JP4385411B2 - Battery having a wound core structure - Google Patents

Battery having a wound core structure Download PDF

Info

Publication number
JP4385411B2
JP4385411B2 JP06260398A JP6260398A JP4385411B2 JP 4385411 B2 JP4385411 B2 JP 4385411B2 JP 06260398 A JP06260398 A JP 06260398A JP 6260398 A JP6260398 A JP 6260398A JP 4385411 B2 JP4385411 B2 JP 4385411B2
Authority
JP
Japan
Prior art keywords
battery
core
winding core
electrode
thermal expansion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP06260398A
Other languages
Japanese (ja)
Other versions
JPH11260392A (en
Inventor
賢一 川瀬
亨次 坂井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP06260398A priority Critical patent/JP4385411B2/en
Publication of JPH11260392A publication Critical patent/JPH11260392A/en
Application granted granted Critical
Publication of JP4385411B2 publication Critical patent/JP4385411B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Secondary Cells (AREA)
  • Primary Cells (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は巻き芯を中心に渦巻き状に巻いた電極素子を電池容器に収納する電池に関する。
【0002】
【従来の技術】
本発明にかかわる従来の技術について非水電解液二次電池を例とし、図3および図4を参照して説明する。ここで図3は従来の非水電解液二次電池の断面図であり、図4は図3の矢印Aで示す部位の断面図である。
【0003】
従来の大型の非水電解液二次電池として図3に示すものがある。巻き芯26に多数巻回された電極で形成される円筒状の電極素子20が電池容器15に収納され、電池容器15の両側に負極21と正極22とが設けられて電池が構成されている。
【0004】
図4は図3の矢印Aで示す部位の拡大した断面図であって、正極22の周辺構造を詳細に示している。電極素子20は負極電極1、セパレータ5、正極電極3の順に交互に積層されたものであって、円筒状のポリエチレン、ポリプロピレン等の樹脂からなる巻き芯26に多数回巻かれている。正極電極3の正極リード4から集電リード4aが導出され、極柱7に接続されている。極柱7は巻き芯26の中空部に一部挿入されていて、電極素子20と一体化されている。また、極柱7にキャップ12が、シール9、セラミック突き当て10、リング11、セラミックワッシャ13等を介してナット14により固定されている。さらにこれらはステンレス鋼の電池容器15に収納され、キャップ12と電池容器15とをレーザにより溶接して密封されている。この構造は負極21側においても同様である。
【0005】
さて、上述したように形成された非水電解液二次電池は巻き芯26に樹脂材料を用いていることから、ステンレス鋼製の電池容器15との間の熱膨張率の違いにより、使用環境温度によっては巻き芯26と極柱7との接合部に隙間が生じる。この状態で電池に振動が加わると電極素子20が振動し、集電リード4aの断裂や電極素子20の巻ずれ等が起こり、負荷特性、サイクル特性を低下させていた。
【0006】
【発明が解決しようとする課題】
従って本発明の課題は、セパレータで正極電極と負極電極とを絶縁し、これを巻き芯に多数巻回して電極素子を形成し、この電極素子を電池容器に収納する電池において、巻き芯と電池容器との熱膨張率の違いにより生じる集電リードの断裂や電極素子の巻ずれ等を防止し、負荷特性、サイクル特性に優れた電池を提供する。
【0007】
【課題を解決するための手段】
本発明は上記課題に鑑みなされたものであり、セパレータで正極電極と負極電極とを絶縁し、巻き芯を中心に多数巻回して形成した電極素子を電池容器に収納する電池において、前記巻き芯を、その両端部を樹脂性部材の樹脂芯管で構成し、中央部が金属性部材で構成し、金属性部材と樹脂性部材とを巻き芯の長手方向の所定の位置で結合して形成し、巻き芯を、電池容器の長さをXmm、熱膨張率をa、金属性部材の長さをYmm、熱膨張率をb、前記樹脂芯管の長さ(両端部の合計)をZmm、熱膨張率をcとすると、X×a=(Y×b)+(Z×c)を満たす、あるいは略等しくなるようにX、Y、Zを設定し、さらに、電極素子を、樹脂芯管の中空部に極柱が挿入されて結合され支持されている構成とする。
【0010】
上述した巻き芯の構成によると、電池容器と巻き芯の熱による伸縮の程度を略同一にすることが可能となる。
【0011】
【発明の実施の形態】
本発明は電池容器内に、巻き芯に電極を多数回巻回した電極素子を封入した電池において、巻き芯を単一の樹脂性部材で構成した従来のものとは異なり、樹脂性部材と金属製部材とを複合して巻き芯を構成し、電池容器と巻き芯の熱による伸縮の程度を略同一にして、集電リードの断裂や電極素子の巻ずれ等を防止し、良好な負荷特性、サイクル特性を維持することを特徴としている。
【0012】
<実施例>
つぎに本発明にかかわる電池について非水電解液二次電池を例とし、図1および図2を参照して説明する。ここで図1は非水電解液二次電池の電極素子の構成図であり、図2は非水電解液二次電池の要部断面図である。
【0013】
まず、非水電解液二次電池の電極素子について図1を参照して説明する。
負極電極1は次のようにして作製する。
不活性ガス気流中で焼成した炭素質材料を粉砕し、平均粒径が20μmの炭素粒子を得、この炭素粒子を90重量部と、結着材としてフッ化ビニリデン樹脂を10重量部とをN−メチルピロリドンに分散させてスラリーを形成する。このスラリーを厚さ10μmの銅箔の両面に塗布して厚さ180μmの電極原板を作製する。この電極原板の1部に負極リード2となる未塗布部を残してカットし、負極電極1を得る。
【0014】
正極電極3は次のようにして作製する。
平均粒径が15μmのLiCoO2 粉末を91重量部と、導電材としてグラファイトを6重量部と、結着材としてフッ化ビニリデン樹脂を3重量部とをN−メチルピロリドンに分散させてスラリーを形成し、このスラリーをアルミ箔の両面に塗布して厚さ150μmの電極原板を作製する。この電極原板の1部に正極リード4となる未塗布部を残してカットし、正極電極3を得る。
【0015】
上述したようにして作製された負極電極1と正極電極3とはセパレータ5を挟んで順次積層し、巻き芯6に矢印Rで示される方向に多数回巻かれる。負極電極1と正極電極3の未塗布部は、予め短冊状に切断されていて、巻回後、巻き芯6の一方の側に負極リード2が、他方の側に正極リード4が各々集合して電極素子20を形成する。
【0016】
尚、負極電極1および正極電極3の形成は上述した例に限ることはないことは当然である。
【0017】
図2は図4の従来例と対応する部位を示した断面図である。電極素子20は負極電極1、セパレータ5、正極電極3の順に交互に積層されたものであって、巻き芯6に多数回巻かれている。正極電極3の正極リード4から集電リード4aが導出され、極柱7に接続されている。また、極柱7は巻き芯6と結合されていて電極素子20と一体化されている。さらに、極柱7にキャップ12が、絶縁カラー8、シール9、セラミック突き当て10、リング11、セラミックワッシャ13等を介してナット14により固定されている。さらにこれらはステンレス製の電池容器15に収納され、キャップ12と電池容器15とをレーザにより溶接して密封されている。この構造は負極21側においても同様である。
【0018】
電解液はプロピレンカーボネートとジエチルカーボネートの混合溶媒中にLiBF4 を1モル/リットルの割合で溶解したものであって、安全弁(図示せず)の口を開放して電池容器15に注入する。
【0019】
つぎに本発明の特徴をなす、巻き芯6の構成について詳述する。
図2に示すように巻き芯6は極柱7と結合する樹脂芯管6aと、この樹脂芯管6aと結合する金属芯管6bとで形成されている。負極側においても同様である。樹脂芯管6aとしてはポリエチレン、ポリプロピレン等が好適であり、金属芯管6bとしてはアルミニウム、ステンレス鋼、ジュラルミン等が好適である。また、電気的絶縁性の点から極柱7と結合する部位に樹脂芯管6aを配置するのが好ましい。
【0020】
上述した材料に関して熱膨張の観点から検討され、最適な組み合わせとサイズとを決定して巻き芯6として用いる。例えば、電池容器15の長さをXmm、熱膨張率をa、金属芯管6bの長さをYmm、熱膨張率をb、樹脂芯管6aの長さ(両端部の合計)をZmm、熱膨張率をcとすると、
X×a=(Y×b)+(Z×c)
を満たす、あるいは略等しくなるX、Y、Zを決定することにより、電池容器15の熱膨張、収縮量と巻き芯6の熱膨張、収縮量とを使用環境温度によることなく常に略同一に保つことが可能になる。従って、電池容器15と巻き芯6との間で応力が過度に発生することはなく、電池内部構造が安定化する。
【0021】
1例として電池容器15にアルミニウム、樹脂芯管6aにポリプロピレン、金属芯管6bにステンレス鋼を用いて巻き芯6を形成した場合について説明する。ここで、アルミニウムの熱膨張率を23.5E−6/K、ポリプロピレンの熱膨張率を5.8E−5/K、ステンレス鋼の熱膨張率を17.9E−6/Kとすると、電池容器15の長さを400mm、巻き芯6の全長を350mmとした場合、樹脂芯管6aの合計の長さを77mm、金属芯管6bの長さを273mmとすることにより、電池容器15と巻き芯6との熱膨張、収縮量を略同一にすることができる。
【0022】
本実施例においては電池容器15の長さを384mm、巻き芯6の長さを351mmとし、巻き芯6はその金属芯管6b部をアルミニウムを用いて321mmの長さとし、樹脂芯管6a部をポリプロピレンを用いて金属芯管6bの両端にそれぞれ15mmの長さで設けて構成した。
【0023】
<比較例>
巻き芯6として長さ351mmのポリプロピレンの中空管を用いたこと以外は実施例と同様にして非水電解液二次電池を作製した。
【0024】
上述したようにして作製した実施例と比較例について、温度サイクルをかけながら振動試験を行った。温度サイクルは−40℃から70℃までを5時間で繰り返し、振動は電池の長手方向をX軸、直径方向の直交する2つの方向をY軸、Z軸として、それぞれの軸方向に個別に最大2Gの加速度を加えた。振動周波数は10〜100Hzであり、試験時間は5時間、30時間、80時間の3通りである。この試験の後、集電リード4aの断裂状態を調べ、その結果を表1に示す。
【0025】
【表1】

Figure 0004385411
【0026】
表1より比較例では5時間で全集電リードの1.2%が、30時間で全集電リードの5.8%が、80時間で全集電リードの11.0%が断裂していることが分かる。これに対し実施例では0%であり、本発明にかかわる巻き芯を用いることによる効果が確認された。
【0027】
尚、実施例の巻き芯6では−40℃から70℃までの範囲で、電池容器15とは最大で0.74mmの長さ変動におさまるが、比較例では最大3.2mmの長さ変動となるものである。
【0028】
尚、本発明は実施例で示した非水電解液二次電池に限ることなく、巻き芯に電極を巻き付けた電極素子を金属製の電池容器に封入する形態の電池であれば、いずれのものにも適用できることは当然である。
【0029】
また、巻き芯の樹脂性部材と金属性部材との接合方法は上述したものに限ることはなく、さらに極柱と巻き芯との結合も上述した方法に限るものではなく、本発明の技術的思想を実現する形態であればいかなるものであってもよいことは当然である。
【0030】
【発明の効果】
以上の説明からも明らかなように本発明によると、電池容器と巻き芯の熱膨張による長さ変動を使用環境温度によらず略同一にすることができるので、電池内部での応力の発生を抑制することができ、集電リードの断裂、電極素子の巻きずれ等を防止することができる。従って、外部からの振動、熱による電池の負荷特性、サイクル特性の劣化を防止することが可能となる。
【図面の簡単な説明】
【図1】 本発明にかかわる非水電解液二次電池の電極素子の構成図である。
【図2】 本発明にかかわる非水電解液二次電池の要部断面図である。
【図3】 従来の非水電解液二次電池の断面図である。
【図4】 図3の矢印Aで示す部位の断面図である。
【符号の説明】
1…負極電極、2…負極リード、3…正極電極、4…正極リード、4a…集電リード、5…セパレータ、6,26…巻き芯、6a…樹脂芯管、6b…金属芯管、7…極柱、8…絶縁カラー、9…シール、10…セラミック突き当て、11…リング、12…キャップ、13…セラミックワッシャ、14…ナット、15…電池容器、20…電極素子、21…負極、22…正極[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a battery in which an electrode element wound in a spiral shape around a winding core is housed in a battery container.
[0002]
[Prior art]
The prior art according to the present invention will be described with reference to FIGS. 3 and 4 taking a non-aqueous electrolyte secondary battery as an example. Here, FIG. 3 is a cross-sectional view of a conventional non-aqueous electrolyte secondary battery, and FIG. 4 is a cross-sectional view of a portion indicated by an arrow A in FIG.
[0003]
A conventional large non-aqueous electrolyte secondary battery is shown in FIG. A cylindrical electrode element 20 formed of electrodes wound around a winding core 26 is accommodated in a battery container 15, and a negative electrode 21 and a positive electrode 22 are provided on both sides of the battery container 15 to constitute a battery. .
[0004]
4 is an enlarged cross-sectional view of a portion indicated by an arrow A in FIG. 3, and shows a peripheral structure of the positive electrode 22 in detail. The electrode element 20 is formed by alternately laminating the negative electrode 1, the separator 5, and the positive electrode 3 in this order, and is wound many times around a winding core 26 made of a resin such as cylindrical polyethylene or polypropylene. A current collecting lead 4 a is led out from the positive electrode lead 4 of the positive electrode 3 and connected to the pole column 7. The pole column 7 is partially inserted into the hollow portion of the winding core 26 and is integrated with the electrode element 20. A cap 12 is fixed to the pole 7 by a nut 14 via a seal 9, a ceramic abutment 10, a ring 11, a ceramic washer 13, and the like. Further, they are housed in a stainless steel battery container 15 and sealed by welding the cap 12 and the battery container 15 with a laser. This structure is the same on the negative electrode 21 side.
[0005]
Now, since the non-aqueous electrolyte secondary battery formed as described above uses a resin material for the winding core 26, the environment of use depends on the difference in thermal expansion coefficient between the battery container 15 made of stainless steel. Depending on the temperature, a gap is created at the joint between the core 26 and the pole 7. When vibration is applied to the battery in this state, the electrode element 20 vibrates, the current collecting lead 4a is broken, the electrode element 20 is unwound, and the load characteristics and cycle characteristics are deteriorated.
[0006]
[Problems to be solved by the invention]
Accordingly, an object of the present invention is to provide a battery in which a positive electrode and a negative electrode are insulated with a separator and wound around a core to form an electrode element, and the electrode element is accommodated in a battery container. A battery excellent in load characteristics and cycle characteristics is provided by preventing current collector leads from tearing and electrode element winding deviation caused by a difference in thermal expansion coefficient from the container.
[0007]
[Means for Solving the Problems]
The present invention has been made in view of the above problems, and in a battery in which a positive electrode and a negative electrode are insulated with a separator and an electrode element formed by winding a large number of cores around a core is housed in a battery container, the core The both ends are formed of a resin core tube of a resin member, the center is formed of a metal member, and the metal member and the resin member are joined at a predetermined position in the longitudinal direction of the winding core. The length of the battery core is X mm, the coefficient of thermal expansion is a, the length of the metallic member is Y mm, the coefficient of thermal expansion is b, and the length of the resin core tube (total of both ends) is Z mm. When the coefficient of thermal expansion is c, X, Y, and Z are set so that X × a = (Y × b) + (Z × c) is satisfied or substantially equal. The pole column is inserted into the hollow portion of the tube and coupled and supported.
[0010]
According to the configuration of the winding core described above, the degree of expansion and contraction due to the heat of the battery container and the winding core can be made substantially the same.
[0011]
DETAILED DESCRIPTION OF THE INVENTION
The present invention relates to a battery in which an electrode element in which a plurality of electrodes are wound around a winding core is enclosed in a battery container. Unlike a conventional battery in which a winding core is composed of a single resinous member, a resinous member and a metal Combined with the product members to form the core, the battery container and the core are stretched approximately the same degree of heat to prevent the current collector lead from rupturing and the electrode element from being wound, etc. It is characterized by maintaining cycle characteristics.
[0012]
<Example>
Next, a battery according to the present invention will be described with reference to FIG. 1 and FIG. 2, taking a non-aqueous electrolyte secondary battery as an example. Here, FIG. 1 is a configuration diagram of an electrode element of a non-aqueous electrolyte secondary battery, and FIG. 2 is a cross-sectional view of an essential part of the non-aqueous electrolyte secondary battery.
[0013]
First, an electrode element of a nonaqueous electrolyte secondary battery will be described with reference to FIG.
The negative electrode 1 is produced as follows.
The carbonaceous material calcined in an inert gas stream is pulverized to obtain carbon particles having an average particle diameter of 20 μm, and 90 parts by weight of the carbon particles and 10 parts by weight of vinylidene fluoride resin as a binder are added. -Disperse in methylpyrrolidone to form a slurry. This slurry is applied to both sides of a 10 μm thick copper foil to produce an electrode original plate having a thickness of 180 μm. A portion of this electrode original plate is cut leaving an uncoated portion that becomes the negative electrode lead 2 to obtain the negative electrode 1.
[0014]
The positive electrode 3 is produced as follows.
A slurry is formed by dispersing 91 parts by weight of LiCoO 2 powder having an average particle size of 15 μm, 6 parts by weight of graphite as a conductive material, and 3 parts by weight of vinylidene fluoride resin as a binder in N-methylpyrrolidone. Then, this slurry is applied to both surfaces of the aluminum foil to produce an electrode original plate having a thickness of 150 μm. The positive electrode 3 is obtained by cutting an uncoated portion that becomes the positive electrode lead 4 in a part of the electrode original plate.
[0015]
The negative electrode 1 and the positive electrode 3 manufactured as described above are sequentially laminated with the separator 5 interposed therebetween, and are wound around the winding core 6 many times in the direction indicated by the arrow R. The uncoated portions of the negative electrode 1 and the positive electrode 3 are cut into strips in advance. After winding, the negative electrode lead 2 is gathered on one side of the core 6 and the positive electrode lead 4 is gathered on the other side. Thus, the electrode element 20 is formed.
[0016]
Of course, the formation of the negative electrode 1 and the positive electrode 3 is not limited to the example described above.
[0017]
FIG. 2 is a sectional view showing a portion corresponding to the conventional example of FIG. The electrode elements 20 are alternately laminated in the order of the negative electrode 1, the separator 5, and the positive electrode 3, and are wound around the winding core 6 a number of times. A current collecting lead 4 a is led out from the positive electrode lead 4 of the positive electrode 3 and connected to the pole column 7. The pole column 7 is coupled to the winding core 6 and integrated with the electrode element 20. Further, a cap 12 is fixed to the pole 7 with a nut 14 via an insulating collar 8, a seal 9, a ceramic abutment 10, a ring 11, a ceramic washer 13, and the like. Furthermore, these are housed in a stainless steel battery container 15 and sealed by welding the cap 12 and the battery container 15 with a laser. This structure is the same on the negative electrode 21 side.
[0018]
The electrolytic solution is obtained by dissolving LiBF 4 in a mixed solvent of propylene carbonate and diethyl carbonate at a rate of 1 mol / liter, and is injected into the battery container 15 with the opening of a safety valve (not shown).
[0019]
Next, the configuration of the winding core 6 that characterizes the present invention will be described in detail.
As shown in FIG. 2, the winding core 6 is formed of a resin core tube 6a coupled to the pole column 7 and a metal core tube 6b coupled to the resin core tube 6a. The same applies to the negative electrode side. As the resin core tube 6a, polyethylene, polypropylene and the like are suitable, and as the metal core tube 6b, aluminum, stainless steel, duralumin and the like are suitable. Moreover, it is preferable to arrange | position the resin core pipe 6a in the site | part couple | bonded with the pole column 7 from an electrical insulating point.
[0020]
The above-described materials are examined from the viewpoint of thermal expansion, and an optimum combination and size are determined and used as the winding core 6. For example, the length of the battery container 15 is Xmm, the coefficient of thermal expansion is a, the length of the metal core tube 6b is Ymm, the coefficient of thermal expansion is b, the length of the resin core tube 6a (total of both ends) is Zmm, If the expansion coefficient is c,
X × a = (Y × b) + (Z × c)
By determining X, Y, and Z that satisfy or are approximately equal, the thermal expansion and contraction amount of the battery container 15 and the thermal expansion and contraction amount of the winding core 6 are always kept substantially the same regardless of the use environment temperature. It becomes possible. Therefore, an excessive stress is not generated between the battery case 15 and the winding core 6, and the battery internal structure is stabilized.
[0021]
As an example, the case where the winding core 6 is formed using aluminum for the battery container 15, polypropylene for the resin core tube 6a, and stainless steel for the metal core tube 6b will be described. Here, when the thermal expansion coefficient of aluminum is 23.5E-6 / K, the thermal expansion coefficient of polypropylene is 5.8E-5 / K, and the thermal expansion coefficient of stainless steel is 17.9E-6 / K, the battery container When the length of 15 is 400 mm and the total length of the winding core 6 is 350 mm, the total length of the resin core tube 6a is 77 mm, and the length of the metal core tube 6b is 273 mm. The amount of thermal expansion and contraction with 6 can be made substantially the same.
[0022]
In this embodiment, the length of the battery container 15 is 384 mm, the length of the winding core 6 is 351 mm, the winding core 6 has a length of 321 mm using aluminum as the metal core tube 6b, and the resin core tube 6a portion Each metal core tube 6b was made of polypropylene with a length of 15 mm.
[0023]
<Comparative example>
A non-aqueous electrolyte secondary battery was produced in the same manner as in Example except that a polypropylene hollow tube having a length of 351 mm was used as the winding core 6.
[0024]
A vibration test was performed on the example and the comparative example manufactured as described above while applying a temperature cycle. The temperature cycle is repeated from -40 ° C to 70 ° C in 5 hours, and the vibration is maximum individually in each axial direction, with the longitudinal direction of the battery as the X axis, the two directions perpendicular to the diameter direction as the Y axis and the Z axis 2G acceleration was applied. The vibration frequency is 10 to 100 Hz, and there are three test times of 5 hours, 30 hours, and 80 hours. After this test, the tearing state of the current collecting lead 4a was examined, and the result is shown in Table 1.
[0025]
[Table 1]
Figure 0004385411
[0026]
According to Table 1, in the comparative example, 1.2% of all the current collecting leads in 5 hours, 5.8% of all the current collecting leads in 30 hours, and 11.0% of all the current collecting leads in 80 hours. I understand. On the other hand, it was 0% in the examples, and the effect by using the winding core according to the present invention was confirmed.
[0027]
In addition, in the winding core 6 of the example, the length variation is 0.74 mm at maximum with the battery container 15 in the range from −40 ° C. to 70 ° C., but the maximum length variation is 3.2 mm in the comparative example. It will be.
[0028]
The present invention is not limited to the non-aqueous electrolyte secondary battery shown in the embodiment, and any battery can be used as long as the electrode element in which an electrode is wound around a winding core is enclosed in a metal battery container. Of course, it can also be applied to.
[0029]
In addition, the method for joining the resin member and the metallic member of the winding core is not limited to the above-described method, and the connection between the pole column and the winding core is not limited to the above-described method. Of course, any form that realizes the idea may be used.
[0030]
【The invention's effect】
As is clear from the above description, according to the present invention, the length variation due to the thermal expansion of the battery container and the winding core can be made substantially the same regardless of the use environment temperature. Therefore, it is possible to prevent the current collector lead from being broken and the electrode element from being unwound. Accordingly, it is possible to prevent deterioration of the load characteristics and cycle characteristics of the battery due to external vibration and heat.
[Brief description of the drawings]
FIG. 1 is a configuration diagram of an electrode element of a non-aqueous electrolyte secondary battery according to the present invention.
FIG. 2 is a cross-sectional view of an essential part of a non-aqueous electrolyte secondary battery according to the present invention.
FIG. 3 is a cross-sectional view of a conventional nonaqueous electrolyte secondary battery.
4 is a cross-sectional view of a portion indicated by an arrow A in FIG.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... Negative electrode, 2 ... Negative electrode lead, 3 ... Positive electrode, 4 ... Positive electrode lead, 4a ... Current collecting lead, 5 ... Separator, 6, 26 ... Winding core, 6a ... Resin core tube, 6b ... Metal core tube, 7 ... Pole pole, 8 ... Insulating collar, 9 ... Seal, 10 ... Ceramic abutment, 11 ... Ring, 12 ... Cap, 13 ... Ceramic washer, 14 ... Nut, 15 ... Battery container, 20 ... Electrode element, 21 ... Negative electrode, 22 ... Positive electrode

Claims (1)

セパレータで正極電極と負極電極とを絶縁し、巻き芯を中心に多数巻回して形成した電極素子を電池容器に収納する電池において、
前記巻き芯は、その両端部が樹脂性部材の樹脂芯管で構成され、中央部が金属性部材で構成されて、前記金属性部材と前記樹脂性部材とが巻き芯の長手方向の所定の位置で結合して形成されており、
前記巻き芯は、前記電池容器の長さをXmm、熱膨張率をa、前記金属性部材の長さをYmm、熱膨張率をb、前記樹脂芯管の長さ(両端部の合計)をZmm、熱膨張率をcとすると、
X×a=(Y×b)+(Z×c)
を満たす、あるいは略等しくなるようにX、Y、Zが設定され、
前記電極素子は、前記樹脂芯管の中空部に、極柱が挿入されて結合され支持されている
ことを特徴とする巻き芯構造を有する電池。
In a battery in which a positive electrode and a negative electrode are insulated with a separator, and an electrode element formed by winding a large number around a winding core is housed in a battery container,
The both ends of the winding core are constituted by resin core tubes of resinous members, the central portion is constituted by a metallic member, and the metallic member and the resinous member are predetermined in the longitudinal direction of the winding core. Formed by joining in position,
The winding core has a length of the battery container of X mm, a coefficient of thermal expansion of a, a length of the metallic member of Y mm, a coefficient of thermal expansion of b, and the length of the resin core tube (total of both ends). If Zmm and the coefficient of thermal expansion are c,
X × a = (Y × b) + (Z × c)
X, Y, and Z are set so as to satisfy or substantially equal,
The battery having a wound core structure, wherein the electrode element is supported by being inserted into a hollow portion of the resin core tube with a pole pole inserted therein.
JP06260398A 1998-03-13 1998-03-13 Battery having a wound core structure Expired - Fee Related JP4385411B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP06260398A JP4385411B2 (en) 1998-03-13 1998-03-13 Battery having a wound core structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP06260398A JP4385411B2 (en) 1998-03-13 1998-03-13 Battery having a wound core structure

Publications (2)

Publication Number Publication Date
JPH11260392A JPH11260392A (en) 1999-09-24
JP4385411B2 true JP4385411B2 (en) 2009-12-16

Family

ID=13205078

Family Applications (1)

Application Number Title Priority Date Filing Date
JP06260398A Expired - Fee Related JP4385411B2 (en) 1998-03-13 1998-03-13 Battery having a wound core structure

Country Status (1)

Country Link
JP (1) JP4385411B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011510446A (en) * 2008-01-17 2011-03-31 ネスキャップ カンパニー,リミテッド Electrical energy storage device and manufacturing method thereof

Also Published As

Publication number Publication date
JPH11260392A (en) 1999-09-24

Similar Documents

Publication Publication Date Title
CN114223096B (en) Secondary battery and method for manufacturing same
KR101220677B1 (en) Positive electrode material for lithium ion battery with nonaqueous electrolyte, and battery using the same
JP5171401B2 (en) Lithium secondary battery
JP5165482B2 (en) Winding type secondary battery
WO2012011470A1 (en) Battery and battery pack
WO2012102220A1 (en) Non-aqueous secondary battery
US20130177788A1 (en) Nonaqueous secondary battery
US5736270A (en) Battery device
JPH10270048A (en) Nonaqueous electrolyte secondary battery
WO2021060009A1 (en) Secondary battery and method for manufacturing same
JP5334894B2 (en) Lithium ion secondary battery
JP2010086780A (en) Square secondary battery
JP2008311184A (en) Lithium ion secondary battery
JP2012151036A (en) Laminated battery
JP2007165117A (en) Secondary battery
JP3580161B2 (en) Power generation element and method of manufacturing the same
JPH11339758A (en) Electrode winding type battery
JPH10270069A (en) Rectangular battery and its manufacture
JP2009224070A (en) Lithium secondary battery
JP5091507B2 (en) Winding battery
JP4385411B2 (en) Battery having a wound core structure
JP2011086483A (en) Laminated secondary battery
JP6048477B2 (en) Method for producing non-aqueous electrolyte battery
JP3723352B2 (en) Secondary battery
JP3426859B2 (en) Rechargeable battery

Legal Events

Date Code Title Description
RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20041222

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050107

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20061107

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061219

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070219

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080708

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080908

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090908

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090921

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121009

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121009

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131009

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees