JP4382898B2 - Peroxide derivatives with antimalarial activity - Google Patents

Peroxide derivatives with antimalarial activity Download PDF

Info

Publication number
JP4382898B2
JP4382898B2 JP03168999A JP3168999A JP4382898B2 JP 4382898 B2 JP4382898 B2 JP 4382898B2 JP 03168999 A JP03168999 A JP 03168999A JP 3168999 A JP3168999 A JP 3168999A JP 4382898 B2 JP4382898 B2 JP 4382898B2
Authority
JP
Japan
Prior art keywords
compound
reaction
mmol
group
added
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP03168999A
Other languages
Japanese (ja)
Other versions
JP2000229965A (en
Inventor
有佑 綿矢
正朋 野島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taiho Pharmaceutical Co Ltd
Original Assignee
Taiho Pharmaceutical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taiho Pharmaceutical Co Ltd filed Critical Taiho Pharmaceutical Co Ltd
Priority to JP03168999A priority Critical patent/JP4382898B2/en
Publication of JP2000229965A publication Critical patent/JP2000229965A/en
Application granted granted Critical
Publication of JP4382898B2 publication Critical patent/JP4382898B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/30Against vector-borne diseases, e.g. mosquito-borne, fly-borne, tick-borne or waterborne diseases whose impact is exacerbated by climate change

Description

【0001】
【発明の属する技術分野】
本発明は、マラリア原虫類による感染症の予防及び治療に有用な新規化合物に関する。
【0002】
【従来の技術】
マラリアは、プラスモジウム(Plasmodium)属に属する原虫の感染によって起こる伝染性疾患で、ハマダラ蚊を媒介として感染し、間欠的な熱発作、貧血、脾腫等の症状を示す。マラリアは、近年、自然や環境の変化に伴い猛威を振るい始めており、その推定感染患者数は年間3億〜5億人、年間死亡者数は、150〜300万人という世界的にも重要な疾病である。ヒトに感染するマラリア原虫には、アフリカ、アジア、ラテンアメリカの熱帯地域全体に分布する熱帯熱マラリア原虫(P.falciparum)、世界各地の熱帯と温帯の一部に分布する三日熱マラリア原虫(P.vivax)、世界各地に分布する四日熱マラリア原虫(P.malariae)及び主として熱帯西アフリカに分布する卵形マラリア原虫(P.ovale)等の原虫が挙げられるが、その中でも熱帯熱マラリアがもっとも重篤な症状を示し、発症後1〜2週間で脳症、腎症、溶血性貧血、肺水腫、心臓障害、重症腸炎などを伴って容易に重症マラリアに進展し、短期間内に多臓器不全を示し宿主を死に至らしめることが多い。
現在使用されている薬剤の代表的なものにはクロロキン、プリマキン、アルテミシニン、メフロキン、ピリメサミン等が挙げられるが、これら薬剤は毒性の強いものが多いこと、更に多くの薬剤に対する耐性原虫が出現しており、この薬剤耐性マラリアの拡散が化学療法の昨今の問題点となっている。薬剤耐性マラリアに唯一有効な薬剤としてキニーネが存在するが、腎不全を引き起こす可能性が極めて高く、現在の医療水準から見てリスクの高い治療薬である。このような状況からも、抗マラリア活性が高くかつ安全性の高い新薬の開発が望まれている。
本発明に類似の化合物としては、例えば特公昭59−46266号公報、特開平8−67704号公報等に記載の有機ペルオキシド化合物が公知であるが、これらはポリマー製造の際の開始剤として使用されているのみである。
【0003】
【発明が解決しようとする課題】
本発明の目的は、毒性が低く、極めて高い抗マラリア活性を有する新規化合物を提供することにある。
【0004】
【課題を解決するための手段】
本発明者らは、このような課題を解決するために鋭意研究を重ねた結果、下記一般式(1)で表されるペルオキシド誘導体が極めて高い抗マラリア活性を有することを見出し、本発明を完成するに至った。
すなわち、本発明は一般式(1)で表されるペルオキシド誘導体に関するものである。
【化2】

Figure 0004382898
[式中、Cは炭素数1〜6の直鎖状または分枝状の低級アルキル基を置換基として有しても良い炭素数3〜12の単環の脂環式炭化水素環基またはアマダンチリデン基、nは0〜6の整数を示す。]
【0005】
上記一般式(1)において、Cの置換基を有してもよい脂環式炭化水素環基としては、例えばシクロプロピリデン、シクロブチリデン、シクロペンチリデン、シクロヘキシリデン、シクロへプチリデン、シクロオクチリデン、シクロノニリデン、シクロデシリデン、シクロウンデシリデン、シクロドデシリデン基等の炭素数3〜12の単環の脂環式炭化水素基;ビシクロブチリデン、ビシクロオクチリデン、ビシクロノニリデン、ノルボルニリデン、ノルボレニリデン、アダマンチリデン、ノルアダマンチリデン基等の架橋環又は多環の脂環式炭化水素基等が挙げられ、好ましくは炭素数6〜12の単環の脂環式炭化水素基又はアダマンチリデン基であり、より好ましくはシクロヘキシリデン、シクロドデシリデン又はアダマンチリデン基である。
また、Cの脂環式炭化水素環基が有してもよい置換基としては、例えばメチル、エチル、n−プロピル、i−プロピル、n−ブチル、i−ブチル、sec−ブチル、tert−ブチルとして例示される直鎖又は各種分枝したペンチル基等の炭素数1〜6の直鎖状又は分枝状の低級アルキル基であり、より好ましくはtert−ブチル基である。
本発明化合物のうち、好ましい化合物としては一般式(1)において、Cが置換基として炭素数1〜6の直鎖状又は分枝状の低級アルキル基を有しても良い脂環式炭化水素環基である化合物であり、より好ましくはCが4−tert−ブチルシクロヘキシリデン、シクロドデシリデン又はアダマンチリデン基であり、nが1〜4である化合物である。
【0006】
【発明の実施の形態】
以下、本発明の実施の形態について詳細に説明する。
上記一般式(1)で表される本発明化合物は下記の方法により製造できる。
【化3】
Figure 0004382898
[式中、C及びnは上記に同じ。Xはハロゲン原子を示す。]
上記反応工程式中、Xで表されるハロゲン原子としては、フッ素原子、塩素原子、臭素原子、ヨウ素原子であり、好ましくは臭素原子、ヨウ素原子である。
【0007】
<反応工程(i)>
本反応工程は、J.Org.Chem.,62,4949(1997)記載の方法に準じて行われる。すなわち、一般式(2)で表される公知化合物を過酸化水素存在下、適当な溶媒中でオゾンと反応させることにより一般式(3)で表されるビスヒドロペルオキシド化合物を得る。本工程で用いられる溶媒としては反応に関与しないものであれば特に制限はなく、エーテル、テトラヒドロフラン、アセトニトリル等を例示でき、好ましくはエーテルである。過酸化水素は30〜100%のものが使用できる。反応に際しては、化合物(2)に対して、過酸化水素を1〜10倍モル量、好ましくは1〜3倍モル量使用し、オゾンを0.5〜5倍モル量、好ましくは1〜2倍モル量使用する。反応温度は−70〜20℃であり、反応時間は5〜30分である。得られた化合物(3)は、通常の分離手段、例えばカラムクロマトグラフィー、再結晶等により反応混合物から容易に単離精製することが出来る。
上記反応工程(i)で得られた化合物(3)は単離又は単離することなく反応工程(ii)に使用できる。
【0008】
<反応工程(ii)>
上記反応工程(i)で得られた化合物(3)と一般式(4)で表される化合物を、塩基存在下、適当な溶媒中で反応させることにより、一般式(1)で表される本発明化合物を得る。
本工程で使用される塩基としては、例えば水酸化カリウム、水酸化ナトリウム、水酸化セシウム等のアルカリ金属の水酸化物;ナトリウムメトキシド、ナトリウムエトキシド等のアルカリ金属アルコキシド、またトリエチルアミン、ジイソプロピルエチルアミン等の第三級アミンが用いられ、好ましくは水酸化セシウムである。溶媒としては、非水溶媒であれば特に制限はないが、特にジメチルホルムアミド、ジメチルスルホキシドの様な極性の高いものが好まれる。また18−クラウン−6の様なクラウンエーテル類を反応促進剤として添加することも可能である。反応に際しては、化合物(3)に対して化合物(4)及び塩基をそれぞれ1〜3倍モル使用する。反応促進剤を添加する場合には、化合物(3)に対して1〜10モル量を使用する。反応温度は0〜50℃、好ましくは10〜30℃であり、反応時間は1〜48時間である。得られた化合物(1)は、通常の分離手段、例えばカラムクロマトグラフィー、再結晶等により反応混合物から容易に単離精製することが出来る。
【0009】
本発明化合物をマラリア原虫類による感染症の予防及び治療に使用する場合、投与経路としては、経口、皮下注射、静脈注射、局所投与等のいずれでもよい。また、製剤としては、通常、製薬的に許容される担体や賦形剤、その他添加剤を用いて製造した散剤、錠剤、細粒剤、丸剤、カプセル剤、顆粒剤等の経口剤、点眼剤、注射剤、坐剤等の非経口剤が挙げられる。製薬的に許容される担体や賦形剤、その他添加剤としては、グルコース、ラクトース、ゼラチン、マンニトール、でんぷんペースト、トリケイ酸マグネシウム、コーンスターチ、ケラチン、コロイド状シリカ等があり、さらには、安定剤、増量剤、着色剤及び芳香剤の様な補助剤を含有してもよい。これらの製剤は、各々当業者に公知慣用の製造方法により製造できる。
本発明化合物の製剤中の配合量としては、0.1〜100重量%が好ましく、さらに好ましくは0.1〜80重量%であり、0.1〜50重量%が好適である。
また、1日当たりの投与量は、患者の症状、体重、年齢、性別等によって異なり一概に決定できないが、通常成人1日当り本発明化合物を0.1〜1000mg、好ましくは1〜600mgを1回又は2〜4回程度に分けて投与するのが好ましい。
【0010】
【実施例】
次に本発明を製造例、実施例、試験例により具体的に説明する。
<製造例1>(シクロドデシリデン)ビスヒドロペルオキシド(化合物a)の合成
斉藤等の方法(Saito,I.;Nagata,R.;Yuba,K.;Matuura,T.Tetrahedron Lett.1983,24,1737)で調整した過酸化水素の2.5molエーテル溶液25mlに公知化合物であるメトキシメチレンシクロドデカン630mg(3.00mmol)を溶かし、−70℃でオゾン化を行った(通常のオゾン化装置(Nippon Ozone Model ON−1−2(日本オゾン株式会社製))を使い、15分間50l/hrの流速で酸素を吹き込むことにより、使用したメトキシメチレンシクロドデカンと等量のオゾンを発生させた)。反応終了後、70mlのエーテルを加え、有機層を重曹水、次いで飽和食塩水で洗った後、無水硫酸マグネシウムで乾燥させた。次いで、シリカゲルカラムクロマトグラフィー(留出液:エーテル−ヘキサン、2:8)により、標記化合物aを232mg(収率33%)得た。物性値を以下に示す。
融点:140−141℃
H NMR(CDCl)δ: 1.2-1.8 (m, 22 H), 8.13 (br s, 2 H)
13C NMR(CDCl)δ: 19.28, 21.86, 22.15, 6.02, 26.19, 26.29, 112.64.
【0011】
<製造例2>(4−tert−ブチルシクロヘキシリデン)ビスヒドロペルオキシド(化合物b)の合成
製造例1と同様に調整した過酸化水素を含むエーテル溶液25mlに4−tert−ブチル−2−メトキシメチレンシクロヘキサン546mg(3.00mmol)を溶かし、−70℃でオゾン化を行った。反応終了後、上記製造例1と同様の方法で処理した後、シリカゲルカラムクロマトグラフィー(留出液:エーテル−ヘキサン、2:8)により、標記化合物bを285mg(収率47%)得た。以下に物性値を示す。
融点:83−84℃(エーテル−ヘキサン)
H NMR(CDCl)δ: 0.87 (s, 9 H), 1.1-1.8 (m, 9 H), 9.27 (s, 2 H)
13C NMR(CDCl)δ: 23.32, 27.58, 29.70, 32.31, 47.39, 110.00.
元素分析:Anal.Calcd. for C10H20O4: C, 58.80; H, 9.87. Found: C, 58.87; H, 9.80.
【0012】
<製造例3>(2−アダマンチリデン)ビスヒドロペルオキシド(化合物c)の合成
製造例1と同様に調整した過酸化水素を含むエーテル溶液25mlに2−メトキシメチレンアダマンタン712mg(4.00mmol)を溶かし、−70℃でオゾン化を行った。反応終了後、上記製造例1と同様の方法で処理した後、シリカゲルカラムクロマトグラフィー(留出液:エーテル−ヘキサン、2:8)により、標記化合物cを335mg(収率42%)得た。以下に物性値を示す。
融点:144−145℃(エーテル−ヘキサン)
H NMR (CDCl)δ:1.7-2.1 (m, 14 H), 8.82 (s, 2 H)
13C NMR (CDCl)δ:26.94, 31.14, 33.68, 36.98, 112.88.
【0013】
<実施例1>1,2,6,7−テトラオキサスピロ[7.11]ノナデカン(化合物1)の合成
アルゴン雰囲気下で、水酸化セシウムの一水塩504mg(3.00mmol)のジメチルホルムアミド溶液10mlを調整した。この溶液に、シリンジを用いて、製造例1で得られた化合物a348mg(1.50mmol)のジメチルホルムアミド溶液5mlを、次いで1,3−ジヨードプロパン666mg(2.25mmol)のジメチルホルムアミド溶液5mlを、0℃で、それぞれ10分間かけて加えた。その後、室温で16時間撹拌した。反応終了後、70mlのエーテルを加え、有機層を重曹水、次いで飽和食塩水で洗った後、無水硫酸マグネシウムで乾燥させた。溶媒を減圧で留去後、残渣のシリカゲルカラムクロマトグラフィー(留出液:エーテル−ヘキサン、1:25)により、標記化合物1を164mg(収率40%)得た。以下に物性値を示す。
融点:83−84℃(ヘキサン)
H NMR(CDCl)δ:1.3-1.7 (m, 22 H), 2.1-2.2 (m, 2 H), 4.12 (dt, J = 12.5, 5.0 Hz, 2 H), 4.31 (dt, J = 12.5, 5.0 Hz, 2 H)
13C NMR(CDCl)δ: 19.36, 21.90, 22.17, 25.91, 26.07, 26.25, 30.40, 73.94, 112.13.
元素分析:Anal. Calcd. for C15H26O4: C, 66.14; H, 10.36. Found: C, 65.91; H, 10.42.
【0014】
<実施例2>1,2,6,7−テトラオキサスピロ[8.11]イコサン(化合物2)の合成
製造例1で得られた化合物a348mg(1.50mmol)と水酸化セシウムの一水塩 504mg(3.00mmol)をジメチルホルムアミド25mlに溶かし、これに1,3−ジヨードブタン698mg(2.25mmol)を10分間かけて加えた。その後、反応を室温で16時間行った。反応終了後、上記実施例1と同様の処理法で反応混合物を処理した後、シリカゲルカラムクロマトグラフィー(留出液:エーテル−ヘキサン、1:25)により、標記化合物2を129mg(収率30%)得た。以下に物性値を示す。
融点:97−98℃(ヘキサン)
H NMR(CDCl)δ:1.3-1.7 (m, 24 H), 2.2-2.3 (m, 2 H), 3.66 (t, J = 12.2 Hz, 2 H), 4.26 (dd, J = 12.2, 3.9 Hz, 2 H)
13C NMR(CDCl)δ:19.30, 21.89, 22.17, 25.95, 26.11, 26.43, 30.93, 32.51, 73.85, 111.82 .
元素分析: Anal. Calcd. for C16H30O4: C, 67.10; H, 10.56. Found: C, 66.66; H, 10.49 .
【0015】
<実施例3>1,2,6,7−テトラオキサスピロ[9.11]ヘニコサン(化合物3)の合成
水酸化セシウムの一水塩1008mg(6.00mmol)をジメチルホルムアミド溶液20mlに溶かし、これに製造例1で得られた化合物a696mg(3.00mmol)を溶かしたジメチルホルムアミド溶液20ml及び1,3−ジヨードペンタン1458mg(4.50mmol)を溶かしたジメチルホルムアミド溶液20mlを、別々のシリンジを用いて、0℃で1時間かけて加えた。その後、反応を室温で16時間行った。反応終了後、上記実施例1と同様の処理法で反応混合物を処理した後、シリカゲルカラムクロマトグラフィー(留出液:エーテル−ヘキサン、1:25)により、標記化合物3を153mg(収率17%)得た。以下に物性値を示す。
融点:51−52℃(ヘキサン)
H NMR(CDCl)δ:1.3-1.8 (m, 24 H), 19-2.1 (m, 4 H), 4.1-4.2 (m, 4 H)
13C NMR(CDCl)δ:19.26, 21.92, 22.25, 24.89, 25.97, 26.06, 26.65, 28.45, 76.64, 110.89.
【0016】
<実施例4>1,2,6,7−テトラオキサスピロ[8.11]ドコサン(化合物4)の合成
水酸化セシウムの一水塩1008mg(6.00mmol)をジメチルホルムアミド溶液20mlに溶かし、これに製造例1で得られた化合物a696mg(3.00mmol)を溶かしたジメチルホルムアミド溶液20ml及び1,3−ジヨードヘキサン1521mg(4.50mmol)を溶かしたジメチルホルムアミド溶液20mlを、別々のシリンジを用いて、0℃で1時間かけて加えた。その後、反応を室温で16時間行った。反応終了後、上記処理法で反応混合物を処理した後、シリカゲルカラムクロマトグラフィー(留出液:エーテル−ヘキサン、1:25)により、標記化合物4を168mg(収率18%)得た。以下に物性値を示す。
融点:48−49℃(ヘキサン)
H NMR(CDCl)δ:1.3-1.8 (m, 30 H), 4.02 (t, J = 4.8 Hz, 4 H)13C NMR(CDCl)δ:19.35, 21.89, 22.23, 25.00, 26.02, 26.13, 26.43, 26.99, 74.63, 112.06.
【0017】
<実施例5>7,8,12,13−テトラオキサスピロ[6.8]トリデカン(化合物5)の合成
製造例2で得られた化合物b125mg(0.61mmol)と水酸化セシウムの一水塩 205mg(1.22mmol)をジメチルホルムアミド15mlに溶かし、これに1,3−ジヨードプロパン272mg(0.92mmol)を10分間かけて加えた。その後、反応を室温で16時間続けた。反応終了後、上記実施例1と同様の処理法で反応混合物を処理した後、シリカゲルカラムクロマトグラフィー(留出液:エーテル−ヘキサン、1:25)により、標記化合物5を38mg(収率26%)得た。以下に物性値を示す。
融点:58−59℃(ヘキサン)
H NMR(CDCl)δ:0.86 (s, 9 H), 1.1-1.8 (m, 9 H), 2.1-2.3 (m, 2 H), 4.10-4.2 (m, 2 H), 4.3-4.5 (m, 2 H)
13C NMR(CDCl)δ:23.34, 23.61, 27.64, 28.59, 30.35, 31.93, 32.37, 47.44, 73.76, 74.02, 107.92.
元素分析:Anal. Calcd. for C13H24O4 : C, 63.91; H, 9.90. Found: C, 63.60; H, 9.97.
【0018】
<実施例6>スピロ[トリシクロ[3.3.1.13,7]デカン]2,3’−[1,2,4,5]テトロキソカン(化合物6)の合成
製造例3で得られた化合物c313mg(1.57mmol)と水酸化セシウムの一水塩528mg(3.14mmol)をジメチルホルムアミド15mlに溶かし、これに1,3−ジヨードプロパン695mg(2.35mmol)を10分間かけて加えた。その後、反応を室温で16時間行った。反応終了後、上記処理法で反応混合物を処理した後、シリカゲルカラムクロマトグラフィー(留出液:エーテル−ヘキサン、1:25)により、標記化合物6を73mg(収率19%)得た。以下に物性値を示す。
融点:34−35℃(ヘキサン)
H NMR(CDCl)δ:1.6-2.3 (m, 16 H), 4.12 (dt, J = 12.9, 5.6 Hz, 2 H), 4.35 (dt, J = 12.5, 4.8 Hz, 2 H)
13C NMR(CDCl)δ:27.06, 30.30, 31.81, 33.67, 33.98, 37.25, 73.94, 109.95.
【0019】
<熱帯熱マラリア原虫の培養検定試験>
本実験では、熱帯熱マラリア原虫としてP.falciparum FCR-3 strain(ATCC 30932)を用いた。また抗マラリア剤として市販されているクロロキンの耐性株に対する本発明化合物の効果を検証するためにP.falciparum K1 strainのクロロキン耐性マラリア原虫を用いた。実験に用いた培地は、濾過滅菌したRPMI1640培地で、pHを7.4に合わせ、ヒト血清を10%となるように添加した。マラリア原虫の培養はO濃度5%、CO濃度5%、N濃度90%、温度は36.5℃で行った。ヘマトクリット値(赤血球浮遊液中に占める赤血球の体積の割合)は5%にして用いた。培養開始時の熱帯熱マラリア原虫の初期感染率は0.1%とした。24穴培養プレートを用いて培養し、培地は毎日交換し、感染率4%で植え継ぎを行った。感染率は薄層塗沫標本を作成し、ギムザ染色あるいはDiff-Qick染色を行った後、顕微鏡(油浸、1000×)下で計測し、マラリア原虫感染率を下記式より算出した。
マラリア原虫感染率(%)={(感染赤血球数)/(総赤血球数)}×100
【0020】
<試験例1>マラリア原虫増殖阻害スクリーニング試験
培養したマラリア原虫感染赤血球を遠心で集め、血清を含む培地で洗浄を行った後、非感染赤血球を加え、初期感染率を0.3%とした。この時のヘマトクリット値は3%である。実験に用いるサンプルは滅菌水、ジメチルホルムアミド(DMF)あるいはジメチルスルホキシド(DMSO)に溶解し、所定濃度のサンプルとした。
24穴培養プレートにサンプルを5〜10μlずつ加えた。サンプルはduplicateあるいはtriplicateにとった。コントロールは滅菌水、DMFあるいはDMSOを10μl/ウエル加えた。
次に、あらかじめ用意しておいた熱帯熱マラリア原虫培養液を990〜995μlずつ加え、静かにピペッティングを行い培地に一様に懸濁させた。培養プレートはCO−O−N(5%、5%、90%)インキュベーター中で72時間培養した後、それぞれのウエルについて薄層塗沫標本を作成し、染色した後、顕微鏡下で観察し、試薬を加えたものの感染率およびコントロールの感染率を算出した。
上記で求めたマラリア原虫感染率から次の式によって増殖率を算出することにより、マラリア原虫に対する50%増殖阻害濃度(EC50)を求めた。結果を表1に示す。
増殖率(%)={([b]−[a])/([c]−[a])}×100
a:初期感染率
b:サンプル添加時の感染率
c:サンプル非添加時(コントロール)の感染率
【0021】
<試験例2>マウスFM3A細胞増殖阻害試験
マウス乳がん由来FM3A細胞の野生株であるF28−7株を用いた。培地はES培地に非働化した胎児牛血清を2%となるように添加し、CO濃度5%、37℃で培養した。この条件下でのFM3A細胞の倍加時間は約12時間であった。
前培養を行い、対数増殖期に入った細胞を5×10cells/mlになるように培地で希釈した。サンプルはマラリア原虫の抗マラリア活性測定時調製したものを用いた。24穴培養プレートにサンプル溶液を5〜10μlずつ加えた(培地等を加えると最終濃度は1×10−4〜1×10−6となった)。化合物はduplicateあるいはtriplicateにとり、コントロールとして滅菌水、DMFあるいはDMSOを10μl加えたウエルも同時に用意した。次に、用意しておいた培養細胞浮遊液を990〜995μlずつ加え、静かにピペッティングを行い培地に一様に懸濁させた。48時間培養した後、それぞれのウエルについて細胞数をセルコントローラー(CC−108、Toa Medical Electrics社製)で計数し、下記式より増殖率を算出した。
増殖率(%)={([C]−[A])/([B]−[A])}×100
A:初期細胞数
B:48時間後のコントロールの細胞数
C:サンプル添加した48時間後の細胞数
細胞増殖阻害活性は、サンプルを添加したウエルの細胞数およびコントロールの細胞数から算出した。これにより、サンプルの細胞毒性を評価し、細胞増殖阻害濃度(EC50)で示した。EC50値とはマラリア原虫、あるいはFM3A細胞の培地にサンプルを添加していないコントロールの増殖率、あるいはマラリア原虫感染率を100%とし、サンプル添加によってコントロールの増殖率を50%阻害するサンプルの濃度のことである(モル濃度で表示する)。結果を表1に示す。
サンプルの抗マラリア作用は、FM3A細胞に対するマラリア原虫のサンプルのEC50値の比(化学療法係数、下記式参照)から評価し、薬効判定を行った。また、参考までに抗マラリア剤として利用されているクロロキンについても同様の試験を行った。結果を表1に示す。
化学療法係数=(マウスFM3A細胞に対するサンプルのEC50値)
÷(熱帯熱マラリア原虫に対するサンプルのEC50値)
【0022】
【表1】
Figure 0004382898
【0023】
以上の結果、本発明化合物は、細胞毒性が低く、マラリア原虫増殖阻害活性を有することが判明した。また、クロロキン耐性原虫に対しても効果が保持されていることが判明した。
【0024】
<試験例3>ネズミマラリア原虫感染マウスを用いた原虫抑制試験
本実験はPeters,W.and Richrds,W.H.G.Antimalarial drugs I,in:W.Peters,W.H.G.Richards(Eds.),Springer-Verlag,Berlin,1984,pp.229-230に記載の4-day suppressive testに準じて行った。用いたネズミマラリア原虫(P.berghei NK65株)は強毒原虫株で、このネズミマラリア原虫を感染させるとマウスは感染してから10日以内に全部死亡する。継代しているネズミマラリア原虫感染マウスの血中感染率が10%となった時点で実験を開始した。エーテル麻酔を行ったマウスの心臓採血を行い、リン酸緩衝生理食塩水1mlあたり5×10原虫/mlとなるように調製した原虫浮遊液を感染していないマウスに200μl腹腔内感染(i.p.)した。原虫感染2時間後、オリーブ油に懸濁した化合物を経口投与又は腹腔内投与(化合物5は腹腔内投与のみ)した。投与期間は、1日1回を連続4日間行い、実験開始4日目にマウスの尾より採血する。採血した血液で薄層塗抹標本を作製し、ギムザ染色により顕微鏡下で赤血球感染率を求めた(上記の熱帯熱マラリア原虫の培養検定試験と同様の方法で行った)。溶媒のみを投与したコントロール群に対する薬剤投与群の感染率の割合を調べることで50%原虫抑制濃度(ED50値)と90%原虫抑制濃度(ED90値)を求めた。結果を表2に示す。
【0025】
【表2】
Figure 0004382898
【0026】
以上の結果、本発明化合物は、優れたマラリア原虫増殖抑制活性を有することが判明した。
【0027】
【発明の効果】
本発明化合物は優れた抗マラリア作用を有し、マラリア等の原虫類による感染症の予防及び治療薬として有用である。またクロロキン耐性マラリアに対しても有効である。
【図面の簡単な説明】
【図1】各製造例、実施例における化合物の化学構造式の対照表を示す表図である。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to novel compounds useful for the prevention and treatment of infectious diseases caused by malaria parasites.
[0002]
[Prior art]
Malaria is a contagious disease caused by infection with a protozoa belonging to the genus Plasmodium, which is transmitted through an anemone mosquito, and exhibits symptoms such as intermittent heat stroke, anemia, and splenomegaly. In recent years, malaria has begun to intensify with changes in nature and the environment. Its estimated number of infected patients is 300 to 500 million per year and the number of deaths per year is 1.5 to 3 million. It is a disease. Malaria parasites that infect humans include Plasmodium falciparum (P. falciparum) distributed throughout the tropical regions of Africa, Asia and Latin America, and Plasmodium falciparum distributed in parts of the tropics and temperate regions around the world ( P. vivax), protozoan malaria parasite (P. malariae) distributed in various parts of the world, and egg-shaped malaria parasite (P. ovale) mainly distributed in tropical West Africa, among which P. falciparum malaria is Shows the most severe symptoms, and develops severe malaria easily with encephalopathy, nephropathy, hemolytic anemia, pulmonary edema, heart failure, severe enterocolitis, etc. within 1 to 2 weeks after onset. Often shows failure and causes the host to die.
Representative drugs currently in use include chloroquine, primaquine, artemisinin, mefloquine, and pyrimesamine, but these drugs are often highly toxic and the emergence of protozoa resistant to many drugs. The spread of drug-resistant malaria has become a recent problem of chemotherapy. Quinine exists as the only effective drug for drug-resistant malaria, but it is extremely likely to cause renal failure and is a high-risk therapeutic agent in view of current medical standards. Under such circumstances, development of a new drug with high antimalarial activity and high safety is desired.
As compounds similar to the present invention, for example, organic peroxide compounds described in JP-B-59-46266, JP-A-8-67704 and the like are known, and these are used as initiators in the production of polymers. Only.
[0003]
[Problems to be solved by the invention]
An object of the present invention is to provide a novel compound having low toxicity and extremely high antimalarial activity.
[0004]
[Means for Solving the Problems]
As a result of intensive studies to solve such problems, the present inventors have found that a peroxide derivative represented by the following general formula (1) has extremely high antimalarial activity, and completed the present invention. It came to do.
That is, the present invention relates to a peroxide derivative represented by the general formula (1).
[Chemical formula 2]
Figure 0004382898
[ Wherein C is a monocyclic alicyclic hydrocarbon ring group having 3 to 12 carbon atoms which may have a linear or branched lower alkyl group having 1 to 6 carbon atoms as a substituent, or amadantylidene. Group and n show the integer of 0-6. ]
[0005]
In the general formula (1), examples of the alicyclic hydrocarbon ring group which may have a C substituent include, for example, cyclopropylidene, cyclobutylidene, cyclopentylidene, cyclohexylidene, cycloheptylidene, cyclo Monocyclic alicyclic hydrocarbon groups having 3 to 12 carbon atoms such as octylidene, cyclononylidene, cyclodecylidene, cycloundecylidene, cyclododecylidene; bicyclobutylidene, bicyclooctylidene, bicyclononylidene, norbornylidene , Norborenylidene, adamantylidene, a bridged ring such as a noradamantylidene group or a polycyclic alicyclic hydrocarbon group, preferably a monocyclic alicyclic hydrocarbon group having 6 to 12 carbon atoms or an adamant A tylidene group, more preferably a cyclohexylidene, cyclododecylidene or adamantylidene group. That.
Examples of the substituent that the C alicyclic hydrocarbon ring group may have include, for example, methyl, ethyl, n-propyl, i-propyl, n-butyl, i-butyl, sec-butyl, tert-butyl. And a straight chain or branched lower alkyl group having 1 to 6 carbon atoms such as a straight chain or various branched pentyl groups, more preferably a tert-butyl group.
Among the compounds of the present invention, a preferred compound is an alicyclic hydrocarbon in which, in general formula (1), C may have a linear or branched lower alkyl group having 1 to 6 carbon atoms as a substituent. A compound that is a cyclic group, more preferably a compound in which C is 4-tert-butylcyclohexylidene, cyclododecylidene, or adamantylidene group, and n is 1 to 4.
[0006]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described in detail.
The compound of the present invention represented by the general formula (1) can be produced by the following method.
[Chemical 3]
Figure 0004382898
[Wherein, C and n are the same as above. X represents a halogen atom. ]
In the above reaction process formula, the halogen atom represented by X is a fluorine atom, a chlorine atom, a bromine atom or an iodine atom, preferably a bromine atom or an iodine atom.
[0007]
<Reaction step (i)>
This reaction step is described in J. Org. Org. Chem. 62 , 4949 (1997). That is, the bishydroperoxide compound represented by the general formula (3) is obtained by reacting the known compound represented by the general formula (2) with ozone in the presence of hydrogen peroxide in an appropriate solvent. The solvent used in this step is not particularly limited as long as it does not participate in the reaction, and examples thereof include ether, tetrahydrofuran, acetonitrile and the like, and ether is preferable. Hydrogen peroxide of 30 to 100% can be used. In the reaction, hydrogen peroxide is used in an amount of 1 to 10 times mol, preferably 1 to 3 times mol, and ozone is used in an amount of 0.5 to 5 times mol, preferably 1 to 2 with respect to compound (2). Use double molar amount. The reaction temperature is -70 to 20 ° C, and the reaction time is 5 to 30 minutes. The obtained compound (3) can be easily isolated and purified from the reaction mixture by ordinary separation means such as column chromatography, recrystallization and the like.
The compound (3) obtained in the above reaction step (i) can be used in the reaction step (ii) without isolation or isolation.
[0008]
<Reaction step (ii)>
The compound represented by the general formula (1) is obtained by reacting the compound (3) obtained in the reaction step (i) with the compound represented by the general formula (4) in an appropriate solvent in the presence of a base. The compound of the present invention is obtained.
Examples of the base used in this step include alkali metal hydroxides such as potassium hydroxide, sodium hydroxide and cesium hydroxide; alkali metal alkoxides such as sodium methoxide and sodium ethoxide; and triethylamine and diisopropylethylamine. And tertiary amines are used, preferably cesium hydroxide. The solvent is not particularly limited as long as it is a non-aqueous solvent, but a highly polar one such as dimethylformamide and dimethyl sulfoxide is particularly preferred. It is also possible to add a crown ether such as 18-crown-6 as a reaction accelerator. In the reaction, the compound (4) and the base are used in an amount of 1 to 3 moles per mole of the compound (3). When adding a reaction accelerator, 1-10 mol amount is used with respect to a compound (3). The reaction temperature is 0 to 50 ° C., preferably 10 to 30 ° C., and the reaction time is 1 to 48 hours. The obtained compound (1) can be easily isolated and purified from the reaction mixture by ordinary separation means such as column chromatography, recrystallization and the like.
[0009]
When the compound of the present invention is used for the prevention and treatment of infectious diseases caused by malaria parasites, the administration route may be any of oral, subcutaneous injection, intravenous injection, local administration, and the like. In addition, as preparations, oral preparations such as powders, tablets, fine granules, pills, capsules, granules, etc., usually produced using pharmaceutically acceptable carriers and excipients and other additives, eye drops And parenteral agents such as suppositories, injections, and suppositories. Examples of pharmaceutically acceptable carriers and excipients, and other additives include glucose, lactose, gelatin, mannitol, starch paste, magnesium trisilicate, corn starch, keratin, colloidal silica, and more. Adjuvants such as extenders, colorants and fragrances may be included. Each of these preparations can be produced by a conventional production method known to those skilled in the art.
As a compounding quantity in the formulation of this invention compound, 0.1 to 100 weight% is preferable, More preferably, it is 0.1 to 80 weight%, and 0.1 to 50 weight% is suitable.
The daily dose varies depending on the patient's symptoms, weight, age, sex, etc., and cannot be determined unconditionally, but usually 0.1 to 1000 mg, preferably 1 to 600 mg of the compound of the present invention per day for an adult or It is preferable to administer in 2 to 4 divided doses.
[0010]
【Example】
Next, the present invention will be specifically described with reference to production examples, examples and test examples.
<Production Example 1> Synthesis of (cyclododecylidene) bishydroperoxide (Compound a) Method by Saito et al. (Saito, I .; Nagata, R .; Yuba, K .; Matuura, T. Tetrahedron Lett. 1983, 24 , 1737), 630 mg (3.00 mmol) of methoxymethylenecyclododecane, a known compound, was dissolved in 25 ml of a 2.5 mol ethereal solution of hydrogen peroxide prepared in 1737) and ozonized at −70 ° C. (normal ozonizer ( Nippon Ozone Model ON-1-2 (manufactured by Nippon Ozone Co., Ltd.)) was blown with oxygen at a flow rate of 50 l / hr for 15 minutes to generate ozone equivalent to the methoxymethylenecyclododecane used). After completion of the reaction, 70 ml of ether was added, and the organic layer was washed with an aqueous sodium bicarbonate solution and then with a saturated saline solution, and then dried over anhydrous magnesium sulfate. Then, 232 mg (yield 33%) of the title compound a was obtained by silica gel column chromatography (distillate: ether-hexane, 2: 8). Physical property values are shown below.
Melting point: 140-141 ° C
1 H NMR (CDCl 3 ) δ: 1.2-1.8 (m, 22 H), 8.13 (br s, 2 H)
13 C NMR (CDCl 3 ) δ: 19.28, 21.86, 22.15, 6.02, 26.19, 26.29, 112.64.
[0011]
<Production Example 2> Synthesis of (4-tert-butylcyclohexylidene) bishydroperoxide (compound b) 4-tert-butyl-2-methoxy was added to 25 ml of an ether solution containing hydrogen peroxide prepared in the same manner as in Production Example 1. Methylenecyclohexane 546 mg (3.00 mmol) was dissolved and ozonized at -70 ° C. After completion of the reaction, the reaction mixture was treated in the same manner as in Production Example 1, and then 285 mg (yield 47%) of the title compound b was obtained by silica gel column chromatography (distillate: ether-hexane, 2: 8). The physical property values are shown below.
Melting point: 83-84 ° C. (ether-hexane)
1 H NMR (CDCl 3 ) δ: 0.87 (s, 9 H), 1.1-1.8 (m, 9 H), 9.27 (s, 2 H)
13 C NMR (CDCl 3 ) δ: 23.32, 27.58, 29.70, 32.31, 47.39, 110.00.
Elemental analysis: Anal.Calcd. For C 10 H 20 O 4 : C, 58.80; H, 9.87. Found: C, 58.87; H, 9.80.
[0012]
<Production Example 3> Synthesis of (2-adamantylidene) bishydroperoxide (Compound c) To 25 ml of an ether solution containing hydrogen peroxide prepared in the same manner as in Production Example 1, 712 mg (4.00 mmol) of 2-methoxymethyleneadamantane was added. Dissolved and ozonized at -70 ° C. After completion of the reaction, the reaction mixture was treated in the same manner as in Production Example 1, and then 335 mg (yield 42%) of the title compound c was obtained by silica gel column chromatography (distillate: ether-hexane, 2: 8). The physical property values are shown below.
Melting point: 144-145 ° C. (ether-hexane)
1 H NMR (CDCl 3 ) δ: 1.7-2.1 (m, 14 H), 8.82 (s, 2 H)
13 C NMR (CDCl 3 ) δ: 26.94, 31.14, 33.68, 36.98, 112.88.
[0013]
Example 1 Synthesis of 1,2,6,7-tetraoxaspiro [7.11] nonadecane (Compound 1) A dimethylformamide solution of 504 mg (3.00 mmol) of cesium hydroxide monohydrate under an argon atmosphere 10 ml was adjusted. To this solution, using a syringe, 5 ml of a dimethylformamide solution of 348 mg (1.50 mmol) of compound a obtained in Preparation Example 1, and then 5 ml of a dimethylformamide solution of 666 mg (2.25 mmol) of 1,3-diiodopropane were added. At 0 ° C. for 10 minutes each. Then, it stirred at room temperature for 16 hours. After completion of the reaction, 70 ml of ether was added, and the organic layer was washed with an aqueous sodium bicarbonate solution and then with a saturated saline solution, and then dried over anhydrous magnesium sulfate. After the solvent was distilled off under reduced pressure, 164 mg (yield 40%) of the title compound 1 was obtained by silica gel column chromatography of the residue (distillate: ether-hexane, 1:25). The physical property values are shown below.
Melting point: 83-84 ° C. (hexane)
1 H NMR (CDCl 3 ) δ: 1.3-1.7 (m, 22 H), 2.1-2.2 (m, 2 H), 4.12 (dt, J = 12.5, 5.0 Hz, 2 H), 4.31 (dt, J = (12.5, 5.0 Hz, 2 H)
13 C NMR (CDCl 3 ) δ: 19.36, 21.90, 22.17, 25.91, 26.07, 26.25, 30.40, 73.94, 112.13.
Elemental analysis: Anal. Calcd. For C 15 H 26 O 4 : C, 66.14; H, 10.36. Found: C, 65.91; H, 10.42.
[0014]
Example 2 Synthesis of 1,2,6,7-tetraoxaspiro [8.11] icosane (Compound 2) 348 mg (1.50 mmol) of Compound a obtained in Production Example 1 and monohydrate of cesium hydroxide 504 mg (3.00 mmol) was dissolved in 25 ml of dimethylformamide, and 698 mg (2.25 mmol) of 1,3-diiodobutane was added to this over 10 minutes. The reaction was then carried out for 16 hours at room temperature. After completion of the reaction, the reaction mixture was treated in the same manner as in Example 1 above, and then 129 mg of the title compound 2 was obtained by silica gel column chromatography (distillate: ether-hexane, 1:25) (yield 30%). )Obtained. The physical property values are shown below.
Melting point: 97-98 ° C (hexane)
1 H NMR (CDCl 3 ) δ: 1.3-1.7 (m, 24 H), 2.2-2.3 (m, 2 H), 3.66 (t, J = 12.2 Hz, 2 H), 4.26 (dd, J = 12.2, (3.9 Hz, 2 H)
13 C NMR (CDCl 3 ) δ: 19.30, 21.89, 22.17, 25.95, 26.11, 26.43, 30.93, 32.51, 73.85, 111.82.
Elemental Analysis: Anal. Calcd. For C 16 H 30 O 4 : C, 67.10; H, 10.56. Found: C, 66.66; H, 10.49.
[0015]
Example 3 Synthesis of 1,2,6,7-tetraoxaspiro [9.11] henicosane (Compound 3) 1008 mg (6.00 mmol) of cesium hydroxide monohydrate was dissolved in 20 ml of a dimethylformamide solution. Separately, 20 ml of a dimethylformamide solution in which 696 mg (3.00 mmol) of the compound a obtained in Production Example 1 was dissolved and 20 ml of a dimethylformamide solution in which 1458 mg (4.50 mmol) of 1,3-diiodopentane was dissolved were used with separate syringes. And added at 0 ° C. over 1 hour. The reaction was then carried out for 16 hours at room temperature. After completion of the reaction, the reaction mixture was treated in the same manner as in Example 1 above, and 153 mg (17% yield) of the title compound 3 was obtained by silica gel column chromatography (distillate: ether-hexane, 1:25). )Obtained. The physical property values are shown below.
Melting point: 51-52 ° C. (hexane)
1 H NMR (CDCl 3 ) δ: 1.3-1.8 (m, 24 H), 19-2.1 (m, 4 H), 4.1-4.2 (m, 4 H)
13 C NMR (CDCl 3 ) δ: 19.26, 21.92, 22.25, 24.89, 25.97, 26.06, 26.65, 28.45, 76.64, 110.89.
[0016]
Example 4 Synthesis of 1,2,6,7-tetraoxaspiro [8.11] docosane (Compound 4) 1008 mg (6.00 mmol) of cesium hydroxide monohydrate was dissolved in 20 ml of dimethylformamide solution. Using a separate syringe, 20 ml of a dimethylformamide solution in which 696 mg (3.00 mmol) of the compound a obtained in Production Example 1 was dissolved and 20 ml of a dimethylformamide solution in which 1521 mg (4.50 mmol) of 1,3-diiodohexane were dissolved. And added at 0 ° C. over 1 hour. The reaction was then carried out for 16 hours at room temperature. After completion of the reaction, the reaction mixture was treated by the above-mentioned treatment method, and then 168 mg (yield 18%) of the title compound 4 was obtained by silica gel column chromatography (distillate: ether-hexane, 1:25). The physical property values are shown below.
Melting point: 48-49 ° C. (hexane)
1 H NMR (CDCl 3 ) δ: 1.3-1.8 (m, 30 H), 4.02 (t, J = 4.8 Hz, 4 H) 13 C NMR (CDCl 3 ) δ: 19.35, 21.89, 22.23, 25.00, 26.02, 26.13, 26.43, 26.99, 74.63, 112.06.
[0017]
<Example 5> Synthesis of 7,8,12,13-tetraoxaspiro [6.8] tridecane (Compound 5) 125 mg (0.61 mmol) of Compound b obtained in Production Example 2 and monohydrate of cesium hydroxide 205 mg (1.22 mmol) was dissolved in 15 ml of dimethylformamide, and 272 mg (0.92 mmol) of 1,3-diiodopropane was added thereto over 10 minutes. The reaction was then continued for 16 hours at room temperature. After completion of the reaction, the reaction mixture was treated in the same manner as in Example 1, and then 38 mg (yield 26%) of the title compound 5 was obtained by silica gel column chromatography (distillate: ether-hexane, 1:25). )Obtained. The physical property values are shown below.
Melting point: 58-59 ° C (hexane)
1 H NMR (CDCl 3 ) δ: 0.86 (s, 9 H), 1.1-1.8 (m, 9 H), 2.1-2.3 (m, 2 H), 4.10-4.2 (m, 2 H), 4.3-4.5 (m, 2 H)
13 C NMR (CDCl 3 ) δ: 23.34, 23.61, 27.64, 28.59, 30.35, 31.93, 32.37, 47.44, 73.76, 74.02, 107.92.
Elemental analysis: Anal. Calcd. For C 13 H 24 O 4 : C, 63.91; H, 9.90. Found: C, 63.60; H, 9.97.
[0018]
Example 6 Synthesis of Spiro [Tricyclo [3.3.1.1 3,7 ] decane] 2,3 ′-[1,2,4,5] tetroxocan (Compound 6) Obtained in Production Example 3 313 mg (1.57 mmol) of compound c and 528 mg (3.14 mmol) of cesium hydroxide monohydrate were dissolved in 15 ml of dimethylformamide, and 695 mg (2.35 mmol) of 1,3-diiodopropane was added thereto over 10 minutes. . The reaction was then carried out for 16 hours at room temperature. After completion of the reaction, the reaction mixture was treated by the above treatment method, and then 73 mg (yield 19%) of the title compound 6 was obtained by silica gel column chromatography (distillate: ether-hexane, 1:25). The physical property values are shown below.
Melting point: 34-35 ° C. (hexane)
1 H NMR (CDCl 3 ) δ: 1.6-2.3 (m, 16 H), 4.12 (dt, J = 12.9, 5.6 Hz, 2 H), 4.35 (dt, J = 12.5, 4.8 Hz, 2 H)
13 C NMR (CDCl 3 ) δ: 27.06, 30.30, 31.81, 33.67, 33.98, 37.25, 73.94, 109.95.
[0019]
<Culture test of P. falciparum>
In this experiment, P. falciparum FCR-3 strain (ATCC 30932) was used as a Plasmodium falciparum. In addition, a chloroquine resistant malaria parasite of P. falciparum K1 strain was used to verify the effect of the compound of the present invention on a resistant strain of chloroquine marketed as an antimalarial agent. The medium used for the experiment was RPMI1640 medium sterilized by filtration, and the pH was adjusted to 7.4, and human serum was added to 10%. The malaria parasite was cultured at an O 2 concentration of 5%, a CO 2 concentration of 5%, an N 2 concentration of 90%, and a temperature of 36.5 ° C. The hematocrit value (ratio of the volume of erythrocytes in the erythrocyte suspension) was 5%. The initial infection rate of P. falciparum at the start of culture was 0.1%. The culture was performed using a 24-well culture plate, the medium was changed every day, and transplantation was performed at an infection rate of 4%. The infection rate was measured under a microscope (oil immersion, 1000 ×) after preparing a thin-layer smear sample and stained with Giemsa or Diff-Qick, and the malaria parasite infection rate was calculated from the following formula.
Malaria parasite infection rate (%) = {(number of infected red blood cells) / (total number of red blood cells)} × 100
[0020]
<Test Example 1> Plasmodium growth inhibition screening test The cultured malaria parasite-infected erythrocytes were collected by centrifugation, washed with a medium containing serum, and then uninfected erythrocytes were added to make the initial infection rate 0.3%. The hematocrit value at this time is 3%. The sample used for the experiment was dissolved in sterilized water, dimethylformamide (DMF) or dimethyl sulfoxide (DMSO) to obtain a sample having a predetermined concentration.
Samples were added to a 24-well culture plate in an amount of 5 to 10 μl. Samples were duplicated or triplicate. As a control, sterile water, DMF or DMSO was added at 10 μl / well.
Next, 980 to 995 μl of the P. falciparum culture solution prepared in advance was added and gently pipetted to suspend uniformly in the medium. Culture plates CO 2 -O 2 -N 2 (5 %, 5%, 90%) after incubation for 72 hours in an incubator, for each well to create a thin layer smear after staining, under a microscope Observing and calculating the infection rate and the control infection rate of the reagent added.
By calculating the growth rate from the malaria parasite infection rate obtained above by the following formula, the 50% growth inhibitory concentration (EC 50 ) for the malaria parasite was obtained. The results are shown in Table 1.
Growth rate (%) = {([b] − [a]) / ([c] − [a])} × 100
a: initial infection rate b: infection rate when the sample is added c: infection rate when the sample is not added (control)
Test Example 2 Mouse FM3A Cell Growth Inhibition Test F28-7 strain, which is a wild strain of mouse breast cancer-derived FM3A cells, was used. As the medium, fetal calf serum deactivated in ES medium was added to 2 %, and cultured at a CO 2 concentration of 5% at 37 ° C. The doubling time for FM3A cells under these conditions was about 12 hours.
Pre-culture was performed, and cells that entered the logarithmic growth phase were diluted with a medium so as to be 5 × 10 4 cells / ml. A sample prepared at the time of measuring the antimalarial activity of the malaria parasite was used. The sample solution was added to each 24-well culture plate in an amount of 5 to 10 μl (the final concentration became 1 × 10 −4 to 1 × 10 −6 when medium or the like was added). The compound was duplicated or triplicate, and a well containing 10 μl of sterilized water, DMF or DMSO was also prepared at the same time as a control. Next, 990 to 995 μl of the prepared cultured cell suspension was added and gently pipetted to suspend uniformly in the medium. After culturing for 48 hours, the number of cells in each well was counted with a cell controller (CC-108, manufactured by Toa Medical Electrics), and the growth rate was calculated from the following formula.
Growth rate (%) = {([C] − [A]) / ([B] − [A])} × 100
A: Initial number of cells B: Number of control cells 48 hours later C: Number of cells 48 hours after addition of sample The cell growth inhibitory activity was calculated from the number of cells in the well to which the sample was added and the number of control cells. Thereby, the cytotoxicity of the sample was evaluated and expressed as a cell growth inhibitory concentration (EC 50 ). EC 50 value is the concentration of a sample that inhibits the growth rate of the control by adding 50% to the growth rate of the malaria parasite or control without adding the sample to the culture medium of FM3A cells, or the malaria parasite infection rate to 100%. (Expressed in molar concentration). The results are shown in Table 1.
The anti-malarial action of the sample was evaluated from the ratio of EC 50 values of the malaria parasite sample to FM3A cells (chemotherapeutic coefficient, see formula below), and drug efficacy was determined. For reference, a similar test was conducted for chloroquine, which is used as an antimalarial agent. The results are shown in Table 1.
Chemotherapeutic index = (EC 50 value of the sample for mouse FM3A cells)
÷ (Sample EC 50 value against Plasmodium falciparum)
[0022]
[Table 1]
Figure 0004382898
[0023]
As a result, it was found that the compound of the present invention has low cytotoxicity and has malaria parasite growth inhibitory activity. It was also found that the effect was retained against chloroquine resistant protozoa.
[0024]
<Test Example 3> Protozoa suppression test using mice infected with murine malaria parasite This experiment was conducted by Peters, W. et al. and Richrds, W. H. G. Antimalarial drugs I, in: W. Peters, W. H. G. Richards (Eds.), Springer-Verlag, Berlin, 1984, pp. The test was performed according to the 4-day suppressive test described in 229-230. The murine malaria parasite used (P. berghei NK65 strain) is a virulent protozoan strain. When this murine malaria parasite is infected, all mice die within 10 days after infection. The experiment was started when the blood infection rate of the subcultured murine malaria parasite-infected mice reached 10%. Blood was collected from mice subjected to ether anesthesia and 200 μl of intraperitoneal infection (ip) was administered to mice not infected with the protozoa suspension prepared to 5 × 10 6 protozoa / ml per 1 ml of phosphate buffered saline. did. Two hours after protozoan infection, the compound suspended in olive oil was orally or intraperitoneally administered (compound 5 was only intraperitoneally administered). The administration period is once a day for 4 consecutive days, and blood is collected from the tail of the mouse on the fourth day of the experiment. A thin-layer smear was prepared from the collected blood, and the erythrocyte infection rate was determined under a microscope by Giemsa staining (performed in the same manner as the culture assay test for P. falciparum above). The 50% protozoa inhibitory concentration (ED 50 value) and 90% protozoa inhibitory concentration (ED 90 value) were determined by examining the ratio of the infection rate of the drug administration group to the control group to which only the solvent was administered. The results are shown in Table 2.
[0025]
[Table 2]
Figure 0004382898
[0026]
As a result, the compound of the present invention was found to have excellent malaria parasite growth inhibitory activity.
[0027]
【The invention's effect】
The compound of the present invention has an excellent antimalarial activity and is useful as a preventive and therapeutic agent for infectious diseases caused by protozoa such as malaria. It is also effective against chloroquine resistant malaria.
[Brief description of the drawings]
FIG. 1 is a table showing a comparison table of chemical structural formulas of compounds in production examples and examples.

Claims (3)

一般式(1)で表されるペルオキシド誘導体。
Figure 0004382898
[式中、Cは炭素数1〜6の直鎖状または分枝状の低級アルキル基を置換基として有しても良い炭素数3〜12の単環の脂環式炭化水素環基またはアマダンチリデン基、nは0〜6の整数を示す。]
A peroxide derivative represented by the general formula (1).
Figure 0004382898
[ Wherein C is a monocyclic alicyclic hydrocarbon ring group having 3 to 12 carbon atoms which may have a linear or branched lower alkyl group having 1 to 6 carbon atoms as a substituent, or amadantylidene. Group and n show the integer of 0-6. ]
一般式(1)中、Cが4−tert−ブチルシクロヘキシリデン、シクロドデシリデン又はアダマンチリデン基であり、nが1〜4である請求項1記載のペルオキシド誘導体。In the general formula (1), C is 4-tert-butyl-cyclohexylidene, cycloalkyl dodecylcarbamoyl isopropylidene or adamantylidene group, peroxide derivative according to claim 1 Symbol placement n is 1-4. 一般式(1)で表される化合物を含有する抗マラリア剤。  The antimalarial agent containing the compound represented by General formula (1).
JP03168999A 1999-02-09 1999-02-09 Peroxide derivatives with antimalarial activity Expired - Fee Related JP4382898B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP03168999A JP4382898B2 (en) 1999-02-09 1999-02-09 Peroxide derivatives with antimalarial activity

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP03168999A JP4382898B2 (en) 1999-02-09 1999-02-09 Peroxide derivatives with antimalarial activity

Publications (2)

Publication Number Publication Date
JP2000229965A JP2000229965A (en) 2000-08-22
JP4382898B2 true JP4382898B2 (en) 2009-12-16

Family

ID=12338059

Family Applications (1)

Application Number Title Priority Date Filing Date
JP03168999A Expired - Fee Related JP4382898B2 (en) 1999-02-09 1999-02-09 Peroxide derivatives with antimalarial activity

Country Status (1)

Country Link
JP (1) JP4382898B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2003210871A1 (en) 2002-02-09 2003-09-04 Wilbur Milhous Mixed steroidal 1,2,4,5-tetraoxane compounds and methods of making and using thereof
WO2003076425A1 (en) * 2002-03-11 2003-09-18 Okayama University Novel compounds and antimalarials
EP2340829B1 (en) * 2008-07-01 2015-08-05 National University Corporation Okayama University Novel antischistosomal agent
JP4931162B1 (en) 2011-10-03 2012-05-16 国立大学法人 岡山大学 New anti-HCV agent
WO2016063848A1 (en) * 2014-10-21 2016-04-28 国立大学法人 岡山大学 Antimalarial

Also Published As

Publication number Publication date
JP2000229965A (en) 2000-08-22

Similar Documents

Publication Publication Date Title
Brossi et al. Arteether, a new antimalarial drug: synthesis and antimalarial properties
TWI387456B (en) Combination of ferroquine and an artemisinin derivative for the treatment of malaria
JP4382898B2 (en) Peroxide derivatives with antimalarial activity
BR112014025416B1 (en) antimalarial agents, pharmaceutical composition comprising them and use thereof
JPH0232093A (en) Anti-retrovirus difluorinated nucleoside
JPH07501048A (en) 2-substituted quinolines for the treatment of leishmaniasis
JP5430552B2 (en) Pharmaceutical composition for preventing or treating protozoan diseases comprising a benzo [a] phenoxatin compound as an active ingredient
JPH11500130A (en) Antiviral triaza compounds
RO119280B1 (en) Pharmaceutical association, pharmaceutical composition and the use of pharmaceutical association for the treatment and caused by parasitic protozoa or prophilaxis of an infection infections or an infection caused by pneumocystis carinii
JP4289911B2 (en) Novel compounds and antimalarials
JP3418724B2 (en) Sesquiterpenoid compounds and pharmaceuticals containing the same
JP2019522048A (en) Anti-infective
JP2021116291A (en) Pharmaceutical composition containing 2,4-diamino-6,7-dimethoxy quinazoline derivative as an active ingredient, and 2,4-diamino-6,7-dimethoxy quinazoline derivative having specific structure
WO2009071553A1 (en) New therapeutic uses of dual molecules containing a peroxide derivative
KR20090073511A (en) Pharmaceutical composition containing flavonoid compounds for treating malarial disease
US7407984B2 (en) Tetraoxaspriro anti-malarials
JP4806510B2 (en) Composition for treating or preventing malaria disease, and method for treating malaria disease
US4920147A (en) Deoxoartemisinin: new compound and composition for the treatment of malaria
JP5457638B2 (en) Cyclic peroxide derivative
JP2003034640A (en) Antimalarial drug containing tetracyclic hetero compound
US20220332685A1 (en) Compound derived from quinoline, use of a compound, composition and method for the treatment or prophylaxis of a condition caused by a blood parasite
JP2023172454A (en) Compound and antimalarial agent
WO2020179902A1 (en) Malaria parasite growth inhibitor
JP2004521855A (en) Synthesis of Peroxide Derivatives Containing Bipartite Molecules and Their Application to Therapeutics
JP3904364B2 (en) Novel compounds with antimalarial activity

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051216

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090701

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090702

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090820

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090910

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090918

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121002

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121002

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131002

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131002

Year of fee payment: 4

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131002

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees