JP4381107B2 - Manufacturing method and manufacturing apparatus for solid electrolytic capacitor - Google Patents

Manufacturing method and manufacturing apparatus for solid electrolytic capacitor Download PDF

Info

Publication number
JP4381107B2
JP4381107B2 JP2003382113A JP2003382113A JP4381107B2 JP 4381107 B2 JP4381107 B2 JP 4381107B2 JP 2003382113 A JP2003382113 A JP 2003382113A JP 2003382113 A JP2003382113 A JP 2003382113A JP 4381107 B2 JP4381107 B2 JP 4381107B2
Authority
JP
Japan
Prior art keywords
anode body
electrode
electrolytic capacitor
solid electrolytic
anode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003382113A
Other languages
Japanese (ja)
Other versions
JP2005150186A (en
Inventor
古澤  厚志
真一 矢野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP2003382113A priority Critical patent/JP4381107B2/en
Publication of JP2005150186A publication Critical patent/JP2005150186A/en
Application granted granted Critical
Publication of JP4381107B2 publication Critical patent/JP4381107B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

本発明は、チップ型固体電解コンデンサの製造方法及び製造装置に関する。   The present invention relates to a manufacturing method and a manufacturing apparatus for a chip-type solid electrolytic capacitor.

出願人は、以前に図9に示すチップ型の固体電解コンデンサを提案している。
固体電解コンデンサ(1)は、図9に示すように、リードフレーム(9)(90)が取り付けられたコンデンサ素子(2)を具え、該コンデンサ素子(2)は合成樹脂製のハウジング(7)にて覆われる。リードフレーム(9)(90)はハウジング(7)の周面に沿って折曲される。
コンデンサ素子(2)は、弁金属からなる陽極体(20)の一端部から陽極リード(22)を突出し、該陽極体(20)の周面に、リンを含む誘電体酸化被膜(21)を形成している。該誘電体酸化被膜(21)上に、陰極層(5)を形成している。陰極層(5)は、固体電解質層(50)、カーボン層(6)、銀ペースト層(60)を具えている。前記リードフレーム(9)(90)は、夫々銀ペースト層(60)及び陽極リード(22)に取り付けられる。ここで、弁金属とは、電解酸化処理により極めて緻密で耐久性を有する誘電体酸化被膜が形成される金属を指し、Al(アルミニウム)、Ta(タンタル)、Ti(チタン)、Nb(ニオブ)等が該当する。また、固体電解質には、ポリチオフェン系、ポリピロール系の導電性高分子が含まれる。
The applicant has previously proposed a chip-type solid electrolytic capacitor shown in FIG.
As shown in FIG. 9, the solid electrolytic capacitor (1) includes a capacitor element (2) to which lead frames (9) and (90) are attached. The capacitor element (2) is a housing (7) made of synthetic resin. Covered with. The lead frames (9) and (90) are bent along the peripheral surface of the housing (7).
The capacitor element (2) has an anode lead (22) protruding from one end of an anode body (20) made of a valve metal, and a dielectric oxide film (21) containing phosphorus is formed on the peripheral surface of the anode body (20). Forming. A cathode layer (5) is formed on the dielectric oxide film (21). The cathode layer (5) includes a solid electrolyte layer (50), a carbon layer (6), and a silver paste layer (60). The lead frames (9) and (90) are attached to the silver paste layer (60) and the anode lead (22), respectively. Here, the valve metal refers to a metal on which an extremely dense and durable dielectric oxide film is formed by electrolytic oxidation treatment. Al (aluminum), Ta (tantalum), Ti (titanium), Nb (niobium) Etc. The solid electrolyte includes polythiophene-based and polypyrrole-based conductive polymers.

誘電体酸化被膜(21)は以下の方法で形成される(例えば、特許文献1参照)。
先ず、図10に示すように、金属製のバー(30)に陽極リード(22)の先端部を取り付けて、陽極体(20)を槽(3)内の化成液(31)、具体的にはリン酸水溶液に浸す。該槽(3)の内側下面には、陰極である板状の電極(4)が設けられている。バー(30)から電極(4)に向けて直流電流を流すと、陽極体(20)上に誘電体酸化被膜(21)が形成される。これを化成処理と呼ぶ。
特開2003−86466号公報
The dielectric oxide film (21) is formed by the following method (see, for example, Patent Document 1).
First, as shown in FIG. 10, the tip of the anode lead (22) is attached to a metal bar (30), and the anode body (20) is placed in the chemical conversion liquid (31) in the tank (3), specifically. Soak in an aqueous solution of phosphoric acid. A plate-like electrode (4) as a cathode is provided on the inner lower surface of the tank (3). When a direct current is passed from the bar (30) toward the electrode (4), a dielectric oxide film (21) is formed on the anode body (20). This is called chemical conversion treatment.
JP 2003-86466 A

従来の方法では、図11に拡大して示すように、陽極リード(22)から陽極体(20)の下面を通って電極(4)に電流が流れる。従って、電極(4)に対向した陽極体(20)の下面には、×印で示すように、誘電体酸化被膜(21)が形成されやすい。しかし、陽極体(20)の下面よりも電極(4)から離れた位置にある陽極体(20)の上面及び側面には、誘電体酸化被膜(21)が薄く形成される部分ができる。
即ち、陽極体(20)の周面に形成される被膜(21)の厚みにバラ付きができる。そのため、被膜(21)が薄い部分ではLC(漏れ電流)が増加し、被膜(21)が厚い部分ではESR(等価直列抵抗)が増加し、固体電解コンデンサ(1)の特性を低下させていた。
本発明の目的は、陽極体(20)の周面に、誘電体酸化被膜(21)を略均一に形成する点にある。
In the conventional method, as shown in an enlarged view in FIG. 11, a current flows from the anode lead (22) through the lower surface of the anode body (20) to the electrode (4). Therefore, a dielectric oxide film (21) is likely to be formed on the lower surface of the anode body (20) facing the electrode (4) as indicated by a cross. However, on the upper surface and side surface of the anode body (20) located farther from the electrode (4) than the lower surface of the anode body (20), a portion where the dielectric oxide film (21) is formed thin is formed.
That is, the thickness of the coating (21) formed on the peripheral surface of the anode body (20) can vary. Therefore, LC (leakage current) increased in the thin part of the film (21), and ESR (equivalent series resistance) increased in the part of the thick film (21), which deteriorated the characteristics of the solid electrolytic capacitor (1). .
An object of the present invention is to form the dielectric oxide film (21) substantially uniformly on the peripheral surface of the anode body (20).

第1の発明は、弁金属から構成され一端部から陽極リード(22)を突出した陽極体(20)を形成する工程と、陽極リード(22)を導電性のバー(30)に取り付ける工程と、透孔(41)又は格子状の導電性壁片(42)を有する電極(4)を槽(3)内に配備し、槽(3)内に化成液(31)を入れる工程と、陽極リード(22)を取り付けたバー(30)を槽(3)上に配備し、陽極体(20)を化成液(31)に浸漬し、透孔(41)又は格子状の導電性壁片(42)を有する電極(4)に陽極体(20)を挿入し、透孔(41)の周縁又は格子状の導電性壁片(42)と陽極体(20)の全ての側面とを対向させる工程と、バー(30)から電極(4)に通電し、陽極体(20)上に誘電体酸化被膜(21)を形成する工程を含む固体電解コンデンサの製造方法である。
第2の発明は、陽極体(20)が浸漬される化成液(31)が入る槽(3)と、該槽(3)の内側底面に配備され陽極体(20)を通った電流が流れる電極(4)を具えた固体電解コンデンサの製造装置に於いて、電極(4)は、陽極体(20)を挿入すべき透孔(41)又は格子状の導電性壁片(42)を備え、透孔(41)の周縁又は格子状の導電性壁片(42)は、陽極体(20)の全ての側面と対向するように形成されていることを特徴とする固体電解コンデンサの製造装置である。
The first invention comprises a step of forming an anode body (20) composed of a valve metal and projecting an anode lead (22) from one end, and a step of attaching the anode lead (22) to a conductive bar (30). An electrode (4) having through holes (41) or grid-like conductive wall pieces (42) is disposed in the tank (3), and the chemical conversion liquid (31) is placed in the tank (3); A bar (30) with leads (22) attached is placed on the tank (3), the anode body (20) is immersed in the chemical conversion liquid (31), and through holes (41) or grid-like conductive wall pieces ( 42), the anode body (20) is inserted into the electrode (4), and the periphery of the through-hole (41) or the grid-like conductive wall piece (42) and all side surfaces of the anode body (20) are opposed to each other. It is a method for manufacturing a solid electrolytic capacitor including a step and a step of energizing the electrode (4) from the bar (30) to form a dielectric oxide film (21) on the anode body (20).
In the second invention, a tank (3) containing a chemical conversion liquid (31) in which the anode body (20) is immersed, and a current passing through the anode body (20) provided on the inner bottom surface of the tank (3) flow. In an apparatus for manufacturing a solid electrolytic capacitor having an electrode (4), the electrode (4) includes a through hole (41) into which an anode body (20) is inserted or a grid-like conductive wall piece (42). The solid electrolytic capacitor manufacturing apparatus is characterized in that the peripheral edge of the through hole (41) or the grid-like conductive wall piece (42) is formed so as to face all side surfaces of the anode body (20). It is.

電極(4)上には、陽極体(20)の側面に対向すべき通電部(40)が設けられている。バー(30)から陽極体(20)に流れた電流は、陽極体(20)の側面を通って、電極(4)の通電部(40)に達する。陽極体(20)の上面及び側面に誘電体酸化被膜(21)が形成される。従来の製造方法に比して、陽極体(20)の側面と電極(4)との距離が短くなるから、陽極体(20)の周面に形成される誘電体酸化被膜(21)の厚みにムラが少なくなる。これにより、固体電解コンデンサ(1)のLC及びESRを向上させることができるとともに、誘電体酸化被膜(21)の厚みが略均一であるから、固体電解コンデンサ(1)の静電容量のバラ付きを小さくできる。また、陽極体(20)の側面と電極(4)との距離を接近させることにより、誘電体酸化被膜(21)の形成時に、バー(30)に流す電流値を下げることができ、製造コストの低減に繋がる。   On the electrode (4), an energization section (40) to be opposed to the side surface of the anode body (20) is provided. The current flowing from the bar (30) to the anode body (20) passes through the side surface of the anode body (20) and reaches the energization section (40) of the electrode (4). A dielectric oxide film (21) is formed on the top and side surfaces of the anode body (20). Compared with the conventional manufacturing method, the distance between the side surface of the anode body (20) and the electrode (4) is shortened. The unevenness is reduced. As a result, the LC and ESR of the solid electrolytic capacitor (1) can be improved, and the thickness of the dielectric oxide film (21) is substantially uniform, so that the capacitance of the solid electrolytic capacitor (1) varies. Can be reduced. In addition, by making the distance between the side surface of the anode body (20) and the electrode (4) closer, the value of the current flowing through the bar (30) can be reduced when the dielectric oxide film (21) is formed. It leads to reduction of.

(第1実施例)
以下、本発明の一例を図を用いて説明する。
本例の方法によって、製造される固体電解コンデンサ(1)は、図9に示す従来のものと同じである。本例にあっては、固体電解コンデンサ(1)の製造方法及び製造装置に特徴がある。
図1は、電極(4)の斜視図、図2は、図1の電極(4)を用いて化成処理をする際の陽極体(20)の拡大図である。電極(4)は、厚さ1mmの金属板であって、多数の透孔(41)が開設されている。各透孔(41)には陽極体(20)が余裕を持って嵌まる。透孔(41)はエッチングによって開設されているが、パンチで打ち抜いてもよい。
化成処理時には、陽極リード(22)をバー(30)に取り付け、陽極体(20)を化成液(31)、具体的にはリン酸水溶液に浸漬する。陽極体(20)は透孔(41)に嵌まり、透孔(41)の周縁が陽極体(20)の側面に対向する。即ち、透孔(41)の周縁は、陽極体(20)の側面に対向した通電部(40)である。
(First embodiment)
Hereinafter, an example of the present invention will be described with reference to the drawings.
The solid electrolytic capacitor (1) manufactured by the method of this example is the same as the conventional one shown in FIG. This example is characterized by the method and apparatus for producing the solid electrolytic capacitor (1).
FIG. 1 is a perspective view of the electrode (4), and FIG. 2 is an enlarged view of the anode body (20) when chemical conversion treatment is performed using the electrode (4) of FIG. The electrode (4) is a metal plate having a thickness of 1 mm and has a large number of through holes (41). The anode body (20) is fitted in each through hole (41) with a margin. The through hole (41) is opened by etching, but may be punched out.
During the chemical conversion treatment, the anode lead (22) is attached to the bar (30), and the anode body (20) is immersed in the chemical conversion liquid (31), specifically, the phosphoric acid aqueous solution. The anode body (20) is fitted into the through hole (41), and the periphery of the through hole (41) faces the side surface of the anode body (20). That is, the periphery of the through hole (41) is the energization part (40) facing the side surface of the anode body (20).

バー(30)に通電すると、電流は陽極体(20)に流れ、陽極体(20)の側面から透孔(41)の周縁に達する。また、電流の一部は陽極体(20)の下面から出て、電極(4)に達する。陽極体(20)の側面及び下面に誘電体酸化被膜(21)が形成される。
本例にあっては、従来の製造方法に比して、陽極体(20)の側面と電極(4)との距離が短くなるから、陽極体(20)の周面に形成される誘電体酸化被膜(21)の厚みにムラが少なくなる。これにより、固体電解コンデンサのLC及びESRを向上させることができるとともに、誘電体酸化被膜(21)の厚みが略均一であるから、固体電解コンデンサ(1)の静電容量のバラ付きを小さくできる。また、陽極体(20)の側面と電極(4)との距離を接近させることにより、誘電体酸化被膜(21)の形成時に、バー(30)に流す電流値を下げることができ、製造コストの低減に繋がる。
When the bar (30) is energized, current flows through the anode body (20) and reaches the periphery of the through hole (41) from the side surface of the anode body (20). Part of the current exits from the lower surface of the anode body (20) and reaches the electrode (4). A dielectric oxide film (21) is formed on the side surface and the lower surface of the anode body (20).
In this example, since the distance between the side surface of the anode body (20) and the electrode (4) is shorter than that of the conventional manufacturing method, the dielectric formed on the peripheral surface of the anode body (20). The thickness of the oxide film (21) is less uneven. As a result, the LC and ESR of the solid electrolytic capacitor can be improved and the thickness of the dielectric oxide film (21) is substantially uniform, so that the variation in the capacitance of the solid electrolytic capacitor (1) can be reduced. . In addition, by making the distance between the side surface of the anode body (20) and the electrode (4) closer to each other, the current value flowing through the bar (30) can be reduced when the dielectric oxide film (21) is formed. It leads to reduction of.

(第2実施例)
図3に示すように、電極(4)の上に、陽極体(20)の側面を覆う導電性の壁片(42)を設けて化成処理を行ってもよい。この場合、図4に示すように、バー(30)からの電流は、陽極体(20)を通って壁片(42)に流れ、陽極体(20)の側面に誘電体酸化被膜(21)が形成される。
また、電流の一部は陽極体(20)の下面から出て、電極(4)に達する。陽極体(20)の下面に誘電体酸化被膜(21)が形成される。
更に、図5に示すように、2枚の電極(4)(4)を略平行に設け、両電極(4)(4)の透孔(41)に陽極体(20)を嵌めて、陽極体(20)の周面に誘電体酸化被膜(21)を形成してもよい。両電極(4)(4)を重ねてもよい。
陽極体(20)の寸法は、図6に示すように幅Wが3.2mm、高さHが3.5mm、奥行きBが2.5mmである。従って、厚さ1mmである電極(4)(4)を2枚重ねても、透孔(41)の周縁は、陽極体(20)の側面に対向する。尚、陽極体(20)の寸法は、上記の寸法に限定されない。
(Second embodiment)
As shown in FIG. 3, a chemical conversion treatment may be performed by providing a conductive wall piece (42) covering the side surface of the anode body (20) on the electrode (4). In this case, as shown in FIG. 4, the current from the bar (30) flows through the anode body (20) to the wall piece (42), and the dielectric oxide film (21) is formed on the side surface of the anode body (20). Is formed.
Part of the current exits from the lower surface of the anode body (20) and reaches the electrode (4). A dielectric oxide film (21) is formed on the lower surface of the anode body (20).
Further, as shown in FIG. 5, two electrodes (4) and (4) are provided substantially in parallel, and the anode body (20) is fitted into the through holes (41) of both electrodes (4) and (4), so that the anode A dielectric oxide film (21) may be formed on the peripheral surface of the body (20). Both electrodes (4) and (4) may be overlapped.
As shown in FIG. 6, the anode body 20 has a width W of 3.2 mm, a height H of 3.5 mm, and a depth B of 2.5 mm. Therefore, even when two electrodes (4) and (4) having a thickness of 1 mm are stacked, the periphery of the through hole (41) faces the side surface of the anode body (20). The dimensions of the anode body (20) are not limited to the above dimensions.

実際の化成処理は、図7に示すように、槽(3)に50本程度のバー(30)を横並びに掛ける。各バー(30)には約50ヶの陽極体(20)(20)が略等間隔に設けられている。
出願人は、従来の電極(4)及び本例の電極(4)を用いて陽極体(20)に化成処理を行って、コンデンサ素子(2)を作成した。該コンデンサ素子(2)から固体電解コンデンサ(1)を製造し、該固体電解コンデンサ(1)の静電容量を測定した。
表1、表2、表3は、従来の電極(4)及び本例の電極(4)を用いて形成した固体電解コンデンサ(1)の静電容量(単位:μF)及び耐圧電圧の平均値(単位:V)、ESR(単位:Ω)、LC(単位:μA)の平均値、最大値、最小値を示す表である。
ここで耐圧電圧とは、リードフレーム(9)(90)に印加できる許容電圧のことである。即ち、リードフレーム(9)(90)に一定電圧以上の電圧を掛けると、誘電体酸化被膜(21)の欠陥部に過電流が流れ、該誘電体酸化被膜(21)が破損して、陽極体(20)と陰極層(5)がショートする。この一定電圧を耐圧電圧と呼ぶ。誘電体酸化被膜(21)が略均一に形成されれば、該被膜(21)の厚みにバラ付きがある従来品に比して、耐圧が上がることが考えられる。

Figure 0004381107
Figure 0004381107
Figure 0004381107
表1乃至表3の結果から、本例に於ける電極(4)を用いて形成した固体電解コンデンサ(1)の方が、静電容量の最大値と最小値の差が小さくなり、ESRが悪化することなく、LCを改善できた。 In the actual chemical conversion treatment, as shown in FIG. 7, about 50 bars (30) are hung side by side on the tank (3). Each bar (30) is provided with approximately 50 anode bodies (20) and (20) at substantially equal intervals.
The applicant made a capacitor element (2) by subjecting the anode body (20) to chemical conversion treatment using the conventional electrode (4) and the electrode (4) of this example. A solid electrolytic capacitor (1) was produced from the capacitor element (2), and the capacitance of the solid electrolytic capacitor (1) was measured.
Tables 1, 2 and 3 show the average values of capacitance (unit: μF) and withstand voltage of the solid electrolytic capacitor (1) formed using the conventional electrode (4) and the electrode (4) of this example. It is a table | surface which shows the average value, maximum value, and minimum value of (unit: V), ESR (unit: Ω), and LC (unit: μA).
Here, the withstand voltage is an allowable voltage that can be applied to the lead frames (9) and (90). That is, when a voltage of a certain voltage or higher is applied to the lead frame (9) (90), an overcurrent flows through the defective portion of the dielectric oxide film (21), the dielectric oxide film (21) is damaged, and the anode The body (20) and the cathode layer (5) are short-circuited. This constant voltage is called a withstand voltage. If the dielectric oxide film (21) is formed substantially uniformly, it is conceivable that the withstand voltage increases as compared with the conventional product in which the thickness of the film (21) varies.
Figure 0004381107
Figure 0004381107
Figure 0004381107
From the results of Tables 1 to 3, the solid electrolytic capacitor (1) formed using the electrode (4) in this example has a smaller difference between the maximum value and the minimum value of the capacitance, and the ESR is smaller. LC could be improved without deteriorating.

また、図8は耐圧の分布を示すグラフであり、横軸に耐圧を、縦軸に頻度(%)を夫々示す。ここで、「1mmエッチングタイプ陰極板」とは、図2に示す電極(4)を指し、「カップタイプ陰極板」とは、図4に示す電極(4)を指し、「2mmエッチングタイプ陰極板」とは、図5に示す電極(4)を指す。図8のグラフからも、本例に於ける電極(4)を用いて形成した固体電解コンデンサ(1)の方が、従来品よりも耐圧が高いことが判る。   FIG. 8 is a graph showing the breakdown voltage distribution, where the horizontal axis indicates the breakdown voltage and the vertical axis indicates the frequency (%). Here, “1 mm etching type cathode plate” refers to the electrode (4) shown in FIG. 2, “cup type cathode plate” refers to the electrode (4) shown in FIG. 4, and “2 mm etching type cathode plate”. "" Refers to the electrode (4) shown in FIG. From the graph of FIG. 8, it can be seen that the solid electrolytic capacitor (1) formed using the electrode (4) in this example has a higher breakdown voltage than the conventional product.

上記実施例の説明は、本発明を説明するためのものであって、特許請求の範囲に記載の発明を限定し、或は範囲を減縮する様に解すべきではない。又、本発明の各部構成は上記実施例に限らず、特許請求の範囲に記載の技術的範囲内で種々の変形が可能であることは勿論である。   The above description of the embodiments is for explaining the present invention, and should not be construed as limiting the invention described in the claims or reducing the scope thereof. In addition, the configuration of each part of the present invention is not limited to the above embodiment, and various modifications can be made within the technical scope described in the claims.

電極の斜視図である。It is a perspective view of an electrode. 図1の電極を用いて化成処理をする際の陽極体の拡大図である。It is an enlarged view of the anode body at the time of performing a chemical conversion treatment using the electrode of FIG. 別の電極の斜視図である。It is a perspective view of another electrode. 図3の電極を用いて化成処理をする際の陽極体の拡大図である。It is an enlarged view of the anode body at the time of performing a chemical conversion treatment using the electrode of FIG. 別の電極を用いて化成処理をする際の陽極体の拡大図である。It is an enlarged view of the anode body at the time of performing a chemical conversion treatment using another electrode. 陽極体の斜視図である。It is a perspective view of an anode body. 槽の平面図である。It is a top view of a tank. 耐圧の分布を示すグラフである。It is a graph which shows distribution of a proof pressure. 固体電解コンデンサの断面図である。It is sectional drawing of a solid electrolytic capacitor. 従来の固体電解コンデンサの製造装置の断面図である。It is sectional drawing of the manufacturing apparatus of the conventional solid electrolytic capacitor. 図10の拡大図である。It is an enlarged view of FIG.

符号の説明Explanation of symbols

(1) 固体電解コンデンサ
(2) コンデンサ素子
(3) 槽
(4) 電極
(20) 陽極体
(21) 誘電体酸化被膜
(22) 陽極リード
(30) バー
(40) 通電部
(41) 透孔
(42) 壁片
(1) Solid electrolytic capacitor
(2) Capacitor element
(3) Tank
(4) Electrode
(20) Anode body
(21) Dielectric oxide film
(22) Anode lead
(30) Bar
(40) Current-carrying part
(41) Through hole
(42) Wall piece

Claims (2)

弁金属から構成され一端部から陽極リード(22)を突出した陽極体(20)を形成する工程と、
陽極リード(22)を導電性のバー(30)に取り付ける工程と、
透孔(41)又は格子状の導電性壁片(42)を有する電極(4)を槽(3)内に配備し、槽(3)内に化成液(31)を入れる工程と、
陽極リード(22)を取り付けたバー(30)を槽(3)上に配備し、陽極体(20)を化成液(31)に浸漬し、透孔(41)又は格子状の導電性壁片(42)を有する電極(4)に陽極体(20)を挿入し、透孔(41)の周縁又は格子状の導電性壁片(42)と陽極体(20)の全ての側面を対向させる工程と、
バー(30)から電極(4)に通電し、陽極体(20)上に誘電体酸化被膜(21)を形成する工程を含む固体電解コンデンサの製造方法。
Forming an anode body (20) made of a valve metal and projecting an anode lead (22) from one end; and
Attaching the anode lead (22) to the conductive bar (30);
Deployed through hole (41) or grid-like conductive wall piece electrode (4) having a (42) to the vessel (3) in the steps of placing the chemical conversion solution in the tank (3) to (31),
The bar (30) with the anode lead (22) attached is placed on the tank (3), the anode body (20) is immersed in the chemical conversion liquid (31), and the through holes (41) or grid-like conductive wall pieces anode body (20) is inserted into the electrode (4) having a (42), opposed to the all aspects of the hole rim or grid-like conductive wall piece (41) (42) and the anode body (20) A process of
A method for producing a solid electrolytic capacitor comprising a step of energizing an electrode (4) from a bar (30) to form a dielectric oxide film (21) on an anode body (20).
陽極体(20)が浸漬される化成液(31)が入る槽(3)と、該槽(3)の内側底面に配備され陽極体(20)を通った電流が流れる電極(4)を具えた固体電解コンデンサの製造装置に於いて、
電極(4)は、陽極体(20)を挿入すべき透孔(41)又は格子状の導電性壁片(42)を備え、
透孔(41)の周縁又は格子状の導電性壁片(42)は、陽極体(20)の全ての側面と対向するように形成されていることを特徴とする固体電解コンデンサの製造装置。
A tank (3) containing a chemical conversion liquid (31) in which the anode body (20) is immersed, and an electrode (4) provided on the inner bottom surface of the tank (3) through which current flows through the anode body (20). In a solid electrolytic capacitor manufacturing apparatus,
The electrode (4) includes a through hole (41) into which the anode body (20) is to be inserted or a lattice-shaped conductive wall piece (42).
The solid electrolytic capacitor manufacturing apparatus, wherein the peripheral edge of the through hole (41) or the grid-like conductive wall piece (42) is formed so as to face all side surfaces of the anode body (20) .
JP2003382113A 2003-11-12 2003-11-12 Manufacturing method and manufacturing apparatus for solid electrolytic capacitor Expired - Fee Related JP4381107B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003382113A JP4381107B2 (en) 2003-11-12 2003-11-12 Manufacturing method and manufacturing apparatus for solid electrolytic capacitor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003382113A JP4381107B2 (en) 2003-11-12 2003-11-12 Manufacturing method and manufacturing apparatus for solid electrolytic capacitor

Publications (2)

Publication Number Publication Date
JP2005150186A JP2005150186A (en) 2005-06-09
JP4381107B2 true JP4381107B2 (en) 2009-12-09

Family

ID=34691271

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003382113A Expired - Fee Related JP4381107B2 (en) 2003-11-12 2003-11-12 Manufacturing method and manufacturing apparatus for solid electrolytic capacitor

Country Status (1)

Country Link
JP (1) JP4381107B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103489648A (en) * 2013-10-16 2014-01-01 中国振华(集团)新云电子元器件有限责任公司 Method for improving thickness uniformity of dielectric oxide film on electrolytic capacitor anode block

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6762888B2 (en) * 2017-02-10 2020-09-30 日本軽金属株式会社 Manufacturing method of electrode holder and electrode for aluminum electrolytic capacitor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103489648A (en) * 2013-10-16 2014-01-01 中国振华(集团)新云电子元器件有限责任公司 Method for improving thickness uniformity of dielectric oxide film on electrolytic capacitor anode block

Also Published As

Publication number Publication date
JP2005150186A (en) 2005-06-09

Similar Documents

Publication Publication Date Title
CN101697324B (en) Solid state electrolytic capacitor
JP4979663B2 (en) Solid electrolytic capacitor and manufacturing method thereof
US20040134874A1 (en) Advanced valve metal anodes with complex interior and surface features and methods for processing same
JP2010135750A (en) Solid electrolytic capacitor and method of manufacturing the same
US7436652B2 (en) Solid electrolyte capacitor
US7206191B2 (en) Method and apparatus for electrically isolating capacitor electrodes using separator
US7233484B2 (en) Solid electrolytic capacitor and manufacturing method thereof
JP4381107B2 (en) Manufacturing method and manufacturing apparatus for solid electrolytic capacitor
KR101140012B1 (en) Solid electrolytic capacitor and method of manufacturing the same
JP2018032768A (en) Solid electrolytic capacitor element, solid electrolytic capacitor, method for manufacturing solid electrolytic capacitor element, and method for manufacturing solid electrolytic capacitor
JP4703444B2 (en) Manufacturing method of solid electrolytic capacitor
JP2008198639A (en) Solid-state electrolytic capacitor
JP4383227B2 (en) Solid electrolytic capacitor and manufacturing method thereof
JP6187899B2 (en) Solid electrolytic capacitor and manufacturing method thereof
JP3986323B2 (en) Manufacturing method and manufacturing apparatus for solid electrolytic capacitor
JP2005340714A (en) Method of manufacturing solid electrolytic capacitor
JP3729013B2 (en) Manufacturing method of electrode foil for aluminum electrolytic capacitor
JP5816839B2 (en) Electrolytic capacitor manufacturing method
JP6273492B2 (en) Solid electrolytic capacitor and manufacturing method thereof
JP2012134389A (en) Solid electrolytic capacitor
US8503166B2 (en) Solid electrolytic capacitor
JP5408247B2 (en) Method and apparatus for manufacturing aluminum electrode plate for electrolytic capacitor
JP5796193B2 (en) Solid electrolytic capacitor
JP6952921B1 (en) Solid Electrolytic Capacitors and Manufacturing Methods for Solid Electrolytic Capacitors
JP2003086466A (en) Method for forming dielectric layer in capacitor element for solid electrolytic capacitor and apparatus thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060608

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090304

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090317

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090515

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090818

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090915

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121002

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4381107

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121002

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131002

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees