JP4383996B2 - 屈折率変化装置および屈折率変化方法 - Google Patents

屈折率変化装置および屈折率変化方法 Download PDF

Info

Publication number
JP4383996B2
JP4383996B2 JP2004285001A JP2004285001A JP4383996B2 JP 4383996 B2 JP4383996 B2 JP 4383996B2 JP 2004285001 A JP2004285001 A JP 2004285001A JP 2004285001 A JP2004285001 A JP 2004285001A JP 4383996 B2 JP4383996 B2 JP 4383996B2
Authority
JP
Japan
Prior art keywords
refractive index
quantum dots
electron
dielectric matrix
change
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004285001A
Other languages
English (en)
Other versions
JP2006098753A (ja
Inventor
玲子 吉村
顕司 都鳥
史彦 相賀
宰 多田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2004285001A priority Critical patent/JP4383996B2/ja
Priority to US11/229,304 priority patent/US7772551B2/en
Priority to KR1020050090197A priority patent/KR100724035B1/ko
Priority to CNB2005101076117A priority patent/CN100394254C/zh
Publication of JP2006098753A publication Critical patent/JP2006098753A/ja
Application granted granted Critical
Publication of JP4383996B2 publication Critical patent/JP4383996B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/015Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on semiconductor elements having potential barriers, e.g. having a PN or PIN junction
    • G02F1/017Structures with periodic or quasi periodic potential variation, e.g. superlattices, quantum wells
    • G02F1/01716Optically controlled superlattice or quantum well devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y10/00Nanotechnology for information processing, storage or transmission, e.g. quantum computing or single electron logic
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y20/00Nanooptics, e.g. quantum optics or photonic crystals
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/015Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on semiconductor elements having potential barriers, e.g. having a PN or PIN junction
    • G02F1/0151Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on semiconductor elements having potential barriers, e.g. having a PN or PIN junction modulating the refractive index
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/015Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on semiconductor elements having potential barriers, e.g. having a PN or PIN junction
    • G02F1/017Structures with periodic or quasi periodic potential variation, e.g. superlattices, quantum wells
    • G02F1/01791Quantum boxes or quantum dots

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Nanotechnology (AREA)
  • Chemical & Material Sciences (AREA)
  • Optics & Photonics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Nonlinear Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biophysics (AREA)
  • General Physics & Mathematics (AREA)
  • Mathematical Physics (AREA)
  • Theoretical Computer Science (AREA)
  • Optical Modulation, Optical Deflection, Nonlinear Optics, Optical Demodulation, Optical Logic Elements (AREA)

Description

本発明は、電子および光によって屈折率を大きく変化させることができる屈折率変化装置および方法に関する。
光を情報伝達媒体とする光・電子機能素子やシステムには、各種材料・素子の屈折率制御が必要不可欠である。それは、光の伝播特性が屈折率によって支配されているからである。従って、光導波路、光ファイバーはもとより、光スイッチング素子や光記録素子も、所定の屈折率分布に設計したり、所定の屈折率を持つ材料を配置したり、屈折率を変化させることが重要となる。
屈折率を大きく変化させる方法としては、(1)シュタルクシフト、(2)フランツ・ケルディッシュ、(3)ポッケルス効果、(4)カー効果、(5)配向変化、(6)磁場による準位分裂、(7)Cotton−Mouton効果、(8)光シュタルク効果、(9)吸収飽和、(10)EIT、(11)光異性化、(12)光照射構造変化、(13)光イオン化、(14)ピエゾ反射効果、(15)温度バンドシフト、(16)温度異性化、(17)温度による構造変化、などが知られている。例えば、ポッケルス効果を用いて屈折率を変化させる技術が知られている(特許文献1、2、3参照)。
屈折率は複素数であり、その実部は狭義の「屈折率」を表し、その虚部は吸収を表す。上記に列挙した屈折率変化機構では、屈折率実部の変化は、吸収領域や吸収端では大きいが、非吸収領域では1%以下程度と小さい。また、光機能デバイスとしては光吸収型光スイッチなど吸収率の変化を利用するデバイスも検討されているが、吸収があると情報を載せた光の強度が小さくなることを意味する。従って、吸収がない波長領域で屈折率実部が大きく変化することが望ましい。屈折率変化材料のうち液晶は、吸収がない波長領域の屈折率実部の変化が例外的に大きく、10%強の変化が得られる。これは、液晶では、電子分極率の変化ではなく、配向の変化により屈折率変化が生じるためである。しかし、光機能デバイスに適用しようとした場合、液晶のような液状のものは応用範囲が限られる。
特開2002−217488号公報 特開平11−223701号公報 特開平5−28912号公報
本発明の目的は、非吸収領域において屈折率を大きく変化させることができる屈折率変化装置および屈折率変化方法を提供することにある。
本発明の一実施形態に係る屈折率変化装置は、離散的なエネルギー準位をもつ複数の量子ドットとこれらの周囲を取り囲む誘電体マトリックスを含む構造部と、前記構造部を挟む1対の電極を有し、前記誘電体マトリックスを通して前記量子ドットへ1個の電子を注入してアニオンにし前記アニオンになった量子ドットがクーロンブロッケードを起こす電子注入部と、前記構造部に前記構造部の屈折率が変化した際に制御される光を照射する光照射部とを有する。
本発明の他の実施形態に係る屈折率変化装置は、離散的なエネルギー準位をもつ複数の量子ドットとこれらの周囲を取り囲む誘電体マトリックスを含む構造部と、前記構造部を挟む1対の電極を有し、前記誘電体マトリックスを通して前記量子ドットから1個の電子を排出してカチオンにし前記カチオンになった量子ドットがクーロンブロッケードを起こす電子排出部と、前記構造部に前記構造部の屈折率が変化した際に制御される光を照射する光照射部とを有する。
本発明の他の実施形態に係る屈折率変化装置は、離散的なエネルギー準位をもつ複数の量子ドットとこれらの周囲を取り囲む誘電体マトリックスを含む構造部と、前記構造部を挟む1対の電極を有し、前記誘電体マトリックスを通して前記量子ドットへ1個の電子を注入してアニオンにし前記アニオンになった量子ドットがクーロンブロッケードを起こす電子注入部または前記誘電体マトリックスを通して前記量子ドットから1個の電子を排出してカチオンにし前記カチオンになった量子ドットがクーロンブロッケードを起こす電子排出部と、前記構造部に前記構造部の屈折率が変化した際に制御される光を照射する光照射部とを有し、前記複数の量子ドットのうち1個の電子が注入されてアニオンになるかまたは1個の電子が排出されてカチオンになり、クーロンブロッケードを起こすものが不均一に存在し、前記構造部は屈折率の分布が不均一になっていることを特徴とする。
本発明のさらに他の実施形態に係る屈折率変化方法は、離散的なエネルギー準位をもつ複数の量子ドットとこれらの周囲を取り囲む誘電体マトリックスを含む構造部を用意し、前記量子ドットに対して1個の電子を注入または排出してアニオンまたはカチオンにして前記アニオンまたはカチオンになった量子ドットがクーロンブロッケードを起こし、前記構造部へ照射された光の屈折率を変化させることを特徴とする。
本発明の実施形態に係る屈折率変化装置および屈折率変化方法によれば、離散的なエネルギー準位をもつ複数の量子ドットとこれらの周囲を取り囲む誘電体マトリックスを含む構造部を用意し、量子ドットへ電子を注入するかまたは量子ドットから電子を排出することによって、構造部へ照射された光の屈折率を大きく変化させることができる。
本発明の実施形態において、屈折率変化装置の構造部は、離散的なエネルギー準位をもつ複数の量子ドットとこれらの周囲を取り囲む誘電体マトリックスとを含む。
本発明の実施形態において、構造部に含まれる量子ドットとは、ド・ブロイ波長程度の幅をもつドット状の領域に電子を閉じ込めることにより、状態密度エネルギーが離散化された0次元電子系をいう。量子ドットとしては金属微粒子、半導体微粒子、フラーレン分子、カーボンナノチューブ、および有機分子からなる群より選択される少なくとも1種が用いられる。
本発明の実施形態において、構造部を形成する誘電体マトリックスは、比誘電率が7以上であることが好ましい。
本発明の実施形態において、電子注入部(または電子排出部)としては、たとえば構造部を挟む1対の電極や、近接場光学顕微鏡(Near-field Scanning Optical Microscope,NSOM)のプローブが挙げられる。
電子注入部または電子排出部が構造部を挟む1対の電極である場合、1対の電極のうち少なくとも一方は、構造部の一部に対応して設けられていてもよい。この場合、1対の電極のうち少なくとも一方を複数の部分に分割した形態とし、構造部の任意の一部を選択して電子注入または電子排出を行い、その部分の屈折率を選択的に変化させるようにしてもよい。
電子注入部または電子排出部が構造部を挟む1対の電極である場合、光が電極間のみを伝播する時には両方の電極が光不透過性であってもよいが、電極を通して光を照射する場合も多くその場合は両方の電極が光透過性、あるいは、一方の電極が光透過性で他方の電極が光不透過性である必要がある。
また、本発明の実施形態に係る屈折率変化装置は、構造部に光を照射する光照射部をさらに有する
本発明の実施形態において、誘電体マトリックスを通して量子ドットへ電子を注入するかまたは量子ドットから電子を排出するメカニズムとしては、(1)バリアを超える電子注入(または電子排出)、(2)トンネル効果、(3)ホッピング伝導が考えられる。例えば、(1)空気中や真空中で電子が電場に従って飛んで行く場合には、空気や真空のバリアを超えて構造部へ電子注入がなされると考えることができる。また、(2)誘電体マトリックスが薄い場合にはトンネリングが起こりやすい。また、(3)誘電体マトリックスが、アモルファスであるか、不純物やイオンを含むものである場合には、局在する準位が形成され、ホッピングによって電子が移動する場合がある。
以下、(2)のトンネル効果についてより詳細に説明する。トンネル効果とは、量子力学的な系でポテンシャルV0の高さがあるバリアに、V0よりも小さいエネルギーEの電子が衝突した時にバリアを突き抜ける現象である。バリアの内側でも外側でも確率tがゼロでない場合に起こる。シュレディンガー方程式に従って計算すれば、バリアを通り抜ける透過率すなわちトンネル効果の確率tは下記の式で表わされる(「単一電子トンネリング概論」春山純志著、コロナ社、2002年初版参照)。
Figure 0004383996
この式によると、バリアの厚みaが薄いほどトンネリングが起こり易いことがわかる。
誘電体マトリックス中に集積された離散的なエネルギー準位をもつ量子ドットに電子が注入されたときに、クーロンブロッケードが起こり、電子が蓄積される条件として以下の3つが挙げられる。
Figure 0004383996
kはボルツマン定数、Tは温度、RTは接合トンネル抵抗、RQは抵抗量子(25.8kΩ)、Re(Zt(ω))は外場電磁場環境インピーダンスの実部、εは誘電率、Sは接合面積、aはバリアの厚みである。
従って、上記3条件を満たすためには小さなSと大きなaが必要である。Sは量子ドットの表面積であるため、量子ドットのサイズが小さい必要がある。クーロンブロッケードが起こるためにはバリアの厚みaは大きな必要があるが、上述したようにトンネル効果が起こるためにはバリアの厚みaがある程度小さい必要がある。このためバリアの厚みaは適切な範囲に規定される。
クーロンブロッケード現象はいくつかの条件が重なった時に起こり得る。まず、バリアとなる誘電体マトリックスは電子がトンネルできるほど薄い必要があり、次に誘電体マトリックスの帯電エネルギー(量子ドットのエネルギー準位上昇分)が環境温度エネルギーkT(k:ボルツマン定数、T:絶対温度)より大きい必要がある。従って、バリアの静電容量が小さい必要があるが、その静電容量を決める因子の1つである膜厚は上記のようにトンネリング可能な薄さにとどめるという制限がある。従って、面積すなわち量子ドットの表面積の影響が決定的となり、必然的に量子ドットのサイズは小さいことが必要となる。
クーロンブロッケードをエネルギー準位の観点から説明すれば、電極のエネルギー準位であるフェルミレベルとトンネリング先である量子ドットのエネルギー準位(Ecとする)との関係で決定される。すなわち、電子1個の注入でEcが環境温度エネルギー以上変化すればよく、これは電極のエネルギー準位と量子ドットのエネルギー準位との相対関係といえる。
一方、屈折率は基底準位(HOMO:Highest Occupied Molecular Orbital、SOMO:Single occupied molecular orbital)と励起準位(LUMO:Lowest Unoccupied Molecular Orbital)との間のエネルギーギャップの大きさに関係しており、これら2つの相対関係である。
従って双方は同一ではないが、1つの準位が変化すればそれに関わるエネルギーギャップも変動していることが一般的であり、クーロンブロッケードが起こることが、屈折率変化を電気的な手法で観測する判断の1つとなる。
付け加えれば、クーロンブロッケード現象はトンネル電流で観測するものであるが、注入する電子はトンネル電流でなくともエネルギー準位の変化は起きる。すなわち、バリアマトリックスを超えて電子が注入されても、トンネル電流のブロッキングは観測される。
本発明の実施形態においては、構造部へ電子を注入した後であれば電子注入部がなくても構造部の屈折率変化の効果が維持されるので、電子注入後に電子注入部を取り外すことができる。これは記録装置になぞらえると、電子注入部が記録装置、電子注入される構造部が媒体(屈折率変化媒体)に相当するといえる。
本発明は屈折率変化の新しいメカニズムを提案するものであり、本発明の実施形態に係る屈折率変化装置ではこれまでの装置よりも大きな屈折率変化が得られる。
本発明における屈折率変化のメカニズムは以下の通りである。量子ドットに電子を注入すると、屈折率の決定に大きく寄与する最外殻オービタル(すなわち最高被占分子軌道)の外側に、新たに最外殻オービタル(すなわちより高エネルギーの最高被占分子軌道)が形成され、このような量子ドットが高誘電率材料で囲まれていると大きな屈折率変化の効果を得ることができる。逆に、量子ドットから電子を排出すると、屈折率の決定に大きく寄与する最外殻オービタル(すなわち最高被占分子軌道)がなくなり、このような量子ドットが高誘電率材料で囲まれていると、大きな屈折率変化の効果を得ることができる。
本発明の実施形態に係る屈折率変化装置の効果は、ポッケルス効果を代表する2次や3次の非線形光学効果によって構造部の屈折率変化を得る従来技術とは大きく異なる。両者の相違点について以下に説明する。
(1)従来技術では、電子は構造部に電場を加えるための電極にとどまっている。一方、本発明の実施形態では、電子は電子注入部から構造部の量子ドットへと移動する(または電子は構造部の量子ドットから電子排出部へ移動する)。
(2)従来技術では、構造部に電圧を印加することを止めたときに、非線形光学効果が失われ、屈折率変化効果も失われる。一方、本発明の実施形態では、電子が量子ドットにとどまっている限り、屈折率変化の効果が持続する。
(3)従来技術のポッケルス効果では、屈折率変化の度合いはたかだか10-3程度である。一方、本発明の実施形態では、屈折率変化の度合いは10-1またはそれ以上になる。
(4)一般にフォトクロミズムなど吸収スペクトルを変化させる方法はいくつかある。また、クラマース=クロニッヒの関係が導くように、吸収端近傍における屈折率変化は比較的大きくできる。このため、吸収スペクトルまたは吸収係数を変化させて屈折率実部を変化させる方法はよく用いられている。しかし、透明領域においては大きく屈折率を変化させることは難しい。一方、本発明の実施形態においては、透明領域においても大きな屈折率変化をもたらすことができる。
(5)一般的な3次元のバルク半導体の場合、多数の電荷が同一励起バンド枝に存在するため、1個の電子を注入してもバンド(エネルギー準位)を占有する電子の分布の変化が非常に小さい。一方、本発明の実施形態では、量子ドットのエネルギー準位が離散化されているため、1個のエネルギー準位に存在できる電子の数は数えられる程度である。このため量子ドットに新たに1個の電子を注入した場合、電子はそれまで電子が存在していなかったエネルギー準位を占有する。また、量子ドットのエネルギー準位が離散化しているため、吸収スペクトルピークの幅が狭く透明領域が広い。
(6)本発明の実施形態に係る屈折率変化素子は、光を導波させることを目的とするものであり、この点で吸収や共鳴状態を伴うレーザや増幅器とは異なる。従って、透明な波長領域が広ければ広いほど光デバイスとしての応用範囲は広くなる。さらに、本発明の実施形態は、吸収共鳴効果で3次非線形光学効果が増幅される量子ドット励起子効果とは原理も異なり、透明領域でも屈折率変化するという効果も異なる。
(7)本発明の実施形態では、量子ドット以外の誘電体マトリックスは屈折率変化しないため、量子ドットの密度が高いほど全体の平均屈折率変化が大きくなる。本発明の実施形態に係る屈折率変化素子を導波路として使用する場合、平均屈折率変化が少なくとも1.5%を超えるように量子ドットの密度を設定することが有効である。1.5%とは現在使用されている導波路の屈折率変化の一般的な値である。
上記の相違点に関連してさらに原理的な説明を述べる。量子ドットへ入射した光はその電場によって、電子殻を揺らす(励起)。揺らされた電子殻は光を放出する。この時の放出過程はアインシュタインのB係数に関わるもので、非共鳴領域においても励起から放出までに時間を要する。励起と放出を繰り返すことによって、光は伝播していく。この励起・放出にかかる時間が光伝播の位相速度Vpを決定する。真空中の光速をCとするとVp/Cが、本発明において変化を起こそうとする屈折率実部である。屈折率は、以下に示すように、ローレンツ−ローレンスの式を通して分子分極率と関係づけられる。
Figure 0004383996
ここで、nは屈折率、Mはモル質量(1モルあたりの質量)、ρは密度、Nはアボガドロ数、αは分極率である。
分子分極率を変化させるためには、2次、3次の非線形光学効果を利用し、電場を印加することによって電子のオービタルを歪ませるという方法が一般的である。しかし、この方法による分極率変化は小さい。一方、ナノスケールサイズの量子ビットに電子を注入した場合、新しくオービタルが形成され、かつクーロン反発がおこるため、HOMOやLUMOのケミカルポテンシャルやHOMO−LUMOギャップが大きく変動する。従ってこれらの効果により分極率が大きく変化する。なお、量子ビットから電子を排出した場合、新たなオービタルは形成されないため、電子を注入した場合に較べて屈折率の変化は小さい。それでも、従来技術である非線形光学効果による分極率変化に較べて大きな変化が期待できる。
また、一般に、量子ドットに電子を過剰に供給すると量子ドットは安定して存在しにくくなる傾向がある。一方、本発明の実施形態のように、量子ドットの周囲を誘電体で取り囲むと、誘電緩和により全体のエネルギーが安定し、しかも分極率の変化も大きくなる。電子注入時には、誘電体マトリックスのLUMOを量子ドットのLUMOよりも高くしておくことによって電子は量子ドットに捕獲される。
電子注入時の駆動電圧は、量子ドット間に存在する誘電体をコンデンサーとして考え、このコンデンサーが電極間に直列に並んだ回路と考えて概算することができる。モデルとして、図1に示すように1辺の長さが1nmである立方体の量子ドットの周囲を膜厚0.5nmの誘電体マトリックスが囲んでいると仮定し、図2に示すようにこれが直列に5個並んだコンデンサーを考える。このコンデンサー間に電子1個分ずつが蓄積されていったとして電圧Vを計算する。電圧Vとコンデンサーの容量Cと電荷Qの間にはV=Q/Cの関係がある。また、Cは下記の式で表される。
C=ε0εrS/d
ここで、ε0は真空の誘電率(ε0=8.85×10-12F/m)、εrは比誘電率、Sはコンデンサーの面積、dはコンデンサーの距離である。
上記のモデルでは、S=1×10-182、d=1×10-9×5[m]である。ただし、量子ドットを含めた全厚みは10nmとなる。電荷Qは量子ドットに注入される電子5個分に相当するので、Q=e×5=1.6×10-19[C]×5=8×10-19[C]となる。
εr=10とするとC=1.8×10-20となるのでVは約44Vとなる。全厚みを100nmとすると、εr=10の場合は440Vとなるが、εr=100の場合は44V、さらにεr=1000であれば4.4Vとなり、容易に電子注入可能である。上記のモデルではεr=880程度で駆動電圧が約5Vとなるので、駆動電圧の観点からみればこの程度の比誘電率が好ましい。さらに厚みを増したい場合には、電極を多層にして厚みを増してもよい。なお、電極に対して並列に並べることは問題ない。
駆動電圧については、電子排出の際にも上記電子注入の場合と同様に考えることができる。また、本発明の実施形態においては、量子ドットへの電子の注入または量子ドットからの電子の排出のどちらかのみを行い、これらを同時に行うことはしない。
(実施例1)
本実施例においては、真空中の量子ドットへ電子1個を注入した時に、可視光近傍の屈折率に関係のある電子分極率テンソルがどのように変化するかをシミュレーションした。分極率は、配向による分極率、振動による分極率、電子励起に関する分極率に分類でき、それぞれ関係する光(電磁波)の波長帯はラジオ波・ミリ波、中・遠赤外線、近赤外線・可視・紫外光である。本実施例におけるシミュレーションは電子励起に関するものであるので、近赤外線・可視・紫外光領域で、共鳴効果を含まない、すなわち吸収しない波長領域での分極率に対応するものである。上述したように、屈折率と分極率との関係はローレンツ−ローレンスの式で表わされる(数3参照)。
まず、量子ドットとしてSi1016を用い、この量子ドットに1個の電子が注入されてSi1016+e-となったときの分極率変化の計算結果について説明する。
計算条件は、以下の通りである。電子状態計算は、ベッケの3変数交換ポテンシャル、リー・ヤン・パールの相関ポテンシャル(B3LYP)の補正を用いた密度汎関数法(DFT)による分子軌道計算によって行い、基底関数系には、内殻電子を相対論的効果も含めた有効内殻ポテンシャル(ECP)で近似したCEP−31Gを用いた。中性量子ドット及び電荷注入後の量子ドットの安定構造は解析的エネルギー微分法によって求め、Born-Oppenheimerエネルギー面上での定常点がエネルギー最安定点であるかどうかの確認は基準振動解析によって行った。
図3は、エネルギー最小構造のSi1016を表す模式図である。中性分子Si1016のエネルギーEおよび分極率Pは以下の通りである。
E=−48.1834515651au(1au=27.2116eV)
Figure 0004383996
平均分極率=1/3(xx+yy+zz)=268.0au
LUMO −0.01630
HOMO −0.27565。
アニオン分子Si1016+e-のエネルギーEおよび分極率Pは以下の通りである。
E=−48.1908485619
Figure 0004383996
平均分極率=303.8au
LUMO 0.09850
HOMO −0.00559。
すなわち、Si1016の量子ドットに電子を1個注入して生成したアニオン分子は、エネルギー的に安定することがわかる。
平均分極率、平均分極率の変化率、屈折率(概算)、および屈折率の変化率は以下の通りである。
Figure 0004383996
ちなみに、バルクSiの非吸収領域の屈折率は約3.5程度であり、上記計算結果と大きな差は見られない。なお、密度は一定(バルクSiの密度2.33g/cm3を使用)と仮定し、モル質量は簡便化のためSi10とした。表1から、平均分極率の変化率および屈折率の変化率は非常に大きいことがわかる。量子ドットに2個の電子を注入したとして計算すると、平均分極率は更に大きく変化することがわかっている。量子ドットに1個の電子を注入した方がエネルギー的にはやや安定しており、クーロンブロッケード現象が起こることを示している。ここでは、量子ドットの周囲が真空状態(真空準位)であると仮定しているので、接合容量は非常に小さく、静電エネルギーは室温でのkTより大きい。
次に、量子ドットHf4Si4128に関して上記と同様な計算を行った。図4は、エネルギー最小構造のHf4Si4128を表す模式図である。中性分子Hf4Si4128のエネルギーEおよび分極率Pは以下の通りである。
E=−408.582554343au
Figure 0004383996
平均分極率=248.9au
LUMO −0.04349
HOMO −0.29859
アニオン分子Hf4Si4128+e-のエネルギーEおよび分極率Pは以下の通りである。
E=−408.606974089au
Figure 0004383996
平均分極率=315.7au
LUMO 0.06944
HOMO −0.00781
平均分極率、平均分極率の変化率、屈折率(概算)、および屈折率の変化率は以下の通りである。
Figure 0004383996
Hf4Si4128では、平均分極率の変化率および屈折率の変化率がSi1016の場合よりも大きいことがわかる。Hfは周期律表の第6周期元素であり、第3周期元素(Si)よりも最外殻電子雲が大きいことから、電子注入による屈折率効果が大きくなる。
次に、図5に示すような構成の屈折率変化装置で、誘電体マトリックス中に量子ドットへの電子の注入による屈折率の変化を調べた。
Si基板11の表面を酸化して厚さ200nmのSiO2膜12を形成した。さらに、CVDにより薄いポリシリコンを堆積した後、これを酸化することによって、様々なサイズのSi10量子ドット13を形成した。局所照明−コレクションモードで観察するように、この試料の上方にNSOMプローブ101を配置した。このプローブ101はチップ端面の周囲にテーパー部が形成され、このテーパー部に金属コート102が施されている。
まず、原子間力顕微鏡(Atomic Force Microscope,AFM)によりSi10量子ドット13が1個存在する約30nm角の領域を探索した。30nmはNSOMの空間分解能に相当する。次に、プローブ101の金属コート102とSi基板11との間に電場を印加し、Si10量子ドット13に電子を注入してアニオン14にした。局所照明−コレクションモードで試料の反射率変化を測定して屈折率変化を算出した。
試料の反射率変化は、SiO2膜12とSi10量子ドット13の双方の反射率変化を含んでいる。そこで、両者の体積比を考慮に入れて、Si10量子ドット13の屈折率変化を見積もった結果、2.1と算出された。Si10量子ドット13の屈折率を3.5とすると、その変化率は60%となるので上記の計算はほぼ正しいことが証明された。
(実施例2)
本実施例では、量子ドットとしてC60フラーレンを用いた。C60フラーレンはクーロンブロッケードを起こすことが知られている(例えば D. Porath and O. Millo, J. Appl. Phys. 81 (1997) p2241)。
図6に示すような構成の屈折率変化装置で、誘電体マトリックス中に量子ドットへの電子の注入による屈折率の変化を調べた。
ガラス基板21上に形成されたITO電極22上に、スピンコーティングにより厚さ約500nmのポリメタクリル酸メチル(PMMA)膜23を形成した。PMMA膜23上に直径約0.7nmのC60量子ドット24を散布した。その後、試料を100℃まで昇温して5分間維持した後、常温まで降温した。こうして、C60量子ドット24をPMMA膜23に密着させた。コレクションモードで観察するように、この試料の上方に金属コート102が施されたNSOMプローブ101を配置した。また、試料の上方に対物レンズ111を配置し、試料にレーザ光を照射するようにした。照射レーザ光の一部は試料を透過し、他の一部は試料によって反射される。このとき、C60量子ドット24の屈折率が変化すると、C60量子ドット24の界面での反射率が変化し、プローブ101で集める反射光の光量が変化する。
60量子ドット24の直径は約0.7nmであるのに対し、NSOMの空間分解能は約30nmである。従って、単一のC60量子ドット24を観察することはできないが、密集したC60量子ドット24は観察できる。
プローブ101の金属コート102とガラス基板21上のITO電極22との間に電場を印加し、1個のC60量子ドット24に電子注入してアニオン25にすると、クーロンブロッケード効果によって、そのアニオン25への電子注入は妨げられる。その後、プローブ101の近傍にある他のC60量子ドット24への電子注入が起こる。こうして、プローブ101の近傍にあるC60量子ドット24には均一に電子が注入される。
プローブ101の金属コート102とガラス基板21上のITO電極22との間に周波数1kHz、0〜マイナス10Vの高周波電圧を印加しながら観察した。30nm以上の範囲にわたってC60量子ドット24が密集している場合には、屈折率変化によりプローブ101への反射光の光量が変化することがわかった。
比較のために、櫛型電極を組み、LiNbO3を堆積し、電極間に約107V/mの電場を印加して、ポッケルス効果による屈折率変化を調べた。その結果、光路長が短く、詳細な値は取得できなかったが、反射光変化率はC60量子ドットの方が1桁以上大きいことがわかった。
(実施例3)
本実施例においては、量子ドットとしてコバルト(Co)ナノ粒子を用い、図7に示すような構成の屈折率変化装置で、誘電体マトリックス中の量子ドットへの電荷の注入による屈折率の変化を調べた。
ガラス基板31上に形成されたITO電極32上に、SiO2とコバルト(Co)を同時スパッタした。TEMで調べたところ、マトリックスとしてのSiO2膜33の膜厚は8nmであり、その中に直径約1.4nmのCo量子ドット34が形成されていた。これらCo量子ドット34は緊密に存在していた。
実施例2と同様にNSOMプローブにより屈折率変化を測定できるようにし、プローブ101の金属コート102とガラス基板31上のITO電極32との間に電圧を印加し、Co量子ドット34に電荷を注入した。このとき、プラス20Vとマイナス20Vとを別々に周波数1kHzで約100ms印加し、アニオンまたはカチオン35を形成した。電圧印加を止めた後には電荷が抜けるため、屈折率が指数関数的に徐々に元に戻ることが観測された。プラス20Vを印加した場合の時定数は約9分、マイナス20Vを印加した場合の時定数は約3分であった。このように、屈折率変化を一時的に変化させることができる。
Co量子ドット34の粒径を大きくするか、または温度を上げると、時定数が短くなる傾向が見られた。また、電圧の正負を逆転させても注入電荷が抜けるため、屈折率が元に戻ることが確認できた。
(実施例4)
本実施例においては、量子ドットとしてC60フラーレンを用い、図8(a)および(b)に示す湾曲した導波路構造を形成した。図8(a)は断面図、図8(b)は平面図である。
ガラス基板41上に形成されたITO電極42上に、C60量子ドット44を分散させたポリスチレン膜43を塗布した。ポリスチレン膜43上に湾曲した形状を有する幅約5mmの銅薄板45を密着させた。ITO電極42をアースし、銅薄板45にマイナス35Vの電圧を印加してC60量子ドット44に電子を注入することにより、銅薄板45の下の部分の屈折率を変化させた。その後、銅薄板45の下のポリスチレン膜43の一方の端面からレーザ光を入射した。その結果、湾曲した形状を有する銅薄板45の下の部分が導波路となり、レーザ光を導波させることができ、銅薄板45の下のポリスチレン膜43の他方の端面からレーザ光が出射した。このように、極めて簡便に導波路を形成することも可能である。
(実施例5)
本実施例においては、誘電体マトリックス中の量子ドットについて、電子1個を注入するかまたは排出したときの屈折率の変化をシミュレーションした。ここでは、真空中の量子ドットと対比した。
量子ドットとして図3に示したようなシリコンナノ微粒子(Si1016)を用い、真空中にSi1016量子ドットを配置した場合(誘電体マトリックスのない場合)と、誘電体マトリックスとして比誘電率2.247のベンゼン中にSi1016量子ドットを配置した構造部を想定した。それぞれの場合について、Si1016量子ドットが、電気的に中性な分子、電子を1個注入したアニオン分子、または電子を1個排出したカチオン分子であるときの分極率変化を計算した。分極率の計算は、ベッケの3変数交換ポテンシャル、リー・ヤン・パールの相関ポテンシャル(B3LYP)の補正を用いた密度汎関数法(DFT)に基づき、基底関数系としてCEP−31Gを用いた。また、ローレンツ−ローレンスの式によって屈折率を算出した。この際、Si1016量子ドットの密度をバルクSiの50%すなわち1.165g/cm3と見積もって、1つのSi1016量子ドットの体積Vを算出した。シミュレーションの結果は以下の通りである。
真空中に配置されたSi1016量子ドットの屈折率とその変化率
屈折率 変化率
中性Si1016量子ドット 1.77 −
アニオンSi1016量子ドット 1.91 8%
カチオンSi1016量子ドット 1.79 1%。
ベンゼン中に配置されたSi1016量子ドットの屈折率とその変化率
屈折率 変化率
中性Si1016量子ドット 1.99
アニオンSi1016量子ドット 2.24 12%
カチオンSi1016量子ドット 2.02 2%。
上記の結果から、誘電体マトリックス中の量子ドットに電子注入(電子排出)した場合の屈折率の変化率は、真空中の量子ドットに電子注入(電子排出)した場合よりも増大することが示された。
また、真空中のSi1016量子ドットへ電子注入した場合、およびベンゼン中のSi1016量子ドットへ電子注入した場合のそれぞれについて、不対電子軌道(SOMO)エネルギーを計算した。結果は以下の通りである。
真空中 −0.00559au
ベンゼン中 −0.06661au。
この結果から、電子が注入されたSi1016量子ドットの不対電子軌道は、周囲の誘電体マトリックスの存在によって安定化することが示された。
(実施例6)
さまざまな比誘電率を有する誘電体マトリックス中の量子ドットについて電子1個を注入または排出したときの、屈折率の変化をシミュレーションした。
実施例5と同様に量子ドットとしてシリコンナノ微粒子(Si1016)を用い、比誘電率の異なる6種の誘電体マトリックス中にSi1016量子ドットを配置した構造部を想定した。それぞれの場合について、Si1016量子ドットが、電気的に中性な分子、または電子を1個注入したアニオン分子であるときの分極率変化を計算し、ローレンツ−ローレンスの式によって屈折率を算出した。計算条件はすべて実施例5と同様である。
図9に、構造部を形成する誘電体マトリックスの比誘電率と、屈折率との関係を示す。図9から以下のことがわかる。誘電体マトリックスの比誘電率にかかわらず、電子を注入したアニオン量子ドットの屈折率は、中性量子ドットの屈折率よりも高い。また、アニオン量子ドットでも中性量子ドットでも、誘電体マトリックスの比誘電率の上昇に伴って屈折率が高くなる。
図10に、構造部を形成する誘電体マトリックスの比誘電率と、アニオン量子ドットの中性量子ドットに対する屈折率の変化率との関係を示す。図10から、誘電体マトリックスの比誘電率の上昇に伴い、アニオン量子ドットの屈折率の変化率が上昇することがわかる。特に、誘電体マトリックスの比誘電率が7以上のときに、アニオン量子ドットの屈折率の変化率が大きくなる。
誘電体マトリックスの比誘電率が約7のときの屈折率および屈折率の変化率は、誘電体マトリックスの比誘電率が約50のときの約6割になっている。
なお、上記においては、量子ドットの屈折率変化のみを検討した。しかし、量子ドットに電子が注入された場合には周囲の誘電体マトリックスの波動関数も変化するため、屈折率の変化をさら促進する可能性がある。
図11に、構造部を形成する誘電体マトリックスの比誘電率と、アニオン量子ドットの不対電子軌道(SOMO)エネルギーとの関係を示す。図11から、電子が注入されたアニオン量子ドットの不対電子軌道は、その周囲を取り囲んでいる誘電体マトリックスの比誘電率の増加に伴ってより安定化することがわかる。特に、比誘電率が7以上のときに、SOMOエネルギーが低い値になっている。このように、比誘電率の高い誘電体マトリックスを用いた場合、量子ドットに注入された電子が誘電緩和効果によって安定化され、より多くの電子を注入することが可能になる。
(実施例7)
図12に示す屈折率変化素子を作製した。図12に示すように、この屈折率変化素子200は、基板201上にITO電極202および構造部203を交互に積層した構造を有する。構造部203は、厚さ約1.3nmのトンネリングバリアSiO2層(比誘電率:約4)204と、粒径が約0.7nmのSi10量子ドット205を5周期積層し、その上にもう一層のトンネリングバリアSiO2層204を積層した構造を有し、約10nmの厚さを有する。また、ITO電極202と構造部203を10周期積層し、その上にもう一層のITO電極202を積層して、総膜厚を約100nmとしている。構造部203を挟む1対のITO電極202のうち、一方を接地し、他方に電圧を印加した。
印加電圧を0、V、0、V、・・・と繰り返して変化させることにより、電圧Vが低くなるようにした。なお、印加電圧を0、V、2V、3V、・・・のように変化させてもよいが、より高電圧が必要になる。この屈折率変化素子に対し、電圧Vを120Vまでゆっくりと上げた。
図13に、この屈折率変化素子を用いた測定系を模式的に示す。レーザ211からのレーザ光をハーフミラー212およびミラー213で反射させ、作用光として屈折率変化素子200に照射し、屈折率変化素子200を透過したレーザ光を、ハーフミラー214を通してスクリーン220へ投影させる。一方、レーザ211からのレーザ光をハーフミラー212を通し、ミラー215およびハーフミラー214で反射させ、参照光としてスクリーン220へ投影させる。スクリーン220上では作用光と参照光との干渉縞が現れる。
波長413nmのレーザ光を用い、構造部203を挟む1対のITO電極202間の電圧を徐々に増加していくと、スクリーン220上で干渉縞が移動することが確認された。このことは、構造部203に電圧を印加することによって量子ドットに電子が注入され、屈折率変化素子220全体の屈折率が変化したことを意味する。
また、図12の屈折率変化素子の変形例として、図14に示す屈折率変化素子を作製した。図14の屈折率変化素子は、図12の構造に加えて、各々のSi10量子ドット層205の面内において、一端にソース電極207、他端にドレイン電極208をそれぞれ形成したものである。この場合、構造部203の最上部のSiO2層204を介して形成されたITO電極202(電圧Vが印加されるもの)は、ゲート電極として機能する。
図14の屈折率変化素子について、図13の装置構成で波長413nmのレーザ光の一部を試料に照射し、他方を参照光として用い、スクリーン220上で干渉縞を観察した。このとき、ソース−ドレイン間に200mVの電圧を印加し、電流値を測定することによりクーロンブロッケード現象を確認しながら、ゲート電極に加える電圧を徐々に増加した。その結果、クーロンブロッケード現象が起こりだすと同時に干渉縞が動き出した。このことから、屈折率が変化していくことが確認された。
(実施例8)
誘電体マトリックスとして、実施例7のSiO2の代わりにチタン酸バリウム(比誘電率:3000)を用いて図12に示す屈折率変化素子を作製し、図13と同様な装置構成で干渉縞を観察した。その結果、干渉縞の移動速度が実施例7に比べて約30%速くなっていることが確認された。
同様に、誘電体マトリックスとして、実施例7のSiO2の代わりに透明セルロイド(比誘電率:約7)を使用した場合、干渉縞の移動速度が実施例7に比べて約12%速くなっていることが確認された。
これらの結果は、誘電体マトリックスの比誘電率が高くなったことにより、屈折率変化素子への電圧印加に伴う屈折率変化が大きくなったことを意味している。
(実施例9)
図15に示すような構成の屈折率変化装置で、誘電体マトリックス中に量子ドットへの電子の注入による屈折率の変化を調べた。
ガラス基板51上に形成されたITO電極52上に、誘電体マトリックス53中に量子ドット54を分散させた構造部を形成した。誘電体マトリックスの材料としては、ポリメチルメタクリレート(PMMA)、チタニア、SiO2、またはポリスチレンを用いた。量子ドットとしては、金ナノ微粒子、Siナノ微粒子、フラーレン(C60)分子、カーボンナノチューブ、またはフェロセンを用いた。表3に、量子ドットの材料と誘電体マトリックスの材料との組み合わせを示す。構造部の厚さはいずれも約50nmとした。構造部中の量子ドット54の体積分率はいずれも約5体積%とした。
照明モードで観察するように、この試料の上方に金属(Au)コート102が施されたNSOMプローブ101を配置した。プローブ101の金属コート102とガラス基板51上のITO電極52との間にパルスジェネレータ121を接続し、両者の間に電圧を印加して、トンネル効果により量子ドット54へ電子を注入するか量子ドット54から電子を排出する。
構造部の屈折率が変化すれば構造部からの反射光も変化する。図15ではプローブ101のチップ端面から発せられる近接場光を構造部に照射し、構造部からの反射光を検出する。構造部からの反射光を光ディテクタ131によって検出し、ロックインアンプ132で増幅し、コンピュータ133によって解析する。
パルスジェネレータ121により120Hzの交流電圧を印加したところ、最適な電圧で電子が誘電体マトリックス53を通してトンネリングし、量子ドット54への電子の注入または量子ドット54からの電子の排出が起こる。この結果、交流電圧に同期した屈折率変化および反射率変化が観測される。
参照のために、Ga0.42In0.58As0.90.1/InP量子井戸薄膜について量子閉じ込めシュタルク効果による屈折率変化を調べた。GaInAsP/InPの場合、印加電場を大きくするに従って屈折率変化量も大きくなる。印加電圧の大きさはブレイクダウン寸前の36.5Vとした。
測定時の使用波長は以下の通りである。それぞれの材料は、下記の波長では吸収係数が小さく、透明領域である。
GaInAsP/InP 1.53μm
フェロセン 800nm
その他の量子ドット 650nm。
反射光量については、GaInAsP/InPの反射光量で規格化した。これらの結果を表3に示す。
表3のように、金ナノ微粒子、Siナノ微粒子、フラーレン分子、カーボンナノチューブ、またはフェロセンのいずれの量子ドットに電子を注入した場合でも、大きな屈折率変化を得ることができる。特に、誘電体マトリックスの比誘電率がより大きい場合は屈折率変化がより大きくなる。
この例では、構造部中の量子ドット54の体積分率を約5%に設定しているが、量子ドットの体積分率を上げると屈折率変化も大きくなる。
Figure 0004383996
(実施例10)
図16に液晶ディスプレイパネルなどに用いられる単純マトリクス構造の電極を適用した屈折率変化素子の分解斜視図を示す。
X電極302が形成されたガラス基板301、トンネリングバリア層303、構造部304、トンネリングバリア層305、Y電極307が形成されたガラス基板306が積層されている。構造部304は、誘電体マトリックス中に量子ドットが分散されたものである。X電極302とY電極307は電源ユニット310に接続され、電源ユニット310はコンピュータ320により制御される。
X電極302とY電極307との間に電位差がある交点部分においてのみ構造部304の量子ドットへ電子が注入され、その部分の屈折率が変化する。このような装置では、任意の部分の屈折率を変化させることができる。従って、任意の形態の光導波路回路を作製できる。
なお、図16に示したように、単純マトリックスをなすようにX電極302とY電極307を形成した構造に限らず、屈折率を変化させたいそれぞれの部分(セル)ごとに、薄膜トランジスタ(TFT)を設けてもよい。
次に、図16のX電極302を有するガラス基板301およびY電極307を有するガラス基板306を取り外し可能にした。構造部に対してX電極およびY電極を接触させ、量子ドットへ電子を注入した状態で光導波路を形成した後、X電極およびY電極を取り外して、すぐに光導波路としての機能を確認した。その結果、光導波路としての所望の効果が得られた。
(実施例11)
本実施例においては、多段接合を含む屈折率変化素子を作製した。クーロンブロッケード現象は、単一接合だけでなく、多段接合でも起こる。このことは、「クーロン階段」という現象で証明されている。
図17は、本実施例における屈折率変化素子の1つのセルを示す断面図である。このセルは、SiO2基板61上に形成されたITO電極(X電極)62上に、厚さ約3nmのSiO2トンネリングバリア層63、SiO2マトリックス65中に粒径が約1nmのSi10量子ドット66を分散させた構造部64、厚さ約3nmのSiO2トンネリングバリア層67、ITO電極(Y電極)68、カバーSiO2層69を積層した構造を有する。構造部64においては、SiO2マトリックス65中で面内方向だけでなく厚み方向にも多数のSi10量子ドット66がランダムに配置されている。隣接するSi10量子ドット66同士の間隙には電子がトンネリングできる程度の厚みのSiO2マトリックス65が存在する。
1つのセルの平面サイズは40nm角であり、このようなセルが正方格子をなすようにし、100mm角の基板61上に形成されている。図16と同様に、ITO電極(X電極)62とITO電極(Y電極)68は、単純マトリックスをなすように形成されている。
特定の位置にあるセルにおいて量子ドット66へ電子を注入する場合、タイミングをあわせて、特定のX電極62のプラスの電圧、特定のY電極68にマイナスの電圧を印加する。このとき、電子注入しないセルに関係する電極はアースしておく。量子ドット66への電子注入の電圧にはしきい値があるため、X−Y両電極間の電圧差がしきい値以上にならなければ電子注入が起こらない。
特定のセルの電極間に0〜プラスマイナス100Vの高周波を印加して量子ドット66に電子を注入すれば、特定のセルの屈折率を変化させることができる。高周波を印加する理由は、所望のセルに電圧を特定せずに電子注入するためである。各々のセルはメモリ性があるため、いったん電子が注入されれば、電子は保持される。
まず、図18の平面図に示すように、高屈折率領域中に低屈折率領域を光の波長に近似するオーダーで規則的に配列してフォトニック結晶を形成した。図18では、所定の位置にあるセルへの電子注入を行って高屈折率セル401を形成し、高屈折率セル401中に低屈折率セル402のグループが直径約200nmの擬似円柱からなるフォトニック結晶の格子点403を形成するように稠密配列させている。このフォトニック結晶は、波長800nmの光を透過しないフォトニックバンドギャップを有する。なお、格子点403の配列は、図18に表したような2次元稠密配列に限定されず、例えば正方格子配列などの他の配列にしてもよい。
次に、図19の平面図に示すように、構造部64に湾曲した導波路410を形成した。この場合、導波路410に相当する領域にある全てのセルに電子注入を行い、高屈折率セルを形成している。図19では、構造部64の一辺に位置する導波路410の入口から光を入射するようにしている。また、構造部64の対辺に沿って3個の光検出器(A〜C)411、412、413を配置している。光検出器(B)412は導波路410へ入射する光の光軸の延長線上に位置する。光検出器(C)413は導波路410の出口近傍に位置する。光検出器(A)411は、光検出器(B)412および光検出器(C)413から離れている。
ここで、構造部64の全てのセルに電子注入をせずに、図19に示した導波路の入口に相当する位置からレーザ光を入射した場合、光検出器(B)412で入射光の95%の光量の光が検出された。光量の損失分は散乱によるものである。
図19において、導波路410以外の部分に、図18に示したような規則的に配列したフォトニック結晶の格子点を形成するように所定のセルに電子注入を行って高屈折率セルを形成した。この状態で、導波路410に800nmのレーザ光を入射したところ、レーザ光は光検出器(B)412では検出されずに、光検出器(C)413で検出された。
一方、図19において、導波路410以外の部分にあるセルについては電子注入を行わなかった(フォトニック結晶の格子点を形成しなかった)場合には、光検出器(C)413で入射光の80%を超える光量の光が検出された。このように、フォトニック結晶中に導波路を形成しなくても、通常の導波路を形成できる。したがって、本実施例の屈折率変化装置は、屈折率分布をプログラマブルに変化させることができる。
(実施例12)
図12に示した構造を有する屈折率変化素子において、構造部203を挟む1対の電極を図16と同様なX電極およびY電極に変え、また全体の積層数を増やして全体の厚みを10mmとした。この屈折率変化素子では、シリコン量子ドットの厚みは全体の厚みの約30%であった。シリコンの屈折率は約3.5であり、シリコン量子ドットの最大屈折率変化率は12%である。従って最大屈折率差に厚みをかけた値は、3.5×0.12×10×0.3=1.26となる。
一方、直径50mmのガラスの平凸レンズでは焦点距離800mmの中央部と周辺部の屈折率差(1.5)に厚みをかけた値は1.5×0.8=1.2となる。この値は、上記の値とほぼ同等である。
図12に示す構造で直径50mmの屈折率変化素子を作製し、印加電圧を調整して、中央部の屈折率が最大、周辺部の屈折率が最小となるように同心円上に屈折率を変化させて屈折率分布を円弧状に設定した。この屈折率変化素子では、焦点距離800mmのガラスの平凸レンズとほぼ同等の効果を確認することができた。
また、印加電圧などの設定を変えれば、凹レンズや非球面レンズの特性を持たせたり、焦点距離を変化させたりすることができる。例えば、基板と平行な面内での単位長さあたりの屈折率変化率を変更することによって、焦点距離を調整できることが確認できた。ビーム径さえ小さければ、ガラスレンズでは製造できない焦点距離の短いレンズも達成できる。
この屈折率変化素子の表面に、反射防止のために半波長以下のサイズの凹凸をもつ "sub-wavelength structure" を形成したところ、表面の反射率が10%から3%に低減した。この屈折率変化素子の表面に多層膜を形成すれば、反射防止も可能になる。
以上、具体例を参照しつつ、本発明の実施の形態について説明した。しかし、本発明は、これらの具体例に限定されるものではない。
例えば、本発明において用いる屈折率可変装置の具体的な構造、形状、材料、サイズ、数や配置などに関しては、当業者が適宜選択することにより本発明を同様に実施し、同様の効果を得ることができるものも本発明の範囲に包含される。
その他、本発明の実施の形態として上述した屈折率可変装置および屈折率変化方法を基にして、当業者が適宜設計変更して実施しうるすべての屈折率可変装置および屈折率変化方法も同様に本発明の範囲に属する。
本発明の実施形態における量子ドットのモデルを示す斜視図。 本発明の実施形態における量子ドットからなるコンデンサーが5個直列に接続された状態を示す回路図。 エネルギー最小構造のSi1016を表す模式図。 エネルギー最小構造のHf4Si4128を表す模式図。 実施例1における屈折率変化装置を示す断面図。 実施例2における屈折率変化装置を示す断面図。 実施例3における屈折率変化装置を示す断面図。 実施例4において形成された導波路構造を示す断面図および平面図。 実施例6における、構造部を形成する誘電体マトリックスの比誘電率と、屈折率との関係を示す図。 実施例6における、構造部を形成する誘電体マトリックスの比誘電率と、アニオン量子ドットの中性量子ドットに対する屈折率の変化率との関係を示す図。 実施例6における、構造部を形成する誘電体マトリックスの比誘電率と、アニオン量子ドットの不対電子軌道(SOMO)エネルギーとの関係を示す。 実施例7における屈折率変化素子を示す断面図。 実施例7における屈折率変化素子を用いた測定系を模式的に示す図。 実施例7における変形例の屈折率変化素子を示す断面図。 実施例9における屈折率変化装置を示す断面図。 実施例10における屈折率変化素子の分解斜視図。 実施例11における屈折率変化素子の1つのセルを示す断面図。 実施例11における屈折率変化素子を用いて形成されたフォトニック結晶の平面図。 実施例11における屈折率変化素子を用いて形成された導波路の平面図。
符号の説明
11…Si基板、12…SiO2膜、13…Si10量子ドット、14…アニオン、21…ガラス基板、22…ITO電極、23…PMMA膜、24…C60量子ドット、25…アニオン、31…ガラス基板、32…ITO電極、33…SiO2膜、34…Co量子ドット、35…アニオンまたはカチオン、41…ガラス基板、42…ITO電極、43…ポリスチレン膜、44…C60量子ドット、45…銅薄板、51…ガラス基板、52…ITO電極、53…誘電体マトリックス、54…量子ドット、61…SiO2基板、62…ITO電極(X電極)、63…トンネリングバリア層、64…構造部、65…SiO2マトリックス、66…Si10量子ドット、67…トンネリングバリア層、68…ITO電極(Y電極)、69…カバーSiO2層、101…NSOMプローブ、102…金属コート、111…対物レンズ、121…パルスジェネレータ、131…光ディテクタ、132…ロックインアンプ、133…コンピュータ、200…屈折率変化素子、201…基板、202…ITO電極、203…構造部、204…トンネリングバリアSiO2層、205…Si10量子ドット、207…ソース電極、208…ドレイン電極、211…レーザ、212…ハーフミラー、213…ミラー、214…ハーフミラー、215…ミラー、220…スクリーン、301…ガラス基板、302…X電極、303…トンネリングバリア層、304…構造部、305…トンネリングバリア層、306…ガラス基板、307…Y電極、310…電源ユニット、320…コンピュータ、401…高屈折率セル、402…低屈折率セル、403…格子点、410…導波路、411〜413…光検出器(A〜C)。

Claims (8)

  1. 離散的なエネルギー準位をもつ複数の量子ドットとこれらの周囲を取り囲む誘電体マトリックスを含む構造部と、
    前記構造部を挟む1対の電極を有し、前記誘電体マトリックスを通して前記量子ドットへ1個の電子を注入してアニオンにし前記アニオンになった量子ドットがクーロンブロッケードを起こす電子注入部と、
    前記構造部に前記構造部の屈折率が変化した際に制御される光を照射する光照射部と
    を有することを特徴とする屈折率変化装置
  2. 離散的なエネルギー準位をもつ複数の量子ドットとこれらの周囲を取り囲む誘電体マトリックスを含む構造部と、
    前記構造部を挟む1対の電極を有し、前記誘電体マトリックスを通して前記量子ドットから1個の電子を排出してカチオンにし前記カチオンになった量子ドットがクーロンブロッケードを起こす電子排出部と、
    前記構造部に前記構造部の屈折率が変化した際に制御される光を照射する光照射部と
    を有することを特徴とする屈折率変化装置
  3. 前記電子注入部または前記電子排出部は前記構造部を挟む1対の電極であり、前記1対の電極のうち少なくとも一方は、前記構造部の一部に対応して設けられていることを特徴とする請求項1または2に記載の屈折率変化装置
  4. 前記電子注入部または前記電子排出部は前記構造部を挟む1対の電極であり、少なくとも一方の電極は光透過性であることを特徴とする請求項1または2に記載の屈折率変化装置
  5. 前記誘電体マトリックスの比誘電率が7以上であることを特徴とする請求項1または2に記載の屈折率変化装置
  6. 前記量子ドットは金属微粒子、半導体微粒子、フラーレン分子、カーボンナノチューブ、および有機分子からなる群より選択される少なくとも1種を含むことを特徴とする請求項1または2に記載の屈折率変化装置
  7. 離散的なエネルギー準位をもつ複数の量子ドットとこれらの周囲を取り囲む誘電体マトリックスを含む構造部と、前記構造部を挟む1対の電極を有し、前記誘電体マトリックスを通して前記量子ドットへ1個の電子を注入してアニオンにし前記アニオンになった量子ドットがクーロンブロッケードを起こす電子注入部または前記誘電体マトリックスを通して前記量子ドットから1個の電子を排出してカチオンにし前記カチオンになった量子ドットがクーロンブロッケードを起こす電子排出部と、前記構造部に前記構造部の屈折率が変化した際に制御される光を照射する光照射部とを有し、前記複数の量子ドットのうち1個の電子が注入されてアニオンになるかまたは1個の電子が排出されてカチオンになり、クーロンブロッケードを起こすものが不均一に存在し、前記構造部は屈折率の分布が不均一になっていることを特徴とする屈折率変化装置
  8. 離散的なエネルギー準位をもつ複数の量子ドットとこれらの周囲を取り囲む誘電体マトリックスを含む構造部を用意し、前記量子ドットに対して1個の電子を注入または排出してアニオンまたはカチオンにして前記アニオンまたはカチオンになった量子ドットがクーロンブロッケードを起こし、前記構造部へ照射された光の屈折率を変化させることを特徴とする屈折率変化方法。
JP2004285001A 2004-09-29 2004-09-29 屈折率変化装置および屈折率変化方法 Expired - Fee Related JP4383996B2 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2004285001A JP4383996B2 (ja) 2004-09-29 2004-09-29 屈折率変化装置および屈折率変化方法
US11/229,304 US7772551B2 (en) 2004-09-29 2005-09-19 Refractive index variable element and method of varying refractive index
KR1020050090197A KR100724035B1 (ko) 2004-09-29 2005-09-28 굴절률 가변 소자 및 굴절률을 변화시키는 방법
CNB2005101076117A CN100394254C (zh) 2004-09-29 2005-09-29 折射率变化元件和折射率变化方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004285001A JP4383996B2 (ja) 2004-09-29 2004-09-29 屈折率変化装置および屈折率変化方法

Publications (2)

Publication Number Publication Date
JP2006098753A JP2006098753A (ja) 2006-04-13
JP4383996B2 true JP4383996B2 (ja) 2009-12-16

Family

ID=36099167

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004285001A Expired - Fee Related JP4383996B2 (ja) 2004-09-29 2004-09-29 屈折率変化装置および屈折率変化方法

Country Status (4)

Country Link
US (1) US7772551B2 (ja)
JP (1) JP4383996B2 (ja)
KR (1) KR100724035B1 (ja)
CN (1) CN100394254C (ja)

Families Citing this family (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4372048B2 (ja) * 2005-05-30 2009-11-25 株式会社東芝 屈折率変化素子
JP2007328188A (ja) * 2006-06-08 2007-12-20 Toshiba Corp 近接場相互作用制御素子
JP4469871B2 (ja) * 2007-03-28 2010-06-02 株式会社東芝 光導波路
US20080292979A1 (en) * 2007-05-22 2008-11-27 Zhe Ding Transparent conductive materials and coatings, methods of production and uses thereof
US20080296662A1 (en) * 2007-05-30 2008-12-04 Gerhard Poeppel Discrete Trap Memory (DTM) Mediated by Fullerenes
US20080311738A1 (en) * 2007-06-18 2008-12-18 Lakshmi Supriya Method of forming an interconnect joint
US20090056589A1 (en) * 2007-08-29 2009-03-05 Honeywell International, Inc. Transparent conductors having stretched transparent conductive coatings and methods for fabricating the same
US7711212B2 (en) * 2007-09-21 2010-05-04 International Business Machines Corporation Junction field effect transistor geometry for optical modulators
JP4477052B2 (ja) 2007-10-03 2010-06-09 株式会社東芝 金属ナノ粒子無機複合体の製造方法および金属ナノ粒子無機複合体
US7727578B2 (en) * 2007-12-27 2010-06-01 Honeywell International Inc. Transparent conductors and methods for fabricating transparent conductors
US7642463B2 (en) * 2008-01-28 2010-01-05 Honeywell International Inc. Transparent conductors and methods for fabricating transparent conductors
US7960027B2 (en) * 2008-01-28 2011-06-14 Honeywell International Inc. Transparent conductors and methods for fabricating transparent conductors
US8308282B2 (en) * 2008-01-28 2012-11-13 Hitachi Industrial Equipment Systems Co., Ltd. Ink jet recording device
JP2011524064A (ja) 2008-05-06 2011-08-25 キユーデイー・ビジヨン・インコーポレーテツド 量子閉じ込め半導体ナノ粒子を含有する固体照明装置
US9207385B2 (en) 2008-05-06 2015-12-08 Qd Vision, Inc. Lighting systems and devices including same
JP4595007B2 (ja) * 2008-07-23 2010-12-08 株式会社東芝 光導波路システム
JP4477083B2 (ja) * 2008-09-24 2010-06-09 株式会社東芝 金属ナノ粒子無機複合体の製造方法、金属ナノ粒子無機複合体およびプラズモン導波路
FR2937798B1 (fr) * 2008-10-24 2010-12-24 Saint Gobain Substrat verrier avec electrode notamment destine a un dispositif a diode electroluminescente organique
TW201032340A (en) * 2009-02-26 2010-09-01 Nat Applied Res Laboratories A silicon quantum dot near-infrared phototransistor detector
WO2010129374A2 (en) * 2009-04-28 2010-11-11 Qd Vision, Inc. Optical materials, optical components, and methods
WO2011060180A1 (en) 2009-11-11 2011-05-19 Qd Vision, Inc. Device including quantum dots
US8455898B2 (en) 2011-03-28 2013-06-04 Osram Sylvania Inc. LED device utilizing quantum dots
WO2013019299A2 (en) * 2011-05-11 2013-02-07 Qd Vision, Inc. Method for processing devices including quantum dots and devices
CN102426298B (zh) * 2011-06-17 2014-02-05 上海华力微电子有限公司 一种利用折射率来监测薄膜介电常数的方法
WO2013172078A1 (ja) * 2012-05-16 2013-11-21 浜松ホトニクス株式会社 光学素子及び光検出器
US9494734B1 (en) * 2012-07-27 2016-11-15 Faquir Chand Jain Article and method for implementing electronic devices on a substrate using quantum dot layers
CN103884147B (zh) * 2014-04-14 2016-09-21 方墨希 一种具有消毒和保鲜功能的低温保藏设备
WO2018026141A1 (ko) * 2016-08-04 2018-02-08 주식회사 옵티팜 퀀타매트릭스 어세이 플랫폼 기반 결핵 및 비결핵 항산균의 검출 및 동정과 결핵균의 리팜핀 내성여부를 동시 확인할 수 있는 진단법 및 그 키트
CN108983446B (zh) * 2017-06-01 2021-04-06 Tcl科技集团股份有限公司 一种光强调制器
EP3477364B1 (en) * 2017-10-31 2023-11-22 Samsung Electronics Co., Ltd. Light emission device including output coupler and optical apparatus adopting the same
EP3477363B1 (en) * 2017-10-31 2022-04-20 Samsung Electronics Co., Ltd. Optical modulating device and apparatus including the same
CN111221196B (zh) * 2020-03-12 2022-05-17 福州大学 一种快速响应的量子点电子纸显示器及其制备方法

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4818079A (en) * 1987-01-15 1989-04-04 California Institute Of Technology Multiple quantum well optical modulator
JPH05289123A (ja) 1992-04-14 1993-11-05 Ricoh Co Ltd 面型光変調器
US5747180A (en) * 1995-05-19 1998-05-05 University Of Notre Dame Du Lac Electrochemical synthesis of quasi-periodic quantum dot and nanostructure arrays
JP4071360B2 (ja) 1997-08-29 2008-04-02 株式会社東芝 半導体装置
US6005707A (en) 1997-11-21 1999-12-21 Lucent Technologies Inc. Optical devices comprising polymer-dispersed crystalline materials
US6728281B1 (en) * 2000-02-10 2004-04-27 The Board Of Trustees Of The Leland Stanford Junior University Quantum-dot photon turnstile device
JP2002217488A (ja) 2001-01-19 2002-08-02 Ricoh Co Ltd 面発光レーザ素子および面発光レーザシステムおよび波長調整方法および面発光レーザアレイおよび光インターコネクションシステムおよびローカルエリアネットワークシステム
IL146226A0 (en) * 2001-10-29 2002-12-01 Yissum Res Dev Co Near infra-red composite polymer-nanocrystal materials and electro-optical devices produced therefrom
CN1228855C (zh) * 2002-08-07 2005-11-23 中国科学院物理研究所 以库仑阻塞原理设计的单电子存储器及其制备方法
US20040105476A1 (en) * 2002-08-19 2004-06-03 Wasserbauer John G. Planar waveguide surface emitting laser and photonic integrated circuit
US6859477B2 (en) * 2003-01-07 2005-02-22 University Of Texas Optoelectronic and electronic devices based on quantum dots having proximity-placed acceptor impurities, and methods therefor

Also Published As

Publication number Publication date
JP2006098753A (ja) 2006-04-13
US7772551B2 (en) 2010-08-10
KR20060051706A (ko) 2006-05-19
CN100394254C (zh) 2008-06-11
KR100724035B1 (ko) 2007-06-04
CN1755427A (zh) 2006-04-05
US20060067602A1 (en) 2006-03-30

Similar Documents

Publication Publication Date Title
JP4383996B2 (ja) 屈折率変化装置および屈折率変化方法
Rivera et al. Light–matter interactions with photonic quasiparticles
Kurzmann et al. Auger recombination in self-assembled quantum dots: quenching and broadening of the charged exciton transition
US7372067B2 (en) Refractive index changing apparatus and method
JP4372048B2 (ja) 屈折率変化素子
US7471863B2 (en) Near-field interaction control element
Babaze et al. Electronic exciton–plasmon coupling in a nanocavity beyond the electromagnetic interaction picture
Ahmadivand Tunneling plasmonics: vacuum rabi oscillations in carbon nanotube mediated electromigrated nanojunctions
Yamagiwa et al. Visualization of surface plasmons propagating at the buried organic/metal interface with silver nanocluster sensitizers
Kang et al. Terahertz quantum plasmonics at nanoscales and angstrom scales
Du et al. How to obtain the correct Rabi splitting in a subwavelength interacting system
US10762962B2 (en) State-changeable device
Liu et al. Waveguide-integrated light-emitting metal–insulator–graphene tunnel junctions
Pommier et al. Nanoscale electrical excitation of surface plasmon polaritons with a nanoantenna tunneling junction
Lozovoi et al. Detection and modeling of hole capture by single point defects under variable electric fields
Di Gaspare et al. Electrically tunable nonlinearity at 3.2 terahertz in single-layer graphene
Hirori et al. High-Order Harmonic Generation in Solids: The Role of Intraband Transitions in Extreme Nonlinear Optics
JP3993558B2 (ja) 屈折率可変素子及び屈折率変化方法
Agreda et al. Electrostatic Control over Optically Pumped Hot Electrons in Optical Gap Antennas
Arai et al. All-Solid-State Optical-Field-Sensitive Detector for Sub-Nanojoule Pulses Using Metal–Insulator Hybrid Nanostructure
Du et al. Transport properties and terahertz dynamics of single molecules
Groß Controlling Light-Matter Interaction between Localized Surface Plasmons and Quantum Emitters
Rana Low Temperature Steady State Nonlinear Spectroscopy of Excitons in Monolayer MoSe2
Vardi Electrical transport and plasmonic effects of metallic nanoparticle-based tunnel junctions
Mojibpour Single Plasmonic Nanoparticle Electroluminescence

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080226

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090310

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090508

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090602

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090803

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090901

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090924

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121002

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121002

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131002

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees