JP4382029B2 - Method for repairing the inner surface of concrete canal - Google Patents

Method for repairing the inner surface of concrete canal Download PDF

Info

Publication number
JP4382029B2
JP4382029B2 JP2005311820A JP2005311820A JP4382029B2 JP 4382029 B2 JP4382029 B2 JP 4382029B2 JP 2005311820 A JP2005311820 A JP 2005311820A JP 2005311820 A JP2005311820 A JP 2005311820A JP 4382029 B2 JP4382029 B2 JP 4382029B2
Authority
JP
Japan
Prior art keywords
fiber
concrete
reinforcing
reinforcing resin
coating material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2005311820A
Other languages
Japanese (ja)
Other versions
JP2007120087A (en
Inventor
直治 森井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Bild Land Co Ltd
Original Assignee
Bild Land Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=38144205&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JP4382029(B2) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Bild Land Co Ltd filed Critical Bild Land Co Ltd
Priority to JP2005311820A priority Critical patent/JP4382029B2/en
Publication of JP2007120087A publication Critical patent/JP2007120087A/en
Application granted granted Critical
Publication of JP4382029B2 publication Critical patent/JP4382029B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Curing Cements, Concrete, And Artificial Stone (AREA)

Description

本発明はコンクリート製用水路の内面に補強用塗工材を塗布して補修を図る補修方法に関する。 The present invention relates to a repair method for repairing by applying a reinforcing coating material on the inner surface of a concrete water channel.

図1に示すように、水田の灌漑施設として用いられているコンクリート製用水路においては、水流と接するコンクリート製用水路1の内面の損傷、劣化が著しく、このコンクリート製用水路1の整備では、老朽化程度が比較的軽度なものについては、コスト削減、環境負担軽減の見地から、全面改修せずに既設のコンクリート製用水路に内面補修を施し延命する方法が採られている。   As shown in FIG. 1, in the concrete canal used as an irrigation facility for paddy fields, the inner surface of the concrete canal 1 in contact with the water flow is significantly damaged and deteriorated. However, for those that are relatively light, from the viewpoint of cost reduction and environmental burden reduction, an existing concrete waterway is repaired and the life is extended without renovation.

従来上記コンクリート製用水路1の内面補修工法としては、図1に示すように、ポリウレタン樹脂塗料又はエポキシ樹脂塗料をコンクリート製用水路の底壁2の内面及び左右立ち上げ壁3の内面に塗布し補強用塗工材層4を形成する工法が採られている。   Conventionally, as shown in FIG. 1, the inner surface repair method of the concrete water channel 1 is applied with polyurethane resin paint or epoxy resin paint on the inner surface of the bottom wall 2 and the left and right rising walls 3 of the concrete water channel for reinforcement. A method of forming the coating material layer 4 is employed.

この工法はコンクリート製用水路1の底壁2の内面と左右立ち上げ壁3の内面を高圧水にて洗浄しガスバーナーで乾燥する素地調整工程と、該素地調整された表面にプライマー塗装工程と、必要に応じモルタル塗布による不陸調整を行い、ポリウレタン樹脂塗料又はエポキシ樹脂塗料を重ね塗りする下塗り、上塗り工程を経て補強用塗工材層4を形成する工法である。   This construction method includes a substrate preparation step in which the inner surface of the bottom wall 2 of the concrete water channel 1 and the inner surfaces of the left and right rising walls 3 are washed with high-pressure water and dried with a gas burner, a primer coating step on the substrate-adjusted surface, This is a method of forming the reinforcing coating material layer 4 through an undercoating and overcoating process in which a polyurethane resin paint or an epoxy resin paint is overcoated by performing uneven adjustment by mortar application as necessary.

而して上記ポリウレタン樹脂塗料又はエポキシ樹脂塗料は、厚塗りが行え、速乾性に優れ、衝撃耐性に優れている利点を有することから水路内面補修材料、即ち水路内面に塗布する補強用塗工材として広汎に使用されている。   Thus, the polyurethane resin paint or epoxy resin paint has the advantages of being thickly coated, excellent in quick drying, and excellent in impact resistance, so that it can be applied to the water channel inner surface repair material, that is, the reinforcing coating material applied to the water channel inner surface. As widely used.

然るに用水路を形成するコンクリートは透水性を有し、図1,図2に示すように、広面積の水田5に張られた灌漑用水6が水圧Pによりコンクリート製用水路1の立ち上げ壁3と底壁2内に徐々に浸透し、該浸透水7が上記ポリウレタン樹脂塗料又はエポキシ樹脂塗料による補強用塗工材層4のふくれ8、剥落を生じ、補修効果を減殺する問題を有している。   However, the concrete forming the irrigation channel has water permeability, and as shown in FIGS. 1 and 2, the irrigation water 6 stretched on the large paddy field 5 is caused by the water pressure P and the rising wall 3 and the bottom of the concrete channel 1. There is a problem that the permeated water 7 gradually penetrates into the wall 2, and the swelling 8 of the reinforcing coating material layer 4 is peeled off by the polyurethane resin paint or the epoxy resin paint, thereby reducing the repair effect.

而して本発明は上記問題点を解決する手段として、上記コンクリート製用水路の内面補修工法において、水路を画成する底壁及び左右立ち上げ壁の各内面と左右立ち上げ壁上端面の表層コンクリートを連続して除去し、他方1立方メートル当たり、
セメント 300〜 600kg、
(代表例としてポルトランドセメント)、
砂 600〜1200kg、
ポリマー樹脂 10〜 120kg、
補強樹脂繊維 10〜 60kg、
を主材とし、且つ上記補強樹脂繊維として接着剤にて弱接着し平形に集束した集束繊維を配合し混練して成る補強樹脂繊維入りポリマーセメントモルタルを用意し、該補強樹脂繊維入りポリマーセメントモルタルを上記底壁及び左右立ち上げ壁の各内面と左右立ち上げ壁上端面の表層コンクリート除去面域に塗布し補強用塗工材層を形成するコンクリート製用水路の内面補修方法を提供するものである。
Thus, as a means for solving the above-mentioned problems, the present invention provides a method for repairing the inner surface of the concrete water channel. In the surface concrete, the inner surfaces of the bottom wall and the left and right rising walls that define the water channel and the upper surface of the left and right rising walls are defined. Are removed continuously, while per cubic meter,
Cement 300-600kg,
(Portland cement as a representative example),
600-1200 kg of sand,
10 to 120 kg of polymer resin,
Reinforced resin fiber 10-60kg,
It was composed primarily, and prepared the reinforcing resin fiber as blended focusing fibers focused onto the weakly adhered flat with an adhesive and formed by kneading reinforcing resin fiber filled polymer cement mortar, the reinforcing resin fiber filled polymer cement A method for repairing the inner surface of a concrete water channel, in which mortar is applied to each inner surface of the bottom wall and the left and right rising walls and to the surface concrete removal surface area of the upper end surface of the left and right rising walls to form a reinforcing coating material layer. is there.

上記補強樹脂繊維としては、繊維長5〜20mm、太さ10〜200μのビニロン繊維、又は同ポリエチレン繊維、又は同ビニロン繊維と同ポリエチレン繊維の混合繊維を用いる。   As the reinforcing resin fiber, a vinylon fiber having a fiber length of 5 to 20 mm and a thickness of 10 to 200 μm, or the same polyethylene fiber, or a mixed fiber of the same vinylon fiber and the same polyethylene fiber is used.

又上記補強樹脂繊維入りポリマーセメントモルタルから成る補強用塗工材層中に上記表層コンクリート除去面域に亘る合成樹脂製メッシュを埋設し、該メッシュと上記補強樹脂繊維との絡み合い構造を形成する。   Further, a synthetic resin mesh covering the surface concrete removal surface area is embedded in a reinforcing coating material layer made of the polymer cement mortar containing the reinforcing resin fibers, and an entangled structure of the mesh and the reinforcing resin fibers is formed.

本発明は上記の通り、水田の灌漑施設等として用いられているコンクリート製用水路の内面に補強用塗工材を塗布して補修を図る、コンクリート製用水路の内面補修方法に係り、該補修方法において上記水路を画成する底壁及び左右立ち上げ壁の各内面と左右立ち上げ壁上端面の表層コンクリートを除去し、該除去面域に上記配合から成る補強樹脂繊維入りポリマーセメントモルタルを塗布して上記補強用塗工材層を形成する補修方法であり、この補修方法によりコンクリート製用水路内面に極めて堅牢で耐久性を有する補強用塗工材層を形成することができる。 The present invention As described above, by applying the reinforcing coating material on the inner surface of the concrete canal which is used as irrigation facilities paddy promote repair relates to the inner surface repairing method of concrete canal, in the repair method Remove the concrete on the bottom wall and the inner surfaces of the left and right rising walls and the upper end surface of the left and right rising walls , and apply the polymer cement mortar containing reinforcing resin fibers composed of the above composition to the removed surface area. This is a repairing method for forming the reinforcing coating material layer. By this repairing method , a very robust and durable reinforcing coating material layer can be formed on the inner surface of the concrete channel.

上記補強樹脂繊維入りポリマーセメントモルタルは補強用塗工材層に著しい強度向上と高い靱性を付与し、セメントモルタルを富組成分とするものであるから、コンクリート製用水路を形成するコンクリート壁との良馴性に富み、用水路のコンクリート壁と強固に一体結合することができる。   The above-mentioned polymer cement mortar containing reinforcing resin fibers gives the reinforcing coating material layer significant strength and high toughness, and the cement mortar is rich in the composition, so it is good for the concrete wall forming the concrete water channel. It is rich in habituation and can be firmly joined to the concrete wall of the irrigation canal.

殊に従来の補修工法はコンクリート製用水路の内面に硬く遮水性に富む塗工材層を形成して補修を図る基本思想を有するが、本発明に係る補強樹脂繊維入りポリマーセメントモルタルは、セメントと砂を富組成材とするモルタル補修材であるから、水分を透過し分散する特性を有し、用水路を画成する底壁及び立ち上げ壁を通して浸透した水田の灌漑用水は、補強樹脂繊維入りポリマーセメントモルタルによって形成された補強用塗工材層を透過せしめる特徴を付与し、これにより前記浸透水の圧力で補強用塗工材層のふくれや剥落を生ずる問題を抜本的に解消し、併せてコンクリート製用水路の内面に堅牢で耐久性に富む補強用塗工材層を形成することができるものである。   In particular, the conventional repair method has a basic idea of repairing by forming a hard coating material layer that is hard and impermeable to water on the inner surface of a concrete water channel. Because it is a mortar repair material with a rich composition of sand, it has the property of permeating and dispersing moisture, and the irrigation water in the paddy field that has penetrated through the bottom wall and the rising wall that define the irrigation channel is a polymer containing reinforcing resin fibers The feature of allowing the reinforcing coating material layer formed by the cement mortar to permeate is given, thereby drastically eliminating the problem of swelling and peeling of the reinforcing coating material layer due to the pressure of the permeating water. A strong and durable reinforcing coating material layer can be formed on the inner surface of the concrete water channel.

以下本発明に係るコンクリート製用水路の内面補修方法を実施するための最良の形態を図3乃至図7に基づいて説明する。コンクリート製用水路1は基本的にはコンクリート製底壁2と該底壁2の左右側縁から立ち上げられたコンクリート製立ち上げ壁3を有し、U字形の用水路を画成した構造を有している。開放形用水路1の場合には上面を開放状態に施工し、閉鎖型用水路1の場合には開放面をコンクリート製蓋で覆うか、又はU字形の用水路本体に蓋を一体に設けたロ字形のコンクリート製用水路1とする。 The best mode for carrying out the method for repairing the inner surface of a concrete water channel according to the present invention will be described below with reference to FIGS. The concrete water channel 1 basically has a concrete bottom wall 2 and a concrete rising wall 3 raised from the left and right side edges of the bottom wall 2 and has a structure that defines a U-shaped water channel. ing. In the case of the open-type water channel 1, the upper surface is constructed in an open state, and in the case of the closed-type water channel 1, the open surface is covered with a concrete lid, or the U-shaped water channel main body is integrally provided with a lid. The concrete canal 1 is used.

図3Aに示すように、水路を画成する底壁2及び左右立ち上げ壁3の各内面の表層コンクリート9を連続して除去し、表層コンクリート除去面域10を形成する。   As shown in FIG. 3A, the surface concrete 9 on each inner surface of the bottom wall 2 and the left and right rising walls 3 that define the water channel is continuously removed to form a surface concrete removal surface area 10.

又は上記底壁2及び左右立ち上げ壁3の各内面の表層コンクリート9に連続する左右立ち上げ壁3上端面の表層コンクリート9を除去し、底壁3内面と左右立ち上げ壁3内面と左右立ち上げ壁3上端面に連続する表層コンクリート除去面域10を形成する。   Alternatively, the surface concrete 9 on the upper end surface of the left and right rising walls 3 continuous to the surface concrete 9 on each inner surface of the bottom wall 2 and the left and right rising walls 3 is removed, and the inner surfaces of the bottom wall 3 and the left and right rising walls 3 are A continuous concrete removal surface area 10 is formed on the upper end surface of the raised wall 3.

適例として、上記底壁2と左右立ち上げ壁3の内面、又はこれらと左右立ち上げ壁3上端面の表層コンクリート9をウォータージェットの適用により除去し、上記表層コンクリート除去面域10を形成する。   As a suitable example, the inner surface of the bottom wall 2 and the left and right rising walls 3 or the surface concrete 9 on the upper end surface of the left and right rising walls 3 is removed by applying a water jet to form the surface concrete removing surface area 10. .

ウォータージェットはノズルより超高圧水を噴射し表層コンクリート9をハツリ除去する方法として既知であり、除去作業が速やかに行え、均一な深さに除去することができる。このウォータージェットの他、サンドブラスト、スチールブラスト、サンダー等の適用が可能である。   The water jet is known as a method of removing superficial concrete 9 by ejecting ultrahigh pressure water from a nozzle, and can be quickly removed and removed to a uniform depth. In addition to this water jet, sand blasting, steel blasting, sanding, etc. can be applied.

次に図3Bに示すように、上記コンクリート除去面域10の内面にエポキシ樹脂を塗布し含浸せしめる。即ちプライマー処理しプライマー層11を形成する。このプライマー処理は現場の状況に応じ選択的に実施する。   Next, as shown in FIG. 3B, an epoxy resin is applied and impregnated on the inner surface of the concrete removal surface area 10. That is, primer treatment is performed to form the primer layer 11. This primer treatment is selectively performed according to the situation at the site.

次に図3Cに示すように、上記表層コンクリート除去面域10を補強用塗工材層12で修復する。即ち、下記の配合比から成る補強樹脂繊維入りポリマーセメントモルタル13を用意し、該補強樹脂繊維入りポリマーセメントモルタル13を上記プライマー層11の表面、又はプライマー層11を有しないコンクリート除去面域10のコンクリート表面に直接塗布し補強用塗工材層12を形成する。
〈補強樹脂繊維入りポリマーセメントモルタル13の1立方メートル当たりの配合比〉
セメント 300〜 600kg
(代表例としてポルトランドセメント)
砂 600〜1200kg
ポリマー樹脂 10〜 120kg
補強樹脂繊維 10〜 60kg
Next, as shown in FIG. 3C, the surface concrete removal surface area 10 is repaired with a reinforcing coating material layer 12. That is, a polymer cement mortar 13 containing reinforcing resin fibers having the following blending ratio is prepared, and the polymer cement mortar 13 containing reinforcing resin fibers is formed on the surface of the primer layer 11 or the concrete removal surface area 10 that does not have the primer layer 11. The reinforcing coating material layer 12 is formed by coating directly on the concrete surface.
<Blend ratio per cubic meter of polymer cement mortar 13 with reinforcing resin fibers>
Cement 300 ~ 600kg
(Portland cement as a representative example)
600-1200kg of sand
Polymer resin 10-120kg
Reinforced resin fiber 10-60kg

上記組成材を主成分とし且つ上記配合比で加水混練して成る補強樹脂繊維入りポリマーセメントモルタル13を用意し、これを上記コンクリート製用水路1の上記表層コンクリート除去面域10に吹付け塗布、ローラー塗布等により塗布し上記補強用塗工材層12を形成する。   A polymer cement mortar 13 containing reinforcing resin fibers, which is mainly composed of the above-described composition and mixed and mixed at the above-mentioned mixing ratio, is prepared, and this is spray-coated onto the surface concrete removal surface area 10 of the concrete water channel 1 and a roller. The reinforcing coating material layer 12 is formed by coating or the like.

上記補強樹脂繊維14としては、繊維長5〜20mm、太さ10〜200μのビニロン繊維、又は同ポリエチレン繊維、又は同ビニロン繊維と同ポリエチレン繊維の混合繊維が有効である。   As the reinforcing resin fiber 14, a vinylon fiber having a fiber length of 5 to 20 mm and a thickness of 10 to 200 μm, or the same polyethylene fiber, or a mixed fiber of the same vinylon fiber and the same polyethylene fiber is effective.

好ましい例示として、上記ポルトランドセメント300〜600kgと、砂600〜1200kgと、ポリマー樹脂10〜120kgと、補強樹脂繊維10〜60kgの配合材に加え、減水剤0.1〜0.4kgを配合する。   As a preferable example, in addition to the above-mentioned compounding material of 300 to 600 kg of Portland cement, 600 to 1200 kg of sand, 10 to 120 kg of polymer resin, and 10 to 60 kg of reinforcing resin fiber, 0.1 to 0.4 kg of water reducing agent is added.

図5に示すように、上記補強樹脂繊維14は接着剤にて弱接着し平形に集束した集束繊維15を用い、この集束繊維15に上記減水剤16を添加し、該集束繊維15に減水剤16を添加し接触した状態で充分な寝かし時間を置き、例えば集束繊維15に減水剤16を添加したものを容器18に収容して寝かし、該集束繊維15を減水剤16と一緒に上記ポリマーセメントモルタル中に配合し混練して補強繊維入りポリマーセメントモルタル13を形成する。 As shown in FIG. 5, the reinforcing resin fiber 14 uses a bundling fiber 15 that is weakly bonded with an adhesive and converged into a flat shape. The water reducing agent 16 is added to the bundling fiber 15, and the water reducing agent is added to the bundling fiber 15. 16 is added and a sufficient laying time is set in the contact state, for example, the bundled fiber 15 added with the water reducing agent 16 is accommodated in the container 18 and the bundled fiber 15 is put together with the water reducing agent 16 to the polymer cement. by kneading formulated in mortar to form a reinforcing fiber-containing polymer cement mortar 13.

減水剤16は上記寝かし時間によって集束繊維15中に均一に浸潤し、接着剤による集束を弱めてモルタル混練時におけるばらけを促進し、繊維14が団子状になる現象を防止する。即ち混練によってモルタル中に繊維14が均一に混じり合う効果を促進する。   The water reducing agent 16 uniformly infiltrates into the bundling fiber 15 by the above-mentioned laying time, weakens the bundling by the adhesive and promotes the dispersion at the time of mortar kneading, and prevents the phenomenon that the fiber 14 becomes a dumpling. That is, the kneading promotes the effect of uniformly mixing the fibers 14 in the mortar.

補強樹脂繊維14としてポリエチレン繊維とビニロン繊維の混合繊維を用いる場合には、ポリエチレン繊維2〜10kg、ビニロン繊維8〜50kgで選択し、全体として上記10〜60kgになるように配合する。適例としてポリエチレン繊維5kg、ビニロン繊維30kgの混合繊維を用いる。   When a mixed fiber of polyethylene fiber and vinylon fiber is used as the reinforcing resin fiber 14, it is selected from 2 to 10 kg of polyethylene fiber and 8 to 50 kg of vinylon fiber, and blended so as to be 10 to 60 kg as a whole. As a suitable example, a mixed fiber of 5 kg of polyethylene fiber and 30 kg of vinylon fiber is used.

上記ポリマー樹脂としては、スチレンブタジエン樹脂系、ポリアクリル酸エステル樹脂系(アクリル樹脂系)、エチレン酢ビ樹脂系、酢ビ・ベオバ樹脂系等を用いる。   As the polymer resin, a styrene butadiene resin system, a polyacrylic ester resin system (acrylic resin system), an ethylene vinyl acetate resin system, a vinyl acetate / veova resin system, or the like is used.

本発明に用いる砂として、珪石から製造した珪砂、人工軽量砂(例えばセラミック砂)、川砂、山砂、鉱滓、フライアッシュ等の単体、又は混合物を用いる。   As sand used in the present invention, silica sand produced from silica, artificial lightweight sand (for example, ceramic sand), river sand, mountain sand, ore, fly ash, or the like, or a mixture thereof is used.

上記補強樹脂繊維入りポリマーセメントモルタル13から成る補強用塗工材層12中に上記表層コンクリート除去面域10に亘る合成樹脂製メッシュ17を埋設する補修構造とする場合には、図4Aに示すように、補強樹脂繊維入りポリマーセメントモルタル13による下塗り13aを施す。   As shown in FIG. 4A, in the case of a repair structure in which a synthetic resin mesh 17 covering the surface concrete removal surface area 10 is embedded in the reinforcing coating material layer 12 composed of the polymer cement mortar 13 containing the reinforcing resin fibers, Then, an undercoat 13a made of polymer cement mortar 13 containing reinforcing resin fibers is applied.

次に図4Bに示すように、上記補強樹脂繊維入りポリマーセメントモルタル13の下塗り13aの未硬化状態において、該下塗り13aの表面(膨出面)にポリエチレンメッシュシート又はアラミドメッシュシート等から成る編成構造の合成樹脂製メッシュ17を加圧貼付する。   Next, as shown in FIG. 4B, in the uncured state of the undercoat 13a of the polymer cement mortar 13 containing the reinforcing resin fibers, the surface (the bulging surface) of the undercoat 13a has a knitted structure made of a polyethylene mesh sheet or an aramid mesh sheet. A synthetic resin mesh 17 is applied under pressure.

上記合成樹脂製メッシュ17の加圧貼付により、下塗り13aの補強樹脂繊維入りポリマーセメントモルタル13がメッシュ17の網目内へ侵入し、同時に補強樹脂繊維14が網目に進入し、後記する上塗り13bの塗布にてメッシュ17の形成線材と補強樹脂繊維14とが絡み合い結合した状態を形成する。   By applying the synthetic resin mesh 17 under pressure, the polymer cement mortar 13 containing the reinforcing resin fibers of the undercoat 13a enters into the mesh of the mesh 17, and at the same time, the reinforcing resin fibers 14 enter the mesh. The forming wire of the mesh 17 and the reinforcing resin fiber 14 are intertwined and joined.

次に図4Cに示すように、上記下塗り13aの表面、即ちメッシュ17の表面に上記補強樹脂繊維入りポリマーセメントモルタル13を重ね塗りして上塗り13bを施し、上記メッシュ17を補強樹脂繊維入りポリマーセメントモルタル13から成る下塗り13aと上塗り13bから成る補強用塗工材層12内に埋設する。   Next, as shown in FIG. 4C, the surface of the undercoat 13a, that is, the surface of the mesh 17 is overcoated with the polymer cement mortar 13 containing the reinforcing resin fibers to give the top coat 13b, and the mesh 17 is applied to the polymer cement containing the reinforcing resin fibers. It is embedded in the reinforcing coating material layer 12 composed of an undercoat 13a made of mortar 13 and an overcoat 13b.

上記下塗り13aと上塗り13bの各塗布厚は予定する厚みの補強用塗工材層12の略二分の一程度にする。   The thickness of each of the undercoat 13a and the topcoat 13b is set to about one half of the reinforcing coating material layer 12 having a predetermined thickness.

次に上記補強樹脂繊維入りポリマーセメントモルタル13を、下記の配合比で混練し成形した角棒状供試体(100×100×400mm)の強度試験結果について説明する。
〈補強樹脂繊維入りポリマーセメントモルタル13の1立方メートル当たりの配合比〉
ポルトランドセメント 450kg
砂 1000kg
アクリル樹脂(ポリマー樹脂) 14kg
ポリエチレン繊維 24kg
(繊維長10mm前後、太さ20μ)
減水剤 0.2kg
Next, the strength test results of a square bar specimen (100 × 100 × 400 mm) obtained by kneading and molding the above-mentioned polymer cement mortar 13 containing reinforcing resin fibers at the following blending ratio will be described.
<Blend ratio per cubic meter of polymer cement mortar 13 with reinforcing resin fibers>
Portland cement 450kg
1000kg of sand
Acrylic resin (polymer resin) 14kg
Polyethylene fiber 24kg
(Fiber length around 10mm, thickness 20μ)
Water reducing agent 0.2kg

上記配合比で混練した補強樹脂繊維入りポリマーセメントモルタル13を用い、メッシュ17を埋設しないで塗布厚6mmの補強用塗工材層12を形成した供試体の強度試験結果、即ち供試体の両端に軸線方向の引張応力を加えた場合の図6に示す引張応力(n/平方ミリメートル)に対するひずみ(%)の関係を検査した結果、同グラフに示すように、2〜6%の伸び(ひずみ)を生ずるまで強度を維持することが確認された。   The strength test result of the specimen in which the reinforcing coating material layer 12 having a coating thickness of 6 mm was formed without embedding the mesh 17 using the polymer cement mortar 13 containing the reinforcing resin fibers kneaded at the above blending ratio, that is, at both ends of the specimen. As a result of examining the relationship of strain (%) to tensile stress (n / square millimeter) shown in FIG. 6 when tensile stress in the axial direction is applied, as shown in the graph, elongation (strain) of 2 to 6% It was confirmed that the strength was maintained until the occurrence of

又図7に示す上記供試体に曲げ荷重を与えた場合における、曲げ荷重(kN)に対する変位量(mm)と強度の関係を検査した結果、1〜4mmの曲げ変位量においても充分な曲げ強度を維持することが確認された。   Further, as a result of examining the relationship between the displacement (mm) with respect to the bending load (kN) and the strength when a bending load is applied to the specimen shown in FIG. 7, sufficient bending strength is obtained even with a bending displacement of 1 to 4 mm. Was confirmed to be maintained.

上記に加え、メッシュ17を埋設した場合には、補強樹脂繊維14とメッシュ17のポリマーセメントモルタル13を媒体としての絡み合い効果が望め、更に飛躍的な増強効果が望める。   In addition to the above, when the mesh 17 is embedded, an entanglement effect using the reinforcing resin fibers 14 and the polymer cement mortar 13 of the mesh 17 as a medium can be expected, and a dramatic enhancement effect can be expected.

従来のコンクリート製用水路の内面補修構造を概示する断面図。Sectional drawing which outlines the inner surface repair structure of the conventional concrete waterway. 従来のコンクリート製用水路の内面補修構造における補強用塗工材層の剥離状態を説明する断面図。Sectional drawing explaining the peeling state of the coating material layer for reinforcement in the internal surface repair structure of the conventional concrete waterway. A,B,Cは本発明に係るコンクリート製用水路の内面補修方法を工程順に示す断面図。A, B, C is sectional drawing which shows the inner surface repair method of the concrete use channel which concerns on this invention in order of a process. A,B,Cは本発明に係るコンクリート製用水路の内面補修方法の他例を工程順に示す断面図。A, B, C is sectional drawing which shows the other example of the inner surface repair method of the concrete waterway which concerns on this invention in process order. 補強樹脂繊維の集束繊維に減水剤を添加し寝かした状態を概示する断面図。Sectional drawing which outlines the state which added the water reducing agent to the bundling fiber of the reinforced resin fiber, and laid down. 本発明に係るコンクリート製用水路の内面補修方法における供試体の引張応力(n/平方ミリメートル)に対するひずみ(%)の強度試験結果を示すグラフ。The graph which shows the intensity | strength test result of the distortion | strain (%) with respect to the tensile stress (n / square millimeter) of the test body in the inner surface repair method of the concrete water channel which concerns on this invention. 本発明に係るコンクリート製用水路の内面補修方法における供試体の曲げ荷重(kN)に対する変位量(mm)の強度試験結果を示すグラフ。The graph which shows the intensity | strength test result of the displacement (mm) with respect to the bending load (kN) of the test body in the inner surface repair method of the concrete water channel which concerns on this invention.

符号の説明Explanation of symbols

1…コンクリート製用水路、2…底壁、3…左右立ち上げ壁、9…表層コンクリート、10…表層コンクリート除去面域、11…プライマー層、12…補強用塗工材層、13…補強樹脂繊維入りポリマーセメントモルタル、13a…下塗り、13b…上塗り、14…補強樹脂繊維、15…集束繊維、16…減水剤、17…合成樹脂製メッシュ、18…容器。   DESCRIPTION OF SYMBOLS 1 ... Concrete channel, 2 ... Bottom wall, 3 ... Left and right rise wall, 9 ... Surface concrete, 10 ... Surface concrete removal surface area, 11 ... Primer layer, 12 ... Reinforcement coating material layer, 13 ... Reinforcement resin fiber Polymer cement mortar containing, 13a ... undercoat, 13b ... topcoat, 14 ... reinforcing resin fiber, 15 ... bundling fiber, 16 ... water reducing agent, 17 ... synthetic resin mesh, 18 ... container.

Claims (3)

水路を画成する底壁及び左右立ち上げ壁の各内面と左右立ち上げ壁上端面の表層コンクリートを連続して除去し、他方1立方メートル当たり、
セメント 300〜 600kg、
砂 600〜1200kg、
ポリマー樹脂 10〜 120kg、
補強樹脂繊維 10〜 60kg、
を主材とし、且つ上記補強樹脂繊維として接着剤にて弱接着し平形に集束した集束繊維を配合し混練して成る補強樹脂繊維入りポリマーセメントモルタルを用意し、該補強樹脂繊維入りポリマーセメントモルタルを上記底壁及び左右立ち上げ壁の各内面と左右立ち上げ壁上端面の表層コンクリート除去面域に塗布し補強用塗工材層を形成したことを特徴とするコンクリート製用水路の内面補修方法
Waterways surface layer concrete bottom wall and the inner surface and the left and right rising walls upper surfaces of the left and right rising walls removed continuously defining, per the other one cubic meter,
Cement 300-600kg,
600-1200 kg of sand,
10 to 120 kg of polymer resin,
Reinforced resin fiber 10-60kg,
It was composed primarily, and prepared the reinforcing resin fiber as blended focusing fibers focused onto the weakly adhered flat with an adhesive and formed by kneading reinforcing resin fiber filled polymer cement mortar, the reinforcing resin fiber filled polymer cement A method for repairing the inner surface of a concrete channel, wherein mortar is applied to each inner surface of the bottom wall and left and right rising walls and to the surface concrete removal surface area of the upper end surface of the left and right rising walls to form a reinforcing coating material layer. .
上記補強樹脂繊維として、繊維長5〜20mm、太さ10〜200μのビニロン繊維、又は同ポリエチレン繊維、又は同ビニロン繊維と同ポリエチレン繊維の混合繊維を用いたことを特徴とする請求項1記載のコンクリート製用水路の内面補修方法2. The reinforcing resin fiber according to claim 1, wherein a vinylon fiber having a fiber length of 5 to 20 mm and a thickness of 10 to 200 [mu], or the same polyethylene fiber, or a mixed fiber of the same vinylon fiber and the same polyethylene fiber is used. Repair method for the inner surface of concrete canal. 上記補強樹脂繊維入りポリマーセメントモルタルから成る補強用塗工材層中に上記表層コンクリート除去面域に亘る合成樹脂製メッシュを埋設し、該メッシュと上記補強樹脂繊維との絡み合い構造を形成したことを特徴とする請求項1記載のコンクリート製用水路の内面補修方法A synthetic resin mesh covering the surface concrete removal surface area was embedded in the reinforcing coating material layer composed of the polymer cement mortar containing the reinforcing resin fiber, and an entangled structure of the mesh and the reinforcing resin fiber was formed. The method for repairing the inner surface of a concrete water channel according to claim 1, wherein the concrete water channel is repaired.
JP2005311820A 2005-10-26 2005-10-26 Method for repairing the inner surface of concrete canal Active JP4382029B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005311820A JP4382029B2 (en) 2005-10-26 2005-10-26 Method for repairing the inner surface of concrete canal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005311820A JP4382029B2 (en) 2005-10-26 2005-10-26 Method for repairing the inner surface of concrete canal

Publications (2)

Publication Number Publication Date
JP2007120087A JP2007120087A (en) 2007-05-17
JP4382029B2 true JP4382029B2 (en) 2009-12-09

Family

ID=38144205

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005311820A Active JP4382029B2 (en) 2005-10-26 2005-10-26 Method for repairing the inner surface of concrete canal

Country Status (1)

Country Link
JP (1) JP4382029B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011169032A (en) * 2010-02-18 2011-09-01 Tokura Construction Co Ltd Wear-resistant repair material
JP2011148695A (en) * 2011-03-08 2011-08-04 Birudorando:Kk Repairing method for concrete-made water way
JP7271186B2 (en) * 2019-01-09 2023-05-11 鹿島建設株式会社 Structural members and structures constructed using them

Also Published As

Publication number Publication date
JP2007120087A (en) 2007-05-17

Similar Documents

Publication Publication Date Title
JP2019217774A (en) Nonwoven cementitious composite for in-situ hydration
Ohama Polymer-based materials for repair and improved durability: Japanese experience
JP5265909B2 (en) Concrete stripping prevention method
JP2010144360A (en) Concrete repair sheet and concrete repair method
JP4958065B2 (en) Concrete channel wall repair method and concrete channel wall structure
JP4382029B2 (en) Method for repairing the inner surface of concrete canal
KR100688468B1 (en) Method for waterproofing and repairing crack of concrete structure and using device thereof
JP2007198119A (en) Concrete waterway joint part water shut off structure and water shutting-off construction method
JP5957944B2 (en) Repair method for concrete structures
JP2007100423A (en) Repair structure on rear face of concrete slab in bridge
KR20090111073A (en) waterproofing process and waterproofing structure of the same
KR101719486B1 (en) Waterproof mortar composition and method for waterproofing therewith
CN111140263A (en) Tunnel concrete lining crack width calculation method and crack treatment method
JP2011148695A (en) Repairing method for concrete-made water way
JP2009126751A (en) Reinforcing repair material for concrete construction
JP5301200B2 (en) Three-dimensional mesh knitted composite covering plate
JP2005171730A (en) Waterproof structure of floor slab pavement
JP5468980B2 (en) Advanced waterproofing method
JP2009074359A (en) Concrete waterway remodeling structure and remodeling method
JP4064853B2 (en) Anticorrosion / waterproof coating structure and construction method for concrete structures
JP2007218013A (en) Repair method for concrete waterway wall surface structure, and concrete waterway wall surface structure
CN113833500B (en) Restoration method for waterproof and impermeable layer of mountain cave depot
JP2003027573A (en) Joint waterproof film for concrete trough and waterproof execution method therefor
JP7443410B2 (en) Cross-sectional repair structure of reinforced concrete structure and cross-sectional repair method of reinforced concrete structure
KR102591981B1 (en) A waterproofing material application nozzle, and super flow forming complex waterproofing method using the same

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080812

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081006

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090915

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090916

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121002

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4382029

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121002

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131002

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250