl acrylate unit, 2-hydroxyadamantyl methacrylate unit, 2-methyladamantyl acrylate unit, 2-methyladamantyl methacrylate unit, 2-ethyladamantyl acrylate unit, 2-ethyladamantyl methacrylate unit, acrylic acid 1
Examples include-(1'-adamantyl) methylethyl unit, 1- (1'-adamantyl) methylethyl methacrylate unit, and styrene unit.

【0012】かかる高分子化合物は、例えば第一の構造
単位からなる原料高分子化合物に保護化剤を反応させる
方法によって製造することができる(特開平5−249
682号公報、特開平8−123032号公報、特開平
10−147614号公報など)。かかる方法によれ
ば、原料高分子化合物の水酸基に保護化剤によって保護
基が導入されて、第一の構造単位が第二の構造単位に変
換され、第一の構造単位および第二の構造単位からなる
高分子化合物を得ることができる。
Such a polymer compound can be produced, for example, by a method of reacting a starting polymer compound comprising the first structural unit with a protective agent (Japanese Patent Laid-Open No. 5-249).
682, JP-A-8-123032, JP-A-10-147614). According to such a method, a protecting group is introduced into the hydroxyl group of the raw material polymer compound by the protecting agent, the first structural unit is converted into the second structural unit, and the first structural unit and the second structural unit. It is possible to obtain a polymer compound consisting of

【0013】また、第二の構造単位からなる原料高分子
化合物から保護基を脱離させる方法によって製造するこ
ともできる(特開平5−249682号公報、特開平8
−123032号公報、特開平10−147614号公
報など)。かかる方法によれば、原料高分子化合物の保
護基が脱離して、第二の構造単位が第一の構造単位に変
換されて、第一の構造単位および第二の構造単位からな
る高分子化合物を得ることができる。
It can also be produced by a method in which the protective group is eliminated from the starting polymer compound composed of the second structural unit (JP-A-5-249682 and JP-A-8).
-1223032, JP-A-10-147614, etc.). According to such a method, the protective group of the starting polymer compound is eliminated, the second structural unit is converted into the first structural unit, and the polymer compound composed of the first structural unit and the second structural unit Can be obtained.

【0014】本発明の定量方法は、このような第一の構
造単位および第二の構造単位からなる高分子化合物の水
酸基の保護率を定量する方法である。
The quantification method of the present invention is a method for quantifying the degree of protection of hydroxyl groups of a polymer compound composed of such a first structural unit and a second structural unit.

【0015】以下、上記製造方法における反応途中の反
応混合物に含まれる高分子化合物の水酸基の保護率を定
量する場合を例として、本発明の定量方法を説明する。
The quantification method of the present invention will be described below by taking the case of quantifying the protection rate of the hydroxyl groups of the polymer compound contained in the reaction mixture during the reaction in the above production method as an example.

【0016】本発明の定量方法に用いられる測定サンプ
ルは、上記反応途中の反応混合物であってもよいし、反
応終了後の反応混合物であってもよい。かかる高分子化
合物を含む測定サンプルは、通常の方法、例えば反応途
中の反応混合物や反応終了後の反応混合物からピペッ
ト、マイクロシリンジなどを用いる方法で採取すること
ができる。近赤外線吸収スペクトルを測定した後の測定
サンプルは、反応混合物に戻されてもよい。また、反応
混合物から測定サンプルを連続的に採取してもよく、こ
の場合には、測定後の測定サンプルは通常、連続的に反
応混合物に戻される。
The measurement sample used in the quantification method of the present invention may be a reaction mixture during the reaction or a reaction mixture after completion of the reaction. The measurement sample containing such a high molecular compound can be collected by a usual method, for example, a method using a pipette, a microsyringe or the like from the reaction mixture during the reaction or the reaction mixture after the reaction is completed. The measurement sample after measuring the near-infrared absorption spectrum may be returned to the reaction mixture. Further, the measurement sample may be continuously taken from the reaction mixture, and in this case, the measurement sample after measurement is usually continuously returned to the reaction mixture.

【0017】本発明の定量方法では、かくして採取され
た反応途中や反応終了後の反応混合物から高分子化合物
を単離し、得られた高分子化合物を測定サンプルとして
もよい。
In the quantification method of the present invention, the polymer compound may be isolated from the reaction mixture thus collected during or after the reaction, and the obtained polymer compound may be used as a measurement sample.

【0018】測定サンプルの近赤外線吸収スペクトル
(x)は、通常の赤外線分光分析装置、例えばフーリエ
変換型赤外線分光分析装置(FT−IR装置)、波長分
散型赤外線分光分析装置などを用いて測定することがで
きる。測定波数範囲は通常12500〜4000cm-1
程度の範囲から選ばれる。
The near-infrared absorption spectrum (x) of the measurement sample is measured by using a normal infrared spectroscopic analyzer such as a Fourier transform infrared spectroscopic analyzer (FT-IR device) or a wavelength dispersion infrared spectroscopic analyzer. be able to. The measurement wave number range is usually 12,500 to 4000 cm -1
It is selected from a range of degrees.

【0019】得られたスペクトル(x)は、重回帰検量
線を用いて高分子化合物の水酸基の保護率(y)に換算
される。重回帰検量線は、複数の標準サンプルの近赤外
線吸収スペクトルを主成分回帰分析して得られるが、具
体的には、例えばコンピューターを用いて以下の〔手順
1〕〜〔手順7〕に従って主成分回帰分析を行うことに
より得ることができる。
The obtained spectrum (x) is converted into the hydroxyl group protection rate (y) of the polymer compound using a multiple regression calibration curve. The multiple regression calibration curve is obtained by subjecting the near-infrared absorption spectra of a plurality of standard samples to a principal component regression analysis. Specifically, for example, a computer is used to perform the main component according to the following [Procedure 1] to [Procedure 7]. It can be obtained by performing regression analysis.

【0020】〔手順1〕N個の標準サンプルに含まれる
高分子化合物の水酸基の保護率(ni1)から式(1−
1) に従って、行列[N]を求める手順。
[Procedure 1] From the protection rate (n i1 ) of hydroxyl groups of polymer compounds contained in N standard samples, the formula (1-
1) The procedure for obtaining the matrix [N] according to

【0021】〔手順2〕N個の標準サンプルの近赤外線
吸収スペクトル(ri)を列ベクトルとし、riが列に並
んだ行列[R]を準備する手順。
[Procedure 2] A procedure for preparing a matrix [R] in which the near infrared absorption spectra (r i ) of N standard samples are used as column vectors and r i are arranged in columns.

【0022】〔手順3〕行列[R]およびその転置行列
[R]tより求められる[R]の自己相関行列[R][R]tの固
有ベクトル(uj)が列に並んだ行列[U]、行列[R]t
自己相関行列[R]t[R]の固有ベクトル(vm)が列に並
んだ行列[V]および自己相関行列[R][R]tの固有値
(λp)を対角要素とする対角行列[Λ]をそれぞれ求め
る手順。
[Procedure 3] Matrix [R] and its transposed matrix
Autocorrelation matrix of [R] obtained from the t [R] [R] [R] t the eigenvectors (u j) is a matrix arranged in columns [U], the matrix [R] autocorrelation matrix of t [R] t The matrix [V] in which the eigenvectors (v m ) of [R] are arranged in columns and the diagonal matrix [Λ] having the eigenvalues (λ p ) of the autocorrelation matrix [R] [R] t as diagonal elements are obtained. procedure.

【0023】〔手順4〕[N]、[V]、[Λ]の逆行列[Λ]
-1、[U]の逆行列[U]-1および[R]より式(4−1) [N']=[N][V][Λ]-1[U]-1[R] (4-1) に従って、行列[N']を求める手順。
[Procedure 4] Inverse matrix [Λ] of [N], [V], and [Λ]
−1 , the inverse matrix [U] −1 of [U] and [R] are used to calculate the equation (4-1) [N ′] = [N] [V] [Λ] −1 [U] −1 [R] ( A procedure for obtaining the matrix [N ′] according to 4-1).

【0024】〔手順5〕全てのiについての[N]の要素
i1と[N']の要素n'i1とから式(5−1) により算出される誤差(e)を求める手順。
[Procedure 5] From the element n i1 of [N] and the element n ′ i1 of [N ′] for all i, equation (5-1) The procedure for obtaining the error (e) calculated by

【0025】〔手順6〕上記手順2に用いるスペクトル
(ri)の波数範囲および該スペクトル(ri)に施す前
処理を変えて上記手順2〜手順5の計算を行って誤差
(e)を求め、誤差(e)が最小となるように計算に用
いるスペクトル(ri)の波数範囲およびスペクトル
(ri)に施す前処理を選択する手順。
[Procedure 6] The error (e) is calculated by changing the wave number range of the spectrum (r i ) used in the above procedure 2 and the pretreatment applied to the spectrum (r i ) and performing the calculations of the above procedure 2 to procedure 5. determined, the procedure for selecting the processing prior to applying the error wavenumber range and spectrum of the spectrum to be used for calculation as (e) is minimized (r i) (r i) .

【0026】〔手順7〕上記手順6で選択した波数範囲
のスペクトル(ri)に上記手順6で選択した前処理を
施して算出された[V]、[Λ]-1および[U]-1並びに[N]
を用いて、式(7−1) [T]=[N][V][Λ]-1[U]-1 (7-1) により、重回帰検量線を示す行列[T]を求める手順。
[Procedure 7] [V], [Λ] −1 and [U] calculated by subjecting the spectrum (r i ) in the wave number range selected in Procedure 6 to the preprocessing selected in Procedure 6 above. 1 and [N]
The procedure of obtaining the matrix [T] indicating the multiple regression calibration curve by the equation (7-1) [T] = [N] [V] [Λ] -1 [U] -1 (7-1) using .

【0027】上記〔手順1〕〜〔手順7〕の関係を図1
に示す。以下、〔手順1〕〜〔手順7〕について詳細に
説明する。
FIG. 1 shows the relationship between the above [Procedure 1] to [Procedure 7].
Shown in. Hereinafter, [Procedure 1] to [Procedure 7] will be described in detail.

【0028】〔手順1〕N個の標準サンプルに含まれる
高分子化合物の水酸基の保護率(ni1)から式(1−
1)に従って、行列[N]を求める手順。標準サンプルに
含まれる高分子化合物の水酸基の保護率は既知である。
式(1−1)で示される行列[N]において、Nは標準サ
ンプルの数であり、iは1〜Nの自然数を示す。Mは後
述する[R]と[R]の転置行列[R]tとから求められる自
己分散行列[R][R]tの階数(rank)、即ち0でな
い固有値の数であるが、計算上はスペクトル(ri)の
雑音の分散以下の値である固有値は0とみなせばよい。
行列[N]の要素のうちni1は各標準サンプルに含まれる
高分子化合物の水酸基の保護率(y)であり、例えば高
分子化合物の第一の構造単位の水酸基の数(N1)およ
び第二の構造単位の保護基の数(N2)から式(1) y=N2/(N1+N2) (1) により定義される値である。かかる保護率(y)は、例
えばNMR法などにより精度よく定量することができ
る。行列[N]の他の要素nik(kは2〜Mの自然数を示
す。)は各標準サンプルについての互いに独立な変数で
あり、例えば原料高分子化合物の反応初期濃度、原料高
分子化合物の重合度、原料高分子化合物が他の構造単位
を含む場合にはその含有量、使用した保護化剤の濃度、
副生成物の濃度、反応に用いる溶媒が複数の溶媒の混合
溶媒である場合にはその組成比などが挙げられる。各標
準サンプルの変数の数がMに満たない場合には、その満
たないnikについては全て0でない同じ値、例えば1と
して計算すればよいが、手順5で求められる誤差(e)
の値が0から外れる傾向にある。なお、MはNよりも小
さく、MがNと一致する場合には、N、即ち標準サンプ
ルの数を増やせばよい。
[Procedure 1] From the protection rate (n i1 ) of hydroxyl groups of polymer compounds contained in N standard samples, the formula (1-
A procedure for obtaining the matrix [N] according to 1). The protection rate of the hydroxyl group of the polymer compound contained in the standard sample is known.
In the matrix [N] shown in Expression (1-1), N is the number of standard samples, and i is a natural number of 1 to N. M is the rank (rank) of the self-dispersion matrix [R] [R] t obtained from the transposed matrix [R] t of [R] and [R] described later, that is, the number of non-zero eigenvalues. The eigenvalue, which is a value less than the variance of the noise of the spectrum (r i ) may be regarded as 0.
Of the elements of the matrix [N], n i1 is the protection rate (y) of the hydroxyl groups of the polymer compound contained in each standard sample. For example, the number of hydroxyl groups (N 1 ) of the first structural unit of the polymer compound and It is a value defined by the formula (1) y = N 2 / (N 1 + N 2 ) (1) from the number (N 2 ) of protecting groups of the second structural unit. The protection rate (y) can be accurately quantified by, for example, an NMR method. Other elements n ik of the matrix [N] (k is a natural number of 2 to M.) Are mutually independent variables for each standard sample, for example, the reaction initial concentration of the raw material polymer compounds, the raw material polymer compounds Degree of polymerization, if the starting polymer compound contains another structural unit, its content, the concentration of the protective agent used,
The concentration of by-products, and when the solvent used in the reaction is a mixed solvent of a plurality of solvents, its composition ratio and the like can be mentioned. If the number of variables of each standard sample is less than M, it is sufficient to calculate the same value that is not 0 for all ni k that is less than that, for example, 1 but the error (e) obtained in step 5
Tends to deviate from zero. Note that M is smaller than N, and when M matches N, N, that is, the number of standard samples may be increased.

【0029】〔手順2〕N個の標準サンプルの近赤外線
吸収スペクトル(ri)を列ベクトルとし、riが列に並
んだ行列[R]を準備する手順。N個の標準サンプルの近
赤外線吸収スペクトル(ri)はh番目の波数における
吸光度をrihとして式(2−1) で示される列ベクトルであり、Hは測定波数の数であ
る。行列[R]は式(2−2) で示される行列となる。全てのiにおいてスペクトル
(ri)は測定されたスペクトルそのままであってもよ
いし、予め波数範囲が限定されていてもよいし、前処
理、例えば平均値を差し引く処理などのベースライン補
正処理、バックグラウンド処理、スムージング処理、1
次微分、2次微分、3次微分などの微分処理などの処理
が施されていてもよい。これらの前処理はそれぞれ単独
または2以上の処理を組み合せて行われる。
[Procedure 2] A procedure for preparing a matrix [R] in which the near infrared absorption spectra (r i ) of N standard samples are used as column vectors and r i are arranged in columns. The near-infrared absorption spectrum (r i ) of N standard samples is represented by the formula (2-1) where the absorbance at the h-th wave number is r ih Is a column vector, and H is the number of measured wave numbers. The matrix [R] is the equation (2-2) It becomes the matrix shown by. For all i, the spectrum (r i ) may be the measured spectrum as it is, the wave number range may be limited in advance, or pre-processing, for example, baseline correction processing such as processing for subtracting the average value, Background processing, smoothing processing, 1
Processing such as differential processing such as secondary differential, secondary differential, and tertiary differential may be performed. These pretreatments are performed individually or in combination of two or more treatments.

【0030】〔手順3〕行列[R]およびその転置行列
[R]tより求められる[R]の自己相関行列[R][R]tの固
有ベクトル(uj)が列に並んだ行列[U]、行列[R]t
自己相関行列[R]t[R]の固有ベクトル(vm)が列に並
んだ行列[V]および自己相関行列[R][R]tの固有値
(λp)を対角要素とする対角行列[Λ]をそれぞれ求め
る手順。固有ベクトル(uj)および(vm)並びに固有
値(λp)はそれぞれコンピューターを用いた数値計算
などの通常の方法により求めることができる。j、m、
pはそれぞれ1〜Mの自然数である。
[Procedure 3] Matrix [R] and its transposed matrix
Autocorrelation matrix of [R] obtained from the t [R] [R] [R] t the eigenvectors (u j) is a matrix arranged in columns [U], the matrix [R] autocorrelation matrix of t [R] t The matrix [V] in which the eigenvectors (v m ) of [R] are arranged in columns and the diagonal matrix [Λ] having the eigenvalues (λ p ) of the autocorrelation matrix [R] [R] t as diagonal elements are obtained. procedure. The eigenvectors (u j ) and (v m ) and the eigenvalue (λ p ) can be obtained by ordinary methods such as numerical calculation using a computer. j, m,
p is a natural number of 1 to M, respectively.

【0031】[U]は式(3−1) で示される行列となり、[V]は式(3−2) で示される行列となり、[Λ]は式(3−3) で示される行列となる。[U] is the equation (3-1). And the matrix [V] is given by equation (3-2) And the matrix [Λ] is given by equation (3-3). It becomes the matrix shown by.

【0032】ただし、通常、λpは式(3−4) λ1 > λ2 > ・・・ λM > 0 (3-4) を満足し、固有ベクトル(uj)は全てのjで式(3−
5) |uj|=1 (3-5) を満足し、固有ベクトル(vm)は全てのmで式(3−
6) |vm|=1 (3-6) を満足するように、それぞれ規格化されて計算される。
However, normally, λ p satisfies the equation (3-4) λ 1 > λ 2 > ... λ M > 0 (3-4), and the eigenvector (u j ) is an equation ( 3-
5) | u j | = 1 (3-5) is satisfied, and the eigenvector (v m ) is expressed by the formula (3-
6) Normalized and calculated so as to satisfy | v m | = 1 (3-6).

【0033】また行列[U]は式(3−7) [R][R]t=[U][Λ][Λ][U]t (3-7) を満足し、行列[V]は式(3−8) [R]t[R]=[V][Λ][Λ][V]t (3-8) を満足する。The matrix [U] satisfies the equation (3-7) [R] [R] t = [U] [Λ] [Λ] [U] t (3-7), and the matrix [V] is Expression (3-8) [R] t [R] = [V] [Λ] [Λ] [V] t (3-8) is satisfied.

【0034】〔手順4〕[N]、[V]、[Λ]の逆行列[Λ]
-1、[U]の逆行列[U]-1および[R]より式(4−1)に
従って、行列[N']を求める手順。逆行列[Λ]-1および
[U]-1はそれぞれコンピューターを用いた数値計算法な
どの通常の方法により、[Λ]および[U]から求めること
ができる。
[Procedure 4] Inverse matrix [Λ] of [N], [V], and [Λ]
-1 , a procedure of obtaining the matrix [N '] from the inverse matrices [U] -1 and [R] of [U] according to the equation (4-1). Inverse matrix [Λ] -1 and
[U] -1 can be obtained from [Λ] and [U] by a usual method such as a numerical calculation method using a computer.

【0035】〔手順5〕全てのiについての[N]の要素
i1と[N']の要素n'i1とから式(5−1)により算出
される誤差(e)を求める手順。[N]の要素ni1は各標
準サンプルの保護率(y)の実測値であり、[N']の要
素n'i1は各標準サンプルのスペクトル(ri)および固
有ベクトル(uj)から求めた保護率の計算値である。
スペクトル(ri)に雑音等がない理想的な条件下では
[N]の要素ni1と[N']の要素n'i1とは数学的に一致し
誤差(e)は0となるが、実際のスペクトル(ri)に
は雑音が含まれているため、保護率の実測値(ni1)と
式(4−1)により求めた保護率の計算値(n'i1)と
は数学的には一致せず、誤差(e)は通常0以外の値、
即ち0よりも大きな値となる。
[Procedure 5] A procedure for obtaining the error (e) calculated by the equation (5-1) from the element n i1 of [N] and the element n ′ i1 of [N ′] for all i. The element n i1 of [N] is the measured value of the protection rate (y) of each standard sample, and the element n ′ i1 of [N ′] is calculated from the spectrum (r i ) and eigenvector (u j ) of each standard sample. The calculated protection rate.
Under ideal conditions where there is no noise in the spectrum (r i )
The element n i1 of [N] and the element n ′ i1 of [N ′] are mathematically identical and the error (e) is 0, but the actual spectrum (r i ) contains noise. The measured value (n i1 ) of the protection rate and the calculated value (n ′ i1 ) of the protection rate obtained by the equation (4-1) do not mathematically match, and the error (e) is usually a value other than 0. ,
That is, the value becomes larger than 0.

【0036】〔手順6〕上記手順2に用いる標準サンプ
ルのスペクトル(ri)の波数範囲、前処理を変えて上
記手順2〜手順5の計算を行って誤差(e)を求め、誤
差(e)が最小となるように、計算に用いる標準サンプ
ルのスペクトル(ri)の波数範囲、前処理を決定する
手順。計算に用いるスペクトル(ri)の波数範囲は、
これが広いと保護率(n'i1)の算出の精度を高くする
ことができるが、重回帰検量線の計算に要するコンピュ
ーターの記憶容量が大きくなると共に計算に長時間を要
するようになる。逆に波数範囲を狭くすると、保護率
(n'i1)の算出の精度が低くなる。このため、使用す
るコンピューターの記憶容量、計算速度や、保護率
(y)の目的とする精度などを勘案して計算に用いるス
ペクトル(ri)の波数範囲が適宜選択される。
[Procedure 6] The error (e) is calculated by changing the wave number range of the spectrum (r i ) of the standard sample used in the above procedure 2 and the pretreatment, and the error (e) is calculated. ) Is the minimum, the wave number range of the spectrum (r i ) of the standard sample used for the calculation, and the procedure for determining the pretreatment. The wave number range of the spectrum (r i ) used for calculation is
If it is wide, the accuracy of calculation of the protection rate (n ′ i1 ) can be improved, but the storage capacity of the computer required for the calculation of the multiple regression calibration curve becomes large and the calculation takes a long time. On the contrary, when the wave number range is narrowed, the accuracy of calculation of the protection rate (n ' i1 ) becomes low. Therefore, the wave number range of the spectrum (r i ) used for the calculation is appropriately selected in consideration of the storage capacity of the computer used, the calculation speed, the desired accuracy of the protection rate (y), and the like.

【0037】スペクトル(ri)の前処理としては、手
順2において前記したと同様の処理、例えば平均値を差
し引く処理などのベースライン補正処理、バックグラウ
ンド処理、スムージング処理、1次微分、2次微分、3
次微分などの微分処理などの処理が挙げられる。これら
の前処理はそれぞれ単独でまたは2以上の処理を組合わ
せて行われる。
As the preprocessing of the spectrum (r i ), the same processing as that described above in step 2, for example, baseline correction processing such as processing for subtracting the average value, background processing, smoothing processing, first derivative, second order Differentiation, 3
A process such as a differential process such as a next differential process may be used. These pretreatments are performed individually or in combination of two or more treatments.

【0038】〔手順7〕スペクトル(ri)の上記手順
6で選択した波数範囲のデータ(吸光度)に上記手順6
で選択した前処理を施して算出された[V]、[Λ]-1およ
び[U]-1並びに[N]を用いて、上記式(7−1)によ
り、重回帰検量線を示す行列[T]を求める手順。
[Procedure 7] The above-mentioned procedure 6 is added to the data (absorbance) in the wave number range selected in the above-mentioned procedure 6 of the spectrum (r i ).
[V], [Λ] −1 and [U] −1 and [N] calculated by performing the pre-processing selected in step (7) are used to calculate a matrix showing a multiple regression calibration curve. Procedure for obtaining [T].

【0039】なお、上記〔手順1〕〜〔手順7〕で示す
主成分回帰分析においては、〔手順1〕で保護率(y)
を式(1)で定義したが、式(1)に代えて式(2) y=N1/(N1+N2) (2) で保護率(y)を定義してもよい。また第一の構造単
位、第二の構造単位および他の構造単位の合計数に対す
る第二の構造単位の数の割合として定義してもよいし、
該合計数に対する第一の構造単位の数の割合として定義
してもよい。
In the principal component regression analysis shown in the above [Procedure 1] to [Procedure 7], the protection rate (y) was calculated in [Procedure 1].
Was defined by the formula (1), but the protection rate (y) may be defined by the formula (2) y = N 1 / (N 1 + N 2 ) (2) instead of the formula (1). It may also be defined as the ratio of the number of the second structural unit to the total number of the first structural unit, the second structural unit and the other structural unit,
It may be defined as the ratio of the number of first structural units to the total number.

【0040】また、〔手順5〕において式(5-1)に
より算出される誤差(e)を求め、〔手順6〕ではこの
誤差(e)が最小となるように計算に用いるスペクトル
(ri)の波数範囲、前処理を決定したが、上記誤差
(e)に代えて全てのiについての[N]の要素ni1
[N']の要素n'i1との相関係数を求め、〔手順6〕では
この相関係数が最も1に近くなるように、計算に用いる
スペクトル(ri)の波数範囲、前処理を決定してもよ
い。
Further, in [Procedure 5], the error (e) calculated by the equation (5-1) is obtained, and in [Procedure 6], the spectrum (r i used for the calculation is made so that this error (e) is minimized. ), The wave number range and the preprocessing are determined, but instead of the error (e), the elements n i1 of [N] for all i are
The correlation coefficient with the element n ′ i1 of [N ′] is obtained, and in [Procedure 6], the wave number range of the spectrum (r i ) used in the calculation and the preprocessing are performed so that the correlation coefficient is closest to 1. You may decide.

【0041】本発明の定量方法は、かくして求められた
重回帰検量線(行列[T])を用いて測定サンプルの近赤
外線吸収スペクトル(x)から保護率(y)を算出す
る。
In the quantification method of the present invention, the multiple regression calibration curve (matrix [T]) thus obtained is used to calculate the protection rate (y) from the near infrared absorption spectrum (x) of the measurement sample.

【0042】測定サンプルの近赤外線吸収スペクトル
(x)は、h番目の波数における吸光度をxhとして式
(3) で表される列ベクトルである。測定サンプルの近赤外線
吸収スペクトル(x)から重回帰検量線(行列[T])を
用いて保護率(y)を求めるには、例えば保護率
(y)、近赤外線吸収スペクトル(x)および重回帰検
量線(行列[T])の関係式に近赤外線吸収スペクトル
(x)を代入すればよく、具体的には、測定サンプルの
近赤外線吸収スペクトル(x)と上記手順7で求めた行
列[T]とを用いて式(4) により算出される列ベクトル(w)の第一番目の要素
(w1)として、保護率(y)を算出すればよい。
The near-infrared absorption spectrum (x) of the measurement sample is expressed by the formula (3), where the absorbance at the h-th wave number is x h. Is a column vector represented by. To obtain the protection rate (y) from the near-infrared absorption spectrum (x) of the measurement sample using the multiple regression calibration curve (matrix [T]), for example, the protection rate (y), the near-infrared absorption spectrum (x) and the weight The near-infrared absorption spectrum (x) may be substituted into the relational expression of the regression calibration curve (matrix [T]). Specifically, the near-infrared absorption spectrum (x) of the measurement sample and the matrix [ T] and equation (4) The protection rate (y) may be calculated as the first element (w 1 ) of the column vector (w) calculated by

【0043】かくして重回帰検量線から求められる保護
率(y)は、標準サンプルに含まれる高分子化合物の水
酸基の保護率の定量に用いたと同様の定量方法により定
量された保護率と同等の精度を有しており、上記説明で
例示したように標準サンプルに含まれる高分子化合物の
水酸基の保護率をNMR法による定量方法で定量した場
合には、NMR法により定量された保護率と一致してい
る。
Thus, the protection rate (y) obtained from the multiple regression calibration curve has the same accuracy as the protection rate quantified by the same quantification method as that used for quantifying the protection rate of the hydroxyl group of the polymer compound contained in the standard sample. In the case where the protection rate of the hydroxyl groups of the polymer compound contained in the standard sample is quantified by the quantification method by the NMR method as exemplified in the above description, it is consistent with the protection rate quantified by the NMR method. ing.

【0044】本発明の定量方法によれば、測定サンプル
が夾雑物を含む場合であっても、高分子化合物を測定サ
ンプルから単離することなく迅速に精度よく、測定サン
プルに含まれる高分子化合物の水酸基の保護率を求める
ことができるので、例えば上記第一の構造単位からなる
原料高分子化合物に保護化剤を反応させて第一の構造単
位および第二の構造単位からなる高分子化合物を製造す
るに際して、反応中の反応混合物の近赤外線吸収スペク
トル(x)から、上記重回帰検量線を用いて、反応混合
物に含まれる高分子化合物の水酸基の保護率を算出し、
得られた保護率に基づき反応を停止させることとすれ
ば、保護率が目的とする値である高分子化合物を容易に
得ることができる。
According to the quantification method of the present invention, even when the measurement sample contains contaminants, the polymer compound contained in the measurement sample can be quickly and accurately prepared without isolating the polymer compound from the measurement sample. Since it is possible to obtain the protection rate of the hydroxyl group of, for example, by reacting the starting polymer compound consisting of the first structural unit with a protective agent to give a polymer compound consisting of the first structural unit and the second structural unit In the production, from the near-infrared absorption spectrum (x) of the reaction mixture during the reaction, using the multiple regression calibration curve, to calculate the protection rate of the hydroxyl group of the polymer compound contained in the reaction mixture,
If the reaction is stopped based on the obtained protection rate, it is possible to easily obtain a polymer compound having a desired protection rate.

【0045】得られた保護率に基づき反応を停止させる
には、保護率(y)が式(1)で定義された場合には、
保護率(y)が目的とする値になっているときに反応を
停止させればよく、保護率(y)が目的とする値よりも
小さいときにはそのまま反応を続行すればよい。また、
保護率(y)が式(2)で定義された場合には、保護率
(y)が目的とする値となっているときに反応を停止さ
せればよく、保護率(y)が目的とする値よりも大きい
ときにはそのまま反応を続行すればよい。
To stop the reaction based on the obtained protection rate, when the protection rate (y) is defined by the formula (1),
The reaction may be stopped when the protection rate (y) reaches a target value, and the reaction may be continued as it is when the protection rate (y) is smaller than the target value. Also,
When the protection rate (y) is defined by the formula (2), the reaction may be stopped when the protection rate (y) has a target value, and the protection rate (y) is the target. When it is larger than the value, the reaction may be continued.

【0046】反応を停止させるには、例えば反応混合物
を反応温度よりも低い温度に冷却してもよいし、反応停
止剤を加えてもよい。反応を続行する場合に、保護化剤
が消費されて消滅しているときには、保護化剤を追加し
てもよい。原料高分子化合物と保護化剤との反応は通常
溶媒中で行われ、触媒の存在下に行うこともできる。原
料高分子化合物は目的とする高分子化合物における第二
の構造単位の含有量よりも少ない量の第二の構造単位を
含んでいてもよい。また原料高分子化合物が他の構造単
位を含む場合には、第一の構造単位、第二の構造単位お
よび他の構造単位からなる高分子化合物を得ることがで
きる。
To stop the reaction, for example, the reaction mixture may be cooled to a temperature lower than the reaction temperature, or a reaction terminator may be added. When the reaction is continued, the protecting agent may be added when it is consumed and disappears. The reaction between the raw material polymer compound and the protecting agent is usually carried out in a solvent, and can also be carried out in the presence of a catalyst. The starting polymer compound may contain a smaller amount of the second structural unit than the content of the second structural unit in the target polymer compound. When the starting polymer compound contains another structural unit, a polymer compound composed of the first structural unit, the second structural unit and the other structural unit can be obtained.

【0047】また、上記第二の構造単位からなる原料高
分子化合物から保護基を脱離させて第一の構造単位およ
び第二の構造単位からなる高分子化合物を製造するに際
して、反応中の反応混合物の近赤外線吸収スペクトル
(x)から、上記重回帰検量線を用いて、反応混合物に
含まれる高分子化合物の水酸基の保護率を算出し、得ら
れた保護率に基づき反応を停止させることとすれば、保
護率が目的とする値である高分子化合物を容易に得るこ
とができる。
In addition, when the protecting group is eliminated from the starting polymer compound comprising the second structural unit to produce the polymer compound comprising the first structural unit and the second structural unit, the reaction during the reaction is carried out. From the near-infrared absorption spectrum (x) of the mixture, using the above multiple regression calibration curve, calculate the protection rate of the hydroxyl groups of the polymer compound contained in the reaction mixture, and stop the reaction based on the obtained protection rate. By doing so, it is possible to easily obtain a polymer compound having a desired protection rate.

【0048】得られた保護率に基づき反応を停止させる
には、保護率(y)が式(1)で定義される場合には、
例えば保護率(y)が目的とする値となっているときに
反応を停止させればよく、保護率(y)が目的とする値
よりも大きいときにはそのまま反応を続行すればよい。
また、保護率(y)が式(2)で定義される場合には、
保護率が目的とする値となっているときに反応を停止さ
せればよく、保護率(y)が目的とする値よりも小さい
ときにはそのまま反応を続行すればよい。
In order to terminate the reaction based on the obtained protection rate, when the protection rate (y) is defined by the formula (1),
For example, the reaction may be stopped when the protection rate (y) reaches a target value, and the reaction may be continued as it is when the protection rate (y) is larger than the target value.
Further, when the protection rate (y) is defined by the equation (2),
The reaction may be stopped when the protection rate reaches a target value, and the reaction may be continued as it is when the protection rate (y) is smaller than the target value.

【0049】反応を停止させるには、例えば反応混合物
を冷却してもよいし、反応停止剤を加えてもよい。原料
高分子化合物から保護基を脱離させる反応は通常、溶媒
中で行われ、触媒の存在下に行うこともできる。原料高
分子化合物は、目的とする高分子化合物における第一の
構造単位の含有量よりも少ない量の第一の構造単位を含
んでいてもよい。また原料高分子化合物が他の構造単位
を含む場合には、第一の構造単位、第二の構造単位およ
び他の構造単位からなる高分子化合物を得ることができ
る。
To stop the reaction, for example, the reaction mixture may be cooled or a reaction terminator may be added. The reaction for removing the protective group from the raw material polymer compound is usually carried out in a solvent, and can also be carried out in the presence of a catalyst. The starting polymer compound may contain a smaller amount of the first structural unit than the content of the first structural unit in the target polymer compound. When the starting polymer compound contains another structural unit, a polymer compound composed of the first structural unit, the second structural unit and the other structural unit can be obtained.

【0050】[0050]

【発明の効果】本発明の定量方法によれば、上記第一の
構造単位および第二の構造単位からなる高分子化合物を
測定サンプルから単離することなく、測定サンプルに含
まれる高分子化合物の水酸基の保護率を短時間で精度よ
く定量することができる。また、上記高分子化合物を第
一の構造単位からなる原料高分子化合物に保護化剤を反
応させる方法や、第二の構造単位からなる原料高分子化
合物から保護基を脱離させる方法により製造するに際し
て、反応途中の反応混合物に含まれる高分子化合物の保
護率を迅速に精度よく定量できるので、保護率に基づき
反応を停止させることができ、その結果、保護率が目的
とする値である高分子化合物を容易に製造することがで
きる。
According to the quantification method of the present invention, a polymer compound contained in a measurement sample can be obtained without isolating the polymer compound comprising the first structural unit and the second structural unit from the measurement sample. The protection rate of hydroxyl groups can be accurately quantified in a short time. Further, the polymer compound is produced by a method of reacting a starting polymer compound composed of a first structural unit with a protecting agent, or a method of removing a protecting group from a raw material polymer compound composed of a second structural unit. At this time, the protection rate of the polymer compound contained in the reaction mixture during the reaction can be quantified quickly and accurately, so that the reaction can be stopped based on the protection rate, and as a result, the protection rate is a target value. A molecular compound can be easily manufactured.

【0051】[0051]

【実施例】以下、実施例によって本発明をより詳細に説
明するが、本発明はこれら実施例によって限定されるも
のではない。なお、各実施例において高分子化合物の保
護率は、式(1)に従って定義した。
The present invention will be described in more detail with reference to the following examples, but the present invention is not limited to these examples. The protection rate of the polymer compound in each example was defined according to the formula (1).

【0052】実施例1 〔標準サンプルの調製〕 (ロット1−1)ポリ(p−ビニルフェノール)(原料
高分子化合物、重量平均分子量は15000(重合度は
125)25質量部、パラトルエンスルホン酸1水和物
(触媒)0.002質量部およびメチルイソブチルケト
ン(溶媒)150質量部を混合して攪拌して混合物を得
た。得られた混合物の一部を採取して標準サンプル1−
1(1質量部)とした。
Example 1 [Preparation of Standard Sample] (Lot 1-1) 25 parts by mass of poly (p-vinylphenol) (raw polymer compound, weight average molecular weight: 15,000 (polymerization degree: 125), paratoluenesulfonic acid 0.002 parts by weight of monohydrate (catalyst) and 150 parts by weight of methyl isobutyl ketone (solvent) were mixed and stirred to obtain a mixture, and a part of the obtained mixture was sampled to prepare a standard sample 1-.
1 (1 part by mass).

【0053】上記で得た混合物を攪拌しながらエチルビ
ニルエーテル(保護化剤)5.1質量部を30分かけて
滴下して加えた。その後、25℃で攪拌しながら、滴下
完了から1時間後、2時間後または3時間後の反応混合
物を取り出し、それぞれ標準サンプル1−2〜1−4
(1質量部)とした。
While stirring the mixture obtained above, 5.1 parts by mass of ethyl vinyl ether (protecting agent) was added dropwise over 30 minutes. Then, with stirring at 25 ° C., the reaction mixture after 1 hour, 2 hours or 3 hours after completion of the dropping was taken out, and standard samples 1-2 to 1-4 were respectively taken out.
(1 part by mass).

【0054】(ロット1−2〜ロット1−6)スケール
を変える以外は上記と同様に操作してロット1−2〜ロ
ット1−6とし、上記と同様にして標準サンプル1−5
〜1−21(1質量部)を得た。標準サンプル1−1〜
1−21とロットおよび取出し時間との関係を表1およ
び表2に示す。なお、表中、0時間後とは、滴下完了時
を示す。
(Lot 1-2 to Lot 1-6) Except for changing the scale, the same operation as described above was performed to obtain lot 1-2 to lot 1-6, and the standard sample 1-5 was prepared in the same manner as above.
~ 1-21 (1 part by mass) was obtained. Standard sample 1-1 ~
Tables 1 and 2 show the relationship between 1-21 and the lot and take-out time. In addition, in the table, 0 hour later indicates the time when the dropping is completed.

【0055】〔標準サンプルの保護率のNMR法による
定量〕得られた標準サンプル(1質量部)にトリエチル
アミン(0.1質量部)を加えて攪拌し、n−ヘプタン
(5質量部)を加えて高分子化合物を析出させた。析出
した高分子化合物(粉体)を濾取し、乾燥させて、その
1H−NMRスペクトルを測定した。1H−NMRスペク
トルから、ポリ(p−ビニルフェノール)の水酸基に保
護基(エトキシエチル基)が導入された高分子化合物が
生成していることを確認した。1H−NMRスペクトル
から、該高分子化合物の水酸基の保護率(ni1、i=1
〜21)を求めた。結果を表1および表2に示す。
[Determination of Protection Rate of Standard Sample by NMR Method] Triethylamine (0.1 part by mass) was added to the obtained standard sample (1 part by mass) and stirred, and n-heptane (5 parts by mass) was added. A polymer compound was deposited by using the above method. The precipitated polymer compound (powder) is collected by filtration, dried and
1 H-NMR spectrum was measured. From the 1 H-NMR spectrum, it was confirmed that a polymer compound in which a protecting group (ethoxyethyl group) was introduced into the hydroxyl group of poly (p-vinylphenol) was produced. From the 1 H-NMR spectrum, the protection rate of the hydroxyl group of the polymer compound (n i1 , i = 1)
.About.21) was calculated. The results are shown in Tables 1 and 2.

【0056】〔標準サンプルの近赤外線吸収スペクトル
の測定〕標準サンプルの近赤外線吸収スペクトル(r1
〜r21)は、FT−IR装置〔「Vector22/
N」、Bruker社製〕を用いて透過法にて波数範囲
12000〜5300cm-1、分解能2cm-1、積算回
数8回で測定して求めた。近赤外線吸収スペクトルの一
例を図2(標準サンプル1−14)、図3(標準サンプ
ル1−15)および図4(標準サンプル1−19)に示
す。
[Measurement of near-infrared absorption spectrum of standard sample] Near-infrared absorption spectrum of standard sample (r 1
˜r 21 ) is an FT-IR device [“Vector 22 /
N ", a wave number range 12000~5300Cm -1 by a transmission method using a Bruker] was determined by measuring with a resolution 2 cm -1, 8 cumulative. An example of a near infrared absorption spectrum is shown in FIG. 2 (standard sample 1-14), FIG. 3 (standard sample 1-15) and FIG. 4 (standard sample 1-19).

【0057】〔重回帰検量線の作成〕上記で得た標準サ
ンプルの近赤外線吸収スペクトル(r1〜r21)の計算
に用いる波数範囲を7500〜5450cm-1とし(デ
ータ点数は1026点)、前処理としてベースライン補
正を施して、手順2〜手順3に従い行列[R]を求め、行
列[U]を求め、階数(M)を求めた。Mは8であった。
上記で1H−NMRスペクトルから得た標準サンプルの
保護率(ni1、iは1〜21)を用いて上記式(1−
1)に基づき行列[N]を得た。なお、nik(iは1〜2
1を、kは2〜8をそれぞれ示す。)は1とした。手順
4に従い[N']を得、手順5に従い誤差(e)を求めた
ところ、その値は0.559であった。このときの保護
率(ni1、i=1〜21)と行列[N']の要素(n' i1
との関係を図5に示す。また、n' i1を表1および表2
に示す。
[Preparation of Multiple Regression Calibration Curve] The wave number range used for the calculation of the near infrared absorption spectrum (r 1 to r 21 ) of the standard sample obtained above was set to 7500 to 5450 cm −1 (data point is 1026 points), Baseline correction was performed as pre-processing, and matrix [R] was calculated according to procedure 2 to procedure 3, matrix [U] was calculated, and rank (M) was calculated. M was 8.
Using the protection rate (n i1 , i is 1 to 21) of the standard sample obtained from the above 1 H-NMR spectrum, the above formula (1-
The matrix [N] was obtained based on 1). Note that nik (i is 1 to 2
1 and k represent 2 to 8, respectively. ) Was set to 1. When [N ′] was obtained according to the procedure 4 and the error (e) was obtained according to the procedure 5, the value was 0.559. The protection rate (n i1 , i = 1 to 21) at this time and the element (n i1 ) of the matrix [N ′]
The relationship with is shown in FIG. Also, n i1 is shown in Table 1 and Table 2.
Shown in.

【0058】[0058]

【表1】 ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 標準 ロット 取出時間 保護率 保護率の計算値 i サンプル ni1(%) n'i1 (%) ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 1− 1 1−1 滴下前 0 0.41 1 1− 2 1−1 1時間後 36.9 37.67 2 1− 3 1−1 2時間後 37.6 36.85 3 1− 4 1−1 3時間後 37.5 37.14 4 ──────────────────────────────── 1− 5 1−2 滴下前 0 -0.90 5 1− 6 1−2 1時間後 27.0 27.74 6 1− 7 1−2 2時間後 27.0 27.53 7 1− 8 1−2 3時間後 26.9 27.14 8 ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━[Table 1] ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Standard Lot extraction time Protection rate Protected rate calculation value i sample n i1 (%) n'i1 (%) ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 1-1 1 1-1 Before dropping 0 0.41 1 1-2 1 1-1 1 hour later 36.9 37.67 2 1-3 3 1-2 2 hours later 37.6 36.85 3 1--4 1-1 3 hours later 37.5 37.14 4 ──────────── ───────────────────── 1-5 1-2 Before dropping 0-0.90 5 1-6 1-2 1-2 hours later 27.0 27.74 6 1-7 1 1- 2 2 hours later 27.0 27.53 7 1-8 8 1-2 3 hours later 26.9 27.14 8 ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ ━

【0059】[0059]

【表2】 ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 標準 ロット 取出時間 保護率 保護率の計算値 i サンプル ni1(%) n'i1 (%) ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 1− 9 1−3 滴下前 0 -0.90 9 1− 10 1−3 0時間後 26.1 25.29 10 1− 11 1−3 1時間後 37.9 37.33 11 1− 12 1−3 2時間後 38.2 38.39 12 1− 13 1−3 3時間後 37.8 38.21 13 ──────────────────────────────── 1− 14 1−4 滴下前 0 0.85 14 1− 15 1−4 0時間後 27.0 27.50 15 1− 16 1−4 1時間後 38.0 37.57 16 1− 17 1−4 2時間後 38.7 38.21 17 1− 18 1−4 3.5時間後 39.5 39.09 18 1− 19 1−4 3時間後 39.2 39.08 19 ──────────────────────────────── 1− 20 1−5 2.5時間後 27.7 27.40 20 ──────────────────────────────── 1− 21 1−6 2.5時間後 29.1 29.32 21 ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━[Table 2] ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Standard lot Extraction time Protection rate Protected rate calculation value i sample n i1 (%) n'i1 (%) ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 1-9 1-3 Before dropping 0 -0.90 9 1 -10 1-3 after 0 hours 26.1 25.29 10 1-11 1-3 after 1 hour 37.9 37.33 11 1-12 12-3 after 2 hours 38.2 38.39 12 1-13 1-3 after 3 hours 37.8 38.21 13 ──────────────────────────────── 1-14 1-4 Before dropping 0 0.85 14 1-15 15 1- 40 hours later 27.0 27.50 15 1-16 16-4 1 hour later 38.0 37.57 16 1-17 1-4 4 hours later 38.7 38.21 17 1-18 1-4 3.5 hours later 39.5 39.09 18 1-19 1-4 3 After 39.2 39.08 19 ────────────────────────── ───── 1-20 1-5 2.5 hours later 27.7 27.40 20 ───────────────────────────────── 1 -21 1-6 2.5 hours later 29.1 29.32 21 ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━

【0060】次いで、手順7に従い重回帰検量線を示す
行列[T]を求めた。なお、計算に用いるスペクトル(r
1〜r21)の計算に用いる波数範囲および前処理を変え
て上記と同様にして誤差(e)を求めたが、いずれも
0.559を超えていた。
Then, according to procedure 7, a matrix [T] showing a multiple regression calibration curve was obtained. The spectrum (r
It was determined error (e) in the same manner as described above by changing the wave number range and pretreatment used to calculate the 1 ~r 21), but none was greater than 0.559.

【0061】〔測定サンプルの調製〕ポリ(p−ビニル
フェノール)(原料高分子化合物、重量平均分子量は1
5000(重合度は125))25質量部、パラトルエ
ンスルホン酸1水和物(触媒)0.002質量部および
メチルイソブチルケトン(溶媒)150質量部を混合し
て攪拌して混合物を得、測定サンプル1−22(1質量
部)を採取した。上記で得た混合物を攪拌しながらエチ
ルビニルエーテル(保護化剤)5.1質量部を30分か
けて滴下して加えた。その後、25℃で攪拌しながら、
滴下完了時(0時間後)、滴下完了から1時間後、2時
間後、3時間後の反応混合物を取り出し、それぞれ測定
サンプル1−23〜1−26(1質量部)とした。
[Preparation of Measurement Sample] Poly (p-vinylphenol) (raw polymer compound, weight average molecular weight is 1)
5,000 (degree of polymerization: 125)) 25 parts by mass, paratoluenesulfonic acid monohydrate (catalyst) 0.002 parts by mass, and methyl isobutyl ketone (solvent) 150 parts by mass are mixed and stirred to obtain a mixture, which is measured. Sample 1-22 (1 part by mass) was collected. While stirring the mixture obtained above, 5.1 parts by mass of ethyl vinyl ether (protecting agent) was added dropwise over 30 minutes. Then, while stirring at 25 ℃,
At the completion of dropping (after 0 hour), the reaction mixture after 1 hour, 2 hours, and 3 hours after the completion of dropping was taken out as measurement samples 1-23 to 1-26 (1 part by mass), respectively.

【0062】〔NMR法による保護率の定量〕上記標準
サンプルにおけると同様にして測定サンプル1−22〜
1−26の1H−NMRスペクトルを測定し、保護率を
求めた。結果を表3に示す。
[Determination of protection rate by NMR method] Measurement sample 1-22 in the same manner as in the standard sample
The 1 H-NMR spectrum of 1-26 was measured to determine the protection rate. The results are shown in Table 3.

【0063】〔重回帰検量線を用いた保護率の定量〕測
定サンプル1−22〜1−26の近赤外線吸収スペクト
ル(x)を上記標準サンプルにおけると同様にして求
め、スペクトル(x)のうち数範囲7500〜5450
cm-1のデータ(データ点数は1026点)を用い、前
処理としてベースライン補正を行って、保護率(y)を
求めた。結果を表3に示す。なお、近赤外線吸収スペク
トルの測定に要した時間は30秒以内であった。スペク
トル(x)に前処理を施し保護率を求めるにあたっては
通常のパーソナルコンピューターを用い、ほぼ瞬時に保
護率を求めることができた。
[Determination of Protection Rate Using Multiple Regression Calibration Curve] The near-infrared absorption spectrum (x) of the measurement samples 1-22 to 1-26 was determined in the same manner as in the standard sample, and out of the spectra (x) Number range 7500-5450
Using the data of cm -1 (the number of data points is 1026 points), a baseline correction was performed as a pretreatment to obtain a protection rate (y). The results are shown in Table 3. The time required for measuring the near infrared absorption spectrum was within 30 seconds. When the spectrum (x) was subjected to pretreatment to obtain the protection rate, an ordinary personal computer was used, and the protection rate could be obtained almost instantly.

【0064】[0064]

【表3】 ━━━━━━━━━━━━━━━━━━━━━━━ 測定 取出時間 保護率(%) 保護率(%) サンプル NMR法 y ━━━━━━━━━━━━━━━━━━━━━━━ 1− 22 滴下前 0 -0.2 1− 23 0時間後 9.5 7.5 1− 24 1時間後 25.7 25.0 1− 25 2時間後 27.2 27.6 1− 26 3時間後 27.2 27.5 ━━━━━━━━━━━━━━━━━━━━━━━[Table 3] ━━━━━━━━━━━━━━━━━━━━━━━ Measurement take-out time Protection rate (%) Protection rate (%) Sample NMR method y ━━━━━━━━━━━━━━━━━━━━━━━ 1-22 Before dropping 0-0.2 1-23 0 hours later 9.5 7.5 1-24 1 hour later 25.7 25.0 1-25 2 hours later 27.2 27.6 1-26 3 hours later 27.2 27.5 ━━━━━━━━━━━━━━━━━━━━━━━

【0065】表3に示すように、サンプルの近赤外線吸
収スペクトル(x)から重回帰検量線を用いて算出した
保護率の計算値は、NMR法により求めた保護率の定量
値と一致している。
As shown in Table 3, the calculated value of the protection rate calculated from the near infrared absorption spectrum (x) of the sample by using the multiple regression calibration curve agrees with the quantitative value of the protection rate obtained by the NMR method. There is.

【0066】実施例2 〔標準サンプルの調製〕 (ロット2−1)p−ビニルフェノールとアクリル酸シ
クロヘキシルとの共重合体〔原料高分子化合物、重量平
均分子量は13000、p−ビニルフェノール単量体単
位(第一の構造単位)はモル分率で90%、アクリル酸
シクロヘキシル単量体単位(他の構造単位)はモル分率
で10%〕100質量部、パラトルエンスルホン酸1水
和物(触媒、0.011質量部)およびメチルイソブチ
ルケトン(溶媒)600質量部を混合して攪拌して混合
物を得た。
Example 2 [Preparation of standard sample] (Lot 2-1) Copolymer of p-vinylphenol and cyclohexyl acrylate [raw polymer compound, weight average molecular weight 13000, p-vinylphenol monomer] The unit (first structural unit) is 90% in mole fraction, the cyclohexyl acrylate monomer unit (other structural unit) is 10% in mole fraction] 100 parts by mass, paratoluenesulfonic acid monohydrate ( A catalyst, 0.011 part by mass) and 600 parts by mass of methyl isobutyl ketone (solvent) were mixed and stirred to obtain a mixture.

【0067】上記で得た混合物を攪拌しながらエチルビ
ニルエーテル(保護化剤)23.4質量部を30分かけ
て滴下して加えた。その後、25℃で攪拌しながら、滴
下完了時(0時間後)、滴下完了から1時間後、2時間
後の反応混合物からそれぞれ2回採取して、標準サンプ
ル2−1〜2−6(各1質量部)とした。
While stirring the mixture obtained above, 23.4 parts by mass of ethyl vinyl ether (protecting agent) was added dropwise over 30 minutes. After that, while stirring at 25 ° C., at the completion of the dropping (after 0 hours), 1 hour after the completion of the dropping, and 2 hours after the completion of the dropping, the reaction mixture was sampled twice to obtain standard samples 2-1 to 2-6 (each). 1 part by mass).

【0068】その後、同温度で約1時間攪拌し、さらに
同温度で攪拌しながらエチルビニルエーテル(1.3質
量部)を追加し、同温度で攪拌しながら、追加後1時間
後(+1時間後と表示する。)の反応混合物から2回採
取して、標準サンプル2−7〜2−8(各1質量部)を
得た。各標準サンプルの取出時間を表4に示す。
Thereafter, the mixture was stirred at the same temperature for about 1 hour, ethyl vinyl ether (1.3 parts by mass) was further added with stirring at the same temperature, and with stirring at the same temperature, 1 hour after the addition (+1 hour later) It was sampled twice from the reaction mixture of the above) to obtain standard samples 2-7 to 2-8 (each 1 part by mass). Table 4 shows the take-out time of each standard sample.

【0069】(ロット2−2)原料高分子化合物とし
て、p−ビニルフェノールとアクリル酸シクロヘキシル
との共重合体〔原料高分子化合物、重量平均分子量は1
3000、p−ビニルフェノール単量体単位(第一の構
造単位)はモル分率で85%、アクリル酸シクロヘキシ
ル単量体単位(他の構造単位)はモル分率で15%〕を
用い、滴下して加えるエチルビニルエーテルの使用量を
20.1質量部とする以外は、ロット2−1と同様に操
作して、標準サンプル2−9〜2−18を得た。各標準
サンプルの取出時間を表5に示す。
(Lot 2-2) As a raw material polymer compound, a copolymer of p-vinylphenol and cyclohexyl acrylate [raw material polymer compound, weight average molecular weight is 1
3000, p-vinylphenol monomer unit (first structural unit) is 85% by mole fraction, cyclohexyl acrylate monomer unit (other structural units) is 15% by mole fraction] Then, standard samples 2-9 to 2-18 were obtained in the same manner as in lot 2-1 except that the amount of ethyl vinyl ether added was 20.1 parts by mass. Table 5 shows the take-out time of each standard sample.

【0070】(ロット2−3)滴下して加えるエチルビ
ニルエーテルの使用量を14.5質量部とし、追加のエ
チルビニルエーテルを使用しない以外はロット2−2と
同様に操作して、標準サンプル2−19〜2−26を得
た。各標準サンプルの取出時間を表6に示す。
(Lot 2-3) The same procedure as in Lot 2-2 was conducted except that the amount of ethyl vinyl ether added dropwise was 14.5 parts by mass and no additional ethyl vinyl ether was used. 19 to 2-26 were obtained. Table 6 shows the take-out time of each standard sample.

【0071】(ロット2−4)滴下して加えるエチルビ
ニルエーテルの使用量を22.7質量部とし、追加のエ
チルビニルエーテルを使用しない以外は以外はロット2
−1と同様に操作して、標準サンプル2−27〜2−3
2を得た。各標準サンプルの取出時間を表7に示す。
(Lot 2-4) Lot 2 was used except that the amount of ethyl vinyl ether added dropwise was 22.7 parts and no additional ethyl vinyl ether was used.
Operate in the same manner as for -1, and standard samples 2-27 to 2-3
Got 2. Table 7 shows the take-out time of each standard sample.

【0072】(ロット2−5)滴下して加えるエチルビ
ニルエーテルの使用量を22.6質量部とし、追加のエ
チルビニルエーテルの使用量を0.9質量部とする以外
は、ロット2−2と同様に操作して、標準サンプル2−
33〜2−40を得た。各標準サンプルの取出時間を表
8に示す。
(Lot 2-5) Same as Lot 2-2 except that the amount of ethyl vinyl ether added dropwise was 22.6 parts by mass and the amount of additional ethyl vinyl ether was 0.9 parts by mass. The standard sample 2-
33 to 2-40 were obtained. Table 8 shows the take-out time of each standard sample.

【0073】(ロット2−6)滴下して加えるエチルビ
ニルエーテルの使用量を16.3質量部とし、追加のエ
チルビニルエーテルを用いない以外は、ロット2−2と
同様に操作して、標準サンプル2−41〜2−46を得
た。各標準サンプルの取出時間を表9に示す。
(Lot 2-6) Standard sample 2 was prepared in the same manner as in lot 2-2 except that the amount of ethyl vinyl ether added dropwise was 16.3 parts by mass and no additional ethyl vinyl ether was used. -41 to 2-46 were obtained. Table 9 shows the take-out time of each standard sample.

【0074】(ロット2−7)滴下して加えるエチルビ
ニルエーテルの使用量を23.2質量部とし、追加のエ
チルビニルエーテルの使用量を2.5質量部とする以外
は、ロット2−2と同様に操作して、標準サンプル2−
47〜2−56を得た。各標準サンプルの取出時間を表
10に示す。
(Lot 2-7) Same as Lot 2-2 except that the amount of ethyl vinyl ether added dropwise was 23.2 parts by mass and the amount of additional ethyl vinyl ether was 2.5 parts by mass. The standard sample 2-
47 to 2-56 were obtained. Table 10 shows the take-out time of each standard sample.

【0075】(ロット2−8)滴下して加えるエチルビ
ニルエーテルの使用量を21.7質量部とし、追加のエ
チルビニルエーテルの使用量を1.8質量部とする以外
はロット2−1と同様に操作して、標準サンプル2−5
7〜2−62を得た。各標準サンプルの取出時間を表1
1に示す。
(Lot 2-8) Same as lot 2-1 except that the amount of ethyl vinyl ether added dropwise was 21.7 parts by mass and the amount of additional ethyl vinyl ether was 1.8 parts by mass. Operate the standard sample 2-5
7-2-62 was obtained. Table 1 shows the extraction time of each standard sample.
Shown in 1.

【0076】(ロット2−9)滴下して加えるエチルビ
ニルエーテルの使用量を20.2質量部とし、追加のエ
チルビニルエーテルの使用量を2.4質量部とする以外
は、ロット2−2と同様に操作して、標準サンプル2−
63〜2−70を得た。各標準サンプルの取出時間を表
12に示す。
(Lot 2-9) Same as Lot 2-2 except that the amount of ethyl vinyl ether added dropwise was 20.2 parts by mass and the amount of additional ethyl vinyl ether was 2.4 parts by mass. The standard sample 2-
63 to 2-70 were obtained. Table 12 shows the take-out time of each standard sample.

【0077】(ロット2−10)ロット2−1で用いた
と同じ原料高分子化合物100質量部、パラトルエンス
ルホン酸1水和物(0.011質量部)およびメチルイ
ソブチルケトン600質量部を混合して攪拌して混合物
を得た。上記で得た混合物を攪拌しながらエチルビニル
エーテル(保護化剤)12.7質量部を加えた。その
後、25℃で攪拌しながら、30分後の反応混合物から
2回採取して、標準サンプル2−71〜2−72(各1
質量部)とした。
(Lot 2-10) 100 parts by mass of the same raw material polymer compound as used in lot 2-1 were mixed with paratoluenesulfonic acid monohydrate (0.011 part by mass) and 600 parts by mass of methyl isobutyl ketone. And stirred to obtain a mixture. 12.7 parts by mass of ethyl vinyl ether (protecting agent) was added to the mixture obtained above while stirring. Then, while stirring at 25 ° C., the reaction mixture after 30 minutes was sampled twice to prepare standard samples 2-71 to 2-72 (1 for each).
Mass part).

【0078】その後、同温度で攪拌しながらエチルビニ
ルエーテル2.9質量部を加え、同温度で攪拌し30分
後(+60分後)の反応混合物から2回採取して、標準
サンプル2−73〜2−74(各1質量部)とした。そ
の後、同温度で攪拌しながらエチルビニルエーテル2.
9質量部を加え、同温度で攪拌し30分後(+90分
後)の反応混合物から2回採取して、標準サンプル2−
75〜2−76(各1質量部)とした。その後、同温度
で攪拌しながらエチルビニルエーテル2.9質量部を加
え、同温度で攪拌し30分後(+120分後)の反応混
合物から2回採取して、標準サンプル2−77〜2−7
8(各1質量部)とした。その後、同温度で攪拌しなが
らエチルビニルエーテル2.9質量部を加え、同温度で
攪拌し30分後(+150分後)の反応混合物から2回
採取して、標準サンプル2−79〜2−80(各1質量
部)とした。その後、同温度で攪拌しながらエチルビニ
ルエーテル2.9質量部を加え、同温度で攪拌し80分
後(+230分後)の反応混合物から2回採取して、標
準サンプル2−81〜2−82(各1質量部)とした。
その後、同温度で攪拌しながらエチルビニルエーテル
2.9質量部を加え、同温度で攪拌し30分後(+26
0分後)の反応混合物から2回採取して、標準サンプル
2−83〜2−84(各1質量部)とした。その後、同
温度で攪拌しながらエチルビニルエーテル2.9質量部
を加え、同温度で攪拌し30分後(+290分後)の反
応混合物から2回採取して、標準サンプル2−85〜2
−86(各1質量部)とした。その後、同温度で攪拌し
ながらエチルビニルエーテル2.9質量部を加え、同温
度で攪拌し30分後(+320分後)の反応混合物から
2回採取して、標準サンプル2−71〜2−88(各1
質量部)とした。各標準サンプルと取出時間との関係を
表13に示す。
Thereafter, 2.9 parts by mass of ethyl vinyl ether was added with stirring at the same temperature, and the mixture was stirred at the same temperature and sampled twice from the reaction mixture after 30 minutes (+60 minutes), to obtain standard samples 2-73 to 2-74 (1 part by mass each). Then, while stirring at the same temperature, ethyl vinyl ether 2.
9 parts by mass was added, and the mixture was stirred at the same temperature, sampled twice from the reaction mixture after 30 minutes (+90 minutes), and the standard sample 2-
75 to 2-76 (1 part by mass for each). Then, 2.9 parts by mass of ethyl vinyl ether was added with stirring at the same temperature, and the mixture was stirred at the same temperature and sampled twice from the reaction mixture after 30 minutes (+120 minutes), to obtain standard samples 2-77 to 2-7.
8 (1 part by mass each). Then, 2.9 parts by mass of ethyl vinyl ether was added with stirring at the same temperature, and the mixture was stirred at the same temperature and sampled twice from the reaction mixture after 30 minutes (+150 minutes), to obtain standard samples 2-79 to 2-80. (Each 1 part by mass). Then, 2.9 parts by mass of ethyl vinyl ether was added with stirring at the same temperature, and the mixture was stirred at the same temperature and sampled twice from the reaction mixture 80 minutes later (+230 minutes later) to obtain standard samples 2-81 to 2-82. (Each 1 part by mass).
Then, 2.9 parts by mass of ethyl vinyl ether was added with stirring at the same temperature, and the mixture was stirred at the same temperature for 30 minutes (+26
After 0 minutes), the reaction mixture was sampled twice to obtain standard samples 2-83 to 2-84 (each 1 part by mass). Then, 2.9 parts by mass of ethyl vinyl ether was added with stirring at the same temperature, and the mixture was stirred at the same temperature and sampled twice from the reaction mixture after 30 minutes (+290 minutes), to obtain a standard sample 2-85-2.
-86 (1 part by mass for each). Then, 2.9 parts by mass of ethyl vinyl ether was added with stirring at the same temperature, and the mixture was stirred at the same temperature and sampled twice from the reaction mixture after 30 minutes (+320 minutes), to obtain standard samples 2-71 to 2-88. (1 each
Mass part). Table 13 shows the relationship between each standard sample and the take-out time.

【0079】(ロット2−11)ロット2−1で用いた
と同じ原料高分子化合物に代えて、ロット2−2で用い
たと同じ原料高分子化合物を用いる以外はロット2−1
0と同様に操作して、標準サンプル2−89〜2−10
6(各1質量部)とした。各標準サンプルと取出時間と
の関係を表14に示す。
(Lot 2-11) Lot 2-1 except that the same starting polymer compound used in Lot 2-2 was used instead of the same starting polymer compound used in Lot 2-1.
Operate in the same manner as for 0 to prepare standard samples 2-89 to 2-10
6 (1 part by mass each). Table 14 shows the relationship between each standard sample and the extraction time.

【0080】〔標準サンプルの保護率のNMR法による
定量〕実施例1と同様に操作して、上記で得た標準サン
プルから高分子化合物を得、その1H−NMRスペクト
ルを測定し、p−ビニルフェノール単量体単位の水酸基
に保護基(エトキシエチル基)が導入された高分子化合
物が生成していることを確認し、該高分子化合物の水酸
基の保護率(ni1、iは1〜106を示す。)を得た。
結果を表4〜表14に示す。
[Determination of Protection Rate of Standard Sample by NMR Method] A polymer compound was obtained from the standard sample obtained above in the same manner as in Example 1, and its 1 H-NMR spectrum was measured to obtain p- It was confirmed that a polymer compound in which a protecting group (ethoxyethyl group) was introduced into the hydroxyl group of the vinylphenol monomer unit was formed, and the hydroxyl group protection rate of the polymer compound (n i1 , i is 1 to 1 106 is shown).
The results are shown in Tables 4 to 14.

【0081】〔標準サンプルの近赤外線吸収スペクトル
の測定〕実施例1と同様にして標準サンプルの近赤外線
吸収スペクトル(r1〜r106)を求めた。
[Measurement of Near Infrared Absorption Spectrum of Standard Sample] In the same manner as in Example 1, the near infrared absorption spectrum (r 1 to r 106 ) of the standard sample was obtained.

【0082】〔重回帰検量線の作成〕上記で得た標準サ
ンプルの近赤外線吸収スペクトル(r1〜r106)の計算
に用いる波数範囲を7500〜6099cm-1とし、測
定されたスペクトルを補間して計算上の波数の間隔を約
1cm-1として(データ点数は1454点)、前処理と
して一次微分処理およびスムージング処理を施して、手
順2〜手順3に従い行列[R]を求め、行列[U]を求め、
階数(M)を求めた。Mは7であった。上記で1H−N
MRスペクトルから得た標準サンプルの保護率(ni1
i=1〜106)を用いて上記式(1−1)に基づき行
列[N]を得た。なお、nik(i=1〜106、k=2〜
7)は1とした。手順4に従い[N']を得、手順5に従
い誤差(e)を求めたところ、その値は0.877であ
った。このときの保護率(ni1、i=1〜106)と行
列[N']の要素(n' i1)との関係を図6に示す。また、
' i1を表4〜表14に示す。
[Preparation of Multiple Regression Calibration Curve] The wave number range used for calculation of the near infrared absorption spectrum (r 1 to r 106 ) of the standard sample obtained above was set to 7500 to 6099 cm −1 , and the measured spectrum was interpolated. Then, the calculated wave number interval is set to about 1 cm -1 (the number of data points is 1454 points), the primary differential processing and the smoothing processing are performed as the preprocessing, and the matrix [R] is obtained according to the procedure 2 to the procedure 3, and the matrix [U ],
The number of floors (M) was calculated. M was 7. 1 H-N above
The protection rate of the standard sample obtained from the MR spectrum (n i1 ,
The matrix [N] was obtained based on the above equation (1-1) using i = 1 to 106). In addition, n ik (i = 1~106, k = 2~
7) was set to 1. When [N ′] was obtained according to the procedure 4 and the error (e) was obtained according to the procedure 5, the value was 0.877. FIG. 6 shows the relationship between the protection rate (n i1 , i = 1 to 106) and the element (n i1 ) of the matrix [N ′] at this time. Also,
Tables 4 to 14 show n i1 .

【0083】次いで、手順7に従い重回帰検量線を示す
行列[T]を求めた。なお、計算に用いるスペクトル(r
1〜r106)の計算に用いる波数範囲および前処理を変え
て上記と同様にして誤差(e)を求めたが、いずれも
0.877を超えていた。
Then, according to procedure 7, the matrix [T] showing the multiple regression calibration curve was obtained. The spectrum (r
The error (e) was determined in the same manner as above by changing the wave number range and pretreatment used for the calculation of 1 to r 106 ), but all exceeded 0.877.

【0084】[0084]

【表4】 ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 標準 ロット 取出時間 保護率 保護率の計算値 i サンプル ni1(%) n'i1 (%) ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 2− 1 2−1 0時間後 0 0.19 1 2− 2 2−1 0時間後 0 0.21 2 2− 3 2−1 1時間後 23.2 23.09 3 2− 4 2−1 1時間後 23.2 23.00 4 2− 5 2−1 2時間後 23.9 23.94 5 2− 6 2−1 2時間後 23.9 23.74 6 2− 7 2−1 +1時間後 26.3 25.81 7 2− 8 2−1 +1時間後 26.3 25.84 8 ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━[Table 4] ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Standard lot Extraction time Protection rate Protection rate calculation value i sample n i1 (%) n'i1 (%) ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 2-1 2-1 0 hours After 0 0.19 1 2 2 2 2-1 After 0 hours 0 0.21 2 2 -3 2 1 After 1 hour 23.2 23.09 3 2 4 2-1 After 1 hour 23.2 23.00 4 2-5 2-1 After 2 hours 23.9 23.94 5 2-6 2-1 2 hours later 23.9 23.74 6 2-7 2-1 +1 hour later 26.3 25.81 7 2-8 2-1 +1 hour later 26.3 25.84 8 ━━━━━━━━━━━━━━ ━━━━━━━━━━━━━━━━━━━━

【0085】[0085]

【表5】 ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 標準 ロット 取出時間 保護率 保護率の計算値 i サンプル ni1(%) n'i1 (%) ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 2− 9 2−2 0時間後 0.0 -1.06 9 2− 10 2−2 0時間後 0.0 -1.06 10 2− 11 2−2 1時間後 25.4 28.80 11 2− 12 2−2 1時間後 25.4 28.82 12 2− 13 2−2 2時間後 25.3 25.47 13 2− 14 2−2 2時間後 25.3 25.32 14 2− 15 2−2 +1時間後 29.2 28.51 15 2− 16 2−2 +1時間後 29.2 28.29 16 2− 17 2−2 +2時間後 28.6 28.73 17 2− 18 2−2 +2時間後 28.6 28.38 18 ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━[Table 5] ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Standard lot Extraction time Protection rate Protected rate calculation value i Sample n i1 (%) n'i1 (%) ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 2-9 2-20 hours After 0.0 -1.06 9 2-10 2-20 0 hours After 0.0 -1.06 10 2-11 2-2 After 1 hour 25.4 28.80 11 2-12 2-2 After 1 hour 25.4 28.82 12 2-13 2-2 2 hours 25.3 25.47 13 2-14 2-2 2 hours later 25.3 25.32 14 2-15 2-2 + 1 hour later 29.2 28.51 15 2-16 2-2 + 1 hour later 29.2 28.29 16 2-17 2-2 + 2 hours later 28.6 28.73 17 2-18 2-2 + 2 hours later 28.6 28.38 18 ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━

【0086】[0086]

【表6】 ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 標準 ロット 取出時間 保護率 保護率の計算値 i サンプル ni1(%) n'i1 (%) ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 2− 19 2−3 0時間後 0.0 0.25 19 2− 20 2−3 0時間後 0.0 0.18 20 2− 21 2−3 1時間後 16.7 16.76 21 2− 22 2−3 1時間後 16.7 16.59 22 2− 23 2−3 2時間後 17.2 18.74 23 2− 24 2−3 2時間後 17.2 18.46 24 2− 25 2−3 3時間後 16.9 16.45 25 2− 26 2−3 3時間後 16.9 16.42 26 ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━[Table 6] ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Standard lot Extraction time Protection rate Protected rate calculation value i sample n i1 (%) n'i1 (%) ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 2-19 2-30 hours After 0.0 0.25 19 2-20 2-3 After 0 hours 0.0 0.18 20 2-21 2-3 After 1 hour 16.7 16.76 21 2-22 2-3 After 1 hour 16.7 16.59 22 2-23 2-3 After 2 hours 17.2 18.74 23 2-24 2-3 After 2 hours 17.2 18.46 24 2-25 25 After 3 hours 16.9 16.45 25 2-26 2-3 After 3 hours 16.9 16.42 26 ━━━━━━━━━━━━━ ━━━━━━━━━━━━━━━━━━━━

【0087】[0087]

【表7】 ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 標準 ロット 取出時間 保護率 保護率の計算値 i サンプル ni1(%) n'i1 (%) ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 2− 27 2−4 0時間後 0 -0.54 27 2− 28 2−4 0時間後 0 -0.74 28 2− 29 2−4 1時間後 24.3 24.72 29 2− 30 2−4 1時間後 24.3 24.48 30 2− 31 2−4 2時間後 25.9 25.74 31 2− 32 2−4 2時間後 25.9 25.47 32 ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━[Table 7] ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Standard lot Extraction time Protection rate Protected rate calculation value i sample n i1 (%) n'i1 (%) ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 2- 27 2-40 0 hours After 0 -0.54 27 2-28 2-4 0 hours After 0 -0.74 28 2-29 2-4 1 hour after 24.3 24.72 29 2-30 2-4 1 hour after 24.3 24.48 30 2-31 2-4 2 hours 25.9 25.74 31 2-32 2-4 2 hours later 25.9 25.47 32 ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━

【0088】[0088]

【表8】 ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 標準 ロット 取出時間 保護率 保護率の計算値 i サンプル ni1(%) n'i1 (%) ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 2− 33 2−5 0時間後 0.0 0.40 33 2− 34 2−5 0時間後 0.0 0.46 34 2− 35 2−5 1時間後 27.6 27.49 35 2− 36 2−5 1時間後 27.6 27.27 36 2− 37 2−5 2時間後 28.7 28.27 37 2− 38 2−5 2時間後 28.7 28.09 38 2− 39 2−5 +1時間後 29.8 29.73 39 2− 40 2−5 +1時間後 29.8 29.40 40 ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━[Table 8] ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Standard lot Extraction time Protection rate Protection rate calculation value i sample n i1 (%) n'i1 (%) ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 2-33 2-50 hours After 0.0 0.40 33 2-34 2-5 After 0 hours 0.0 0.46 34 2-35 2-5 After 1 hour 27.6 27.49 35 2-36 2-5 After 1 hour 27.6 27.27 36 2-37 2-5 After 2 hours 28.7 28.27 37 2-38 2-5 2 hours later 28.7 28.09 38 2-39 2-5 + 1 hour later 29.8 29.73 39 2-40 2-5 + 1 hour later 29.8 29.40 40 ━━━━━━━━━━━━━ ━━━━━━━━━━━━━━━━━━━━

【0089】[0089]

【表9】 ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 標準 ロット 取出時間 保護率 保護率の計算値 i サンプル ni1(%) n'i1 (%) ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 2− 41 2−6 0時間後 0.0 -0.09 41 2− 42 2−6 0時間後 0.0 -0.52 42 2− 43 2−6 1時間後 17.4 17.81 43 2− 44 2−6 1時間後 17.4 17.32 44 2− 45 2−6 2時間後 17.9 18.15 45 2− 46 2−6 2時間後 17.9 17.61 46 ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━[Table 9] ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Standard lot Extraction time Protection rate Protection rate calculation value i sample n i1 (%) n'i1 (%) ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 2-41 2-60 0 hours After 0.0 -0.09 41 2-42 2-6 0 hours After 0.0 -0.52 42 2-43 2-6 After 1 hour 17.4 17.81 43 2-44 2-6 After 1 hour 17.4 17.32 44 2-45 2-6 2 hours After 17.9 18.15 45 2-46 2-6 After 2 hours 17.9 17.61 46 ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━

【0090】[0090]

【表10】 ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 標準 ロット 取出時間 保護率 保護率の計算値 i サンプル ni1(%) n'i1 (%) ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 2− 47 2−7 0時間後 0.0 0.21 47 2− 48 2−7 0時間後 0.0 -0.13 48 2− 49 2−7 1時間後 27.6 28.02 49 2− 50 2−7 1時間後 27.6 27.52 50 2− 51 2−7 2時間後 27.8 28.74 51 2− 52 2−7 2時間後 27.8 28.38 52 2− 53 2−7 +1時間後 31.5 32.14 53 2− 54 2−7 +1時間後 31.5 31.67 54 2− 55 2−7 +2時間後 32.1 32.96 55 2− 56 2−7 +2時間後 32.1 32.62 56 ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━[Table 10] ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Standard lot Extraction time Protection rate Protected rate calculation value i sample n i1 (%) n'i1 (%) ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 2-47 2-7 0 hours After 0.0 0.21 47 2-48 2-7 After 0 hours 0.0 -0.13 48 2-49 2-7 After 1 hour 27.6 28.02 49 2-50 2-7 After 1 hour 27.6 27.52 50 2-51 2-7 After 2 hours 27.8 28.74 51 2-52 2-7 2 hours later 27.8 28.38 52 2-53 2-7 + 1 hour later 31.5 32.14 53 2-54 2-7 + 1 hour later 31.5 31.67 54 2-55 2-7 + 2 hours later 32.1 32.96 55 2-56 2-7 + 2 hours later 32.1 32.62 56 ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━

【0091】[0091]

【表11】 ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 標準 ロット 取出時間 保護率 保護率の計算値 i サンプル ni1(%) n'i1 (%) ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 2− 57 2−8 1時間後 23.3 22.63 57 2− 58 2−8 1時間後 23.3 22.02 58 2− 59 2−8 2時間後 23.4 22.96 59 2− 60 2−8 2時間後 23.4 22.40 60 2− 61 2−8 +1時間後 25.3 25.96 61 2− 62 2−8 +1時間後 25.3 25.34 62 ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━[Table 11] ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Standard lot Extraction time Protection rate Protected rate calculation value i sample n i1 (%) n'i1 (%) ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 2-57 2-8 1 hour 23.3 22.63 57 2-58 2-8 1 hour later 23.3 22.02 58 2-59 2-8 2 hours later 23.4 22.96 59 2-60 2-8 2 hours later 23.4 22.40 60 2-61 2-8 + 1 hour later 25.3 25.96 61 2-62 2-8 + 1 hour later 25.3 25.34 62 ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━

【0092】[0092]

【表12】 ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 標準 ロット 取出時間 保護率 保護率の計算値 i サンプル ni1(%) n'i1 (%) ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 2− 63 2−9 1時間後 24.8 25.32 63 2− 64 2−9 1時間後 24.8 24.85 64 2− 65 2−9 2時間後 25.6 25.75 65 2− 66 2−9 2時間後 25.6 25.14 66 2− 67 2−9 3時間後 26.4 25.96 67 2− 68 2−9 3時間後 26.4 25.31 68 2− 69 2−9 +1時間後 29.5 30.11 69 2− 70 2−9 +1時間後 29.5 29.52 70 ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━[Table 12] ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Standard lot Extraction time Protection rate Protected rate calculation value i sample n i1 (%) n'i1 (%) ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 2- 63 2-9 1 hour After 24.8 25.32 63 2-64 2-9 After 1 hour 24.8 24.85 64 2-65 2-9 After 2 hours 25.6 25.75 65 2-66 2-9 After 2 hours 25.6 25.14 66 2-67 2-9 After 3 hours 26.4 25.96 67 2-68 2-9 3 hours later 26.4 25.31 68 2-69 2-9 + 1 hour later 29.5 30.11 69 2-70 2-9 + 1 hour later 29.5 29.52 70 ━━━━━━━━━━━━━ ━━━━━━━━━━━━━━━━━━━━

【0093】[0093]

【表13】 ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 標準 ロット 取出時間 保護率 保護率の計算値 i サンプル ni1(%) n'i1 (%) ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 2− 71 2−10 30分後 3.0 3.93 71 2− 72 2−10 30分後 3.0 3.26 72 2− 73 2−10 60分後 8.1 8.47 73 2− 74 2−10 60分後 8.1 7.89 74 2− 75 2−10 90分後 14.4 14.62 75 2− 76 2−10 90分後 14.4 14.04 76 2− 77 2−10 120分後 18.0 17.93 77 2− 78 2−10 120分後 18.0 17.36 78 2− 79 2−10 150分後 23.3 22.98 79 2− 80 2−10 150分後 23.3 22.64 80 2− 81 2−10 230分後 29.1 29.81 81 2− 82 2−10 230分後 29.1 29.48 82 2− 83 2−10 260分後 31.4 32.74 83 2− 84 2−10 260分後 31.4 32.51 84 2− 85 2−10 290分後 36.3 36.22 85 2− 86 2−10 290分後 36.3 35.80 86 2− 87 2−10 320分後 41.8 41.12 87 2− 88 2−10 320分後 41.8 40.67 88 ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━[Table 13] ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Standard lot Extraction time Protection rate Protected rate calculation value i sample n i1 (%) n'i1 (%) ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 2- 71 2-10 30 minutes After 3.0 3.93 71 2-72 2-10 After 30 minutes 3.0 3.26 72 2-73 2-10 After 60 minutes 8.1 8.47 73 2-74 2-10 After 60 minutes 8.1 7.89 74 2-75 2-10 After 90 minutes 14.4 14.62 75 2-76 2-10 After 90 minutes 14.4 14.04 76 2-77 2-10 After 120 minutes 18.0 17.93 77 2-78 2-10 After 120 minutes 18.0 17.36 78 2-79 2-10 After 150 minutes 23.3 22.98 79 2-80 2-10 150 minutes later 23.3 22.64 80 2-81 2-10 230 minutes later 29.1 29.81 81 2-82 2-10 230 minutes later 29.1 29.48 82 2-83 2-10 260 minutes later 31.4 32.74 83 2- 84 2-10 After 260 minutes 31.4 32.51 84 2-85 2-10 After 290 minutes 36.3 36.22 85 2-86 2-10 After 290 minutes 36.3 35.80 86 2-87 2-10 320 minutes later 41.8 41.12 87 2-88 2-10 320 minutes later 41.8 40.67 88 ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ ━━━

【0094】[0094]

【表14】 ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 標準 ロット 取出時間 保護率 保護率の計算値 i サンプル ni1(%) n'i1 (%) ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 2− 89 2−11 30分後 3.5 3.95 89 2− 90 2−11 30分後 3.5 3.46 90 2− 91 2−11 60分後 7.6 8.20 91 2− 92 2−11 60分後 7.6 7.61 92 2− 93 2−11 90分後 14.1 14.78 93 2− 94 2−11 90分後 14.1 14.26 94 2− 95 2−11 120分後 18.4 18.51 95 2− 96 2−11 120分後 18.4 18.20 96 2− 97 2−11 150分後 23.5 24.59 97 2− 98 2−11 150分後 23.5 24.01 98 2− 99 2−11 230分後 32.0 31.94 99 2−100 2−11 230分後 32.0 31.59 100 2−101 2−11 260分後 35.4 35.74 101 2−102 2−11 260分後 35.4 35.21 102 2−103 2−11 290分後 40.1 38.02 103 2−104 2−11 290分後 40.1 37.66 104 2−105 2−11 320分後 44.7 44.53 105 2−106 2−11 320分後 44.7 44.51 106 ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━[Table 14] ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Standard lot Extraction time Protection rate Protected rate calculation value i Sample n i1 (%) n'i1 (%) ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 2- 89 2-11 30 minutes After 3.5 3.95 89 2-90 2-11 After 30 minutes 3.5 3.46 90 2-91 2-11 After 60 minutes 7.6 8.20 91 2-92 2-11 After 60 minutes 7.6 7.61 92 2-93 2-11 After 90 minutes 14.1 14.78 93 2-94 2-11 90 minutes later 14.1 14.26 94 2-95 2-11 120 minutes later 18.4 18.51 95 2-96 2-1 1 120 minutes later 18.4 18.20 96 2-97 2-11 150 minutes later 23.5 24.59 97 2-98 2-11 150 minutes later 23.5 24.01 98 2-99 2-11 230 minutes later 32.0 31.94 99 2-100 2-11 230 minutes later 32.0 31.59 100 2-101 2-11 260 minutes later 35.4 35.74 101 2- 102 2-11 260 minutes later 35.4 35.21 102 2-103 2-11 290 minutes later 40.1 38.02 103 2-104 2-11 290 minutes later 40.1 37.66 104 2 105 2-11 320 minutes later 44.7 44.53 105 2-106 2-11 320 minutes later 44.7 44.51 106 ━━━━━━━━━━━━━━━━━━━━━━━━━━━━ ━━━━

【0095】〔測定サンプルの調製〕p−ビニルフェノ
ールとアクリル酸シクロヘキシルとの共重合体〔原料高
分子化合物、重量平均分子量は13000、p−ビニル
フェノール単量体単位(第一の構造単位)はモル分率で
90%、アクリル酸シクロヘキシル単量体単位(他の構
造単位)はモル分率で10%)100質量部、パラトル
エンスルホン酸1水和物(触媒、0.011質量部)お
よびメチルイソブチルケトン(溶媒)600質量部を混
合して攪拌して混合物を得た。上記で得た混合物を攪拌
しながらエチルビニルエーテル(保護化剤)13.0質
量部を30分かけて滴下して加えた。その後、25℃で
攪拌しながら、滴下完了から1時間後、2時間後の反応
混合物からそれぞれ採取して、測定サンプル2−107
〜2−108(各1質量部)とした。
[Preparation of Measurement Sample] Copolymer of p-Vinylphenol and Cyclohexyl Acrylate [Raw material polymer compound, weight average molecular weight is 13000, p-vinylphenol monomer unit (first structural unit) is 90% by mole fraction, cyclohexyl acrylate monomer unit (other structural units) is 10% by mole fraction) 100 parts by mass, paratoluenesulfonic acid monohydrate (catalyst, 0.011 parts by mass) and 600 parts by mass of methyl isobutyl ketone (solvent) were mixed and stirred to obtain a mixture. With stirring the mixture obtained above, 13.0 parts by mass of ethyl vinyl ether (protecting agent) was added dropwise over 30 minutes. Then, while stirring at 25 ° C., the reaction mixture was sampled from the reaction mixture after 1 hour and 2 hours from the completion of the dropping, and measured sample 2-107.
2 to 108 (each 1 part by mass).

【0096】その後、同温度で約1時間攪拌し、さらに
同温度で攪拌しながらエチルビニルエーテル(2.2質
量部)を追加し、同温度で攪拌しながら、追加後1時間
後(+1時間後と表示する。)の反応混合物から2回採
取し、そのうちの一つを測定サンプル2−109(1質
量部)とした。各測定サンプルの取出時間を表15に示
す。
Thereafter, the mixture was stirred at the same temperature for about 1 hour, ethyl vinyl ether (2.2 parts by mass) was further added while stirring at the same temperature, and 1 hour after the addition (+1 hour after addition) while stirring at the same temperature. Is indicated twice.) Was sampled twice from the reaction mixture, and one of them was used as a measurement sample 2-109 (1 part by mass). Table 15 shows the take-out time of each measurement sample.

【0097】〔NMR法による保護率の定量〕上記標準
サンプルにおけると同様にして測定サンプル2−107
〜2−109の 1H−NMRスペクトルを測定し、保護
率を求めた。結果を表15に示す。
[Determination of protection rate by NMR method] The above standard
Measurement sample 2-107 as in sample
~ 2-109 1H-NMR spectrum is measured and protected
I asked for the rate. The results are shown in Table 15.

【0098】〔重回帰検量線を用いた保護率の定量〕サ
ンプル2−107〜2−109の近赤外線吸収スペクト
ル(x)を上記標準サンプルにおけると同様にして求
め、スペクトル(x)のうち数範囲7500〜6099
cm-1のデータ(データ点数は1454点)を用い、前
処理として一次微分処理およびスムージング処理を行っ
て、保護率(y)を求めた。結果を表15に示す。な
お、近赤外線吸収スペクトルの測定に要した時間は30
秒以内であった。スペクトル(x)に前処理を施し保護
率を求めるにあたっては通常のパーソナルコンピュータ
ーを用い、ほぼ瞬時に保護率を求めることができた。
[Determination of Protection Rate Using Multiple Regression Calibration Curve] Near infrared absorption spectra (x) of Samples 2-107 to 2-109 were determined in the same manner as in the above standard sample, and the number of spectra (x) was calculated. Range 7500-6099
Using the data of cm -1 (data point number: 1454 points), the primary differentiation process and the smoothing process were performed as pre-processing to obtain the protection rate (y). The results are shown in Table 15. The time required to measure the near-infrared absorption spectrum is 30
It was within seconds. When the spectrum (x) was subjected to pretreatment to obtain the protection rate, an ordinary personal computer was used, and the protection rate could be obtained almost instantly.

【0099】[0099]

【表15】 ━━━━━━━━━━━━━━━━━━━━━━━━ 測定 取出時間 保護率(%) 保護率(%) サンプル NMR法 y ━━━━━━━━━━━━━━━━━━━━━━━━ 2− 107 1時間後 12.6 12.8 2− 108 2時間後 13.7 13.2 2− 109 +1時間後 17.2 16.9 ━━━━━━━━━━━━━━━━━━━━━━━━[Table 15] ━━━━━━━━━━━━━━━━━━━━━━━━ Measurement take-out time Protection rate (%) Protection rate (%) Sample NMR method y ━━━━━━━━━━━━━━━━━━━━━━━━ 2-107 1 hour later 12.6 12.8 2-108 2 hours later 13.7 13.2 2-109 +1 hour later 17.2 16.9 ━━━━━━━━━━━━━━━━━━━━━━━━

【0100】表15に示すように、サンプルの近赤外線
吸収スペクトル(x)から重回帰検量線を用いて算出し
た保護率の計算値(y)は、NMR法により求めた保護
率の定量値と一致している。
As shown in Table 15, the calculated value (y) of the protection rate calculated from the near infrared absorption spectrum (x) of the sample using the multiple regression calibration curve is the quantitative value of the protection rate determined by the NMR method. Match.

【図面の簡単な説明】[Brief description of drawings]

【図1】〔手順1〕〜〔手順7〕の関係を示す図であ
る。
FIG. 1 is a diagram showing a relationship between [Procedure 1] to [Procedure 7].

【図2】実施例1で調製した標準サンプル1−14の近
赤外線吸収スペクトルを示す図であり、横軸は波数(W
ave Number、cm-1、12000〜5300
cm-1)を、縦軸は吸光度(任意単位)をそれぞれ示
す。
FIG. 2 is a diagram showing a near-infrared absorption spectrum of a standard sample 1-14 prepared in Example 1, where the horizontal axis represents the wave number (W
ave Number, cm -1 , 12000-5300
cm −1 ) and the vertical axis represents the absorbance (arbitrary unit).

【図3】実施例1で調製した標準サンプル1−15の近
赤外線吸収スペクトルを示す図であり、横軸は波数(W
ave Number、cm-1、12000〜5300
cm-1)を、縦軸は吸光度(任意単位)をそれぞれ示
す。
FIG. 3 is a diagram showing a near-infrared absorption spectrum of a standard sample 1-15 prepared in Example 1, in which the horizontal axis represents the wave number (W
ave Number, cm -1 , 12000-5300
cm −1 ) and the vertical axis represents the absorbance (arbitrary unit).

【図4】実施例1で調製した標準サンプル1−19の近
赤外線吸収スペクトルを示す図であり、横軸は波数(W
ave Number、cm-1、12000〜5300
cm-1)を、縦軸は吸光度(任意単位)をそれぞれ示
す。
FIG. 4 is a diagram showing a near-infrared absorption spectrum of a standard sample 1-19 prepared in Example 1, in which the horizontal axis represents the wave number (W
ave Number, cm -1 , 12000-5300
cm −1 ) and the vertical axis represents the absorbance (arbitrary unit).

【図5】実施例1で得た標準サンプルのNMR法による
保護率の定量値(横軸)と重回帰検量線から算出された
保護率の計算値(縦軸)との関係を示す図である。
FIG. 5 is a diagram showing the relationship between the quantitative value of the protection rate by the NMR method (horizontal axis) of the standard sample obtained in Example 1 and the calculated value of the protection rate (vertical axis) calculated from the multiple regression calibration curve. is there.

【図6】実施例2で得た標準サンプルのNMR法による
保護率の定量値(横軸)と重回帰検量線から算出された
保護率の計算値(縦軸)との関係を示す図である。
FIG. 6 is a diagram showing the relationship between the quantitative value of the protection rate by the NMR method (horizontal axis) of the standard sample obtained in Example 2 and the calculated value of the protection rate (vertical axis) calculated from the multiple regression calibration curve. is there.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 山口 訓史 大阪市此花区春日出中3丁目1番98号 住 友化学工業株式会社内 Fターム(参考) 2G059 AA05 BB08 EE01 EE10 EE12 FF04 FF08 HH01 HH06 MM01 MM03 MM12 MM17    ─────────────────────────────────────────────────── ─── Continued front page    (72) Inventor Norifumi Yamaguchi             3-1,98-1 Kasugade, Konohana-ku, Osaka             Tomo Chemical Co., Ltd. F term (reference) 2G059 AA05 BB08 EE01 EE10 EE12                       FF04 FF08 HH01 HH06 MM01                       MM03 MM12 MM17

Claims (9)

【特許請求の範囲】[Claims] 【請求項1】以下の第一の構造単位および第二の構造単
位からなる高分子化合物を含む測定サンプルの近赤外線
吸収スペクトルから、複数の標準サンプルの近赤外線吸
収スペクトルを主成分回帰分析して得た重回帰検量線を
用いて、該高分子化合物の水酸基の保護率を算出するこ
とを特徴とする高分子化合物の水酸基の保護率の定量方
法。 第一の構造単位:水酸基を有する構造の構造単位 第二の構造単位:第一の構造単位における水酸基に保護
基が導入された構造の構造単位
1. A near-infrared absorption spectrum of a plurality of standard samples is subjected to principal component regression analysis from the near-infrared absorption spectra of a measurement sample containing a polymer compound consisting of the following first structural unit and second structural unit. A method for quantifying the protection rate of hydroxyl groups of a polymer compound, which comprises calculating the protection rate of hydroxyl groups of the polymer compound using the obtained multiple regression calibration curve. First structural unit: structural unit having a structure having a hydroxyl group Second structural unit: structural unit having a structure in which a protective group is introduced into the hydroxyl group in the first structural unit
【請求項2】水酸基がフェノール性水酸基である請求項
1に記載の定量方法。
2. The quantification method according to claim 1, wherein the hydroxyl group is a phenolic hydroxyl group.
【請求項3】第一の構造単位が式(I) で示される構造単位である請求項2に記載の定量方法。3. The first structural unit is of formula (I) The quantification method according to claim 2, which is a structural unit represented by: 【請求項4】保護基がアルコキシアルキル基、アルキル
カルボニル基、アリールカルボニル基、アルキル基また
はアルコキシカルボニル基である請求項1に記載の定量
方法。
4. The quantification method according to claim 1, wherein the protecting group is an alkoxyalkyl group, an alkylcarbonyl group, an arylcarbonyl group, an alkyl group or an alkoxycarbonyl group.
【請求項5】以下の第一の構造単位からなる原料高分子
化合物に保護化剤を反応させて以下の第一の構造単位お
よび第二の構造単位からなる高分子化合物を製造する方
法であり、反応中の反応混合物の近赤外線吸収スペクト
ルから、複数の標準サンプルの近赤外線吸収スペクトル
を主成分回帰して得た重回帰検量線を用いて、反応混合
物に含まれる高分子化合物の水酸基の保護率を算出し、
得られた保護率に基づき反応を停止させることを特徴と
する高分子化合物の製造方法。 第一の構造単位:水酸基を有する構造の構造単位 第二の構造単位:第一の構造単位における水酸基に保護
基が導入された構造の構造単位
5. A method for producing a polymer compound comprising the following first structural unit and second structural unit by reacting a starting polymer compound comprising the following first structural unit with a protecting agent: Protecting the hydroxyl groups of the polymer compounds contained in the reaction mixture by using the multiple regression calibration curve obtained by subjecting the near-infrared absorption spectra of the reaction mixture during the reaction to the main component regression of the near-infrared absorption spectra of multiple standard samples. Calculate the rate,
A method for producing a polymer compound, which comprises stopping the reaction based on the obtained protection rate. First structural unit: structural unit having a structure having a hydroxyl group Second structural unit: structural unit having a structure in which a protective group is introduced into the hydroxyl group in the first structural unit
【請求項6】以下の第二の構造単位からなる原料高分子
化合物から保護基を脱離させて以下の第一の構造単位お
よび第二の構造単位からなる高分子化合物を製造する方
法であり、反応中の反応混合物の近赤外線吸収スペクト
ルから、複数の標準サンプルの近赤外線吸収スペクトル
を主成分回帰分析して得た重回帰検量線を用いて、反応
混合物に含まれる高分子化合物の水酸基の保護率を算出
し、得られた保護率に基づき反応を停止させることを特
徴とする高分子化合物の製造方法。第一の構造単位:水
酸基を有する構造の構造単位第二の構造単位:第一の構
造単位における水酸基に保護基が導入された構造の構造
単位
6. A method for producing a polymer compound comprising the following first structural unit and second structural unit by removing a protecting group from a starting polymer compound comprising the following second structural unit: From the near-infrared absorption spectrum of the reaction mixture during the reaction, using the multiple regression calibration curve obtained by principal component regression analysis of the near-infrared absorption spectra of multiple standard samples, the hydroxyl group of the polymer compound contained in the reaction mixture A method for producing a polymer compound, which comprises calculating a protection rate and stopping the reaction based on the obtained protection rate. First structural unit: structural unit having a structure having a hydroxyl group Second structural unit: structural unit having a structure in which a protective group is introduced into the hydroxyl group in the first structural unit
【請求項7】水酸基がフェノール性水酸基である請求項
5または請求項6に記載の製造方法。
7. The method according to claim 5, wherein the hydroxyl group is a phenolic hydroxyl group.
【請求項8】第一の構造単位が前記式(I)で示される
構造単位である請求項7に記載の製造方法。
8. The method according to claim 7, wherein the first structural unit is a structural unit represented by the formula (I).
【請求項9】保護基がアルコキシアルキル基、アルキル
カルボニル基、アリールカルボニル基、アルキル基また
はアルコキシカルボニル基である請求項5または請求項
6に記載の製造方法。
9. The method according to claim 5, wherein the protective group is an alkoxyalkyl group, an alkylcarbonyl group, an arylcarbonyl group, an alkyl group or an alkoxycarbonyl group.
JP2001252806A 2000-08-23 2001-08-23 Quantitative determination method for protective rate of hydroxyl group in polymer compound Pending JP2003035668A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001252806A JP2003035668A (en) 2000-08-23 2001-08-23 Quantitative determination method for protective rate of hydroxyl group in polymer compound

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
JP2000-252130 2000-08-23
JP2000252130 2000-08-23
JP2001147481 2001-05-17
JP2001-147481 2001-05-17
JP2001252806A JP2003035668A (en) 2000-08-23 2001-08-23 Quantitative determination method for protective rate of hydroxyl group in polymer compound

Publications (1)

Publication Number Publication Date
JP2003035668A true JP2003035668A (en) 2003-02-07

Family

ID=27344408

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001252806A Pending JP2003035668A (en) 2000-08-23 2001-08-23 Quantitative determination method for protective rate of hydroxyl group in polymer compound

Country Status (1)

Country Link
JP (1) JP2003035668A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112730321A (en) * 2020-12-29 2021-04-30 江西蓝星星火有机硅有限公司 Method for measuring trace hydroxyl content in organic silicon by adopting infrared spectrum

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63117007A (en) * 1986-09-29 1988-05-21 セラニーズ コーポレーシヨン Ammonium hydroxide hydrolysis converting polyacetoxystyrene to polyvinyl phenol
JPH03200811A (en) * 1989-12-28 1991-09-02 Hitachi Chem Co Ltd Production of hydroxylated polymer
JPH05281138A (en) * 1992-04-01 1993-10-29 Nireco Corp Method for estimating physical and chemical property of sample
JPH10326015A (en) * 1997-05-26 1998-12-08 Sumitomo Chem Co Ltd Photoresist composition
JPH11108834A (en) * 1997-10-03 1999-04-23 Dow Corning Toray Silicone Co Ltd Method for determining functional group of organosiloxanes
JPH11173986A (en) * 1997-12-12 1999-07-02 Jasco Corp Measuring apparatus and processing method in the measuring apparatus
JP2000140619A (en) * 1998-09-04 2000-05-23 Mitsui Chemicals Inc Control method of production operation with near infrared analysis method

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63117007A (en) * 1986-09-29 1988-05-21 セラニーズ コーポレーシヨン Ammonium hydroxide hydrolysis converting polyacetoxystyrene to polyvinyl phenol
JPH03200811A (en) * 1989-12-28 1991-09-02 Hitachi Chem Co Ltd Production of hydroxylated polymer
JPH05281138A (en) * 1992-04-01 1993-10-29 Nireco Corp Method for estimating physical and chemical property of sample
JPH10326015A (en) * 1997-05-26 1998-12-08 Sumitomo Chem Co Ltd Photoresist composition
JPH11108834A (en) * 1997-10-03 1999-04-23 Dow Corning Toray Silicone Co Ltd Method for determining functional group of organosiloxanes
JPH11173986A (en) * 1997-12-12 1999-07-02 Jasco Corp Measuring apparatus and processing method in the measuring apparatus
JP2000140619A (en) * 1998-09-04 2000-05-23 Mitsui Chemicals Inc Control method of production operation with near infrared analysis method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112730321A (en) * 2020-12-29 2021-04-30 江西蓝星星火有机硅有限公司 Method for measuring trace hydroxyl content in organic silicon by adopting infrared spectrum
CN112730321B (en) * 2020-12-29 2023-09-26 江西蓝星星火有机硅有限公司 Method for measuring content of trace hydroxyl in organic silicon by adopting infrared spectrum

Similar Documents

Publication Publication Date Title
Klopman et al. Simple method of computing the partition coefficient
Nishioka et al. Grignard reagent‐catalyzed polymerization of methyl methacrylate
Jacquemin et al. Extensive TD-DFT investigation of the first electronic transition in substituted azobenzenes
Trauth et al. Representation of the molecular structure of petroleum resid through characterization and Monte Carlo modeling
Lippmaa et al. Carbon‐13 chemical shifts of α, β‐unsaturated acids
Kattner et al. Novel access to propagation rate coefficients of radical polymerization by the SP–PLP–EPR method
Monakhova et al. Methods of the decomposition of spectra of various origin in the analysis of complex mixtures
US20160131603A1 (en) Methods of predicting of chemical properties from spectroscopic data
JP2003035668A (en) Quantitative determination method for protective rate of hydroxyl group in polymer compound
Zhang et al. Weighted two-band target entropy minimization for the reconstruction of pure component mass spectra: simulation studies and the application to real systems
JP5437165B2 (en) Copolymer composition analysis method and program thereof
KR20020015948A (en) Method of quantifying protection ratio of hydroxyl group of polymer compound
Furer et al. The hydrogen bonding and conformations of p-tert-butylcalix [4] arene as studied by IR spectroscopy and by DFT calculations
Hanson-Heine et al. Calculating singlet excited states: Comparison with fast time-resolved infrared spectroscopy of coumarins
WO2008035959A1 (en) Method to derive a composition of a sample
Kattner Radical polymerization kinetics of non-ionized and fully-ionized monomers studied by pulsed-laser EPR
CN109145403B (en) Near infrared spectrum modeling method based on sample consensus
Jankulovska et al. Synthesis and characterization of new p-substituted aromatichydrazones
JP2011085564A (en) Quantitative analysis of copolymer
Elking et al. Crystal structure prediction of rigid molecules
Jouyban et al. A new set of solute descriptors to calculate solubility of drugs in mono-solvents
Yang et al. Determination of the absolute configurations of bicyclo [3.1. 0] hexane derivatives via electronic circular dichroism, optical rotation dispersion and vibrational circular dichroism spectroscopy and density functional theory calculations
Zhang et al. Multidimensional NMR characterization of perfluorinated monomer and its precursors
JP2010151779A (en) Method for analysis of composition of photosensitive resin copolymer using fourier transform near-infrared spectroscopy
Hua et al. Off-line monitoring of styrene/butyl acrylate copolymerizations in toluene using ATR-FTIR spectroscopy

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050720

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070521

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070612

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20071030