JPH10311792A - Method and equipment for measuring moisture of tea leaf - Google Patents

Method and equipment for measuring moisture of tea leaf

Info

Publication number
JPH10311792A
JPH10311792A JP12081697A JP12081697A JPH10311792A JP H10311792 A JPH10311792 A JP H10311792A JP 12081697 A JP12081697 A JP 12081697A JP 12081697 A JP12081697 A JP 12081697A JP H10311792 A JPH10311792 A JP H10311792A
Authority
JP
Japan
Prior art keywords
moisture
value
kubelka
tea leaves
sample
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP12081697A
Other languages
Japanese (ja)
Inventor
Tadashi Goto
正 後藤
Jiro Warashina
二郎 藁科
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shizuoka Prefecture
Shizuoka Seiki Co Ltd
Original Assignee
Shizuoka Prefecture
Shizuoka Seiki Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shizuoka Prefecture, Shizuoka Seiki Co Ltd filed Critical Shizuoka Prefecture
Priority to JP12081697A priority Critical patent/JPH10311792A/en
Publication of JPH10311792A publication Critical patent/JPH10311792A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • G01N21/35Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light
    • G01N21/3554Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light for determining moisture content
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N2021/8466Investigation of vegetal material, e.g. leaves, plants, fruits

Abstract

PROBLEM TO BE SOLVED: To measure the moisture of teat leaf accurately by determining the Kubelka-Munk functional value from a measured diffuse reflection light of a teat leaf and applying the functional values to a working curve recurrence formula based on samples having known moisture content thereby determining a moisture content. SOLUTION: A teat leaf 5 is held a measuring sample 6 on the front face of an optical transparent plate 13. A detector 28 detects the light transmitted through each interference filter 24 and reflected on a standard reflector 27'. The standard reflector 27' is then retracted and the diffuse reflection light from the measuring sample 6 is measured for each wavelength and each detection value is outputted to a control section 3. The control section 3 determines a Kubelka-Munk functional value (F value) from a measured diffuse reflection light of a teat leaf having known moisture and produces a working curve recurrence formula representative of relationship between the F value and the moisture content. Similarly, an F value is determined from a measured diffuse reflection light of a teat leaf having unknown moisture and applied to a working curve recurrence formula thus determining the moisture content of a teat leaf.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、茶葉の水分、いわゆ
る、含水率を測定する測定装置及び水分測定方法に関す
るものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a measuring apparatus and a measuring method for measuring the water content of tea leaves, that is, the water content.

【0002】[0002]

【従来の技術】緑茶の製造工程は、搬入した原料生茶葉
を蒸熱した後、揉圧を加えながら順次乾燥整形操作を進
めていく複数の工程よりなっており、原料の段階を含め
て茶葉の乾燥程度に応じて水分の多い方から、生葉受
付、生葉管理、葉打ち、粗揉、揉捻、中揉、精揉、乾燥
の各工程に分かれている。
2. Description of the Related Art A green tea production process comprises a plurality of steps in which raw tea leaves are steamed and then drying and shaping operations are sequentially performed while applying rubbing pressure. The process is divided into the steps of fresh leaf reception, fresh leaf management, foliage, coarse kneading, kneading, medium kneading, fine kneading, and drying, depending on the degree of drying.

【0003】そして、上述の各製茶工程の制御に際して
は、熟練した作業者が加工される茶葉の状態や各工程の
機械の運転状況を観察しながら最良の状態になるように
機械の調節等を行うことが一般になされている。一方、
近年、製茶機械の自動化、製茶プラントの大規模化が進
んでおり、各工程での茶葉の投入,取り出し,次工程へ
の搬送作業等の省力化が図られ、各工程での加工操作の
プログラム化や、さらには製茶工程中の茶葉をサンプリ
ングしてその加工状態を検出し、検出結果に応じて以下
の各工程の操作条件の制御を行う製茶工程の自動制御化
が大規模な製茶プラントにおいて行われつつある。
[0003] In controlling the above-mentioned tea making processes, a skilled worker observes the condition of the tea leaves to be processed and the operating condition of the machine in each process and adjusts the machine so as to obtain the best condition. It is generally done. on the other hand,
In recent years, the automation of tea-making machines and the scale of tea-making plants have been progressing, and efforts have been made to reduce labor such as the loading and unloading of tea leaves in each process and the transporting work to the next process. In the large-scale tea plant, the automatic control of the tea making process, which samples the tea leaves during the tea making process, detects the processing state of the tea leaves and controls the operation conditions of each of the following processes according to the detection result, It is taking place.

【0004】上述した熟練作業者による工程管理を行う
場合や大規模製茶プラントで行われる製茶工程の自動制
御を行う場合、製茶工程における工程条件の設定におい
ては、前工程からのサンプルの含水率に応じて、次工程
以降の工程条件が決められるのであって、工程中の茶葉
の水分管理,水分状態の測定を正確かつ迅速に行うこと
が重要である。
[0004] In the case where the above-mentioned process control by a skilled worker or the automatic control of the tea-making process performed in a large-scale tea-making plant is performed, in setting the process conditions in the tea-making process, the moisture content of the sample from the previous process is not considered. Accordingly, the process conditions after the next process are determined, and it is important to perform the water management and the measurement of the water state of the tea leaves during the process accurately and promptly.

【0005】そこで製茶工程中の水分測定を行う装置は
各種提案されており、例えば、茶葉の電気伝導度を測定
する方法(特開平3−39041号公報)、マイクロ波
を用いる方法(特開平2−39853号公報)、或は高
周波容量式の水分計を用いるもの等が提案されている
が、これらは、サンプルの充填密度や茶葉の摘採時期の
影響を受けて測定精度にばらつきが生じ易く、また高水
分域での測定が困難であるという問題があると共に、コ
ストが高く実用化に到っていない。
Therefore, various devices for measuring the moisture content during the tea making process have been proposed, for example, a method for measuring the electrical conductivity of tea leaves (Japanese Patent Application Laid-Open No. 3-39041) and a method using microwaves (Japanese Patent Application Laid-Open No. Hei 2-39041). Japanese Unexamined Patent Publication (Kokai) No. -39853), and those using a high-frequency capacitance type moisture meter have been proposed. However, these tend to vary in measurement accuracy due to the influence of the packing density of the sample and the timing of extracting tea leaves. In addition, there is a problem that measurement in a high moisture region is difficult, and the cost is high and practical use has not been achieved.

【0006】これに対して、測定精度,測定の迅速性,
コストの面で有効であるということで、近赤外分析計に
よる水分測定を製茶工程の水分測定に適用して製茶工程
の制御を行おうとする提案が、例えば、特開平1−21
5241号公報に記載のようになされている。
On the other hand, measurement accuracy, quickness of measurement,
Proposals for controlling the tea-making process by applying moisture measurement by a near-infrared spectrometer to the moisture measurement in the tea-making process because it is effective in terms of cost have been proposed, for example, in JP-A 1-21
This is performed as described in JP-A-5241.

【0007】[0007]

【発明が解決しようとする課題】ところで、近赤外分析
計を用いた場合には、次のような問題があった。つま
り、茶葉の水分含有率と近赤外分析計によって得られた
出力信号との関係は、図4に示すように、非線形な関係
にある。しかも、茶葉の水分含有率の変化は、上述した
工程間で80〜5%という具合にかなり広範囲にわた
る。このため、水分帰属の単一波長である1940nmに
おける拡散反射光を用いた吸光度(log(1/R))を参酌し
て重回帰式により含水率を予測しようとしても、上記広
範囲の中で線形関係が得られるきわめて狭い範囲のみを
対象とした水分値の予測が可能なだけであって、単一の
重回帰式によって全行程での水分値の予測を行うと誤差
が大きくなり、正確な水分値の測定ができないのが現状
である。そこで、葉打ち、粗揉、揉捻、中揉、精揉、乾
燥の各工程別に検量線を設定し、各工程での近赤外分析
計からの出力信号を基にしてそれら検量線を茶葉の含水
率に応じて使い分けて用いることが考えられる。しか
し、このような方法では、各工程での茶葉の含水率に対
応した検量線を準備する手間が甚大であるばかりでな
く、検量線の作成コストも増大する虞がある。 一方、
水分予測に用いられる近赤外線は、水分帰属の単一波長
である1940nmだけでなく、補正波長として上記波長
以外に2,3の波長が準備されたり、あるいは水分の含
有状態に応じた複数種類の波長が用いられている。例え
ば、高水分では、1450nmやさらに短い波長である9
70nm,760mnもしくはこれに近い波長が用いられ、
低水分では吸収感度を高める目的で1940nmあるいは
これに近い波長が用いられる。このように、広範囲の含
水率領域に対処するために複数の波長を準備し、水分予
測の際にそれら波長を選択することが行われている。
しかし、複数種類の波長を準備した場合には各波長での
検量線の設定および光学系で各波長毎のフィルターの準
備や切り替え作業等のメンテナンスが必要となる。しか
も、このような複数の波長を準備するのは、単に上記含
水率領域を対象とすること以外にも、茶葉等の水分計測
に用いられる試料の粒度バラツキによる吸光度の変動が
大きいことを理由とする場合もある。このため、水分予
測に要する手間や構造が増加する不具合がある。
However, the use of a near-infrared spectrometer has the following problems. That is, the relationship between the water content of the tea leaves and the output signal obtained by the near-infrared analyzer is a non-linear relationship as shown in FIG. Moreover, the change in the water content of the tea leaves is quite wide, such as 80-5% between the steps described above. For this reason, even if an attempt is made to predict the water content by a multiple regression equation in consideration of the absorbance (log (1 / R)) using diffuse reflection light at 1940 nm, which is a single wavelength of water attribution, it is linear within the above wide range. It is only possible to predict the moisture value for a very narrow range in which the relationship can be obtained, and if a single multiple regression equation is used to predict the moisture value over the entire process, the error will increase and accurate moisture At present it is not possible to measure the value. Therefore, a calibration curve was set for each of the steps of leafing, coarse kneading, kneading, medium kneading, fine kneading, and drying, and based on the output signal from the near-infrared analyzer in each step, these calibration curves were used for tea leaves. It is conceivable to use differently according to the water content. However, in such a method, not only is the labor for preparing a calibration curve corresponding to the moisture content of the tea leaves in each step enormous, but also the cost for preparing the calibration curve may increase. on the other hand,
The near-infrared ray used for moisture prediction is not only 1940 nm which is a single wavelength attributed to moisture, but a few wavelengths are prepared as correction wavelengths other than the above-mentioned wavelengths, or a plurality of types according to the content state of moisture. Wavelength is used. For example, at high moisture, the wavelength is 1450 nm or even shorter.
70 nm, 760 mn or a wavelength close to this is used,
At low moisture, a wavelength of 1940 nm or a wavelength close to 1940 nm is used for the purpose of increasing the absorption sensitivity. As described above, a plurality of wavelengths are prepared in order to cope with a wide range of water content, and those wavelengths are selected at the time of moisture estimation.
However, when a plurality of types of wavelengths are prepared, it is necessary to set a calibration curve for each wavelength and to prepare a filter for each wavelength in the optical system and to perform maintenance such as a switching operation. Moreover, the reason for preparing such a plurality of wavelengths is that, besides simply targeting the moisture content region, the absorbance varies greatly due to the variation in the particle size of the sample used for measuring moisture such as tea leaves. In some cases. For this reason, there is a problem that the labor and structure required for moisture estimation increase.

【0008】本発明の第1の目的は、上記従来の茶葉水
分測定における問題に鑑み、構造の複雑化を招くことな
く正確な水分計測、つまり含水率の予測が行える茶葉の
水分測定装置を提供することにある。
A first object of the present invention is to provide an apparatus for measuring the water content of a tea leaf, which can accurately measure the water content without complicating the structure, that is, can predict the water content, in view of the above-mentioned problems in the conventional measurement of the water content of the tea leaf. Is to do.

【0009】本発明の第2の目的は、上記従来の茶葉水
分計測における問題に鑑み、検量線式を単一化して精度
の高い含水率の予測を可能にして、茶葉に含まれる水分
値の予測に必要とされる手間を簡略化することができる
水分測定方法を提供することにある。
A second object of the present invention is to solve the above-mentioned problems in the conventional measurement of water content of tea leaves, and to unify the calibration curve formula to enable highly accurate prediction of water content, thereby enabling the water content of tea leaves to be estimated. An object of the present invention is to provide a moisture measurement method capable of simplifying the time and effort required for prediction.

【0010】[0010]

【課題を解決するための手段】この目的を達成するた
め、請求項1記載の発明は、製茶工程における茶葉の水
分を近赤外線を用いて測定する水分測定装置において、
茶葉が移動する搬送空間に対して光学的透明板を介して
閉鎖された測定部と、上記搬送空間内に設置されてい
て、上記茶葉の水分測定時に作動し、上記光学的透明板
の前面に上記茶葉を供給するサンプル供給手段と、上記
測定部により測定された茶葉の拡散反射光から、クベル
カームンク関数を用いて上記茶葉のクベルカームンク関
数値(F値)を求め、予め含水率が既知のサンプルを用
いて作成した検量線回帰式によって上記クベルカームン
ク関数値(F値)が求められた茶葉の含水率を求める制
御部とを備えたことを特徴としている。
Means for Solving the Problems In order to achieve this object, the invention according to claim 1 is directed to a moisture measuring apparatus for measuring moisture of tea leaves in a tea making process using near infrared rays.
A measuring unit closed via an optical transparent plate with respect to the transport space in which the tea leaves move, and is installed in the transport space, operates when measuring the moisture of the tea leaves, and is disposed on the front surface of the optical transparent plate. A Kubelka-Munk function value (F-value) of the tea leaf is obtained using a Kubelka-Munk function from the sample supply means for supplying the tea leaf and the diffusely-reflected light of the tea leaf measured by the measuring unit. And a control unit for calculating the water content of the tea leaves for which the Kubelka-Munk function value (F value) has been determined by a calibration curve regression formula created using the control unit.

【0011】請求項2記載の発明は、請求項1記載の茶
葉の水分測定装置において、上記測定部における近赤外
線の照射光学系は、1波長の場合に1940nm、2波長
の場合に1940nmと2139nmとが選択可能であるこ
とを特徴としている。
According to a second aspect of the present invention, in the tea leaf moisture measuring apparatus according to the first aspect, the near-infrared irradiation optical system in the measuring section is 1940 nm for one wavelength and 1940 nm and 2139 nm for two wavelengths. Are selectable.

【0012】請求項3記載の発明は、請求項1または2
記載の茶葉の水分測定装置を用いる水分測定方法であっ
て、水分が既知のサンプルに対してi番目のフィルター
により近赤外線を照射し、上記サンプルからの拡散反射
光(Ri)を測定し、上記拡散反射光(Ri)からクベ
ルカームンク関数を用いてクベルカームンク関数値(F
i)を、 Fi=(1−Ri)2/(2Ri) 但し、R:拡散反射率 によって求め、 上記クベルカームンク関数値(Fi)と既知水分とを用
いて検量線回帰式である、 G(%)=Ka+K1・F1+K2・F2・・・+Kn・F
n 但し、ka:定数項(バイアス値)、Kn:n番目のフ
イルタにおける回帰係数、Fn:n番目のフイルタにお
けるクベルカームンク関数値(F値)を作成し、水分未
知のサンプルに対してi番目のフィルターにより近赤外
線を照射し、上記サンプルからの拡散反射光(Ri’)
を測定し、上記拡散反射光(Ri’)からクベルカーム
ンク関数を用いてクベルカームンク関数値(Fi’)
を、 Fi’=(1−Ri’)2/(2Ri’) 但し、R’:拡散反射率 によって求め、上記クベルカームンク関数値(Fi’)
を、上記水分既知のサンプルを対象として作成した検量
線回帰式に当てはめて未知水分のサンプルに関する水分
値を求めることを特徴としている。
The invention described in claim 3 is the first or second invention.
A moisture measuring method using the moisture measuring device for tea leaves according to the above, wherein the sample whose moisture is known is irradiated with near-infrared rays by an i-th filter, and diffusely reflected light (Ri) from the sample is measured. The Kubelka-Munk function value (F) is calculated from the diffuse reflection light (Ri) using the Kubelka-Munk function.
i) is determined by Fi = (1−Ri) 2 / (2Ri), where R: diffuse reflectance, and a calibration curve regression equation using the above Kubelka-Munk function value (Fi) and known moisture, G (% ) = Ka + K 1 · F 1 + K 2 · F 2 ... + Kn · F
n, where ka is a constant term (bias value), Kn is a regression coefficient in the nth filter, and Fn is a Kubelka-Munk function value (F value) in the nth filter. Irradiate near-infrared light with a filter and diffusely reflect light (Ri ') from the above sample
Is measured, and a Kubelka-Munk function value (Fi ′) is obtained from the diffuse reflection light (Ri ′) using a Kubelka-Munk function.
Where Fi ′ = (1−Ri ′) 2 / (2Ri ′) where R ′: diffuse reflectance, and the Kubelka-Munk function value (Fi ′)
Is applied to the calibration curve regression equation created for the above-described sample with known moisture to determine the moisture value of the sample with unknown moisture.

【0013】[0013]

【作用】請求項1および2記載の発明では、測定部にお
いて測定される茶葉からの拡散反射光に基いてクベルカ
ームンク関数によりクベルカームンク関数値(F値)を
演算処理することにより反射光と含水率との関係が線形
化されるので、そのF値を検量線回帰式に適用すること
で、複数種類の波長や干渉フィルターを用いなくても、
上記F値と含水率との関係に関する単一の線形モデルを
用いて茶葉の水分値を予測することができる。
According to the first and second aspects of the invention, the Kubelka-Munk function value (F-value) is arithmetically processed by the Kubelka-Munk function based on the diffusely-reflected light from the tea leaves measured by the measuring unit, thereby obtaining the reflected light and the water content. Is linearized. By applying the F value to the calibration curve regression equation, it is possible to use multiple types of wavelengths and interference filters without using
The moisture value of the tea leaf can be predicted using a single linear model relating to the relationship between the F value and the moisture content.

【0014】請求項3記載の発明では、水分既知のサン
プルを対象とした上記F値をクベルカームンク関数によ
って求め、さらに、このF値と既知水分とを用いて検量
線回帰式を作成しておき、この検量線回帰式に対し、水
分未知のサンプルを対象としてクベルカームンク関数に
より求められたF値を当てはめるだけで未知水分のサン
プルに関する水分値が予測できる。これにより、クベル
カームンク関数による単一の検量線回帰式を用いるだけ
の簡単な処理によって含有水分領域全般にわたっての水
分未知のサンプルに関する水分値の予測が可能になる。
According to the third aspect of the present invention, the above-mentioned F value for a sample having a known water content is obtained by a Kubelka-Munk function, and a calibration curve regression equation is prepared using the F value and the known water content. The moisture value of the unknown moisture sample can be predicted simply by applying the F value obtained by the Kubelka-Munk function to the sample with unknown moisture to this calibration curve regression equation. This makes it possible to predict the moisture value of a sample whose moisture content is unknown over the entire moisture content range by a simple process using only a single calibration curve regression equation based on the Kubelka-Munk function.

【0015】[0015]

【実施例】以下、本発明の詳細を図示実施例により説明
する。図1は、請求項1乃至3記載の発明の実施例を説
明するための模式図である。図1において、符号1は、
生葉荷受,生葉管理,蒸熱,葉打,粗揉,揉捻,中揉,
精揉,乾燥の各製茶工程を経るために茶葉を搬送する搬
送空間、符号2はその搬送空間1とは隔離されて設けら
れている測定部、符号3は測定部からの信号を演算処理
する制御部、符号4は制御部3での演算結果を表示する
表示部をそれぞれ示している。
BRIEF DESCRIPTION OF THE DRAWINGS FIG. FIG. 1 is a schematic diagram for explaining an embodiment of the invention described in claims 1 to 3. In FIG. 1, reference numeral 1 denotes
Fresh leaf receipt, fresh leaf management, steaming, leaf beating, coarse kneading, kneading, medium kneading,
A transport space for transporting tea leaves to pass through each of the tea making processes of fine rubbing and drying, reference numeral 2 denotes a measuring unit provided separately from the transport space 1, and reference numeral 3 denotes an arithmetic processing of a signal from the measuring unit. Reference numeral 4 denotes a control unit, and reference numeral 4 denotes a display unit that displays a calculation result in the control unit 3.

【0016】搬送空間1内には図示されないコンベヤ等
の搬送手段が設置されており、その搬送手段により茶葉
が搬送空間1内を移動する。また、搬送空間1と測定部
2との間には、開口が形成されており、その開口には、
光学的透明板13がその開口を塞ぐように設けられてい
る。また、搬送空間1内には茶葉の移動方向を横断する
ように、スライドして搬送空間1内で出没する移動板1
2が設けられており、この移動板12が光学的透明板1
3の前面に対して茶葉等の測定サンプルを供給するサン
プル供給手段を構成している。
A transfer means such as a conveyor (not shown) is provided in the transfer space 1, and the tea leaves move in the transfer space 1 by the transfer means. An opening is formed between the transport space 1 and the measuring unit 2, and the opening is formed in the opening.
An optical transparent plate 13 is provided so as to close the opening. In addition, the moving plate 1 that slides in and out of the transport space 1 so as to cross the moving direction of the tea leaves in the transport space 1.
2 is provided, and this moving plate 12 is an optically transparent plate 1
3 constitutes a sample supply means for supplying a measurement sample such as tea leaves to the front surface.

【0017】光学的透明板13により搬送空間1と隔離
されて閉鎖されている測定部2では、光源21からの光
を、レンズ22,チョッパーデイスク23,干渉フィル
タ、アパーチャ24を介して光学的透明板13に照射す
るように光学系が配置されている。また、測定部2に
は、光学的透明板13の前面の光軸上に出没する標準反
射板17が設けられているとともに、茶葉等のサンプル
からの反射光を検出する光検出器28が設けられてい
る。
In the measuring section 2 which is closed by being separated from the transport space 1 by the optical transparent plate 13, the light from the light source 21 is optically transparent via the lens 22, the chopper disk 23, the interference filter, and the aperture 24. An optical system is arranged to irradiate the plate 13. The measuring section 2 is provided with a standard reflection plate 17 that protrudes and retracts on the optical axis in front of the optically transparent plate 13 and a photodetector 28 that detects light reflected from a sample such as tea leaves. Have been.

【0018】制御部3は、演算制御可能なマイクロコン
ピュータにより主要部が構成されており、図示されない
I/Oインターフェースを介して入力側には検出器28
が、出力側には表示部4がそれぞれ接続されている。制
御部3では、まず水分含有率既知のサンプルとしての茶
葉を対象とし、その茶葉から検出された拡散反射光の測
定値から、式(1)に示されるクベルカームンク関数式
によってクベルカームンク関数値(以下、F値という)
が求められる。この場合、水分含有率既知の茶葉に対し
i番目のフィルターを用いた場合のクベルカームンク関
数値(Fi)がクベルカームンク関数式(1)によって
求められる。
The main part of the control unit 3 is constituted by a microcomputer which can be operated and controlled, and a detector 28 is provided on the input side via an I / O interface (not shown).
However, the display unit 4 is connected to the output side. The control unit 3 first targets a tea leaf as a sample having a known moisture content, and obtains a Kubelka-Munk function value (hereinafter, referred to as a “Kverka-Munk function”) from a measured value of diffuse reflection light detected from the tea leaf by the Kubelka-Munk function equation shown in Expression (1). F value)
Is required. In this case, the Kubelka-Munk function value (Fi) when the i-th filter is used for tea leaves with a known moisture content is obtained by the Kubelka-Munk function formula (1).

【0019】 Fi=(1−Ri)2/(2Ri)・・・(1) 但し、R:拡散反射率Fi = (1−Ri) 2 / (2Ri) (1) where R: diffuse reflectance

【0020】このF値は、各波長の照射光に対して各々
求められ、含水率を求めるために用いられる。
This F value is obtained for each irradiation light of each wavelength, and is used for obtaining the water content.

【0021】次に制御部3では、求めたF値から次に挙
げる検量線回帰式(2)を作成して測定サンプルの含水
率を求める演算処理がなされる。検量線回帰式とは、水
分既知のサンプルに対して前述のクベルカームンク関数
式を用いてF値を求め、F値と含水率G(%)との間の
相互関係をまとめた回帰式であって、いくつかの波長に
おけるF値を説明変数とする重回帰式で表される。
Next, the control unit 3 performs a calculation process for obtaining the following calibration curve regression equation (2) from the obtained F value and obtaining the water content of the measurement sample. The calibration curve regression equation is a regression equation that obtains an F value for a sample with a known moisture using the above-described Kubelka-Munk function equation, and summarizes a correlation between the F value and the water content G (%). , And a multiple regression equation using F values at several wavelengths as explanatory variables.

【0022】 G(%)=Ka+K1・F1+K2・F2+・・・+Kn・Fn …(2) ここで Ka:定数項(バイアス値),Kn:n番目の
フィルタにおける回帰係数,Fn:n番目のフィルタに
おけるクベルカームンク関数値(F値)
G (%) = Ka + K 1 · F 1 + K 2 · F 2 +... + Kn · Fn (2) where Ka: constant term (bias value), Kn: regression coefficient in the nth filter, Fn: Kubelka-Munk function value (F value) in the n-th filter

【0023】制御部3では、検量線回帰式定数である
(Ka,K1,K2,・・・,Kn)を予め求めてメモリ
ーに登録しておき、測定サンプルに対して得たF値を検
量線回帰式(2)に代入する演算処理を行って、未知の
測定サンプルの含水率Gを求める。測定サンプルに対し
て求めた含水率の値は表示部4に信号を送られ表示され
る。なお、測定部2では、1波長のみを用いる場合に
は、1940nmの波長が用いられ、また、2波長が用い
られる場合には一例として1940nm、2139nmが用
いられるように選択される。
The control unit 3 previously obtains (Ka, K 1 , K 2 ,..., Kn) which are the constants of the regression equation of the calibration curve, registers them in a memory, and stores the F value obtained for the measurement sample. Is substituted into the calibration curve regression equation (2) to obtain the water content G of the unknown measurement sample. The value of the moisture content obtained for the measurement sample is sent to the display unit 4 and displayed. In the measuring section 2, when only one wavelength is used, a wavelength of 1940 nm is used, and when two wavelengths are used, 1940 nm and 2139 nm are selected as an example.

【0024】本実施例は以上のような構成であるから、
水分測定装置の動作およびその装置を用いた水分測定方
法について説明する。水分測定時には、移動板12が手
動または自動で作動し破線で示す12’の位置にスライ
ドして、茶葉5の一部を光学的透明板13の前面に一定
圧力で押し付け、測定サンプル6として挟持する。ま
た、これに先立って測定部では、セラミック等で形成さ
れた標準反射板27が破線で示した27’の位置に移動
して光源21からの光の光軸上に設置される。光源21
から発せられた光は、レンズ22によって平行光線とな
り、チョッパディスク23によって周期的に分断された
後、干渉フィルタ24によって単色光となる。干渉フィ
ルタ24は、円盤の中心から等距離の位置に所定間隔で
複数の開口を設け、その開口に所定波長の近赤外線を透
過するフィルタ要素を取り付けたものであり、図示しな
いモータによって測定時に間欠回転し、その停止時にフ
ィルタ要素のいずれか一つがレンズ22の光軸上にくる
ように構成されている。
Since the present embodiment has the above configuration,
The operation of the moisture measuring device and a moisture measuring method using the device will be described. At the time of moisture measurement, the movable plate 12 is manually or automatically operated and slides to a position 12 'indicated by a broken line, and a part of the tea leaves 5 is pressed against the front surface of the optical transparent plate 13 with a constant pressure, and is held as the measurement sample 6. I do. Prior to this, in the measuring section, the standard reflection plate 27 made of ceramic or the like is moved to a position 27 'shown by a broken line and set on the optical axis of the light from the light source 21. Light source 21
Are converted into parallel rays by the lens 22, are periodically divided by the chopper disk 23, and become monochromatic lights by the interference filter 24. The interference filter 24 is provided with a plurality of openings at predetermined intervals at a position equidistant from the center of the disk, and a filter element that transmits near infrared rays of a predetermined wavelength is attached to the openings. The filter element is configured to rotate so that one of the filter elements is positioned on the optical axis of the lens 22 when the filter element is stopped.

【0025】干渉フィルタ24を透過した光は、まず標
準反射板27に照射され、反射光を検出器28で検出す
ることによって基準となる反射光の測定がなされる。こ
の測定は干渉フィルタ24を順次、自動的に切り換え
て、全てのフィルタに対して行われる。次に、標準反射
板27を光学的透明板13の前面から退避させ、光学的
透明板13の前面に挟持した測定サンプル6に対して光
学的透明板13を介して同様に光照射が行われ、各々の
波長において測定サンプルからの拡散反射光が測定され
る。これらの測定された反射光の検出値はデジタル信号
に変換されて制御部3に出力される。以上は干渉フィル
タによる前分光の事例を示したが、分光の位置は後分光
でもよく、また、分光方法はグレーティング等を用いて
もよい。
The light transmitted through the interference filter 24 is first applied to a standard reflection plate 27, and the reflected light is detected by a detector 28 to measure the reference reflected light. This measurement is performed for all the filters by automatically switching the interference filters 24 sequentially. Next, the standard reflection plate 27 is retracted from the front surface of the optical transparent plate 13, and the measurement sample 6 sandwiched between the front surfaces of the optical transparent plate 13 is similarly irradiated with light via the optical transparent plate 13. At each wavelength, diffusely reflected light from the measurement sample is measured. The measured detected values of the reflected light are converted into digital signals and output to the control unit 3. In the above, the case of the pre-spectroscopy by the interference filter has been described. However, the position of the spectroscopy may be the post-spectroscopy, and the spectroscopy method may be a grating.

【0026】制御部3では、まず水分既知サンプルとし
ての茶葉を対象として、検出された拡散反射光から上記
F値が求められる。この場合には、水分既知のサンプル
に対しi番目のフイルターを用いたF値(Fi)が上記
したクベルカームンク関数式(1)により求められる。
The control unit 3 first obtains the above F value from the detected diffusely reflected light for a tea leaf as a sample with known moisture. In this case, the F value (Fi) using the i-th filter with respect to the sample whose water content is known is obtained by the above Kubelka-Munk function formula (1).

【0027】次に制御部3では、求めた水分既知のサン
プルを対象としたF値により検量線回帰式が作成され
る。この場合の検量線回帰式は、上記した検量線回帰式
(2)が用いられる。一方、水分既知サンプルを対象と
した検量線回帰式が作成されると、次いで、水分未知の
サンプルを対象としてその含水率を求めるための処理が
実行される。つまり、水分未知の茶葉を測定サンプルと
した場合には、上記の処理と同様に拡散反射光を測定
し、その測定値を上記クベルカームンク関数式(1)に
適用して水分未知の茶葉のF値(便宜上、Fi’を用い
て水分既知のサンプルからのF値と区別する)を求め
る。水分未知の茶葉におけるF値(Fi’)が求められ
ると、そのF値(Fi’)を、予め作成されている検量
線回帰式(2)に当てはめて水分未知の茶葉の含水率
(G’)を求める。次いで制御部3は、検量線回帰式
(2)によって求めた含水率(G)を表示部4に出力
し、表示部4において表示させる。
Next, the control unit 3 creates a calibration curve regression equation based on the obtained F value for the sample with known moisture. In this case, the above-described calibration curve regression equation (2) is used as the calibration curve regression equation. On the other hand, when the calibration curve regression equation is created for a sample with a known moisture, a process for obtaining the moisture content of a sample with an unknown moisture is then performed. That is, when tea leaves with unknown moisture are used as measurement samples, diffuse reflection light is measured in the same manner as in the above processing, and the measured value is applied to the Kubelka-Munk function formula (1) to obtain the F value of tea leaves with unknown moisture. (For the sake of convenience, Fi ′ is used to distinguish F values from samples with known moisture.) When the F value (Fi ′) of the tea leaf with unknown moisture is obtained, the F value (Fi ′) is applied to a previously created calibration curve regression equation (2) to obtain the moisture content (G ′) of the tea leaf with unknown moisture. ). Next, the control unit 3 outputs the water content (G) obtained by the calibration curve regression equation (2) to the display unit 4 and causes the display unit 4 to display it.

【0028】以上のような実施例によれば、クベルクー
ムンク関数を用いてクベルカームンク関数値(F値)を
求めることで、図2に示すように、拡散反射光から得ら
れるF値と含水率との関係が線形モデル化され、その線
形モデルを基準にした検量線回帰式によって含水率が予
測できるので、含水率領域が広範囲にある場合でも、単
一の線形回帰モデルを準備するだけで未知水分の茶葉を
対象とした含水率を正確に求めることができる。しか
も、本発明者は、上記実施例によって得られた含水率を
基にした予測値と実際にサンプルとして用いた茶葉の含
水率との比較を実験したところ、図3に示すように、殆
どの含水率の領域にわたって非線形な状態は得られず予
測値と実測値との間にバラツキがなく、換言すれば、高
い精度を維持できるという結果を得た。なお、上記実施
例に示された水分測定装置は、製茶工程に対してオンラ
インあるいはアットラインいずれにも適用することが可
能であり、各工程での茶葉の水分予測が行えるものであ
る。
According to the above-described embodiment, the Kubelka-Munk function value (F-value) is obtained by using the Kubelka-Munk function, and as shown in FIG. 2, the F-value obtained from the diffuse reflection light and the water content are obtained. Since the relationship is linearly modeled and the moisture content can be predicted by the calibration curve regression equation based on the linear model, even if the moisture content region is wide, simply preparing a single linear regression model will reduce the unknown moisture content. The water content of tea leaves can be accurately determined. Moreover, the present inventor conducted a comparison between a predicted value based on the moisture content obtained in the above example and the moisture content of tea leaves actually used as a sample. As shown in FIG. A non-linear state was not obtained over the moisture content region, and there was no variation between the predicted value and the actually measured value. In other words, the result was that high accuracy could be maintained. The moisture measuring device shown in the above embodiment can be applied to the tea making process either online or at-line, and can predict the moisture of tea leaves in each process.

【0029】[0029]

【発明の効果】請求項1および2記載の発明によれば、
測定部において測定される茶葉からの拡散反射光に基い
てクベルカームンク関数を用いてクベルカームンク関数
値(F値)を演算処理することにより反射光と含水率と
の関係が線形化されるので、そのF値を検量線回帰式に
適用することで、複数種類の波長や干渉フィルターを用
いなくても、F値と含水率との関係に関する単一の線形
モデルを用いて茶葉の水分値を予測することが可能にな
る。
According to the first and second aspects of the present invention,
The relationship between the reflected light and the water content is linearized by calculating the Kubelka-Munk function value (F-value) using the Kubelka-Munk function based on the diffusely reflected light from the tea leaves measured by the measuring unit. Predicting tea leaf moisture using a single linear model of the relationship between F value and moisture content without using multiple wavelengths or interference filters by applying the values to a calibration curve regression equation Becomes possible.

【0030】請求項3記載の発明によれば、水分既知の
サンプルを対象としたクベルカームンク関数値(F値)
をクベルカームンク関数によって求め、さらに、このF
値と既知水分とを用いて検量線回帰式を作成しておき、
この検量線回帰式に対し、水分未知のサンプルを対象と
してクベルカームンク関数に基づき求められたF値を当
てはめるだけで未知水分のサンプルに関する水分値が予
測できる。これにより、クベルカームンク関数による単
一の検量線回帰式を用いるだけの簡単な処理によって含
水率領域全般にわたっての水分未知のサンプルに関する
水分値の予測が可能になる。
According to the third aspect of the present invention, the Kubelka-Munk function value (F value) for a sample with a known moisture content
By the Kubelka-Munk function, and furthermore, this F
A calibration curve regression equation is created using the values and the known moisture,
By applying the F value obtained based on the Kubelka-Munk function to a sample with unknown moisture to the calibration curve regression equation, the moisture value of the sample with unknown moisture can be predicted. This makes it possible to predict the moisture value of a sample whose moisture content is unknown over the entire moisture content region by a simple process using only a single calibration curve regression equation based on the Kubelka-Munk function.

【図面の簡単な説明】[Brief description of the drawings]

【図1】請求項1乃至3記載の発明の実施例を説明する
ための模式図である。
FIG. 1 is a schematic diagram for explaining an embodiment of the invention described in claims 1 to 3;

【図2】図1に示した実施例により得られる検量線を説
明するための線図である。
FIG. 2 is a diagram for explaining a calibration curve obtained by the embodiment shown in FIG. 1;

【図3】図1に示した実施例による茶葉の含水率に関す
る予測値と実測値との誤差を説明するための線図であ
る。
FIG. 3 is a diagram for explaining an error between a predicted value and a measured value relating to the moisture content of tea leaves according to the embodiment shown in FIG. 1;

【図4】従来の水分測定方法によって得られる検量線を
説明するための線図である。
FIG. 4 is a diagram for explaining a calibration curve obtained by a conventional moisture measurement method.

【符号の説明】[Explanation of symbols]

1 試料配置部 11 コンベヤ 12 移動板 13 光学的透明板 2 測定部 3 制御部 4 表示部 5 茶葉 28 検出器 DESCRIPTION OF SYMBOLS 1 Sample placement part 11 Conveyor 12 Moving plate 13 Optically transparent plate 2 Measuring part 3 Control part 4 Display part 5 Tea leaf 28 Detector

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 製茶工程における茶葉の水分を近赤外線
を用いて測定する水分測定装置において、 茶葉が移動する搬送空間に対して光学的透明板を介して
閉鎖された測定部と、 上記搬送空間内に設置されていて、上記茶葉の水分測定
時に作動し、上記光学的透明板の前面に上記茶葉を供給
するサンプル供給手段と、 上記測定部により測定された茶葉の拡散反射光から、ク
ベルカームンク関数を用いて上記茶葉のクベルカームン
ク関数値(F値)を求め、予め含水率が既知のサンプル
を用いて作成した検量線回帰式によって上記クベルカー
ムンク関数値(F値)が求められた茶葉の含水率を求め
る制御部と、を備えたことを特徴とする茶葉の水分測定
装置。
1. A moisture measuring device for measuring the moisture of tea leaves in a tea making process using near-infrared rays, comprising: a measuring section closed via a transparent optical plate with respect to a transport space in which the tea leaves move; It is installed in, and operates at the time of moisture measurement of the tea leaves, sample supply means for supplying the tea leaves to the front surface of the optical transparent plate, from the diffuse reflection light of the tea leaves measured by the measurement unit, Kubelka-Munk function Is used to determine the Kubelka-Munk function value (F value) of the tea leaf, and the water content of the tea leaf from which the Kubelka-Munk function value (F value) is determined by a calibration curve regression equation created using a sample whose moisture content is known in advance is calculated. And a control unit for determining the water content of the tea leaves.
【請求項2】 請求項1記載の茶葉の水分測定装置にお
いて、 上記測定部における近赤外線の照射光学系は、1波長の
場合に1940nm、2波長の場合に1940nmと213
9nmとが選択可能であることを特徴とする茶葉の水分測
定装置。
2. The tea leaf moisture measuring apparatus according to claim 1, wherein the near-infrared irradiating optical system in the measuring section is 1940 nm for one wavelength and 1940 nm and 213 for two wavelengths.
An apparatus for measuring water content of tea leaves, wherein 9 nm can be selected.
【請求項3】 請求項1または2記載の茶葉の水分測定
装置を用いる水分測定方法であって、 水分が既知のサンプルに対してi番目のフィルターによ
り近赤外線を照射し、 上記サンプルからの拡散反射光(Ri)を測定し、 上記拡散反射光(Ri)からクベルカームンク関数を用
いてクベルカームンク関数値(Fi)を、 Fi=(1−Ri)2/(2Ri) 但し、R:拡散反射率 によって求め、 上記クベルカームンク関数値(Fi)と既知水分とを用
いて検量線回帰式である、 G(%)=Ka+K1・F1+K2・F2・・・+Kn・F
n 但し、ka:定数項(バイアス値)、Kn:n番目のフ
イルタにおける回帰係数、Fn:n番目のフイルタにお
けるクベルカームンク関数値を作成し、 水分未知のサンプルに対してi番目のフィルターにより
近赤外線を照射し、 上記サンプルからの拡散反射光(Ri’)を測定し、 上記拡散反射光(Ri’)からクベルカームンク関数を
用いてクベルカームンク関数値(Fi’)を、 Fi’=(1−Ri’)2/(2Ri’) 但し、R’:拡散反射率 によって求め、 上記クベルカームンク関数値(Fi’)を、上記水分既
知のサンプルを対象として作成した検量線回帰式に当て
はめて未知水分のサンプルに関する水分値を求めること
を特徴とする茶葉の水分測定方法。
3. A moisture measuring method using the moisture measuring device for tea leaves according to claim 1 or 2, wherein the sample whose moisture is known is irradiated with near-infrared rays by an i-th filter, and the sample is diffused from the sample. The reflected light (Ri) is measured, and a Kubelka-Munk function value (Fi) is calculated from the diffuse reflected light (Ri) by using a Kubelka-Munk function, where Fi = (1−Ri) 2 / (2Ri) where R: diffuse reflectance G (%) = Ka + K 1 · F 1 + K 2 · F 2 ... + Kn · F which is a calibration curve regression equation using the above Kubelka-Munk function value (Fi) and known moisture.
n, where ka is a constant term (bias value), Kn is a regression coefficient in the nth filter, and Fn is a Kubelka-Munk function value in the nth filter. And diffusely reflected light (Ri ′) from the sample is measured. From the diffusely reflected light (Ri ′), a Kubelka-Munk function value (Fi ′) is calculated using the Kubelka-Munk function, and Fi ′ = (1−Ri ′). 2 / (2Ri ′) where R ′: Diffuse reflectance, and the above Kubelka-Munk function value (Fi ′) is applied to a calibration curve regression equation created for the above-mentioned sample with known moisture, and the unknown moisture sample is determined. A method for measuring the moisture content of tea leaves, which comprises determining a moisture value.
JP12081697A 1997-05-12 1997-05-12 Method and equipment for measuring moisture of tea leaf Pending JPH10311792A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12081697A JPH10311792A (en) 1997-05-12 1997-05-12 Method and equipment for measuring moisture of tea leaf

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12081697A JPH10311792A (en) 1997-05-12 1997-05-12 Method and equipment for measuring moisture of tea leaf

Publications (1)

Publication Number Publication Date
JPH10311792A true JPH10311792A (en) 1998-11-24

Family

ID=14795691

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12081697A Pending JPH10311792A (en) 1997-05-12 1997-05-12 Method and equipment for measuring moisture of tea leaf

Country Status (1)

Country Link
JP (1) JPH10311792A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004093385A (en) * 2002-08-30 2004-03-25 Sanyo Electric Co Ltd Moisture content measuring device
WO2007129648A1 (en) * 2006-05-02 2007-11-15 Yamaguchi University Method of estimating plant leaf water stress, device of estimating plant leaf water stress, and program of estimating plant leaf water stress
CN102435568A (en) * 2011-11-23 2012-05-02 浙江大学 Method for quick and nondestructive detection of dry matter content in tea based on 11 characteristic wavelengths
CN102507480A (en) * 2011-11-23 2012-06-20 浙江大学 Method for nondestructively and quickly measuring moisture content of tea leaf based on 12 characteristic wavelengths
CN109632688A (en) * 2018-11-28 2019-04-16 北京农业智能装备技术研究中心 A kind of plant seedlings Apparent nutrient profit or loss state identification method and spectral detection system
WO2019152578A1 (en) 2018-02-02 2019-08-08 Gemmacert Ltd. Testing quality and potency of plant material

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004093385A (en) * 2002-08-30 2004-03-25 Sanyo Electric Co Ltd Moisture content measuring device
WO2007129648A1 (en) * 2006-05-02 2007-11-15 Yamaguchi University Method of estimating plant leaf water stress, device of estimating plant leaf water stress, and program of estimating plant leaf water stress
JP5258044B2 (en) * 2006-05-02 2013-08-07 国立大学法人山口大学 Method for estimating water stress of plant leaves, apparatus for estimating water stress of plant leaves, and program for estimating water stress of plant leaves
CN102435568A (en) * 2011-11-23 2012-05-02 浙江大学 Method for quick and nondestructive detection of dry matter content in tea based on 11 characteristic wavelengths
CN102507480A (en) * 2011-11-23 2012-06-20 浙江大学 Method for nondestructively and quickly measuring moisture content of tea leaf based on 12 characteristic wavelengths
WO2019152578A1 (en) 2018-02-02 2019-08-08 Gemmacert Ltd. Testing quality and potency of plant material
EP3746771A4 (en) * 2018-02-02 2021-11-10 Gemmacert Ltd. Testing quality and potency of plant material
CN109632688A (en) * 2018-11-28 2019-04-16 北京农业智能装备技术研究中心 A kind of plant seedlings Apparent nutrient profit or loss state identification method and spectral detection system

Similar Documents

Publication Publication Date Title
RU2383881C2 (en) Spectrometric measuring head for harvesting and other agricultural machines
US4971077A (en) On-line tobacco evaluation system and method
JP3471009B2 (en) Method and apparatus for in-line NIR measurement of bulkable foods
JP4054854B2 (en) Analysis of liquid samples using near infrared spectroscopy
US2462946A (en) Automatic system of process control by infrared spectrometry
US4627008A (en) Optical quantitative analysis using curvilinear interpolation
FI91446C (en) Method and plant for evaluating the freene number of refiner pulp
WO2020196690A1 (en) Product inspection method and product inspection device
US4482251A (en) Clinical analyzer
AU4113801A (en) Method and apparatus for detecting mastitis by using visible light and/or near infrared light
EP3341703B1 (en) Holmium oxide glasses as calibration standards for near infrared moisture sensors
US8148690B2 (en) Method and apparatus for on-line web property measurement
JPH10311792A (en) Method and equipment for measuring moisture of tea leaf
Miyamoto et al. Classification of high acid fruits by partial least squares using the near infrared transmittance spectra of intact satsuma mandarins
CN111157484A (en) Near infrared spectrum model transfer method for fruit sugar degree detection equipment
US20110035189A1 (en) Spectroscopic reflectometer
US2844033A (en) Radiant energy measurement methods and apparatus
JP4385433B2 (en) Manufacturing operation control method by near infrared analysis
Sun et al. Investigation on spectral standardization among multi-channel of an on-line near-infrared spectrometer
JPH0915146A (en) Device and method for measuring moisture in tea leaves in tea manufacturing process
KR100414186B1 (en) the automatic calibration system and for measuring internal qualities of fruits on both side
Wang et al. Analysis of active ingredients in finished pharmaceuticals by NIR spectroscopy
JPH04115142A (en) Calibration method for measuring apparatus, and measuring apparatus
JPH08122246A (en) Spectral analyzer
JP3959887B2 (en) Plant operation control method by near infrared analysis