JP4382139B2 - Fine particle detection apparatus and fine particle detection method - Google Patents

Fine particle detection apparatus and fine particle detection method Download PDF

Info

Publication number
JP4382139B2
JP4382139B2 JP2008257035A JP2008257035A JP4382139B2 JP 4382139 B2 JP4382139 B2 JP 4382139B2 JP 2008257035 A JP2008257035 A JP 2008257035A JP 2008257035 A JP2008257035 A JP 2008257035A JP 4382139 B2 JP4382139 B2 JP 4382139B2
Authority
JP
Japan
Prior art keywords
light
inspection
fine particles
detection
detected
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2008257035A
Other languages
Japanese (ja)
Other versions
JP2009014740A (en
Inventor
由博 道口
剛 武本
伊智朗 圓佛
晃治 陰山
昭二 渡辺
秀之 田所
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2008257035A priority Critical patent/JP4382139B2/en
Publication of JP2009014740A publication Critical patent/JP2009014740A/en
Application granted granted Critical
Publication of JP4382139B2 publication Critical patent/JP4382139B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、光透過性を有する媒質中の微粒子を検出する微粒子検出装置及び微粒子検出方法に関する。   The present invention relates to a fine particle detection apparatus and a fine particle detection method for detecting fine particles in a light-transmitting medium.

光透過性を有する媒質中の微粒子を検出することは、その媒質を使用するシステムや該システムで生産される製品の品質を管理する上で重要である。例えば浄水場の浄水品質管理、海や河川の汚染調査、潤滑油の汚濁測定等にあたって、それぞれ浄水場の浄水、海水・河川水、各種機械・プラントの潤滑油等の液体媒質中の微粒子を検出する必要がある。また、例えばクリーンルーム等の特定の空間内の雰囲気の空気清浄度や各種環境下の雰囲気の粉塵検出等にあたっては、気体媒質中の微粒子を検出する必要がある。その他、ガラス等の透明な固体媒質中の不純粒子検出等に対するニーズもある。   Detecting fine particles in a light-transmitting medium is important in managing the quality of a system that uses the medium and the products produced by the system. For example, in water purification quality control at water purification plants, sea and river pollution surveys, and measurement of lubricating oil contamination, particulates in liquid media such as water purification plant water, seawater and river water, and lubricating oil from various machines and plants are detected. There is a need to. In addition, for example, in the air cleanliness of an atmosphere in a specific space such as a clean room or dust detection of atmospheres in various environments, it is necessary to detect fine particles in the gas medium. In addition, there is a need for the detection of impure particles in a transparent solid medium such as glass.

微粒子の検出では、微粒子の光散乱や遮蔽による光量変化を観測し、その変化量から微粒子の存在を検知する方法がある。光を用いた微粒子検出法としては、例えば下記特許文献1に記載された「流体中の微粒子検出装置」がある。これはレーザによるコヒーレント光を被検液内でレンズ光学系により集光させ、その集光領域を通過する微粒子で回折した光をアレイ状の光検出器で検出し、回折光を解析することにより微粒子を検出するものである。また下記特許文献2に記載された「微粒子計測装置」は、レンズ光学系を用いて作り出した並行光を微粒子が通るセルに照射して受光素子で検出する技術であり、受光素子の前面に孔を開けた遮蔽板を設け微粒子からの散乱光が検出されないようにし微粒子の遮光による検出光の変化を観測する。   In the detection of fine particles, there is a method of observing changes in the amount of light due to light scattering or shielding of the fine particles and detecting the presence of the fine particles from the amount of change. As a method for detecting fine particles using light, for example, there is a “fine particle detection device in fluid” described in Patent Document 1 below. This is done by focusing the coherent light from the laser with the lens optical system in the test liquid, detecting the light diffracted by the fine particles passing through the light collection area with an array-shaped photodetector, and analyzing the diffracted light. It detects fine particles. The “fine particle measuring device” described in the following Patent Document 2 is a technique for irradiating parallel light produced using a lens optical system to a cell through which fine particles pass and detecting it with a light receiving element. A shielding plate with an opening is provided so that scattered light from the fine particles is not detected, and changes in the detected light due to the light shielding of the fine particles are observed.

特開2003−130784号公報JP 2003-130784 A 特開2002−228574号公報JP 2002-228574 A

しかしながら、上記特許文献1,2に開示された微粒子検出の技術はレンズ光学系が必要不可欠である。そのため、レンズ光学系によりレーザビームを収束・拡大する必要があり、レンズ光学系の軸合わせ等の調整が難しいという課題がある。また、受光センサやレーザ光源の調整も必要である。その上、検出対象となる微細な粒子を検出するためにレーザ光源やレンズ光学系等といった高価な構成部品を用い、検査光を細く絞ったり並行光としたりする等の光学的走査の必要があるため、ユーザに対して低コストで装置を提供することも難しい。   However, a lens optical system is indispensable for the fine particle detection techniques disclosed in Patent Documents 1 and 2 above. Therefore, it is necessary to converge and expand the laser beam by the lens optical system, and there is a problem that adjustment such as axial alignment of the lens optical system is difficult. In addition, it is necessary to adjust the light receiving sensor and the laser light source. In addition, expensive scanning components such as a laser light source and a lens optical system are used to detect fine particles to be detected, and optical scanning such as narrowing of inspection light or parallel light is necessary. For this reason, it is also difficult to provide the device to the user at a low cost.

本発明は上記に鑑みなされたものであり、被検査体中の微粒子の検出感度を確保しつつ装置コストを低廉化することができる微粒子検出装置及び微粒子検出方法を提供することを目的とする。   The present invention has been made in view of the above, and an object of the present invention is to provide a fine particle detection apparatus and a fine particle detection method capable of reducing the apparatus cost while ensuring the detection sensitivity of the fine particles in the inspection object.

(1)上記目的を達成するために、本発明は、検査光の照射領域を横切る微粒子による検出光の干渉効果により発生する検出光強度の変動を検出して被検査体中の微粒子を検出する微粒子検出装置であって、出射した検査光を配管内の被検査体に絞らずに入射させる、前記配管の外側に取り付けたレーザ発光手段と、被検査体を透過して入射する前記レーザ発光手段からの検査光を受光する、前記配管の外側に取り付けた受光手段と、前記配管の外周面と前記受光手段の間に設けられ、前記受光手段に入射する検査光の検出領域を制限する光透過孔を有する遮光手段と、前記受光手段からの信号を基に、前記検出領域を移動する微粒子による検査光の干渉効果により発生する検出光強度の変動を検出して被検査体中の微粒子を検出する信号処理装置とを備え、前記光透過孔の孔径は、前記受光手段から当該光透過孔を通して観測される領域に前記レーザ発光手段を観測でき、かつ、この観測領域を微粒子が横切るとき、前記レーザ発光手段から直接入射する直接光と微粒子で反射した反射光との干渉を検出することができる大きさであり、前記信号処理装置は、前記受光手段で検出された検出光の変動を記録する波形メモリと、前記波形メモリに記録された検出波形が時間的に光軸を中心に対称であるか否かで検出した微粒子が球状か否かを判断する演算器とを備えていることを特徴とする。 (1) In order to achieve the above-described object, the present invention detects fine particles in the object to be inspected by detecting fluctuations in the detection light intensity caused by the interference effect of the detection light caused by the fine particles crossing the irradiation region of the inspection light. A fine particle detection apparatus, wherein the emitted inspection light is incident on the inspection object in the pipe without being narrowed, and the laser light emission means attached to the outside of the pipe, and the laser emission means that is incident through the inspection object A light receiving means attached outside the pipe for receiving the inspection light from the pipe, and a light transmission provided between the outer peripheral surface of the pipe and the light receiving means for limiting a detection area of the inspection light incident on the light receiving means. Based on a signal from the light-shielding means having a hole and the light-receiving means, a change in detection light intensity caused by an interference effect of the inspection light caused by the fine particles moving in the detection region is detected to detect the fine particles in the inspection object. Signal processing And a device, the diameter of the light transmission hole, the can observe the laser emitting means from the receiving means in the area to be observed through the light transmitting hole, and, when crossing the observation area is fine, the laser light emitting means The signal processing device has a waveform memory that records fluctuations in the detection light detected by the light receiving means, and is capable of detecting interference between the direct light directly incident from the light and the reflected light reflected by the fine particles. And an arithmetic unit for judging whether or not the detected fine particles are spherical depending on whether or not the detected waveform recorded in the waveform memory is temporally symmetrical about the optical axis.

)上記(1)において、好ましくは、被検査体の通路の内面のうち検査光の光路以外の部分に検査光の反射を抑制する手段又は検査光を散乱させる手段を設け、前記レーザ発光手段に戻る光量を抑制したことを特徴とする。 ( 2 ) In the above (1), preferably, a means for suppressing the reflection of the inspection light or a means for scattering the inspection light is provided in a portion other than the optical path of the inspection light in the inner surface of the passage of the inspection object, and the laser emission The amount of light returning to the means is suppressed.

)上記(1)において、好ましくは、前記レーザ発光手段の駆動電流を供給する電流源に検査光の発光スペクトルを広げる高周波重畳回路を組み込んだことを特徴とする。 ( 3 ) In the above (1), it is preferable that a high-frequency superimposing circuit for extending the emission spectrum of the inspection light is incorporated in a current source for supplying a driving current for the laser emission means.

)上記()において、好ましくは、検査光の偏波面を変化させる偏波面変更手段を設けたことを特徴とする。 ( 4 ) In the above ( 3 ), preferably, a polarization plane changing means for changing the polarization plane of the inspection light is provided.

)上記目的を達成するために、また本発明は、検査光の照射領域を横切る微粒子による検出光の干渉効果により発生する検出光強度の変動を検出して被検査体中の微粒子を検出する微粒子検出方法であって、配管の外側に取り付けたレーザ発光手段から出射した検査光を前記配管を流れる被検査体に絞らずに入射させ、被検査体を透過して入射する前記レーザ発光手段からの検査光を前記配管の外側に取り付けた受光手段で受光し、遮光手段に設けた光透過孔を前記配管の外周面と前記受光手段の間に設けることにより、前記レーザ発光手段から前記受光手段に入射する検査光の検出領域を制限し、被検査体を透過して前記レーザ発光手段から直接入射する直接光、及び被検査体中を流れる微粒子で反射して入射する反射光を前記光透過孔を介して前記受光手段で受光し、前記受光手段からの信号を基に、前記検出領域を移動する微粒子による検査光の干渉効果により発生する検出光強度の変動を検出して被検査体中の微粒子を検出し、前記受光手段で検出された検出光の変動を記録して検出波形が時間的に光軸を中心に対称であるか否かで検出した微粒子が球状か否かを判断することを特徴とする。 ( 5 ) In order to achieve the above object, the present invention also detects fine particles in the object to be inspected by detecting fluctuations in the detection light intensity caused by the interference effect of the detection light caused by the fine particles crossing the inspection light irradiation region. A method for detecting fine particles, wherein the inspection light emitted from laser light emitting means attached to the outside of the pipe is incident on the inspection object flowing through the piping without being narrowed, and the laser light emission means is incident through the inspection object Is received by a light receiving means attached to the outside of the pipe, and a light transmitting hole provided in the light shielding means is provided between the outer peripheral surface of the pipe and the light receiving means, thereby receiving the light from the laser light emitting means. The detection area of the inspection light incident on the means is limited , and the direct light that passes through the object to be inspected and directly enters from the laser light emitting means, and the reflected light that is reflected by the fine particles flowing in the object to be inspected and incident on the light. Transparency Through the holes is received by said light receiving means, wherein based on a signal from the light receiving means, wherein the detection region to detect a variation in detected light intensity generated by the interference effect of the inspection light by fine particles to move with the object to be inspected in And detecting whether or not the detected fine particles are spherical depending on whether or not the detected waveform is temporally symmetrical about the optical axis. It is characterized by that.

本発明によれば、被検査体中の微粒子の検出感度を確保しつつ装置コストを低廉化することができる。   According to the present invention, the device cost can be reduced while ensuring the detection sensitivity of the fine particles in the object to be inspected.

以下に図面を用いて本発明の実施の形態を説明する。   Embodiments of the present invention will be described below with reference to the drawings.

本実施の形態に係る微粒子検出の技術は、被検査体を挟んで発光手段から受光手段に向かって検査光を照射し、検査光の照射領域中の検出領域を被検査体中の微粒子が横切る際に微粒子により検査光が遮られて光強度が減少するのを観測し微粒子の存在を検知するものである。受光手段には、遮光手段に設けた光透過孔を複数通過した検査光のみが入射する。このように複数の光透過孔を介して検査光を受光素子に入射させることにより、検査光の被検査体への照射領域中の実際に微粒子検出に寄与する領域(受光素子に入射する領域)である検出領域が制限される。受光手段には、光透過孔を通過した検査光のみが入射する。このように光透過孔を通して検査光を受光素子に入射させることにより、検査光の被検査体への照射領域中の実際に微粒子検出に寄与する領域(受光素子に入射する領域)である検出領域が制限される。   In the particle detection technique according to the present embodiment, the inspection light is irradiated from the light emitting means to the light receiving means with the object to be inspected, and the particles in the inspection object cross the detection area in the irradiation area of the inspection light. At this time, the presence of the fine particles is detected by observing that the inspection light is blocked by the fine particles and the light intensity decreases. Only the inspection light that has passed through a plurality of light transmission holes provided in the light shielding unit is incident on the light receiving unit. In this way, the inspection light is incident on the light receiving element through the plurality of light transmission holes, so that the region that actually contributes to the detection of the fine particles in the irradiation region of the inspection light on the inspection object (the region incident on the light receiving element) The detection area is limited. Only the inspection light that has passed through the light transmission hole is incident on the light receiving means. In this way, by making the inspection light incident on the light receiving element through the light transmission hole, a detection region that is an area that actually contributes to the detection of fine particles (an area incident on the light receiving element) in the irradiation region of the inspection light on the inspection object. Is limited.

また、被検査体を挟んで発光手段から受光手段に向かって検査光を照射し、検出領域を微粒子が横切る際に光強度が減少する上記の現象とともに、発光手段からの光と微粒子の反射光が干渉し合って検出光の強度が変動する現象を同時に観測することでも、微粒子の存在を検知することができる。この場合、遮光、回折光、干渉光からなる検出光の波形を詳細に分析し、検出した微粒子が球状かどうかを判定することで、微粒子が例えば微少のボイドなのか、或いは他の検出すべき不純物粒子なのかを推測することができる。   In addition, the inspection light is irradiated from the light emitting means to the light receiving means with the object to be inspected, and the light intensity decreases when the fine particles cross the detection region, and the light from the light emitting means and the reflected light of the fine particles The presence of fine particles can also be detected by simultaneously observing the phenomenon in which the intensity of the detection light fluctuates due to interference with each other. In this case, the waveform of the detection light composed of light shielding, diffracted light, and interference light is analyzed in detail, and it is determined whether the detected fine particle is spherical, so that the fine particle is, for example, a minute void or other detection should be performed. It can be estimated whether it is an impurity particle.

検出対象となる微粒子を含む被検査体は光透過性を有する物質であれば良く、その状態は特に限定されない。液体や気体等の流体の他、ガラス等の固体も含まれる。さらに、上記検出領域と微粒子を相対的に移動させるにあたって、検出領域を静止させて被検査体を移動させても良いし、被検査体を静止させて検出領域を移動させても良いし、両者を移動させても良い。両者を移動させる場合、互いに異なる方向に移動させて検出領域が被検査体を二次元的に走査するようにしても良い。   The object to be inspected including the fine particles to be detected may be a substance having optical transparency, and the state is not particularly limited. In addition to fluids such as liquid and gas, solids such as glass are also included. Further, when the detection area and the fine particles are relatively moved, the detection area may be stationary and the inspection object may be moved, the inspection object may be stationary and the detection area may be moved, May be moved. When both are moved, they may be moved in different directions so that the detection region scans the object to be inspected two-dimensionally.

以下に本発明の代表的な実施例を順次説明する。   Hereinafter, representative examples of the present invention will be described sequentially.

図1は本発明に係る微粒子検出装置の第1実施例の概略構成図であり、検出部1は断面で表してある。   FIG. 1 is a schematic configuration diagram of a first embodiment of a particle detection apparatus according to the present invention, and a detection unit 1 is shown in cross section.

図1に示した微粒子検出装置は、被検査体(本例では流体)中の微粒子を検出する検出部1、検査光のエネルギー源である電流源2、電流−電圧変換器3、及び検出部1の出力信号を処理する信号処理回路4を備えている。   The particle detection apparatus shown in FIG. 1 includes a detection unit 1 that detects particles in a test object (fluid in this example), a current source 2 that is an energy source of inspection light, a current-voltage converter 3, and a detection unit. 1 is provided. The signal processing circuit 4 processes one output signal.

検出部1は、被検査体に検査光を照射する発光素子1−1、被検査体を透過して入射する発光素子1−1からの検査光を受光する受光素子1−2、発光素子1−1を保持する保持板1−3、受光素子1−2を保持する保持板1−4、被検査体を流通させるセル1−5、及び保持板1−4に設けた複数(本例では2つ)の光透過孔1−6,1−7(図2参照)を備えている。   The detection unit 1 includes a light emitting element 1-1 that irradiates the inspection object with inspection light, a light receiving element 1-2 that receives inspection light from the light emitting element 1-1 that passes through the inspection object, and the light emitting element 1. -1 holding plate 1-3, holding plate 1-4 holding the light receiving element 1-2, cell 1-5 for circulating the object to be inspected, and plural (in this example) provided on the holding plate 1-4. 2) light transmission holes 1-6 and 1-7 (see FIG. 2).

発光素子1−1には、レーザ等のコヒーレント光を発する光源を用いることもできるが、LED(Light Emitting Diode)等のインコヒーレント光を発する光源を用いれば足りる。発光素子1−1は、上記電流源2からの駆動電流によって発光する。また、受光素子1−2には、例えばPD(Photo Diode)等の受光センサを利用することができる。受光素子1−2で受光した光電流は、電流−電圧変換器3で電圧信号に変換され、信号処理回路4で信号処理される。   A light source that emits coherent light such as a laser can be used for the light emitting element 1-1, but a light source that emits incoherent light such as an LED (Light Emitting Diode) is sufficient. The light emitting element 1-1 emits light by the driving current from the current source 2. For the light receiving element 1-2, for example, a light receiving sensor such as a PD (Photo Diode) can be used. The photocurrent received by the light receiving element 1-2 is converted into a voltage signal by the current-voltage converter 3 and subjected to signal processing by the signal processing circuit 4.

保持板1−3,1−4の間には、透明チューブ状の上記セル1−5が通されておりこのセル1−5に被検査体を流通させることにより、被検査体が検出部1に相対して移動する。このとき、保持板1−3に保持された発光素子1−1は、保持板1−4に保持された受光素子1−2に向かって検査光を発するが、本実施例の場合、少なくとも受光素子1−2を保持する保持板1−4の発光素子1−1及び受光素子1−2の間の部分は、検査光を遮る遮光手段としての役割を果たす。   The transparent tube-shaped cell 1-5 is passed between the holding plates 1-3 and 1-4. By passing the object to be inspected through the cell 1-5, the object to be inspected is detected by the detection unit 1. Move relative to. At this time, the light emitting element 1-1 held by the holding plate 1-3 emits inspection light toward the light receiving element 1-2 held by the holding plate 1-4. A portion between the light emitting element 1-1 and the light receiving element 1-2 of the holding plate 1-4 that holds the element 1-2 serves as a light shielding unit that blocks the inspection light.

図2は保持板1−3,1−4を抽出して表した断面図である。   FIG. 2 is a sectional view showing the holding plates 1-3 and 1-4 extracted.

図2に示したように、本実施例では受光素子1−2の保持板1−4における発光素子1−1と受光素子1−2との間の部分に空洞部1−8が設けてあり、光透過孔1−6,1−7は、発光素子1−1から受光素子1−2に向かう検査光の進行方向に沿って空洞部1−8の内壁に穿設されている。これにより、保持板1−3,1−4の間のセル1−5を透過する検査光のうち、光透過孔1−6,1−7を通過する光束のみが受光素子1−2に到達し検出される。つまり、被検査体に照射される検査光のうち受光素子1−2に入射する検出領域1−9が、発光素子1−1から光透過孔1−6,1−7の両方を通過して受光素子1−2に入射する光束(図2中のハッチング部)のみに制限されている(絞られている)。この検出領域1−9を微粒子が横切れば検査光の一部が遮光され受光素子1−2で検出される光強度が減少する。これにより、検査光の照射領域のうちの検出領域1−9のみを受光素子1−2で観測することができる。   As shown in FIG. 2, in this embodiment, a cavity 1-8 is provided in the holding plate 1-4 of the light receiving element 1-2 between the light emitting element 1-1 and the light receiving element 1-2. The light transmission holes 1-6 and 1-7 are formed in the inner wall of the cavity 1-8 along the traveling direction of the inspection light from the light emitting element 1-1 toward the light receiving element 1-2. Accordingly, only the light beam passing through the light transmitting holes 1-6 and 1-7 among the inspection light passing through the cell 1-5 between the holding plates 1-3 and 1-4 reaches the light receiving element 1-2. Detected. That is, the detection region 1-9 that enters the light receiving element 1-2 out of the inspection light irradiated on the object to be inspected passes through both the light transmitting holes 1-6 and 1-7 from the light emitting element 1-1. It is limited (restricted) only to the light beam (hatched portion in FIG. 2) incident on the light receiving element 1-2. If fine particles cross the detection region 1-9, a part of the inspection light is blocked and the light intensity detected by the light receiving element 1-2 decreases. Thereby, only the detection region 1-9 in the irradiation region of the inspection light can be observed by the light receiving element 1-2.

検出領域1−9の幅や長さ、断面形状は、光透過孔1−6,1−7の大きさや形状、光透過孔1−6,1−7の間隔、発光素子1−1と保持板1−4の間隔(保持板1−3,1−4の間隔)により調節可能であり、被検査体の光透過性や検出対象の微粒子の大きさ・性状・濃度等に応じて検出領域1−9を任意に変更することができる。例えば、光透過孔1−6,1−7が同径である場合、光透過孔1−6,1−7の口径を小さく間隔を大きくすると検出領域1−9の径は小さくなる。また、保持板1−4、1−5の間隔を大きくすると、検出領域1−9の径が大きくなり長さが長くなる。   The width, length, and cross-sectional shape of the detection region 1-9 are the size and shape of the light transmission holes 1-6 and 1-7, the distance between the light transmission holes 1-6 and 1-7, and the light emitting element 1-1. The detection region can be adjusted according to the interval between the plates 1-4 (the interval between the holding plates 1-3 and 1-4), depending on the light transmittance of the object to be inspected and the size, properties, concentration, etc. of the particles to be detected. 1-9 can be arbitrarily changed. For example, when the light transmission holes 1-6 and 1-7 have the same diameter, the diameter of the detection region 1-9 decreases as the apertures of the light transmission holes 1-6 and 1-7 decrease and the interval increases. Further, when the interval between the holding plates 1-4 and 1-5 is increased, the diameter of the detection region 1-9 is increased and the length is increased.

なお、本実施例では気体や液体等の流体を被検査体としているため、図2ではチューブ状のセル1−5内に被検査体を流通させる構成としているが、先述したように光透過性を有する固体を被検査体とすることもできる。例えば被検査体が棒状又は板状のガラスであれば、セル1−5に代えて保持板1−3,1−4の間にガラス(被検査体)を通し、検出部1又はガラスの少なくとも一方を移動させる構成とすれば良い。   In this embodiment, a fluid such as a gas or a liquid is used as the object to be inspected. Therefore, in FIG. 2, the object to be inspected is circulated in the tube-shaped cell 1-5. It is also possible to use a solid having a test object. For example, if the object to be inspected is rod-like or plate-like glass, glass (object to be inspected) is passed between the holding plates 1-3 and 1-4 instead of the cell 1-5, and at least the detection unit 1 or the glass A configuration may be adopted in which one is moved.

図3は信号処理回路4の概略構成図である。   FIG. 3 is a schematic configuration diagram of the signal processing circuit 4.

図3に示した信号処理回路4は、バンドパスフィルタ4−1、反転増幅器4−2、検波器4−3、加算増幅器4−4、電圧源4−5、比較器4−6、パルスレート検出回路4−7を備えている。   The signal processing circuit 4 shown in FIG. 3 includes a bandpass filter 4-1, an inverting amplifier 4-2, a detector 4-3, a summing amplifier 4-4, a voltage source 4-5, a comparator 4-6, a pulse rate. A detection circuit 4-7 is provided.

バンドパスフィルタ4−1は、検出部1の受光素子1−2の出力信号から直流成分を除去するとともに雑音成分を減じる。反転増幅器4−2は、バンドパスフィルタ4−1からの信号の極性を正負反転させて増幅する。検波器4−3は反転増幅された出力信号から検波する。電圧源4−5は予め設定した一定電圧の信号を出力する。加算増幅器4−4は、検波器4−3からの検波信号に電圧源4−5からの一定電圧を加算する。比較器4−6は、加算増幅器4−4の出力と反転増幅器4−2を比較し、加算増幅器4−4の出力より反転増幅器4−2の出力が大きい時に一定電圧の信号を出力する。パルスレート検出回路4−7は、比較器4−6の出力の発生率を求めて外部の表示器(図示せず)等に出力する。   The band pass filter 4-1 removes a direct current component from the output signal of the light receiving element 1-2 of the detection unit 1 and reduces a noise component. The inverting amplifier 4-2 amplifies the polarity of the signal from the bandpass filter 4-1 by reversing the polarity. The detector 4-3 detects from the inverted and amplified output signal. The voltage source 4-5 outputs a signal having a preset constant voltage. The adding amplifier 4-4 adds a constant voltage from the voltage source 4-5 to the detection signal from the detector 4-3. The comparator 4-6 compares the output of the summing amplifier 4-4 with the inverting amplifier 4-2, and outputs a constant voltage signal when the output of the inverting amplifier 4-2 is larger than the output of the summing amplifier 4-4. The pulse rate detection circuit 4-7 obtains the output generation rate of the comparator 4-6 and outputs it to an external display (not shown) or the like.

図4は信号処理回路4の各部の出力波形を表した図である。   FIG. 4 is a diagram showing the output waveform of each part of the signal processing circuit 4.

受光素子1−2の出力信号は、光強度の検出領域1−9のほぼ一定の検査光に、微粒子が検出領域1−9を横切ることにより生じる減光信号が重畳した波形となる(図4(a)参照)。受光素子1−2からの出力信号には、電気雑音信号も重畳している。   The output signal of the light receiving element 1-2 has a waveform obtained by superimposing a dimming signal generated when a fine particle crosses the detection region 1-9 on the substantially constant inspection light in the light intensity detection region 1-9 (FIG. 4). (See (a)). An electric noise signal is also superimposed on the output signal from the light receiving element 1-2.

受光素子1−2からの出力信号をバンドパスフィルタ4−1で処理した波形は、広域フィルタリングで直流成分が除去され、低域フィルタリングで雑音が減少した波形となる(図4(b)参照)。各々のフィルタリング処理で用いるカットオフ周波数(電気フィルタ周波数)は例えば次のように設定される。まず、被検査体のセル1−5の通過速度が分る(本例の場合セル1−5の配管径とセル1−5を流れる被検査体の流量から算出できる)ので、微粒子の通過速度は検出領域1−9を横切る微粒子の速度で推定することができる。次に、検出領域1−9の幅(径)と微粒子の通過速度から微粒子による減光パルスの幅、つまり微粒子による減光信号の周波数成分を算定することができる。カットオフ周波数はこの周波数成分を基に設定され、カットオフ周波数との比較により微粒子による減光信号が抽出される。   The waveform obtained by processing the output signal from the light receiving element 1-2 by the band-pass filter 4-1 is a waveform in which the direct current component is removed by the wide band filtering and the noise is reduced by the low band filtering (see FIG. 4B). . The cut-off frequency (electric filter frequency) used in each filtering process is set as follows, for example. First, the passage speed of the object to be inspected through the cell 1-5 is known (in this example, it can be calculated from the pipe diameter of the cell 1-5 and the flow rate of the object to be inspected flowing through the cell 1-5). Can be estimated by the velocity of the fine particles crossing the detection region 1-9. Next, from the width (diameter) of the detection region 1-9 and the passage speed of the fine particles, the width of the dimming pulse by the fine particles, that is, the frequency component of the dimming signal by the fine particles can be calculated. The cut-off frequency is set based on this frequency component, and a dimming signal due to fine particles is extracted by comparison with the cut-off frequency.

バンドパスフィルタ4−1の出力は反転増幅器4−2で反転増幅される。また、雑音成分の包絡線の変化が減光パルスの変化より十分小さいことを利用して長い時定数の検波器4−3で検波し、加算増幅器4−4で検波器4−3の出力に電圧源4−5の出力を加える。反転増幅器4−2、検波器4−3、加算増幅器4−4の出力波形を図4(c)に例示した。   The output of the bandpass filter 4-1 is inverted and amplified by the inverting amplifier 4-2. Further, using the fact that the change in the envelope of the noise component is sufficiently smaller than the change in the dimming pulse, detection is performed by the detector 4-3 having a long time constant, and the output of the detector 4-3 is output by the addition amplifier 4-4. Add the output of voltage source 4-5. The output waveforms of the inverting amplifier 4-2, the detector 4-3 and the summing amplifier 4-4 are illustrated in FIG.

比較器4−6では、加算増幅器4−4の出力と反転増幅器4−2の出力を比較し反転増幅器4−2の出力信号が加算増幅器4−4の出力より大きいときに減光パルスが検出されたと判断され、一定レベルの微粒子検出パルス(電圧)が出力される(図4(d)参照)。この微粒子検出パルスの発生率がパルスレート検出回路4−7で計測され、例えば微粒子検出パルスの発生率が上昇した場合には減光パルスが多数ある(つまり微粒子が増大した)と判断することができる。   The comparator 4-6 compares the output of the summing amplifier 4-4 with the output of the inverting amplifier 4-2, and detects the dimming pulse when the output signal of the inverting amplifier 4-2 is larger than the output of the summing amplifier 4-4. The particle detection pulse (voltage) at a certain level is output (see FIG. 4D). The generation rate of the fine particle detection pulse is measured by the pulse rate detection circuit 4-7. For example, when the generation rate of the fine particle detection pulse increases, it can be determined that there are a large number of dimming pulses (that is, the number of fine particles has increased). it can.

以上、本実施例では、複数の光透過孔1−6,1−7により検出領域1−9を細くすることができるので、微粒子が検出領域1−9に入った場合の検出領域1−9の径に対する微粒子の大きさの比を上げることができ、微粒子の遮光による減光割合を増大させ高感度化することができる。また、検出領域1−9の長さを長くすることで、検出領域1−9の体積を大きくすることが可能となり、微粒子の検出効率が向上する。   As described above, in the present embodiment, the detection region 1-9 can be narrowed by the plurality of light transmission holes 1-6 and 1-7, and therefore the detection region 1-9 when the fine particles enter the detection region 1-9. The ratio of the size of the fine particles to the diameter of the fine particles can be increased, and the ratio of light reduction due to the light shielding of the fine particles can be increased to increase the sensitivity. In addition, by increasing the length of the detection region 1-9, the volume of the detection region 1-9 can be increased, and the detection efficiency of the fine particles is improved.

加えて、微粒子の検出感度や検出効率を高めるにあたって、レーザ光やレンズ光学系を用いずに検出領域1−9を細く長く形成することができることも大きなメリットである。発光素子1−1や受光素子1−2には、レーザ光源等に比べて極めて安価なLEDやPDを使用することができる。また、光透過孔1−6,1−7を設ける遮光手段としての保持板1−3,1−4も遮光性のある加工し易い安価な材質を選択することでレンズ光学系を採用した場合に比べて必要コストは極めて低い。   In addition, when increasing the detection sensitivity and detection efficiency of fine particles, it is a great advantage that the detection region 1-9 can be formed thin and long without using a laser beam or a lens optical system. For the light emitting element 1-1 and the light receiving element 1-2, LEDs and PDs that are extremely inexpensive compared to a laser light source or the like can be used. In addition, when the lens optical system is adopted by selecting an inexpensive material that is light-shielding and easy to process for the holding plates 1-3 and 1-4 as the light-shielding means for providing the light transmitting holes 1-6 and 1-7. The required cost is extremely low.

さらには、レーザ等のコヒーレント光をレンズ光学系で調整する微粒子検出技術のように、レンズ光学系の軸合わせやレーザ光源の調整等の煩わしい操作も不要である。また、セル1−5を挟んで光透過孔1−6,1−7を設けるのではなく、発光素子1−1又は受光素子1−2の側に光透過孔1−6,1−7の双方を設けることにより、光透過孔1−6,1−7の位置合わせに要求される精度自体をより低いものとすることができる。   Furthermore, troublesome operations such as axial alignment of the lens optical system and adjustment of the laser light source are not required as in the fine particle detection technique in which coherent light such as laser is adjusted by the lens optical system. Further, the light transmission holes 1-6 and 1-7 are not provided with the cell 1-5 interposed therebetween, but the light transmission holes 1-6 and 1-7 are provided on the light emitting element 1-1 or the light receiving element 1-2 side. By providing both, the accuracy required for the alignment of the light transmitting holes 1-6 and 1-7 can be further lowered.

本実施例によれば、上記のように被検査体に含まれる微粒子を安価で高感度、なおかつ容易に検出することができる。また、被検査体を検出領域に通過させるだけで微粒子を検出することができ、微粒子をオンラインで監視することが可能である。このため、浄水場の浄水品質管理、海水・河川の汚染検出、潤滑油の汚濁検知や、クリーンルームのダストモニタ、或いはガラス製品の異物のモニタ等、工業製品の品質や環境の清浄度を確保する上で極めて効果が大きい。   According to the present embodiment, as described above, the fine particles contained in the object to be inspected can be easily detected at low cost with high sensitivity. Further, the fine particles can be detected simply by passing the inspection object through the detection region, and the fine particles can be monitored online. For this reason, ensure the quality of industrial products and the cleanliness of the environment, such as water purification quality control at water purification plants, detection of contamination of seawater and rivers, detection of contamination of lubricating oil, dust monitors in clean rooms, and monitors for foreign objects in glass products. Above all, it is very effective.

なお、保持板1−3,1−4を遮光性のある材質で形成し、保持板1−4に光透過孔1−6,1−7を設けた場合を例に挙げて説明したが、発光素子1−1や受光素子1−2を保持する保持板1−3,1−4を遮光手段として兼用するのではなく、保持板1−3,1−4とは別に専用の遮光手段を設け、該遮光手段に光透過孔1−6,1−7を設けても良い。また、本例では2つの光透過孔1−6,1−7により検出領域1−9を画定する構成としたが、検出領域1−9をさらに絞る場合には検査光の進行方向に沿って3つ以上の光透過孔を設け、3つ以上の光透過孔を通った検査光が受光素子1−2に入射するようにしても良い。本段落で記載したことは以降の実施例についても同様である。   The holding plates 1-3 and 1-4 are made of a light-shielding material, and the case where the light transmission holes 1-6 and 1-7 are provided in the holding plate 1-4 has been described as an example. The holding plates 1-3 and 1-4 holding the light emitting element 1-1 and the light receiving element 1-2 are not used as light shielding means, but a dedicated light shielding means is provided separately from the holding plates 1-3 and 1-4. The light-transmitting holes 1-6 and 1-7 may be provided in the light shielding means. In this example, the detection area 1-9 is defined by the two light transmission holes 1-6 and 1-7. However, when the detection area 1-9 is further narrowed, the detection area 1-9 is aligned along the traveling direction of the inspection light. Three or more light transmission holes may be provided, and inspection light passing through the three or more light transmission holes may be incident on the light receiving element 1-2. What is described in this paragraph is the same for the following examples.

図5は本発明に係る微粒子検出装置の第2実施例に備えられた保持板1−3,1−4を抽出して表した断面図である。   FIG. 5 is a cross-sectional view showing extracted holding plates 1-3 and 1-4 provided in the second embodiment of the particle detecting apparatus according to the present invention.

図5に示したように、本実施例が第1実施例と相違する点は検出部1の構成にある。本実施例の微粒子検出装置は複数(本例では3つ)の受光素子1−2を有している。本実施例における受光側の保持板1−4は、セル1−5に対向する複数(本例では3つ)の受光素子1−2を保持するように構成されており、各受光素子1−2と発光素子1−1との間には、第1実施例と同様にそれぞれ検査光の進行方向に沿うように複数の光透過孔が設けられている。本例の保持板1−4において、発光素子1−1と図中中央の受光素子1−2の間には光透過孔1−6,1−7が、発光素子1−1と図中左側の受光素子1−2の間には光透過孔1−6’,1−7’が、発光素子1−1と図中右側の受光素子1−2の間には光透過孔1−6”,1−7”が、それぞれ設けられている。各受光素子1−2はそれぞれ電流−電圧変換器3を介して信号処理回路4に接続している。その他の構成は第1実施例と同様である。   As shown in FIG. 5, the present embodiment is different from the first embodiment in the configuration of the detection unit 1. The fine particle detection apparatus of this embodiment has a plurality (three in this example) of light receiving elements 1-2. In this embodiment, the light receiving side holding plate 1-4 is configured to hold a plurality (three in this example) of light receiving elements 1-2 facing the cell 1-5. A plurality of light transmission holes are provided between the light emitting element 1 and the light emitting element 1-1 so as to follow the traveling direction of the inspection light, respectively, as in the first embodiment. In the holding plate 1-4 of the present example, light transmitting holes 1-6 and 1-7 are provided between the light emitting element 1-1 and the light receiving element 1-2 in the center in the figure, and the left side in the figure. Light-transmitting holes 1-6 'and 1-7' are provided between the light-receiving elements 1-2, and light-transmitting holes 1-6 "are provided between the light-emitting element 1-1 and the right-side light-receiving element 1-2 in the figure. , 1-7 ″ are provided. Each light receiving element 1-2 is connected to a signal processing circuit 4 via a current-voltage converter 3. Other configurations are the same as those of the first embodiment.

このように受光素子1−2を複数設けることにより、各受光素子1−2に対応する検出領域1−9が形成されるため、複数の検出領域1−9により微粒子検出の確度と信頼性、検出効率をさらに向上させることができる。   By providing a plurality of light receiving elements 1-2 in this manner, detection areas 1-9 corresponding to the respective light receiving elements 1-2 are formed. Therefore, the accuracy and reliability of particle detection by the plurality of detection areas 1-9, The detection efficiency can be further improved.

なお、本実施例において、複数の受光素子1−2は一次元的に配列しても良いし、二次元的に配置しても良い。また、一次元的に受光素子1−2を配列する場合、被検査体の移動方向に沿って配列しても良いし被検査体の移動方向と交わる方向に沿って配列しても良い。二次元的に配列する場合、格子の線の交点のように升目状に配列しても良いし、千鳥状或いはランダムに配列しても良い。また、1つの発光素子1−1に対して複数の受光素子1−2を設けたが、複数の受光素子1−2のそれぞれに対応する発光素子1−1(つまり複数の発光素子1−1)を設けても良い。   In the present embodiment, the plurality of light receiving elements 1-2 may be arranged one-dimensionally or two-dimensionally. When the light receiving elements 1-2 are arranged one-dimensionally, they may be arranged along the moving direction of the object to be inspected, or may be arranged along the direction intersecting with the moving direction of the object to be inspected. When arranging two-dimensionally, they may be arranged in a grid pattern like intersections of lattice lines, or may be arranged in a staggered pattern or randomly. Moreover, although the several light receiving element 1-2 was provided with respect to one light emitting element 1-1, the light emitting element 1-1 (namely, several light emitting element 1-1 corresponding to each of the some light receiving element 1-2). ) May be provided.

また、受光素子1−2として、CCD(Charge Coupled Device)素子などの一次元又は二次元のアレイ状光検出器を用いることも可能である。この場合、1つのアレイ状光検出器で受光素子に最も近い各光透過孔1−7,1−7’,1−7”を通過した検査光をカバーすることができれば1つのアレイ状検出器を受光素子1−2として設ければ足りるが、この場合、アレイ状検出器の光透過孔1−7,1−7’,1−7”からの検査光が入射する各受光素子が上記した複数の受光素子1−2に相当する。   In addition, a one-dimensional or two-dimensional array photodetector such as a CCD (Charge Coupled Device) element may be used as the light receiving element 1-2. In this case, if one array-shaped photodetector can cover the inspection light that has passed through the light transmission holes 1-7, 1-7 ′, 1-7 ″ closest to the light receiving element, one array-shaped detector. However, in this case, each light receiving element on which the inspection light from the light transmission holes 1-7, 1-7 ′, 1-7 ″ of the array detector is incident is described above. It corresponds to a plurality of light receiving elements 1-2.

また、アレイ状光検出器の各受光素子の受光面積が受光素子に最も近い光透過孔1−7,1−7’,1−7”の大きさと同等である場合には、検出領域1−9を絞る上でアレイ状光検出器の各受光素子が光透過孔1−7,1−7’,1−7”と同じ働きをするので、光透過孔1−7,1−7’,1−7”を省略しても良い。つまり、発光側の光透過孔1−6,1−6’,1−6”を通過した検査光をそれぞれアレイ状光検出器の光透過孔並みの受光面積の受光素子で検出する場合、光透過孔1−6,1−6’,1−6”を通って各受光素子に入射する光が図2の検出領域1−9と同等の検出領域を通過した検査光となるため、検査領域の検査光が入射する特定の受光素子の出力をモニタすることで上記第1又は第2実施例と同等の検出感度を実現することができる。   When the light receiving area of each light receiving element of the arrayed photodetector is equal to the size of the light transmitting holes 1-7, 1-7 ′, 1-7 ″ closest to the light receiving element, the detection region 1− Since the light receiving elements of the arrayed photodetector function in the same manner as the light transmission holes 1-7, 1-7 ′, 1-7 ″ when narrowing down 9, the light transmission holes 1-7, 1-7 ′, 1-7 ″ may be omitted. That is, the inspection light that has passed through the light transmitting holes 1-6, 1-6 ′, 1-6 ″ on the light emitting side is equivalent to the light transmitting holes of the arrayed photodetector. When detecting with the light receiving element having the light receiving area, the light incident on each light receiving element through the light transmitting holes 1-6, 1-6 ′, 1-6 ″ is equivalent to the detection area 1-9 in FIG. Therefore, the detection sensitivity equivalent to that of the first or second embodiment can be obtained by monitoring the output of a specific light receiving element on which the inspection light in the inspection region is incident. It can be current.

図6は本発明に係る微粒子検出装置の第3実施例に備えられた保持板1−3,1−4を抽出して表した断面図である。   FIG. 6 is a cross-sectional view showing extracted holding plates 1-3 and 1-4 provided in the third embodiment of the particle detecting apparatus according to the present invention.

図6に示したように、本実施例が第1実施例と相違する点は検出部1の構成にあり、発光側の光透過孔1−6を発光側の保持板1−3に設けた点にある。受光側の光透過孔1−7は受光側の保持板1−4に設けてある。その他の構成は第1実施例と同様である。   As shown in FIG. 6, this embodiment is different from the first embodiment in the configuration of the detection unit 1, and the light transmission side light transmission hole 1-6 is provided in the light emission side holding plate 1-3. In the point. The light transmission hole 1-7 on the light receiving side is provided in the holding plate 1-4 on the light receiving side. Other configurations are the same as those of the first embodiment.

発光側の保持板1−3に設けた光透過孔1−6から出射した検査光は、光透過孔1−6から離れるに従って光透過孔1−6の穴径より大きく広がる。しかし、光透過孔1−6を通過した検査光を受光側の保持板1−4に設けた光透過孔1−7で採光すれば、受光側から見ると受光側の光透過孔1−7を通して発光側の光透過孔1−6から出る光を観測することになる。そのため、例えば2つの保持板1−3,1−4の光透過孔1−6,1−7が同径の円である場合、保持板1−3,1−4間の検出領域1−9は光透過孔1−6,1−7とほぼ同径の円柱状に形成される。この円柱状の検出領域1−9を通過する微粒子の遮光による検査光の減光を検出し微粒子の存在が検出される。   The inspection light emitted from the light transmission hole 1-6 provided in the light-emission-side holding plate 1-3 spreads larger than the hole diameter of the light transmission hole 1-6 as the distance from the light transmission hole 1-6 increases. However, if the inspection light that has passed through the light transmitting hole 1-6 is collected by the light transmitting hole 1-7 provided on the light receiving side holding plate 1-4, the light transmitting hole 1-7 on the light receiving side is viewed from the light receiving side. The light emitted from the light transmitting hole 1-6 on the light emission side through is observed. Therefore, for example, when the light transmission holes 1-6 and 1-7 of the two holding plates 1-3 and 1-4 are circles having the same diameter, the detection region 1-9 between the holding plates 1-3 and 1-4 is detected. Is formed in a cylindrical shape having substantially the same diameter as the light transmitting holes 1-6 and 1-7. The presence of the fine particles is detected by detecting the decrease in the inspection light due to the shielding of the fine particles passing through the cylindrical detection region 1-9.

本実施例においても第1実施例と同様の効果を得ることができる。また、本実施例では、検出領域1−9をほぼ同じ太さ(一様の径)にすることができ、検出領域1−9のどの部分を微粒子が通過しても減光量に差がないことも検出感度を向上させる上でメリットとなる。   In this embodiment, the same effect as that of the first embodiment can be obtained. Further, in this embodiment, the detection area 1-9 can be made to have substantially the same thickness (uniform diameter), and there is no difference in the amount of light reduction regardless of which part of the detection area 1-9 passes the fine particles. This is also an advantage in improving detection sensitivity.

なお、光透過孔1−6,1−7は、円形でなく矩形等の他の形状にしても勿論良いが、両者の形状を合わせることが好ましい。また、検出領域1−9をさらに絞りたい場合には、保持板1−3又は1−4の側の光透過孔1−6又は1−7を検査光の進行方向に沿って複数設けても良い。光透過孔1−6,1−7の双方を検査光の進行方向に沿って複数設けても良い。また、光透過孔を受光側の保持板1−4に設けず、発光側の保持板1−3にのみ検査光の進行方向に沿って複数の光透過孔を設ける構成も考えられる。   Of course, the light transmitting holes 1-6 and 1-7 may have other shapes such as a rectangle instead of a circle, but it is preferable to match the shapes of the two. In order to further narrow down the detection region 1-9, a plurality of light transmitting holes 1-6 or 1-7 on the holding plate 1-3 or 1-4 side may be provided along the traveling direction of the inspection light. good. A plurality of both light transmission holes 1-6 and 1-7 may be provided along the traveling direction of the inspection light. Further, a configuration in which a plurality of light transmission holes are provided along the traveling direction of the inspection light only on the light emission side holding plate 1-3 without providing the light transmission holes on the light receiving side holding plate 1-4 is also conceivable.

図7は本発明に係る微粒子検出装置の第4実施例の検出部1を抽出して一部断面で表す概略構成図である。   FIG. 7 is a schematic configuration diagram showing a partial cross-section of the detection unit 1 of the fourth embodiment of the particle detection apparatus according to the present invention.

図7に示したように、本実施例の微粒子検出装置は、発光素子1−1とこれに最も近い発光側の光透過孔1−6との間に設けた導光路1−10と、受光素子1−2とこれに最も近い受光側の光透過孔1−7との間に設けた導光路1−11とを備えている。その他の構成は第3実施例に実質等しい。   As shown in FIG. 7, the particle detector of the present embodiment includes a light guide 1-10 provided between the light emitting element 1-1 and the light transmitting hole 1-6 on the light emitting side closest thereto, A light guide path 1-11 provided between the element 1-2 and the light transmission hole 1-7 on the light receiving side closest thereto is provided. Other configurations are substantially the same as those of the third embodiment.

発光側の上記導光路1−10は、発光素子1−1からの検査光を発光側の保持板1−3の光透過孔1−6に集光し導く集光手段として機能するものであり、発光素子1−1からの検査光が外部に漏洩しないように外壁は光学反射体で覆われている。発光素子1−1からの検査光は、導光路1−10の内部を通り光透過孔1−6に挿入された導光路1−10のセル1−5側先端から出射する。   The light guide path 1-10 on the light emitting side functions as a light collecting means for condensing and guiding the inspection light from the light emitting element 1-1 to the light transmission hole 1-6 of the light holding plate 1-3 on the light emitting side. The outer wall is covered with an optical reflector so that the inspection light from the light emitting element 1-1 does not leak outside. The inspection light from the light emitting element 1-1 passes through the inside of the light guide 1-10 and is emitted from the cell 1-5 side tip of the light guide 1-10 inserted into the light transmission hole 1-6.

受光側の上記導光路1−11は、受光側の光透過孔1−7を通って入射した検査光を受光素子1−2に導く機能を有しており、受光側の光透過孔1−7から入射した検査光が外部に漏洩しないように外壁は光学反射体で覆われている。受光側の光透過孔1−7から入射した検査光は、光透過孔1−7に挿入されたセル1−5側先端から導光路1−11に入り、導光路1−11の内部を通って受光素子1−2に入射する。   The light guide path 1-11 on the light receiving side has a function of guiding the inspection light incident through the light transmitting hole 1-7 on the light receiving side to the light receiving element 1-2, and the light transmitting hole 1- on the light receiving side. The outer wall is covered with an optical reflector so that the inspection light incident from 7 does not leak outside. The inspection light incident from the light transmitting hole 1-7 on the light receiving side enters the light guide 1-11 from the tip of the cell 1-5 inserted into the light transmitting hole 1-7, and passes through the inside of the light guide 1-11. Incident on the light receiving element 1-2.

本実施例の場合、検出領域1−9は第3実施例と同様に形成され、第3実施例で得られる効果を得ることができる。それに加え、前に説明した各実施例では光透過孔1−6,1−7で検査光の一部を遮ることにより微小断面の検出領域1−9を形成していたが、本実施例の場合、発光素子1−1からの検査光を遮ることなく発光側の光透過孔1−6へ導くので、発光側の光透過孔1−6で遮られる光量が少なく検査光のロスを減少させることができる。また、受光側においても光透過孔1−7に入射した検査光が外部に漏洩することがないので、受光素子1−2の受光効率も向上する。これにより検出感度をさらに向上させることができ、例えば前の各実施例と同等の検出感度を得る上では受光素子1−1の発光量を減少させることもできる。   In the case of the present embodiment, the detection region 1-9 is formed in the same manner as in the third embodiment, and the effects obtained in the third embodiment can be obtained. In addition, in each of the embodiments described above, the detection region 1-9 having a small cross section is formed by blocking a part of the inspection light with the light transmitting holes 1-6 and 1-7. In this case, since the inspection light from the light emitting element 1-1 is guided to the light transmission hole 1-6 without being blocked, the amount of light blocked by the light transmission hole 1-6 is small and the loss of inspection light is reduced. be able to. Moreover, since the inspection light incident on the light transmission hole 1-7 does not leak to the outside even on the light receiving side, the light receiving efficiency of the light receiving element 1-2 is improved. As a result, the detection sensitivity can be further improved. For example, in order to obtain a detection sensitivity equivalent to that in each of the previous embodiments, the light emission amount of the light receiving element 1-1 can be reduced.

なお、本実施例では発光側と受光側の双方に導光路1−10,1−11を設けた場合を例に挙げて説明したが、導光路1−10,1−11がそれぞれに効果を奏するものであり、いずれかを省略しても相応の効果を得ることができる。   In this embodiment, the case where the light guide paths 1-10 and 1-11 are provided on both the light emitting side and the light receiving side has been described as an example. However, the light guide paths 1-10 and 1-11 are effective for each. Even if one of them is omitted, a corresponding effect can be obtained.

図8は本発明に係る微粒子検出装置の第5実施例の概略構成図であり、検出部は断面で表してある。また、図8のA部拡大図を図9(a)に、図8のB部拡大図を図9(b)に示す。   FIG. 8 is a schematic configuration diagram of a fifth embodiment of the particle detection apparatus according to the present invention, and the detection portion is shown in cross section. Further, FIG. 9A shows an enlarged view of part A in FIG. 8, and FIG. 9B shows an enlarged view of part B in FIG.

本実施例に係る微粒子検出装置は、検査光の照射領域中の検出領域を移動する微粒子による遮光、回折又は干渉効果によって発生する検出光の変動を検出して被検査体中の微粒子を検出するものである。   The fine particle detection apparatus according to the present embodiment detects fine particles in an object to be inspected by detecting fluctuations in detection light caused by light shielding, diffraction, or interference effects caused by fine particles moving in the detection region in the inspection light irradiation region. Is.

図8に示した微粒子検出装置は、微粒子を含む被検査体(本例では流体)を流す配管11、被検査体に検査光を照射する発光素子12、発光素子12のエネルギー源である電流源13、被検査体を透過して入射する発光素子12からの検査光を受光する受光素子14、配管1と受光素子14の間に設けられ検査光の照射領域中の検出領域を絞る光透過孔17−1を有する遮光手段である細孔板17、受光素子14で受光した光の光電流を電圧に変換する光電流−電圧変換器15、光電流−電圧変換器15の出力信号を処理する信号処理装置16、信号処理装置16で処理した出力パルスを計数するレートメータ18及びレートメータ18による係数結果を表示する表示装置19を備えている。   The particle detection apparatus shown in FIG. 8 includes a pipe 11 through which an object to be inspected (fluid in this example) containing particles, a light emitting element 12 that irradiates the inspection object with inspection light, and a current source that is an energy source of the light emitting element 12. 13. A light receiving element 14 that receives inspection light from the light emitting element 12 that is incident through the object to be inspected, and a light transmission hole that is provided between the pipe 1 and the light receiving element 14 and narrows the detection area in the irradiation area of the inspection light. The aperture plate 17 serving as a light-shielding unit 17-1, the photocurrent-voltage converter 15 for converting the photocurrent of the light received by the light receiving element 14 into a voltage, and the output signal of the photocurrent-voltage converter 15 are processed. A signal processing device 16, a rate meter 18 for counting output pulses processed by the signal processing device 16, and a display device 19 for displaying a coefficient result by the rate meter 18 are provided.

本実施の形態において上記細孔板17は、配管11の外周面と受光素子14との間に介設されており、微小な直径の光透過孔17−1を透過する光を除いて発光素子12からの検査光を遮る。光透過孔17−1は発光素子12と受光素子14を結ぶ線上に設けられている。受光素子14側から光透過孔17−1を通して観測される領域(受光素子12から光透過孔17−1を覗いて観測される直線状の領域)が検出領域となるが、光透過孔17−1の口径は受光素子14から光透過孔17−1を介して発光源(発光素子12)が観測され、この観測領域を反射源(微粒子)が横切るとき、発光源と反射源との二つの光で発生する干渉を検出することができる大きさに予め定められている。   In the present embodiment, the pore plate 17 is interposed between the outer peripheral surface of the pipe 11 and the light receiving element 14, and is a light emitting element except for light transmitted through a light transmitting hole 17-1 having a minute diameter. The inspection light from 12 is blocked. The light transmission hole 17-1 is provided on a line connecting the light emitting element 12 and the light receiving element 14. A region observed from the light receiving element 14 side through the light transmitting hole 17-1 (a linear region observed from the light receiving element 12 through the light transmitting hole 17-1) is a detection region, but the light transmitting hole 17- When the light source (light emitting element 12) is observed from the light receiving element 14 through the light transmission hole 17-1, and the reflection source (fine particle) crosses the observation area, the aperture of 1 is two. The size is determined in advance so that interference generated by light can be detected.

配管11は、中を流れる被検査体に検査光を照射して受光素子14に入射させるため、少なくとも検査光が通過する部分は透明な材質で作られている。配管11の内面の検査光が通過する部分以外、特に受光素子14側の光透過孔17−1周囲の内壁部分には、光を反射する反射防止塗料を塗布する等して形成した反射防止部30(図9(a)参照)を設け、配管11の内面で反射して戻る反射光によって発光素子12から受光素子14に向けて照射される検査光の光量が不安定になることを抑制することが好ましい。また、配管11の内面のうち検査領域の検査光以外が照射される部分を反射防止部30で覆う構成に限らず、例えば散乱させて反射光が発光素子12に戻らないようにすることも考えられる。図9(a)及び図9(b)に示した検査光選別手段31,32はその一例である。   The pipe 11 is made of a transparent material at least for the portion through which the inspection light passes in order to irradiate the inspection object flowing therethrough and inject the inspection light into the light receiving element 14. An antireflection portion formed by applying an antireflection paint that reflects light on the inner wall portion around the light transmission hole 17-1 on the light receiving element 14 side, except for a portion where the inspection light on the inner surface of the pipe 11 passes. 30 (see FIG. 9A) is provided to suppress the instability of the amount of the inspection light irradiated from the light emitting element 12 toward the light receiving element 14 by the reflected light reflected and returned from the inner surface of the pipe 11. It is preferable. Further, the configuration is not limited to the configuration in which the portion of the inner surface of the pipe 11 that is irradiated with light other than the inspection light in the inspection region is covered with the antireflection portion 30. It is done. The inspection light sorting means 31 and 32 shown in FIGS. 9A and 9B are an example.

検査光選別手段31,32は簡易なレンズやプリズム等で適宜構成することができ、通過させるべき検出領域の検査光を通過させるべく検査光の入射部分(光軸を含むその付近)に光軸に直交する一定面積の平坦部を有し、その周囲が平坦部に対して傾斜した形状をしている。検査光選別手段31は円錐の頂部を切断したような形状をしており、検査光選別手段32は検査光が入射する面の頂部又はその近傍を光軸が通るように配置した球面状の形状をしている。本例では検査光選別手段31,32をそれぞれ配管11の受光素子14側、発光素子12側に配置した場合を例に挙げて説明したが、この逆の配置でも良いし、検査光選別手段31,32のいずれかを両位置に配置しても良いし、或いは受光素子14側、発光素子12側のいずれかのみに検査光選別手段31又は32を設ける構成としても良い。このようにして検査光選別手段を光軸上に配置することで、検査領域又はその近傍を通過した検査光が検査光選別手段の平坦部を通過して受光素子14に向かって進行し、検査領域から外れた検査光は検査光選別手段31,32の斜面部分で発光素子12に戻る方向からずれた方向に反射(散乱)する。図9(a)及び図9(b)に示したように構成することにより、配管11の内面反射等による雑音光が受光素子14に入射して検出されることや、配管内面反射により発行素子12に反射光が戻ることが低減される。   The inspection light sorting means 31 and 32 can be appropriately configured with a simple lens, prism, or the like, and an optical axis is provided at an inspection light incident portion (the vicinity including the optical axis) so as to pass inspection light in a detection region to be passed. A flat portion having a constant area orthogonal to the outer periphery of the flat portion, and the periphery thereof is inclined with respect to the flat portion. The inspection light sorting means 31 has a shape obtained by cutting the top of the cone, and the inspection light sorting means 32 has a spherical shape arranged so that the optical axis passes through the top of the surface on which the inspection light is incident or in the vicinity thereof. I am doing. In this example, the case where the inspection light sorting units 31 and 32 are arranged on the light receiving element 14 side and the light emitting element 12 side of the pipe 11 has been described as an example, but the reverse arrangement may be used, or the inspection light sorting unit 31 may be arranged. 32 may be disposed at both positions, or the inspection light sorting means 31 or 32 may be provided only on either the light receiving element 14 side or the light emitting element 12 side. By arranging the inspection light sorting means on the optical axis in this way, the inspection light that has passed through the inspection region or the vicinity thereof passes through the flat portion of the inspection light sorting means and proceeds toward the light receiving element 14 to be inspected. The inspection light deviated from the region is reflected (scattered) in a direction deviated from the direction returning to the light emitting element 12 at the inclined portion of the inspection light sorting means 31 and 32. By configuring as shown in FIGS. 9A and 9B, noise light caused by internal reflection of the pipe 11 is incident on the light receiving element 14 and is detected, and the emitting element is detected by internal reflection of the pipe. The return of reflected light to 12 is reduced.

発光素子12には、干渉性のあるコヒーレント光を発生させ、発光領域が微少なレーザ光源を用いる。発光素子12は、上記電流源13からの駆動電流によって発光する。レーザ光源は、例えば半導体レーザであれば自励発振型や利得導波型などの発振スペクトルがシングルモードレーザに比べて広いものを用いる。シングルモードレーザを用いる場合は、電流源13に公知の高周波重畳回路を組み込み、高周波数電流で発光させて発光スペクトルを元のスペクトルより広げる。さらに、レーザ光源が例えば半導体レーザであれば、レーザ光の光路上に公知の1/2波長板、1/4波長板などの偏光面変更手段を設け、レーザ光の偏波面を異なる偏波角度にし、戻り光の影響を軽減することも可能である。   The light emitting element 12 uses a laser light source that generates coherent light having coherence and has a small light emitting region. The light emitting element 12 emits light by the driving current from the current source 13. As the laser light source, for example, a semiconductor laser having a wider oscillation spectrum than a single mode laser such as a self-excited oscillation type or a gain waveguide type is used. In the case of using a single mode laser, a known high frequency superposition circuit is incorporated in the current source 13 to emit light with a high frequency current to broaden the emission spectrum from the original spectrum. Further, if the laser light source is, for example, a semiconductor laser, a polarization plane changing means such as a known half-wave plate or quarter-wave plate is provided on the optical path of the laser beam, and the polarization plane of the laser beam is changed to a different polarization angle. It is also possible to reduce the influence of the return light.

また、受光素子14には、例えばPD(Photo Diode)等の受光センサを利用することができる。受光素子14には、上記した細孔板17が設けてあり、細孔板17の光透過孔17−1を通過した光が受光素子14で検出される。受光素子14で受光した光電流は、光電流−電圧変換器15で電圧信号に変換され、信号処理装置16で信号処理される。信号処理装置16で処理された出力パルスの発生数、すなわち微粒子検出数がレートメータ18で計数され、その係数結果が表示装置19に表示される。   The light receiving element 14 may be a light receiving sensor such as a PD (Photo Diode). The light receiving element 14 is provided with the above-described pore plate 17, and the light that has passed through the light transmitting hole 17-1 of the pore plate 17 is detected by the light receiving element 14. The photocurrent received by the light receiving element 14 is converted into a voltage signal by the photocurrent-voltage converter 15 and signal processed by the signal processing device 16. The number of output pulses processed by the signal processing device 16, that is, the number of detected particles is counted by the rate meter 18, and the coefficient result is displayed on the display device 19.

ここで、図10は被検査体内の微粒子により検出光の光強度波形が変化する原理を説明する概念図、図11(a)及び図11(b)は検出光強度の波形の一例を表す図である。   Here, FIG. 10 is a conceptual diagram for explaining the principle that the light intensity waveform of the detection light changes due to the fine particles in the inspected body, and FIGS. 11A and 11B show examples of the waveform of the detection light intensity. It is.

図10に示したように、発光素子12から照射された後の検査光を絞ったりするレンズ光学系を使用しない本実施例において、発光素子12からの検査光Lの強度はその光軸(光ビームの中心)に近いほど高く光軸から離れるにつれて低下する。細孔板17を通過して受光素子14で検出される検査光Lの波形は、検査領域付近を通過する微粒子がない場合、光透過孔17−1を通過して受光素子14で検出される検査光が遮光・回折・散乱等の影響を受けず一定となる(図11(a)参照)。それに対し、検出領域を移動する微粒子Pがある場合、微粒子Pによる検査光の遮光に加え、微粒子Pで反射した散乱光(反射光)と発光素子12から直接入射する検査光(直接光)との干渉が起こる。直接光と反射光は互いの光路長が異なるので、可干渉性のあるレーザ光が干渉し合って光の干渉が生じる。したがって、時間の経過とともに微粒子Pが移動すると、干渉による検出光の強度変動は、図11(b)に示したように微粒子Pが検出領域に入ってから光軸に近付くにつれて反射強度の増加に伴って大きくなり、微粒子Pが光軸から離れるにつれて小さくなる。本実施例では、こうした強度変化を検出して微粒子を検出する。本実施例における細孔板17は、検出領域を制限することで、検査光の光軸からずれた位置にある微粒子からの反射光と直接光の干渉効果を先鋭化するために使用され、これにより高い検出感度が確保される。   As shown in FIG. 10, in the present embodiment in which the lens optical system for narrowing the inspection light irradiated from the light emitting element 12 is not used, the intensity of the inspection light L from the light emitting element 12 is expressed by its optical axis (light The higher the distance from the optical axis, the lower the distance from the optical axis. The waveform of the inspection light L detected by the light receiving element 14 after passing through the pore plate 17 passes through the light transmitting hole 17-1 and is detected by the light receiving element 14 when there is no particulate passing through the vicinity of the inspection region. The inspection light is constant without being affected by light shielding / diffraction / scattering (see FIG. 11A). On the other hand, when there are fine particles P moving in the detection region, in addition to the shielding of the inspection light by the fine particles P, the scattered light (reflected light) reflected by the fine particles P and the inspection light (direct light) directly incident from the light emitting element 12 Interference occurs. Since direct light and reflected light have different optical path lengths, coherent laser beams interfere with each other to cause light interference. Therefore, when the fine particles P move with time, the intensity fluctuation of the detection light due to interference increases in reflection intensity as the fine particles P approach the optical axis after entering the detection region as shown in FIG. Along with this, the particle P becomes smaller as it moves away from the optical axis. In this embodiment, such a change in intensity is detected to detect fine particles. The pore plate 17 in this embodiment is used to sharpen the interference effect between the reflected light and the direct light from the fine particles located at a position shifted from the optical axis of the inspection light by limiting the detection region. Therefore, high detection sensitivity is ensured.

図12は信号処理装置16のブロック図である。図12を用いて信号処理装置16による本実施例の検出光の処理内容について説明する。   FIG. 12 is a block diagram of the signal processing device 16. The processing contents of the detection light of this embodiment by the signal processing device 16 will be described with reference to FIG.

信号処理装置16は、バンドパスフィルタ16−1、増幅器16−2、検波器16−3及び比較器16−4を備えている。バンドパスフィルタ16−1は、高周波数のノイズ成分を除去するローパスフィルタと、検出した光の直流成分を除去して強度変動を成分のみを取り出すハイパスフィルタとから構成されている。また、バンドパスフィルタの各々のカットオフ周波数は、予め被検査体の速度に応じた周波数特性を基に決める。検出信号のバンドパスフィルタ16−1で処理された強度変動を必要に応じて増幅するのが増幅器16−2である。検波器16−3は、波形の全波整流と検波を行う。比較器16−4は、検波器16−3の検波信号を予め設定された比較レベルと比較してパルス化し、レートメータ18に出力する。レートメータ18はパルスの単位時間当たりの計数率を求め、これが表示装置19に表示される。この計数値が、微粒子を検出した回数である。   The signal processing device 16 includes a bandpass filter 16-1, an amplifier 16-2, a detector 16-3, and a comparator 16-4. The band-pass filter 16-1 includes a low-pass filter that removes a high-frequency noise component and a high-pass filter that removes only a component of intensity variation by removing a DC component of the detected light. Further, the cut-off frequency of each bandpass filter is determined in advance based on frequency characteristics corresponding to the speed of the object to be inspected. The amplifier 16-2 amplifies the intensity fluctuation processed by the band-pass filter 16-1 of the detection signal as necessary. The detector 16-3 performs full-wave rectification and detection of the waveform. The comparator 16-4 compares the detection signal of the detector 16-3 with a preset comparison level to make a pulse, and outputs the pulse to the rate meter 18. The rate meter 18 obtains a count rate per unit time of the pulse, and this is displayed on the display device 19. This count value is the number of times the fine particles are detected.

以上のように、本実施の形態によれば、微粒子による検査光の遮光の他、散乱・回折等の現象に伴う検出光強度の変動幅を見て微粒子の検出を検出する構成とすることにより、前の各実施の形態と同じく検出領域を絞ることによる検出感度の向上に加え、光透過光17−1が1つで足りるメリットが得られる。既述の各実施の形態のように複数の光透過孔を設けて検出領域を制限する場合、レンズ光学系等の位置合わせや調整を行って検出領域を絞る場合に比べて検出領域の制限に要する手間が大幅に軽減されるが、本実施例の場合、光透過孔同士の位置合わせも不要となり、位置合わせ等に要する手間を一層軽減することができる。   As described above, according to the present embodiment, in addition to shielding the inspection light by the fine particles, the detection of the fine particles is detected by looking at the fluctuation range of the detected light intensity due to the phenomenon such as scattering and diffraction. As in the previous embodiments, in addition to improving the detection sensitivity by narrowing the detection region, there is an advantage that only one light transmission light 17-1 is sufficient. When a plurality of light transmission holes are provided to limit the detection area as in each of the above-described embodiments, the detection area is limited as compared with the case where the detection area is narrowed down by performing alignment or adjustment of the lens optical system or the like. Although the labor required is greatly reduced, in the case of the present embodiment, it is not necessary to align the light transmitting holes, and the labor required for the alignment can be further reduced.

図13は本発明に係る微粒子検出装置の第6実施例の概略構成図であり、検出部は断面で表してある。図13において既出図面と同様の部分には既出図面と同符号を付して説明を省略する。   FIG. 13 is a schematic configuration diagram of a sixth embodiment of the particle detection apparatus according to the present invention, in which the detection unit is shown in cross section. In FIG. 13, the same parts as those in the above-described drawings are denoted by the same reference numerals as those in the above-mentioned drawings, and description thereof is omitted.

本実施例は、検出した微粒子が球状か否かを判定する機能を第5実施例に追加した例である。例えば、被検査体が気体でない場合、気体の微粒子は球状になることが多く、検出した微粒子が球状であればその微粒子は一定条件下では気体と推定することができる。本実施例ではこのことを利用して、検出した微粒子が球状か否かで気体かどうかを判別し、必要に応じて非球状の微粒子を除外することで誤検出率を低下させることができ、検出結果の信頼性を向上させることができる。例えば浄水場のフィルタの下流部分に本実施例の微粒子検出装置を適用する場合のように、固体や液体の微粒子を検出対象とするとき等のように気体粒子が検出されないようにしたい場合に、本実施例は好適である。   This embodiment is an example in which a function for determining whether or not a detected fine particle is spherical is added to the fifth embodiment. For example, when the object to be inspected is not a gas, the gas fine particles are often spherical, and if the detected fine particles are spherical, the fine particles can be estimated to be gas under certain conditions. In this example, using this fact, it is determined whether the detected fine particles are spherical or not, and if necessary, it is possible to reduce the false detection rate by excluding non-spherical fine particles, The reliability of the detection result can be improved. For example, when applying the particulate detection device of the present embodiment to the downstream portion of the filter of the water purification plant, when it is desired to prevent the detection of gas particles such as when solid or liquid particulates are to be detected, This embodiment is suitable.

なお、図13に示した信号処理装置16Aでは、第5実施例の信号処理装置16と一部構成を変え、さらに電流源13の駆動電流を制御することができるようになっている。本実施例は、信号処理装置16Aの処理内容以外は実質的に第5実施例と同様である。   Note that the signal processing device 16A shown in FIG. 13 is partly different from the signal processing device 16 of the fifth embodiment, and can further control the drive current of the current source 13. This embodiment is substantially the same as the fifth embodiment except for the processing contents of the signal processing device 16A.

図14は本発明に係る微粒子検出装置の第6実施例に備えられた信号処理装置16Aのブロック図である。図14において既出図面を同様の部分には既出図面と同符号を付して説明を省略する。   FIG. 14 is a block diagram of a signal processing device 16A provided in the sixth embodiment of the particle detecting device according to the present invention. In FIG. 14, the same parts as those in the above-described drawings are denoted by the same reference numerals as those in the above-mentioned drawings, and description thereof is omitted.

図14の信号処理装置16Aは、バンドパスフィルタ16−1、増幅器16−2、波形メモリ16−5、演算器16−6を備えている。バンドパスフィルタ16−1は、高周波数のノイズ成分を除去するローパスフィルタと、検出した光の直流成分を除去して強度変動を成分のみを取り出すハイパスフィルタとを直列に接続している。バンドパスフィルタ16−1で処理された強度変動を必要に応じて増幅するのが増幅器16−2である。但し、バンドパスフィルタ16−1のローパスフィルタの出力は、増幅器16−2を介さず波形メモリ16−5に入力される。   The signal processing device 16A of FIG. 14 includes a band pass filter 16-1, an amplifier 16-2, a waveform memory 16-5, and a calculator 16-6. The band-pass filter 16-1 is connected in series with a low-pass filter that removes high-frequency noise components and a high-pass filter that removes the detected DC component of light and extracts only the intensity variation. The amplifier 16-2 amplifies the intensity fluctuation processed by the band pass filter 16-1 as necessary. However, the output of the low pass filter of the band pass filter 16-1 is input to the waveform memory 16-5 without passing through the amplifier 16-2.

波形メモリ16−5は、アナログ−デジタル(A/D)変換器とリング状のメモリから構成されており、バンドパスフィルタ16−1のローパス出力及び増幅器16−2のハイパス出力を一定の時間幅分だけ随時記録していき、増幅器16−2の強度変動信号(ハイパス出力)が比較レベルを超えた場合、その時点の前後の一定時間幅の波形を記録する。バンドパスフィルタ16−1のローパス出力は、発光素子12からの直接光の強度に相当する。   The waveform memory 16-5 is composed of an analog-digital (A / D) converter and a ring-shaped memory, and the low-pass output of the band-pass filter 16-1 and the high-pass output of the amplifier 16-2 are set to a certain time width. When the intensity fluctuation signal (high-pass output) of the amplifier 16-2 exceeds the comparison level, a waveform having a certain time width before and after that point is recorded. The low pass output of the band pass filter 16-1 corresponds to the intensity of direct light from the light emitting element 12.

演算器16−6の処理内容については後述するが、微粒子の検出、検出した微粒子が球状であるか否かの判定に加え、バンドパスフィルタ16−1のローパス出力が一定となるように発光素子12から照射される検査光強度が一定になるよう電流源13による駆動電流を制御する。   The processing contents of the arithmetic unit 16-6 will be described later. In addition to the detection of fine particles and determination of whether or not the detected fine particles are spherical, the light emitting element so that the low pass output of the band pass filter 16-1 is constant. The drive current by the current source 13 is controlled so that the intensity of the inspection light irradiated from 12 is constant.

ここで、被検査体内の微粒子により検出光の光強度波形について先の図10とともに図15(a)及び図15(b)を参照して説明する。   Here, the light intensity waveform of the detection light by the fine particles in the inspected body will be described with reference to FIGS. 15A and 15B together with FIG.

まず既出の図10に示した通り、微少な発光領域を持つ半導体レーザなどの発光素子12からの光強度は光軸に近いほど高く光軸から離れるにつれて低下する。微粒子Pが検査光の照射領域を移動する場合、発光素子12からの直接光と微粒子Pからの反射光が干渉し、微粒子の移動に伴って検出光強度が変動することは先に説明した。   First, as shown in FIG. 10, the light intensity from the light emitting element 12 such as a semiconductor laser having a minute light emitting region is higher as it is closer to the optical axis and decreases as the distance from the optical axis is increased. As described above, when the fine particles P move in the irradiation region of the inspection light, the direct light from the light emitting element 12 interferes with the reflected light from the fine particles P, and the detection light intensity varies as the fine particles move.

ここで、図10に示したモデルにおいて、発光素子12と細孔板17の光透過孔17−1との互いの中心を結ぶ線と、発光素子12の発光強度中心軸とが一致し、かつ強度分布の等高線が光軸に直交する断面内で円形である場合を考える。この場合、微粒子Pが球状で光の反射率が方向によらず一定であれば、微粒子Pの移動に伴って得られる反射光強度は光軸を中心に対称となるため、その検出波形は検査光の光軸を中心として対称な変動波形となる(図15(b)中の実線参照)。これに対し、微粒子が非球状で反射率が不均一である場合、反射強度は光軸を中心に対象にはならない。そのため、図15(b)に点線に示したように検査光の光軸を中心として非対称な変動波形となる。また、微粒子が光軸上にあると検査光の遮光と回折が起こり、これも検出光の強度変化となる。遮光、回折とも、球状の微粒子による光強度変化は光軸に対して対称であることは言うまでもない。   Here, in the model shown in FIG. 10, the line connecting the centers of the light emitting element 12 and the light transmitting hole 17-1 of the pore plate 17 coincides with the emission intensity central axis of the light emitting element 12, and Consider a case where the contour lines of the intensity distribution are circular in a cross section perpendicular to the optical axis. In this case, if the fine particle P is spherical and the light reflectance is constant regardless of the direction, the reflected light intensity obtained along with the movement of the fine particle P is symmetric with respect to the optical axis. The fluctuation waveform is symmetrical about the optical axis of the light (see the solid line in FIG. 15B). On the other hand, when the fine particles are non-spherical and the reflectance is non-uniform, the reflection intensity is not targeted around the optical axis. Therefore, as shown by a dotted line in FIG. 15B, an asymmetrical fluctuation waveform is obtained with the optical axis of the inspection light as the center. If the fine particles are on the optical axis, the inspection light is blocked and diffracted, which also changes the intensity of the detection light. Needless to say, the light intensity change by the spherical fine particles is symmetric with respect to the optical axis in both light shielding and diffraction.

本実施例では、まず第5実施例と同じ要領で検出光の強度変化を検出して微粒子を検出し、さらに検出した微粒子が球状か否かを判定する。本実施例における細孔板17は、光軸から離れた部分にある微粒子の反射光と直接光の干渉効果を先鋭化するために使用しており、これにより検出感度を向上できることは実施例5と同様である。   In this embodiment, first, the change in the intensity of the detection light is detected in the same manner as in the fifth embodiment to detect the fine particles, and it is further determined whether or not the detected fine particles are spherical. The pore plate 17 in the present embodiment is used to sharpen the interference effect between the reflected light of the fine particles in the part away from the optical axis and the direct light, and this can improve the detection sensitivity according to the fifth embodiment. It is the same.

図16は波形メモリ16−5による波形の採取手順を表す説明図である。   FIG. 16 is an explanatory diagram showing a procedure for collecting a waveform by the waveform memory 16-5.

波形メモリ16−5は、動作中は増幅器16−2の強度変動信号をそのアナログ−デジタル(A/D)変換器で常時A/D変換し、それを一定長さのリング状のメモリに記憶していく。リンク状のメモリでは、時間的に古い波形データは新しいデータに順次書き換えられていく。そして、増幅器16−2からの信号強度が設定の比較レベル(閾値)を超えたとき、演算器16−6から出力されるタイミング信号を入力し、その時点よりも一定時間前からの記録を残し、その先一定時間の記録を残りの記憶領域に記録することにより、増幅器16−2の出力が比較レベルを超える前後の波形を記録することができる。この動作は市販の波形メモリで実行される公知の技術である。また、バンドパスフィルタ16−1のローパス出力を波形メモリ16−5に記録する場合も同じ要領で記録することができる。バンドパスフィルタ16−1のローパス出力は、直流成分である受光素子14の不変動成分であり、この値は発光素子12(例えばレーザダイオード)の出力や光路の曇り(配管11の内面への異物の付着等)等に起因する光量変動に影響される。したがって、ローパス出力を一定の時間間隔で観測し、これ(微粒子検出時以外のローパス出力)を一定とするように例えば演算器16−6によって電流源13の駆動電流を制御することにより、検査光の光量を一定化すること等が可能となる。   During operation, the waveform memory 16-5 always A / D-converts the intensity fluctuation signal of the amplifier 16-2 with its analog-digital (A / D) converter, and stores it in a ring-shaped memory of a certain length. I will do it. In the link memory, the old waveform data in time is sequentially rewritten with new data. When the signal intensity from the amplifier 16-2 exceeds the set comparison level (threshold value), the timing signal output from the computing unit 16-6 is input, and a record from a certain time before that point is left. By recording a certain period of time in the remaining storage area, it is possible to record waveforms before and after the output of the amplifier 16-2 exceeds the comparison level. This operation is a known technique executed by a commercially available waveform memory. Further, when the low pass output of the band pass filter 16-1 is recorded in the waveform memory 16-5, it can be recorded in the same manner. The low pass output of the band pass filter 16-1 is a non-variable component of the light receiving element 14 which is a direct current component, and this value is the output of the light emitting element 12 (for example, a laser diode) or clouding of the optical path (foreign matter on the inner surface of the pipe 11) Affected by fluctuations in the amount of light caused by the Therefore, the inspection light is observed by observing the low-pass output at a constant time interval and controlling the drive current of the current source 13 by, for example, the arithmetic unit 16-6 so as to make this (low-pass output other than when detecting fine particles) constant. The amount of light can be made constant.

図17は演算器16−6の処理手順を表すフローチャートである。   FIG. 17 is a flowchart showing the processing procedure of the arithmetic unit 16-6.

演算器16−6は、図17の処理を開始すると、まずステップS811で処理パラメータを設定する。ここで設定する処理パラメータは、受光信号のローパスフィルタ出力の取り込みを行う時間や受光素子14で得られる検出レベルなどの処理パラメータである。これら処理パラメータは、例えば図示しないメモリに記憶されており、演算器16−6は、このステップS811においてメモリから処理パラメータを読み込んで設定する。ステップS812に手順を移すと、演算器16−6は、設定時間が経過したが否かを判定する。設定時間が経過した場合、演算器16−6は電流源13の駆動電流の制御に移行し、設定時間経過前であれば微粒子検出の手順に移行する。   When the processing unit 16-6 starts the processing of FIG. 17, first, in step S811, the processing parameter is set. The processing parameters set here are processing parameters such as the time for capturing the low-pass filter output of the received light signal and the detection level obtained by the light receiving element 14. These processing parameters are stored, for example, in a memory (not shown), and the computing unit 16-6 reads and sets the processing parameters from the memory in step S811. When the procedure moves to step S812, the arithmetic unit 16-6 determines whether or not the set time has elapsed. When the set time has elapsed, the computing unit 16-6 shifts to control of the drive current of the current source 13, and shifts to the particle detection procedure before the set time has elapsed.

ステップS812から電流源13の制御に手順を移したら、演算器16−6は、まずステップS813でバンドパスフィルタ16−1からのローパスフィルタ出力を波形メモリ16−5のメモリに取り込む。そして、ステップS814に手順を移し、波形メモリ16−5に取り込まれた波形データを読み込んで直流的な大きさを算出するために波形データの平均値を算出する。続くステップS815では、算出した波形データの平均値を、発光素子12の駆動電流と受光素子14の検出値との既知の関係から算出した受光素子14の検出値(比較値)と比較する。その結果、受光素子14による検査光の検出値に変動が見られる場合には、手順をステップS816に移して受光素子14による検出値と比較値との偏差が小さくするように電流源13を制御する。検査光の検出値に変動が見られない場合、手順をステップS812に戻す。   When the procedure shifts from step S812 to control of the current source 13, the calculator 16-6 first captures the low-pass filter output from the bandpass filter 16-1 into the memory of the waveform memory 16-5 in step S813. Then, the procedure proceeds to step S814, and the average value of the waveform data is calculated in order to read the waveform data taken into the waveform memory 16-5 and calculate the DC magnitude. In the subsequent step S815, the average value of the calculated waveform data is compared with the detection value (comparison value) of the light receiving element 14 calculated from the known relationship between the drive current of the light emitting element 12 and the detection value of the light receiving element 14. As a result, if there is a change in the detection value of the inspection light by the light receiving element 14, the procedure is shifted to step S816, and the current source 13 is controlled so that the deviation between the detection value by the light receiving element 14 and the comparison value is reduced. To do. If no change is found in the detection value of the inspection light, the procedure returns to step S812.

一方、ステップS812で設定時間が経過しておらず微粒子検出の手順に移行した場合、演算器16−6は、まずステップS817で波形メモリ16−5に増幅器16−2からの変動信号(図16に示した比較レベルを超える信号)があるか否かを判断し、なければ手順をステップS812に戻す。波形メモリ16−5に変動信号がある場合、演算器16−6は、手順をステップS818に移し、その波形(その時点の前後一定幅の波形)を読み込んで波形処理(詳細は後述)を実行する。波形処理が終了したら、演算器16−6は、手順をステップS819に移し、オペレータによる終了指示の入力信号の有無を確認し、終了を指令する信号がなければステップS812に手順を戻し、終了を指令する信号が入力されたら図17の手順を終了する。   On the other hand, when the set time has not elapsed in step S812 and the procedure proceeds to the particle detection procedure, the computing unit 16-6 first sends the fluctuation signal (FIG. 16) from the amplifier 16-2 to the waveform memory 16-5 in step S817. If there is a signal exceeding the comparison level shown in (1), the procedure returns to step S812. If there is a fluctuation signal in the waveform memory 16-5, the arithmetic unit 16-6 moves the procedure to step S818, reads the waveform (a waveform having a constant width before and after that point), and executes waveform processing (details will be described later). To do. When the waveform processing is completed, the computing unit 16-6 moves the procedure to step S819, confirms the presence or absence of the input signal for the termination instruction by the operator, and returns to the procedure in step S812 if there is no signal for commanding the termination. When the command signal is input, the procedure in FIG. 17 is terminated.

図18は図17のステップS818で演算器16−6により実行される波形処理の処理手順を表すフローチャートである。   FIG. 18 is a flowchart showing the processing procedure of the waveform processing executed by the computing unit 16-6 in step S818 of FIG.

波形処理の手順に移行したら、演算器16−6は、まずステップS8181で波形メモリの波形データを自己のメモリに格納し、ステップS8182に移って高速フーリェ変換等で波形の周波数成分(周波数範囲)を算出する。   After shifting to the waveform processing procedure, the computing unit 16-6 first stores the waveform data of the waveform memory in its own memory in step S8181, and then proceeds to step S8182 to perform frequency component (frequency range) of the waveform by high-speed Fourier transform or the like. Is calculated.

続くステップS8183では、ステップS8182で算出した周波数成分を予め設定してある周波数成分(設定範囲)と比較し、算出した周波数成分が設定範囲と異なる場合、この波形は雑音と判定して手順をステップS8188に移って検出結果がノイズであった旨を表示装置19に表示する。ノイズの表示が不要であれば、ステップS8188を介さずに図18の手順を終了し、ステップS8183から図17のステップ819に移行するようにしても良い。波形が雑音ではなく有意である場合、ステップS8184に手順を移し、その波形データに関して、自己相関関数とコンボリューションを算出して各々のピーク値を求める。この波形処理の結果の一例を図19及び図20に示す。図19は検出された微粒子が球状で反射が等方性を示す場合、図20は検出された微粒子が非球状で反射が非等方の場合を示している。   In the subsequent step S8183, the frequency component calculated in step S8182 is compared with a preset frequency component (setting range). If the calculated frequency component is different from the setting range, this waveform is determined to be noise and the procedure is performed. The process shifts to S8188 to display on the display device 19 that the detection result is noise. If the display of noise is unnecessary, the procedure of FIG. 18 may be terminated without going through step S8188, and the process may proceed from step S8183 to step 819 of FIG. If the waveform is significant rather than noise, the procedure moves to step S8184, and the autocorrelation function and convolution are calculated for the waveform data to determine each peak value. An example of the result of this waveform processing is shown in FIGS. FIG. 19 shows a case where the detected fine particles are spherical and the reflection is isotropic, and FIG. 20 shows a case where the detected fine particles are non-spherical and the reflection is anisotropic.

続くステップS8185では、ステップS8184の演算結果を基に検出された微粒子が球状か否かを次のように判定し、微粒子の形状に関する情報を得る。検出された微粒子が球状の場合、先に図10で説明したように微粒子の反射特性は検査光の光軸に対して対称であるから、図19の例では負側のピークを境にして正負の時間方向で対称性が強い波形となる。そのため、検出波形の自己相関とコンボリューションの演算結果は近似した値となり、ピーク値も同程度である。これに対し、図20に示したように検出された微粒子が非球状の場合、検出波形はピークに対して対称性が低下する。その結果、自己相関のピーク値に比べてコンボリューション演算結果のピーク値が相対的に低下する。したがって、検出波形に関して演算した自己相関とコンボリューションの両演算結果のピーク値を比較し、例えば(コンボリューション演算結果のピーク値)/(自己相関演算結果のピーク値)の値が予め設定した1未満の閾値以上であって1に近い場合は検出された微粒子は球状(ステップS8186−1に移行)、閾値未満であれば非球状(ステップS8186−1に移行)と判定することができる。被検査体が気体以外の場合、球状と判定された微粒子を気体微粒子、非球状の微粒子を気体以外の微粒子と推定することができる。   In the following step S8185, it is determined as follows whether or not the detected fine particles are spherical based on the calculation result of step S8184, and information on the shape of the fine particles is obtained. When the detected fine particles are spherical, the reflection characteristics of the fine particles are symmetric with respect to the optical axis of the inspection light as described above with reference to FIG. 10. Therefore, in the example of FIG. The waveform has strong symmetry in the time direction. For this reason, the calculation results of the autocorrelation and the convolution of the detected waveform are approximate values, and the peak values are similar. On the other hand, when the detected fine particles are non-spherical as shown in FIG. 20, the detected waveform is less symmetrical with respect to the peak. As a result, the peak value of the convolution calculation result is relatively lower than the peak value of the autocorrelation. Therefore, the peak values of both the autocorrelation and convolution calculation results calculated for the detected waveform are compared. For example, the value of (peak value of the convolution calculation result) / (peak value of the autocorrelation calculation result) is preset. If the threshold value is less than the threshold value and close to 1, the detected fine particle can be determined to be spherical (transfer to step S8186-1), and if it is less than the threshold value, it can be determined to be non-spherical (transfer to step S8186-1). When the object to be inspected is other than gas, it is possible to estimate fine particles determined to be spherical as gas fine particles, and non-spherical fine particles as fine particles other than gas.

微粒子が球状と判定された場合、演算器16−6は、ステップS8187−1に手順を移し、検出波形と予め用意された波形モデルとの一致性を計算する。予め用意された波形モデルは、事前検査で得られたデータであり、被検査体の速度、発光素子の強度分布、光透過孔の口径、微粒子の粒径、反射率等を変えて取得されたものである。この場合、波形モデルと検出波形との相関演算を実行し、最も検出波形との一致性が高い波形モデルの微粒子情報をもって、検出された微粒子の粒径や反射率等を算出することができる。これにより検出された球状の微粒子の粒径等の情報が得られたら、演算器16−6は、ステップS8188に移ってその情報を表示装置19に表示させ、図18の手順を終了する。なお、気体の微粒子を検出対象とせず、その情報を必要としない場合、ステップS8188を介さずに図18の手順を終了し、微粒子が球状と判定された時点でステップS8185から図17のステップ819に移行するようにしても良い。   When it is determined that the fine particle is spherical, the computing unit 16-6 moves the procedure to Step S8187-1, and calculates the coincidence between the detected waveform and the waveform model prepared in advance. The waveform model prepared in advance is data obtained in advance inspection, and was obtained by changing the speed of the object to be inspected, the intensity distribution of the light emitting element, the aperture of the light transmission hole, the particle size of the fine particles, the reflectance, etc. Is. In this case, the correlation calculation between the waveform model and the detected waveform is executed, and the particle size, reflectance, etc. of the detected fine particle can be calculated using the fine particle information of the waveform model having the highest coincidence with the detected waveform. When the information such as the particle diameter of the detected spherical fine particles is obtained, the calculator 16-6 moves to step S8188 to display the information on the display device 19, and ends the procedure of FIG. If gas particulates are not targeted for detection and information is not required, the procedure in FIG. 18 is terminated without going through step S8188, and when the particulates are determined to be spherical, step S8185 to step 819 in FIG. You may make it move to.

一方、微粒子が非球状と判定された場合、演算器16−6は、ステップS8187−2に手順を移し、ステップS8187−1と同様に検出波形と予め用意された波形モデルとの一致性を計算する。予め用意された波形モデルは、事前検査で得られたデータであり、被検査体の速度、発光素子の強度分布、光透過孔の口径、微粒子の粒径、形状、反射率等を変えて取得されたものである。これにより非球状の微粒子の粒径等の情報が得られたら、ステップS8188に移ってその情報を表示装置19に表示させ、図18の手順を終了する。仮に気体以外の微粒子を検出対象とせず、その情報を必要としない場合、ステップS8188を介さずに図18の手順を終了し、微粒子が非球状と判定された時点でステップS8185から図17のステップ819に移行するようにしても良い。   On the other hand, when it is determined that the fine particle is non-spherical, the computing unit 16-6 moves the procedure to Step S8187-2 and calculates the coincidence between the detected waveform and the waveform model prepared in advance as in Step S8187-1. To do. The waveform model prepared in advance is data obtained in advance inspection, and is obtained by changing the speed of the object to be inspected, the intensity distribution of the light emitting element, the aperture of the light transmission hole, the particle size of the fine particles, the shape, the reflectance, etc. It has been done. When information such as the particle size of the non-spherical fine particles is obtained in this way, the process proceeds to step S8188 to display the information on the display device 19, and the procedure of FIG. If fine particles other than gas are not to be detected and information is not required, the procedure of FIG. 18 is terminated without going through step S8188, and when the fine particles are determined to be non-spherical, steps S8185 to FIG. 17 are performed. You may make it transfer to 819.

本実施例によれば、第5実施例と同様の効果に加え、検出された微粒子の形状等の情報を取得することができる。また、例えば気体の微粒子又は気体以外の微粒子の情報を必要としない場合等、不必情報の取得を省略することもできる。また、検出された微粒子のうち対象外の微粒子の検出をカウントから除外することで誤検出の含有率を減らし、検出精度を向上させることもできる。   According to the present embodiment, in addition to the same effects as in the fifth embodiment, information such as the shape of the detected fine particles can be acquired. In addition, for example, when information on gas particulates or particles other than gas is not required, acquisition of indispensable information can be omitted. Further, by excluding detection of fine particles out of the detected fine particles from the count, the false detection content rate can be reduced and the detection accuracy can be improved.

図21は本発明の第7実施例において被検査体内の微粒子により検出光の光強度波形が変化する原理を説明する概念図、図22(a)及び図22(b)は検出光強度の波形の一例を表す図である。   FIG. 21 is a conceptual diagram for explaining the principle of change in the light intensity waveform of the detection light due to the fine particles in the subject in the seventh embodiment of the present invention, and FIGS. 22A and 22B are waveforms of the detection light intensity. It is a figure showing an example.

本実施例は、レーザに代えてLED(Light Emitting Diode)を用いた発光素子12Aを用いた例であり、その他の点については第5実施例又は第6実施例と同様である。LEDの発光スペクトルはレーザダイオードよりはるかに広いため干渉は発生しないが、光強度が光軸に近いほど大きく光軸から離れるにつれて低下する点はレーザダイオードと同様である。発光素子12Aからの検出光の照射領域内に微粒子がなければ発光素子12Aからの直接光が検出され、受光素子14の出力は図22(a)のように変動の少ない一定出力となる。これに対し、微粒子が検査光を横切る場合、直接光に微粒子からの反射光が加算されるので検出光の強度は光軸に近付くにつれ上昇し離れるにつれ低下する。但し、微粒子が光軸に重なった場合には遮光により検出光強度が低下することは言うまでもない。また、微粒子が球状であれば検出光強度は光軸を中心にして対称となり(図22(b)の実線参照)、非球状であれば対称性が崩れる(図22(b)の点線参照)。   The present embodiment is an example in which a light emitting element 12A using an LED (Light Emitting Diode) instead of a laser is used, and the other points are the same as in the fifth embodiment or the sixth embodiment. Since the emission spectrum of an LED is much wider than that of a laser diode, interference does not occur, but the point that the light intensity increases as the distance from the optical axis increases and decreases as the distance from the optical axis decreases. If there is no fine particle in the irradiation region of the detection light from the light emitting element 12A, direct light from the light emitting element 12A is detected, and the output of the light receiving element 14 becomes a constant output with little fluctuation as shown in FIG. On the other hand, when the fine particles cross the inspection light, the reflected light from the fine particles is added to the direct light, so that the intensity of the detection light increases as it approaches the optical axis and decreases as it moves away. However, it goes without saying that when the fine particles overlap with the optical axis, the detection light intensity decreases due to light shielding. Further, if the fine particle is spherical, the detected light intensity is symmetric about the optical axis (see the solid line in FIG. 22B), and if it is non-spherical, the symmetry is broken (see the dotted line in FIG. 22B). .

したがって、この検出光強度の変動を検知することで第5実施例と同様に微粒子を検出することができる。また、検出光強度の対称性を判定することにより、第6実施例と同様に検出した微粒子の粒径等の情報を取得することもできる。   Therefore, by detecting the fluctuation of the detected light intensity, the fine particles can be detected as in the fifth embodiment. Further, by determining the symmetry of the detected light intensity, information such as the particle diameter of the detected fine particles can be acquired in the same manner as in the sixth embodiment.

産業上、光透過性を有する媒質中の微粒子を検出することは、その媒質を使用するシステムや該システムで生産される製品の品質を管理する上で重要である。本発明では、光透過孔を設けた遮光板を用いることにより、検査光の各種調整用のレンズ光学系が要らない安価な微粒子検出装置を提供することができる。これにより、液体や気体、或いは固体等に含まれる微粒子を発送素子と受光素子の間に通すだけで検査することができるので、オンラインでの監視が可能である。このことから、浄水場等における水の汚濁監視、クリーンルームのダストモニタ等、工業製品の品質確保を行う上で極めて効果が大きい。   Industrially, detecting fine particles in a light-transmitting medium is important in managing the quality of a system that uses the medium and the products produced by the system. In the present invention, by using a light shielding plate provided with a light transmission hole, it is possible to provide an inexpensive particle detection device that does not require a lens optical system for various adjustments of inspection light. Thereby, since it can test | inspect only by letting the microparticles | fine-particles contained in a liquid, gas, or a solid pass between a dispatch element and a light receiving element, on-line monitoring is possible. For this reason, it is extremely effective in ensuring the quality of industrial products, such as water pollution monitoring in water purification plants, clean room dust monitors, and the like.

本発明に係る微粒子検出装置の第1実施例の概略構成図である。It is a schematic block diagram of 1st Example of the microparticle detection apparatus which concerns on this invention. 本発明に係る微粒子検出装置の第1実施例に備えられた保持板を抽出して表した断面図である。It is sectional drawing which extracted and represented the holding plate with which 1st Example of the microparticle detection apparatus which concerns on this invention was equipped. 本発明に係る微粒子検出装置の第1実施例に備えられた信号処理回路の概略構成図である。1 is a schematic configuration diagram of a signal processing circuit provided in a first embodiment of a particle detection apparatus according to the present invention. 本発明に係る微粒子検出装置の第1実施例に備えられた信号処理回路の各部の出力波形を表した図である。It is a figure showing the output waveform of each part of the signal processing circuit with which 1st Example of the microparticle detection apparatus which concerns on this invention was equipped. 本発明に係る微粒子検出装置の第2実施例に備えられた保持板を抽出して表した断面図である。It is sectional drawing which extracted and represented the holding plate with which 2nd Example of the microparticle detection apparatus concerning this invention was equipped. 本発明に係る微粒子検出装置の第3実施例に備えられた保持板を抽出して表した断面図である。It is sectional drawing which extracted and represented the holding plate with which 3rd Example of the microparticle detection apparatus concerning this invention was equipped. 本発明に係る微粒子検出装置の第4実施例の検出部を抽出して一部断面で表す概略構成図である。It is a schematic block diagram which extracted the detection part of 4th Example of the microparticle detection apparatus based on this invention, and represents it with a partial cross section. 本発明に係る微粒子検出装置の第5実施例の概略構成図である。It is a schematic block diagram of 5th Example of the microparticle detection apparatus which concerns on this invention. 図8のA部拡大図及びB部拡大図である。It is the A section enlarged view and B section enlarged view of FIG. 本発明に係る微粒子検出装置の第5実施例において被検査体内の微粒子により検出光の光強度波形が変化する原理を説明する概念図である。It is a conceptual diagram explaining the principle that the light intensity waveform of a detection light changes with the microparticles | fine-particles in a to-be-inspected body in 5th Example of the microparticle detection apparatus which concerns on this invention. 本発明に係る微粒子検出装置の第5実施例で得られる検出光強度の波形の一例を表す図である。It is a figure showing an example of the waveform of the detection light intensity obtained in 5th Example of the microparticle detection apparatus which concerns on this invention. 本発明に係る微粒子検出装置の第5実施例に備えられた信号処理装置のブロック図である。It is a block diagram of the signal processing apparatus with which 5th Example of the microparticle detection apparatus which concerns on this invention was equipped. 本発明に係る微粒子検出装置の第6実施例の概略構成図である。It is a schematic block diagram of 6th Example of the microparticle detection apparatus which concerns on this invention. 本発明に係る微粒子検出装置の第6実施例に備えられた信号処理装置のブロック図である。It is a block diagram of the signal processing apparatus with which 6th Example of the microparticle detection apparatus which concerns on this invention was equipped. 本発明に係る微粒子検出装置の第6実施例で得られる検出光強度の波形の一例を表す図である。It is a figure showing an example of the waveform of the detection light intensity obtained in 6th Example of the microparticle detection apparatus which concerns on this invention. 本発明に係る微粒子検出装置の第6実施例に備えられた波形メモリによる波形の採取手順を表す説明図である。It is explanatory drawing showing the collection procedure of the waveform by the waveform memory with which 6th Example of the microparticle detection apparatus which concerns on this invention was equipped. 本発明に係る微粒子検出装置の第6実施例に備えられた演算器の処理手順を表すフローチャートである。It is a flowchart showing the process sequence of the calculator provided in 6th Example of the microparticle detection apparatus which concerns on this invention. 本発明に係る微粒子検出装置の第6実施例に備えられた演算器による波形処理の処理手順を表すフローチャートである。It is a flowchart showing the process sequence of the waveform process by the calculator provided in 6th Example of the microparticle detection apparatus which concerns on this invention. 本発明に係る微粒子検出装置の第6実施例に備えられた演算器による波形処理の結果の一例を示す図である。It is a figure which shows an example of the result of the waveform processing by the calculator provided in 6th Example of the microparticle detection apparatus which concerns on this invention. 本発明に係る微粒子検出装置の第6実施例に備えられた演算器による波形処理の結果の一例を示す図である。It is a figure which shows an example of the result of the waveform processing by the calculator provided in 6th Example of the microparticle detection apparatus which concerns on this invention. 本発明の第7実施例において被検査体内の微粒子により検出光の光強度波形が変化する原理を説明する概念図である。It is a conceptual diagram explaining the principle that the light intensity waveform of detection light changes with the microparticles | fine-particles in a to-be-inspected body in 7th Example of this invention. 本発明に係る微粒子検出装置の第7実施例で得られる検出光強度の波形の一例を表す図である。It is a figure showing an example of the waveform of the detection light intensity obtained in 7th Example of the microparticle detection apparatus which concerns on this invention.

符号の説明Explanation of symbols

1−9 検出領域
1−1 発光素子
1−2 受光素子
1−3 保持板
1−4 保持板
1−6,6’,6” 光透過孔
1−7,7’,7” 光透過孔
4 信号処理回路
4−1 バンドパスフィルタ
1−10 導光路
12 発光素子
14,14A 受光素子
15−5 波形メモリ
16,16A 信号処理装置
16−6 演算器
17 細孔板
17−1 光透過孔
30 反射防止部
31,32 検査光選別手段
L 検査光
P 微粒子
1-9 Detection area 1-1 Light-emitting element 1-2 Light-receiving element 1-3 Holding plate 1-4 Holding plate 1-6, 6 ', 6 "Light transmission hole 1-7, 7', 7" Light transmission hole 4 Signal processing circuit 4-1 Band pass filter 1-10 Light guide path 12 Light emitting element 14, 14 A Light receiving element 15-5 Waveform memory 16, 16 A Signal processing device 16-6 Calculator 17 Porous plate 17-1 Light transmission hole 30 Reflection Prevention part 31, 32 Inspection light sorting means L Inspection light P Fine particles

Claims (5)

検査光の照射領域を横切る微粒子による検出光の干渉効果により発生する検出光強度の変動を検出して被検査体中の微粒子を検出する微粒子検出装置であって、
出射した検査光を配管内の被検査体に絞らずに入射させる、前記配管の外側に取り付けたレーザ発光手段と、
被検査体を透過して入射する前記レーザ発光手段からの検査光を受光する、前記配管の外側に取り付けた受光手段と、
前記配管の外周面と前記受光手段の間に設けられ、前記受光手段に入射する検査光の検出領域を制限する光透過孔を有する遮光手段と、
前記受光手段からの信号を基に、前記検出領域を移動する微粒子による検査光の干渉効果により発生する検出光強度の変動を検出して被検査体中の微粒子を検出する信号処理装置とを備え、
前記光透過孔の孔径は、前記受光手段から当該光透過孔を通して観測される領域に前記レーザ発光手段を観測でき、かつ、この観測領域を微粒子が横切るとき、前記レーザ発光手段から直接入射する直接光と微粒子で反射した反射光との干渉を検出することができる大きさであり、
前記信号処理装置は、
前記受光手段で検出された検出光の変動を記録する波形メモリと、
前記波形メモリに記録された検出波形が時間的に光軸を中心に対称であるか否かで検出した微粒子が球状か否かを判断する演算器と
を備えていることを特徴とする微粒子検出装置。
A fine particle detection apparatus for detecting fine particles in an inspection object by detecting a change in detection light intensity caused by an interference effect of detection light caused by fine particles crossing an inspection light irradiation area,
Laser light emitting means attached outside the pipe for allowing the emitted inspection light to enter without being focused on the object to be inspected in the pipe;
A light receiving means attached to the outside of the pipe for receiving the inspection light from the laser light emitting means that is incident through the object to be inspected;
A light blocking means provided between an outer peripheral surface of the pipe and the light receiving means, and having a light transmission hole for limiting a detection region of inspection light incident on the light receiving means;
A signal processing device that detects a change in detected light intensity caused by an interference effect of the inspection light caused by the fine particles moving in the detection region based on a signal from the light receiving means and detects the fine particles in the inspection object. ,
The diameter of the light transmitting hole is such that the laser light emitting means can be observed in an area observed from the light receiving means through the light transmitting hole, and when the fine particles cross the observation area, the direct light incident directly from the laser light emitting means is directly received. It is a size that can detect interference between light and reflected light reflected by fine particles,
The signal processing device includes:
A waveform memory for recording fluctuations in the detected light detected by the light receiving means;
A particle detector comprising: an arithmetic unit for determining whether or not the detected particle recorded in the waveform memory is spherical with respect to whether the detected waveform is symmetrical about the optical axis in time. apparatus.
請求項1の微粒子検出装置において、被検査体の通路の内面のうち検査光の光路以外の部分に検査光の反射を抑制する手段又は検査光を散乱させる手段を設け、前記レーザ発光手段に戻る光量を抑制したことを特徴とする微粒子検出装置。   2. The fine particle detection apparatus according to claim 1, wherein means for suppressing the reflection of the inspection light or means for scattering the inspection light is provided in a portion other than the optical path of the inspection light in the inner surface of the passage of the inspection object, and the process returns to the laser emission means. A fine particle detector characterized in that the amount of light is suppressed. 請求項1の微粒子検出装置において、前記レーザ発光手段の駆動電流を供給する電流源に検査光の発光スペクトルを広げる高周波重畳回路を組み込んだことを特徴とする微粒子検出装置。   2. The particle detecting apparatus according to claim 1, wherein a high-frequency superimposing circuit for extending the emission spectrum of the inspection light is incorporated in a current source for supplying a driving current for the laser emitting means. 請求項の微粒子検出装置において、検査光の偏波面を変化させる偏波面変更手段を設けたことを特徴とする微粒子検出装置。 4. The fine particle detection apparatus according to claim 3 , further comprising a polarization plane changing means for changing a polarization plane of the inspection light. 検査光の照射領域を横切る微粒子による検出光の干渉効果により発生する検出光強度の変動を検出して被検査体中の微粒子を検出する微粒子検出方法であって、
配管の外側に取り付けたレーザ発光手段から出射した検査光を前記配管を流れる被検査体に絞らずに入射させ、
被検査体を透過して入射する前記レーザ発光手段からの検査光を前記配管の外側に取り付けた受光手段で受光し、
遮光手段に設けた光透過孔を前記配管の外周面と前記受光手段の間に設けることにより、前記レーザ発光手段から前記受光手段に入射する検査光の検出領域を制限し、
被検査体を透過して前記レーザ発光手段から直接入射する直接光、及び被検査体中を流れる微粒子で反射して入射する反射光を前記光透過孔を介して前記受光手段で受光し、前記受光手段からの信号を基に、前記検出領域を移動する微粒子による検査光の干渉効果により発生する検出光強度の変動を検出して被検査体中の微粒子を検出し、
前記受光手段で検出された検出光の変動を記録して検出波形が時間的に光軸を中心に対称であるか否かで検出した微粒子が球状か否かを判断する
ことを特徴とする微粒子検出方法。
A fine particle detection method for detecting fine particles in an inspection object by detecting fluctuations in detection light intensity caused by interference effect of detection light caused by fine particles crossing an inspection light irradiation area,
Inject the inspection light emitted from the laser emitting means attached to the outside of the pipe without being squeezed into the inspection object flowing through the pipe,
The inspection light from the laser emitting means that is incident through the object to be inspected is received by the light receiving means attached to the outside of the pipe,
By providing a light transmission hole provided in the light shielding means between the outer peripheral surface of the pipe and the light receiving means, the detection area of the inspection light incident on the light receiving means from the laser light emitting means is limited,
Direct light that is transmitted through the object to be inspected and directly incident from the laser light emitting means, and reflected light that is reflected by the fine particles flowing through the object to be inspected and received by the light receiving means through the light transmission hole, and Based on the signal from the light receiving means, the change in the detection light intensity caused by the interference effect of the inspection light due to the fine particles moving in the detection region is detected to detect the fine particles in the inspection object,
Fine particles characterized in that the detected fine particles detected by the light receiving means are recorded and it is determined whether or not the detected fine particles are spherical depending on whether or not the detected waveform is temporally symmetrical about the optical axis. Detection method.
JP2008257035A 2007-06-06 2008-10-02 Fine particle detection apparatus and fine particle detection method Expired - Fee Related JP4382139B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008257035A JP4382139B2 (en) 2007-06-06 2008-10-02 Fine particle detection apparatus and fine particle detection method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2007150045 2007-06-06
JP2008257035A JP4382139B2 (en) 2007-06-06 2008-10-02 Fine particle detection apparatus and fine particle detection method

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2008075077A Division JP2009014702A (en) 2007-06-06 2008-03-24 Fine-particulate detector and fine-particulate detection method

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2009001148A Division JP4382141B2 (en) 2007-06-06 2009-01-06 Fine particle detector

Publications (2)

Publication Number Publication Date
JP2009014740A JP2009014740A (en) 2009-01-22
JP4382139B2 true JP4382139B2 (en) 2009-12-09

Family

ID=40355756

Family Applications (3)

Application Number Title Priority Date Filing Date
JP2008075077A Pending JP2009014702A (en) 2007-06-06 2008-03-24 Fine-particulate detector and fine-particulate detection method
JP2008257035A Expired - Fee Related JP4382139B2 (en) 2007-06-06 2008-10-02 Fine particle detection apparatus and fine particle detection method
JP2009001148A Expired - Fee Related JP4382141B2 (en) 2007-06-06 2009-01-06 Fine particle detector

Family Applications Before (1)

Application Number Title Priority Date Filing Date
JP2008075077A Pending JP2009014702A (en) 2007-06-06 2008-03-24 Fine-particulate detector and fine-particulate detection method

Family Applications After (1)

Application Number Title Priority Date Filing Date
JP2009001148A Expired - Fee Related JP4382141B2 (en) 2007-06-06 2009-01-06 Fine particle detector

Country Status (1)

Country Link
JP (3) JP2009014702A (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015021932A (en) * 2013-07-23 2015-02-02 パイオニア株式会社 Bubble detector and bubble detection method
JP6125418B2 (en) * 2013-12-18 2017-05-10 アズビル株式会社 Particle detection apparatus and particle detection method
JP7082013B2 (en) 2018-09-04 2022-06-07 株式会社アドバンテスト Particle measurement system, measuring device
WO2020090582A1 (en) * 2018-10-29 2020-05-07 京セラ株式会社 Measuring device
CN111665221A (en) * 2019-03-08 2020-09-15 中国科学院长春光学精密机械与物理研究所 Device for detecting seed vitality based on transmission spectrum and using method thereof
CN114441418A (en) * 2022-01-28 2022-05-06 天津凌视科技有限公司 Imaging system, imaging method and readable storage medium for high-speed flowing particles

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4806015A (en) * 1987-12-08 1989-02-21 Cottingham Hugh V Agglutination detection apparatus
JPH09318523A (en) * 1996-05-29 1997-12-12 Toa Medical Electronics Co Ltd Parameter analysis method and apparatus using the same
JP3672158B2 (en) * 1997-03-10 2005-07-13 富士電機システムズ株式会社 Turbidity measuring method and apparatus
JP2003207454A (en) * 2002-01-15 2003-07-25 Minolta Co Ltd Transmission light-detecting apparatus
JP3751263B2 (en) * 2002-06-05 2006-03-01 リオン株式会社 Fine particle detector
JP2005245317A (en) * 2004-03-04 2005-09-15 Mitsubishi Electric Corp Measuring instrument for microorganism and measuring method

Also Published As

Publication number Publication date
JP4382141B2 (en) 2009-12-09
JP2009014740A (en) 2009-01-22
JP2009069165A (en) 2009-04-02
JP2009014702A (en) 2009-01-22

Similar Documents

Publication Publication Date Title
KR102601473B1 (en) Systems and methods for particle measurement
JP4382139B2 (en) Fine particle detection apparatus and fine particle detection method
CN107615043B (en) Laser noise detection and mitigation in particle counting instruments
JP5610167B2 (en) Two-dimensional optical imaging method and system for particle detection
RU2006108798A (en) OPTICAL FLOW METER FOR MEASURING GAS AND LIQUID FLOW IN PIPELINES
RU2353906C2 (en) Optic device and method for determination of polyphase flow parameters
US8988673B2 (en) Beam scattering laser monitor
CA2877332C (en) Method and flow cell for characterizing particles by means of non-gaussian temporal signals
CN108956402B (en) High-sensitivity dust concentration detection method with composite multi-photosensitive-area structure
JP2019512701A5 (en)
KR20120013297A (en) Method and system for analysing solid particles in a medium
JP2019506622A (en) Method and apparatus for detection and / or structural analysis of individual flowing particles in a fluid
CN110243729A (en) Corpuscular counter
CN109900602A (en) Corpuscular counter
US20180284007A1 (en) Automated drop delay calculation
US7362421B2 (en) Analysis of signal oscillation patterns
WO2019109871A1 (en) Device and method for detecting fluid transparency
WO2021097910A1 (en) Detection device and method for tiny particles in liquid
JP5366728B2 (en) Method and apparatus for detecting the size of particles in a liquid
CN109632588A (en) A kind of oil liquid Particulate Pollution detection device and method
JP5366726B2 (en) Method and apparatus for detecting the size of particles in a liquid
CN110987770A (en) Single flowing particle detection method and system based on laser self-mixing feedback interference
CN211206179U (en) Detection apparatus for tiny granule in liquid
JP3966851B2 (en) Light scattering particle counter
RU2801784C1 (en) Method for control of content of mechanical impurities in aerosols and liquids and device of optical cell for its implementation

Legal Events

Date Code Title Description
A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20081029

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081111

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090106

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090217

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090415

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090728

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090812

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090908

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090916

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121002

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4382139

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131002

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees