JP4379804B2 - High nitrogen austenitic stainless steel - Google Patents

High nitrogen austenitic stainless steel Download PDF

Info

Publication number
JP4379804B2
JP4379804B2 JP2004235880A JP2004235880A JP4379804B2 JP 4379804 B2 JP4379804 B2 JP 4379804B2 JP 2004235880 A JP2004235880 A JP 2004235880A JP 2004235880 A JP2004235880 A JP 2004235880A JP 4379804 B2 JP4379804 B2 JP 4379804B2
Authority
JP
Japan
Prior art keywords
mass
less
content
stainless steel
austenitic stainless
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004235880A
Other languages
Japanese (ja)
Other versions
JP2006052452A (en
Inventor
修次 濱野
哲也 清水
俊治 野田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daido Steel Co Ltd
Original Assignee
Daido Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daido Steel Co Ltd filed Critical Daido Steel Co Ltd
Priority to JP2004235880A priority Critical patent/JP4379804B2/en
Priority to EP05107313.8A priority patent/EP1626101B1/en
Priority to US11/201,314 priority patent/US20060034724A1/en
Publication of JP2006052452A publication Critical patent/JP2006052452A/en
Application granted granted Critical
Publication of JP4379804B2 publication Critical patent/JP4379804B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/22Ferrous alloys, e.g. steel alloys containing chromium with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/002Heat treatment of ferrous alloys containing Cr
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/20Ferrous alloys, e.g. steel alloys containing chromium with copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/38Ferrous alloys, e.g. steel alloys containing chromium with more than 1.5% by weight of manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/42Ferrous alloys, e.g. steel alloys containing chromium with nickel with copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/44Ferrous alloys, e.g. steel alloys containing chromium with nickel with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/46Ferrous alloys, e.g. steel alloys containing chromium with nickel with vanadium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/48Ferrous alloys, e.g. steel alloys containing chromium with nickel with niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/52Ferrous alloys, e.g. steel alloys containing chromium with nickel with cobalt
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/58Ferrous alloys, e.g. steel alloys containing chromium with nickel with more than 1.5% by weight of manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/60Ferrous alloys, e.g. steel alloys containing lead, selenium, tellurium, or antimony, or more than 0.04% by weight of sulfur
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/005Heat treatment of ferrous alloys containing Mn
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/06Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of rods or wires
    • C21D8/065Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of rods or wires of ferrous alloys

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Heat Treatment Of Steel (AREA)

Description

本発明は、高窒素オーステナイト系ステンレス鋼に関する。   The present invention relates to a high nitrogen austenitic stainless steel.

特開平10−183303号公報JP-A-10-183303

高耐食性を有し、かつ加工性に優れた鋼として、SUS304やSUS316といったオーステナイト系ステンレス鋼が多用されている。特に、優れた耐食性を有し、同時に強度が要求される材料は、オーステナイト系ステンレス鋼であるSUS316や、二相系ステンレス鋼のSUS329系などの鋼種が一般的に用いられている。また、より一層の耐食性が要求される用途では、Ni及びMoを大幅に増量したSUS836L(スーパーオーステナイト系ステンレス鋼とも称される)なども使用されている。   As steel having high corrosion resistance and excellent workability, austenitic stainless steels such as SUS304 and SUS316 are frequently used. In particular, as a material that has excellent corrosion resistance and strength is required at the same time, steel types such as SUS316, which is an austenitic stainless steel, and SUS329, which is a duplex stainless steel, are generally used. In applications where further corrosion resistance is required, SUS836L (also referred to as superaustenitic stainless steel) in which the amount of Ni and Mo is greatly increased is used.

しかし、上記のオーステナイト系ステンレス鋼は、耐食性に優れるといえども、局部腐食に対する使用限界があるし、さらなる高強度化へのニーズも高い。また、高価なNiやMoの使用量も多いのでより低廉な材料が求められている。そこで、近年、オーステナイト系ステンレス鋼よりもさらに高強度及び請う耐食性を有するステンレス鋼として、侵入型固溶元素である窒素濃度を通常のステンレス鋼よりも大幅に高め、該高濃度の窒素によりオーステナイト相を安定化させた高窒素オーステナイト系ステンレス鋼が注目されている。このような高窒素オーステナイト系ステンレス鋼は、エアシャフト、ボールベアリング、軸受、プラスチック金型など、その用途はすでに多岐にわたっているが、特許文献1に開示されているごとく、生体用材料としての用途にも期待されている。すなわち、一般的なオーステナイト系ステンレス鋼にて相当量添加されているNiは、生体材料の分野においてはNiアレルギーの原因となりうるなど、人体にとって好ましくない元素の1つとして位置付けられているが、高窒素オーステナイト系ステンレス鋼は、主要なオーステナイト相安定化元素として窒素を用いるためNiの大部分を削減でき、かつ、硬度と耐食性も同等ないしそれ以上のレベルに維持できる利点がある。   However, although the austenitic stainless steel is excellent in corrosion resistance, it has a limit of use against local corrosion, and there is a high need for further strengthening. Further, since a large amount of expensive Ni or Mo is used, a cheaper material is demanded. Therefore, in recent years, as a stainless steel having higher strength and corrosion resistance than that of austenitic stainless steel, the concentration of nitrogen, which is an interstitial solid solution element, is significantly higher than that of ordinary stainless steel. High-nitrogen austenitic stainless steel that has been stabilized is attracting attention. Such high nitrogen austenitic stainless steels have already been used in a wide variety of applications such as air shafts, ball bearings, bearings, plastic molds, etc., but as disclosed in Patent Document 1, they are used as biomaterials. Is also expected. That is, Ni, which is added in a considerable amount in general austenitic stainless steel, is positioned as one of the elements that are undesirable for the human body and can cause Ni allergy in the field of biomaterials. Nitrogen austenitic stainless steel uses nitrogen as a main austenite phase stabilizing element, and therefore has the advantage that most of Ni can be reduced and the hardness and corrosion resistance can be maintained at the same level or higher.

しかし、特許文献1のオーステナイト系ステンレス鋼は、窒素固溶量を高めるためにMnが比較的多く添加されている(特許請求の範囲では、Mn含有量範囲は2〜26質量%と広く設定されているが、実施例に開示された鋼組成のMn含有量はいずれも11質量%及び12質量%と高い)。高窒素オーステナイト系ステンレス鋼において、このような高Mn組成を採用すると、耐食性が劣化することにつながり、また、強度も不足する惧れがある。   However, a relatively large amount of Mn is added to the austenitic stainless steel of Patent Document 1 in order to increase the amount of nitrogen solid solution (in the claims, the Mn content range is widely set to 2 to 26% by mass). However, the Mn content of the steel compositions disclosed in the examples is as high as 11% by mass and 12% by mass). In such a high nitrogen austenitic stainless steel, if such a high Mn composition is adopted, the corrosion resistance may be deteriorated and the strength may be insufficient.

本発明の課題は、Ni含有率が低いにも関わらず、耐食性及び強度ともに従来よりも優れた高窒素オーステナイト系ステンレス鋼を提供することにある。   The subject of this invention is providing the high nitrogen austenitic stainless steel which was excellent in both corrosion resistance and intensity | strength compared with the past, although Ni content rate is low.

課題を解決するための手段及び発明の効果Means for Solving the Problems and Effects of the Invention

上記の課題を解決するために、本発明の高窒素オーステナイト系ステンレス鋼は、
Cr:24.0質量%以上35.0質量%以下;
Mo:0.05質量%以上8.0質量%以下;
Mn:0.2質量%以上10.0質量%以下;
Cu:0.01質量%以上4.0質量%以下;
N:0.8質量%以上1.5質量%以下を含有し、
Cの含有率が0.20質量%以下、Siの含有率が2.0質量%以下、Pの含有率が0.03質量%以下、Sの含有率が0.05質量%以下、Niの含有率が0.5質量%以下、Alの含有率が0.03質量%以下、Oの含有率が0.020質量%以下、残部がFe及び不可避的不純物とされ、さらに、
Crの含有率をWCr(質量%)、Moの含有率をWMo(質量%)、Nの含有率をWN(質量%)、Mnの含有率をWMn(質量%)としたとき、
η≡(WCr+3.3WMo+16WN)/WMn
にて表される組成パラメータηが5以上となるように、Cr、Mo、N及びMnの含有率が調整されてなることを特徴とする。
In order to solve the above problems, the high nitrogen austenitic stainless steel of the present invention is
Cr: 24.0 mass% or more and 35.0 mass% or less;
Mo: 0.05 mass% or more and 8.0 mass% or less;
Mn: 0.2% by mass or more and 10.0% by mass or less;
Cu: 0.01% by mass or more and 4.0% by mass or less;
N: 0.8% by mass or more and 1.5% by mass or less
C content is 0.20 mass% or less, Si content is 2.0 mass% or less, P content is 0.03 mass% or less, S content is 0.05 mass% or less, Ni The content is 0.5 mass% or less, the Al content is 0.03 mass% or less, the O content is 0.020 mass% or less , the balance is Fe and inevitable impurities ,
When the Cr content is WCr (mass%), the Mo content is WMo (mass%), the N content is WN (mass%), and the Mn content is WMn (mass%),
η≡ (WCr + 3.3WMo + 16WN) / WMn
The content of Cr, Mo, N, and Mn is adjusted so that the composition parameter η represented by

上記本発明の高窒素オーステナイト系ステンレス鋼によると、Ni含有量を規制しつつ、多量のN(窒素)を固溶させ、さらに、Cr、Mo、N及びMnからなる必須元素の組成を本発明特有の範囲にて適正化することで、強度及び耐食性を高レベルにてバランスさせることができる。その結果、Ni含有率が低いにも関わらず、耐食性及び強度ともに従来よりも優れた高窒素オーステナイト系ステンレス鋼を実現でき、例えば固溶化処理状態にて、例えばスーパーオーステナイト系ステンレス鋼であるSUS836Lに匹敵する耐食性と、二相系ステンレス鋼であるSUS329J4Lよりも高い強度とを両立させることも不可能ではなくなる。   According to the high nitrogen austenitic stainless steel of the present invention, a large amount of N (nitrogen) is dissolved while regulating the Ni content, and the composition of essential elements composed of Cr, Mo, N, and Mn is further defined. By optimizing in a specific range, strength and corrosion resistance can be balanced at a high level. As a result, despite the low Ni content, it is possible to realize a high nitrogen austenitic stainless steel that is superior in both corrosion resistance and strength. For example, in a solution treatment state, for example, SUS836L, which is a super austenitic stainless steel, is used. It is not impossible to achieve both comparable corrosion resistance and higher strength than SUS329J4L, which is a duplex stainless steel.

以下、上記本発明の高窒素オーステナイト系ステンレス鋼における各元素の組成限定理由について説明する。
(1)Cr:24.0質量%以上35.0質量%以下
Crは、溶湯中へのN溶解度を著しく増加させる働きをなし、耐食性、強度の向上に大きく寄与するとともに、窒素ブローホールの発生抑制にも有効である。Cr含有量が15.0質量%未満では、溶湯中へのN溶解度が不十分となり、耐食性及び強度の確保が困難となるほか、窒素ブローホールも発生しやすくなる。他方、Cr含有量が35.0質量%を超えると、Crがフェライト生成元素であるためにオーステナイト相の不安定化を招き、材料の非磁性を保てなくなる惧れがある。また、靭延性の劣化を招くσ相も析出しやすくなる。Cr含有量は、望ましくは24.0質量%以上32.0以下とするのがよく、さらに望ましくは25.0質量%以上30.0質量%以下とするのがよい。
Hereinafter, the reasons for limiting the composition of each element in the high nitrogen austenitic stainless steel of the present invention will be described.
(1) Cr: 24.0 mass% or more and 35.0 mass% or less Cr functions to remarkably increase the N solubility in the molten metal, greatly contributes to improvement of corrosion resistance and strength, and generates nitrogen blowholes. It is also effective for suppression. When the Cr content is less than 15.0% by mass, the solubility of N in the molten metal becomes insufficient, and it becomes difficult to ensure corrosion resistance and strength, and nitrogen blowholes are likely to occur. On the other hand, if the Cr content exceeds 35.0 mass%, Cr is a ferrite-forming element, leading to destabilization of the austenite phase, and it may not be possible to keep the material nonmagnetic. In addition, a σ phase that causes deterioration of toughness is likely to precipitate. The Cr content is desirably 24.0 mass% or more and 32.0 mass% or less, and more desirably 25.0 mass% or more and 30.0 mass% or less.

(2)Mo:0.05質量%以上8.0質量%以下
MoもCrと同様、溶湯中へのN溶解度を著しく増加させる働きをなすが、Crよりも少量でより大きな耐食性向上効果を発揮し、また、固溶強化による強度向上効果を得ることができる。しかし、Mo添加量が0.05質量%未満では効果に乏しく、8.0質量%を超えて添加されると、窒素ブローホールの誘発を招くとともにオーステナイト相が不安定となるため、非磁性の確保も困難となる。また、脆化相の生成により靭延性が低下し、熱間加工時にも有害となる。また、溶体化処理時に未固溶Cr窒化物を増大させ、耐食性を却って著しく低下させる問題を生ずる。Mo添加量は、より望ましくは0.05質量%以上5.0質量%未満とするのがよく、さらに望ましくは0.10質量%以上2.5質量%未満とするのがよい。
(2) Mo: 0.05% by mass or more and 8.0% by mass or less Mo, like Cr, works to remarkably increase the N solubility in the molten metal, but exhibits a greater effect of improving corrosion resistance in a smaller amount than Cr. In addition, the effect of improving the strength by solid solution strengthening can be obtained. However, if the amount of Mo added is less than 0.05% by mass, the effect is poor, and if added over 8.0% by mass, the induction of nitrogen blowholes and the austenite phase become unstable. Ensuring is also difficult. In addition, the tough ductility is reduced due to the formation of the embrittled phase, which is also harmful during hot working. In addition, there is a problem that undissolved Cr nitride is increased during solution treatment, and the corrosion resistance is remarkably lowered. The amount of Mo added is more preferably 0.05% by mass or more and less than 5.0% by mass, and further preferably 0.10% by mass or more and less than 2.5% by mass.

(3)Mn:0.2質量%以上10.0質量%以下
Mnはオーステナイト生成元素であり、オーステナイト相の安定化に寄与するとともに、後述のCr窒化物の固溶温度を低下させる。また、溶湯中のN溶解度を著しく増加させるため、強度向上と窒素ブローホールの発生抑制に有効である。また、脱酸、脱硫元素としても有効である。Mn含有量が0.2質量%未満では、溶湯中のN溶解度が不十分となり、十分な強度を確保できなくなり、窒素ブローホールも生じやすくなる。他方、Mn添加量が10.0質量%を超えると耐食性の劣化につながる。Mn含有量は、より望ましくは0.2質量%以上6.0質量%以下とするのがよく、さらに望ましくは0.2質量%以上2.0質量%以下とするのがよい。
(3) Mn: 0.2% by mass or more and 10.0% by mass or less Mn is an austenite-forming element that contributes to stabilization of the austenite phase and lowers the solid solution temperature of Cr nitride described later. Further, since the N solubility in the molten metal is remarkably increased, it is effective for improving the strength and suppressing the generation of nitrogen blowholes. It is also effective as a deoxidizing and desulfurizing element. If the Mn content is less than 0.2% by mass, the solubility of N in the molten metal becomes insufficient, and sufficient strength cannot be secured, and nitrogen blowholes are likely to occur. On the other hand, when Mn addition amount exceeds 10.0 mass%, it will lead to deterioration of corrosion resistance. The Mn content is more preferably 0.2% by mass or more and 6.0% by mass or less, and further preferably 0.2% by mass or more and 2.0% by mass or less.

(4)Cu:0.01質量%以上2.0質量%以下
Cuはオーステナイト生成元素であり、オーステナイト相の安定化に寄与すると共に、耐食性の向上に寄与する。しかし、添加量が0.01質量%未満では効果に乏しく、2.0質量%を超える添加は、熱間加工性が低下する問題を引き起こす。また、溶体化処理後の未固溶Cr窒化物の残留量を増大させ、逆に耐食性を劣化させる。Cu添加量は、より望ましくは0.02質量%以上1.8質量%以下とするのがよく、さらに望ましくは0.05質量%以上1.5質量%以下とするのがよい。
(4) Cu: 0.01% by mass or more and 2.0% by mass or less Cu is an austenite-forming element and contributes to stabilization of the austenite phase and to improvement of corrosion resistance. However, if the addition amount is less than 0.01% by mass, the effect is poor, and the addition exceeding 2.0% by mass causes a problem that the hot workability is lowered. Moreover, the residual amount of the undissolved Cr nitride after the solution treatment is increased, and conversely, the corrosion resistance is deteriorated. The amount of Cu added is more preferably 0.02% by mass or more and 1.8% by mass or less, and further preferably 0.05% by mass or more and 1.5% by mass or less.

(5)N:0.8質量%以上1.5質量%以下
オーステナイト相に対する侵入型固溶元素であり、強度の向上、オーステナイト相の安定化及び耐食性の向上の全てに有効に寄与する基本添加元素である。N添加量が1.5質量%を超えると、窒素ブローホールが生成しやすくなるほか、溶体化処理後に、未固溶Cr窒化物や他の遷移金属窒化物(例えば、後述のTi、Nb、Vなどの窒化物)が鋼中に多量に残存し、耐食性が著しく低下する問題につながる。N添加量は、より望ましくは0.8質量%以上1.4質量%以下とするのがよい。
(5) N: 0.8 mass% or more and 1.5 mass% or less Basic addition that is an interstitial solid solution element for the austenite phase and contributes effectively to all of the improvement in strength, stabilization of the austenite phase and improvement in corrosion resistance. It is an element. When the N addition amount exceeds 1.5 mass%, nitrogen blowholes are easily generated, and after solution treatment, undissolved Cr nitride and other transition metal nitrides (for example, Ti, Nb, which will be described later) A large amount of nitride such as V) remains in the steel, leading to a problem that the corrosion resistance is remarkably lowered. The amount of N added is more preferably 0.8% by mass or more and 1.4% by mass or less.

(6)Fe:50質量%以上
Feは鋼の主成分(つまり、50質量%以上)であり、基本的には、上記5つの必須添加元素と、以下に説明する任意元素及び不可避不純物との残部を構成するものである。ただし、既に説明した本発明の効果が損なわれない範囲であれば、本明細書に特に記載のない副成分の含有を排除するものではない。
(6) Fe: 50% by mass or more Fe is a main component of steel (that is, 50% by mass or more), and basically includes the above five essential additive elements, optional elements and inevitable impurities described below. It constitutes the remainder. However, as long as the effects of the present invention described above are not impaired, the inclusion of subcomponents not particularly described in the present specification is not excluded.

(7)η:5以上
ηは、Crの含有率をWCr(質量%)、Moの含有率をWMo(質量%)、Nの含有率をWN(質量%)、Mnの含有率をWMn(質量%)としたとき、
η≡(WCr+3.3WMo+16WN)/WMn
にて表される組成パラメータである。ηに関与する添加元素のうち、N、Cr及びMoは耐食性を向上させる働きをなす一方、Mnは、N固溶量を増加させる必須元素ではあるが、耐食性は劣化させる方向に働く。ηの分子は、MoとNによる各耐食性向上効果を、Cr当量に換算して定量化したものであり、N、Cr及びMoはいずれも耐食性向上に寄与するものの、Nの耐食性向上効果はCrの実に16倍にも及ぶ。オーステナイト相へのN固溶量を劇的に高めるためには、結局のところMnの添加が不可欠となるが、Mnを添加しすぎると、オーステナイト相へのN固溶量は増えるものの、Mn自身は耐食性劣化に作用するため、増えたNによる耐食性向上代がMn添加によって一部食いつぶされるイメージとなる。従って、N、Cr及びMoの耐食性への寄与が分母に、Mnによる耐食性劣化への寄与が分子に反映されたη値は、最終的に得られる鋼の耐食性を総合的に予測するために有効なパラメータとなりうる。
(7) η: 5 or more η is WCr (mass%) for the Cr content, WMo (mass%) for the Mo, WN (mass%) for the N content, and WMn (Mn content for the Mn content). Mass%)
η≡ (WCr + 3.3WMo + 16WN) / WMn
It is a composition parameter represented by. Among the additive elements involved in η, N, Cr, and Mo serve to improve the corrosion resistance, while Mn is an essential element that increases the amount of N solid solution, but the corrosion resistance works in the direction of deterioration. The molecule of η is obtained by quantifying the corrosion resistance improvement effect of Mo and N in terms of Cr equivalent, and N, Cr and Mo all contribute to the improvement of corrosion resistance, but the corrosion resistance improvement effect of N is Cr As many as 16 times. In order to dramatically increase the amount of N solid solution in the austenite phase, it is indispensable to add Mn after all. However, if too much Mn is added, the amount of N solid solution in the austenite phase increases, but Mn itself Since it acts on the corrosion resistance deterioration, it is an image in which the increase in corrosion resistance due to the increased N is partially eroded by the addition of Mn. Therefore, the η value in which the contribution of N, Cr and Mo to the corrosion resistance is reflected in the denominator and the contribution to the corrosion resistance degradation due to Mn in the numerator is effective for comprehensively predicting the corrosion resistance of the steel finally obtained. Parameter.

そして、本発明者が詳細に検討したところ、上記ηが5以上となるように、N、Cr、Mo及びMnの添加量バランスを調整することで、耐食性向上効果が著しく最適化され、例えばスーパーオーステナイト系ステンレス鋼であるSUS836Lと同等以上の耐食性も確保できることが判明したのである。   And when this inventor examined in detail, by adjusting the addition amount balance of N, Cr, Mo, and Mn so that said (eta) may be 5 or more, the corrosion-resistant improvement effect is remarkably optimized, for example, super It has been found that corrosion resistance equivalent to or better than SUS836L, which is an austenitic stainless steel, can be secured.

以下、微量元素(積極添加元素及び不純物元素)についての組成限定理由について説明する。
(8)C:0.20質量%以下
CはFeに対する侵入型固溶元素であって強度の向上に寄与し、また、オーステナイト形成元素として窒素ブローホールの形成抑制にも有効である。しかし、0.20質量%を超えた添加は、Nの溶解度を低下させるとともに、Cr炭化物の形成によりオーステナイト相のCr量を減少させ、耐食性の劣化を招く。Cは任意元素であるが、積極添加による効果を顕著なものとするためには、0.005質量%以上は添加することが望ましい。Cの含有量は、望ましくは0.005質量%以上0.15質量%以下とするのがよく、より望ましくは0.01質量%以上0.10質量%以下とするのがよい。
Hereinafter, the reason for limiting the composition of trace elements (positively added elements and impurity elements) will be described.
(8) C: 0.20% by mass or less C is an interstitial solid solution element with respect to Fe and contributes to the improvement of strength, and is also effective in suppressing the formation of nitrogen blowholes as an austenite forming element. However, addition exceeding 0.20% by mass decreases the solubility of N and decreases the amount of Cr in the austenite phase due to the formation of Cr carbide, leading to deterioration in corrosion resistance. C is an optional element, but 0.005% by mass or more is desirably added in order to make the effect of positive addition remarkable. The content of C is desirably 0.005% by mass or more and 0.15% by mass or less, and more desirably 0.01% by mass or more and 0.10% by mass or less.

(9)Si:2.0質量%以下
Siは脱酸元素として有効であるが、一般鋼においてSiよりも強力な脱酸剤であるAlは、高窒素鋼においては、高温強度と靭延性の著しい低下を招くAlNの生成要因となるため、主要な脱酸剤としては、必須元素のMnとともにSiを使用することが望ましい。Siによる脱酸効果は0.01質量%以上の添加を行なったとき顕著となる。他方、Si添加量が2.0質量%を超えると、熱間加工時に割れ等の不具合を生じやすくなるほか、鋼の靭延性も低下する。Si添加量は、望ましくは0.01質量%以上1.0質量%以下とするのがよく、より望ましくは0.01質量%以0.5質量%以下とするのがよい。
(9) Si: 2.0 mass% or less Although Si is effective as a deoxidizing element, Al, which is a stronger deoxidizing agent than Si in general steel, has high temperature strength and toughness in high nitrogen steel. As a main deoxidizing agent, it is desirable to use Si together with the essential element Mn because it causes generation of AlN that causes a significant decrease. The deoxidation effect by Si becomes remarkable when addition of 0.01 mass% or more is performed. On the other hand, when the amount of Si added exceeds 2.0% by mass, defects such as cracking are likely to occur during hot working, and the toughness of the steel also decreases. The amount of Si added is desirably 0.01% by mass or more and 1.0% by mass or less, and more desirably 0.01% by mass or more and 0.5% by mass or less.

(10)P:0.03質量%以下
Pは有害不純物の1つであり、0.03質量%を超えると熱間加工性の悪化、及び粒界強度低下による靭延性の悪化を招く。Pは極力含有されていないほうがよく、コストとの兼ね合いにて適宜下限値を設定する。
(10) P: 0.03 mass% or less P is one of harmful impurities. If it exceeds 0.03% by mass, hot workability deteriorates and toughness deteriorates due to a decrease in grain boundary strength. It is better that P is not contained as much as possible, and the lower limit is appropriately set in consideration of cost.

(11)S:0.05質量%以下
Sは有害不純物の1つであり、0.05質量%を超えると熱間加工性が低下するとともに、MnSの形成により耐食性も劣化しやすくなる。Sは極力含有されていないほうがよく、コストとの兼ね合いにて適宜下限値を設定する。望ましくは0.01質量%以下とするのがよい。
(11) S: 0.05% by mass or less S is one of harmful impurities, and when it exceeds 0.05% by mass, hot workability is reduced and corrosion resistance is easily deteriorated due to the formation of MnS. It is better that S is not contained as much as possible, and a lower limit is appropriately set in consideration of cost. Desirably, it is good to set it as 0.01 mass% or less.

(12)Ni:0.5質量%以下
Niは、材料低廉化や人体適用したときのNiアレルギー等の影響回避のため、本発明では積極的に添加抑制する。Ni含有量は極力少ないのがよいが、必要以上の低減はコストの上昇を招くため、0.5質量%までは含有を許容する。Ni含有量は、望ましくは0.3質量%以下であるのがよく、より好ましくは0.1質量%以下であるのがよい。
(12) Ni: 0.5% by mass or less Ni is actively added and suppressed in the present invention in order to reduce the cost of materials and avoid the effects of Ni allergy when applied to the human body. The Ni content should be as low as possible. However, since an excessive reduction leads to an increase in cost, the content is allowed up to 0.5% by mass. The Ni content is desirably 0.3% by mass or less, more preferably 0.1% by mass or less.

(13)Al:0.03質量%以下
前述のごとく、Alは脱酸剤として有効ではあるが、高窒素鋼ではAl含有量が少しでも過剰となると、AlNの生成が進行して耐食性の著しい低下を招く。従って、本発明ではこれを回避し、オーステナイト相へのN固溶量を可能な限り高める観点から、Al含有量を0.03質量%以下とする。Al含有量は、望ましくは0.025質量%以下とするのがよく、より望ましくは0.020質量%以下とするのがよい。
(13) Al: 0.03% by mass or less As described above, Al is effective as a deoxidizer, but in high nitrogen steel, if the Al content becomes even a little excessive, the generation of AlN proceeds and the corrosion resistance is remarkable. Incurs a decline. Accordingly, in the present invention, this is avoided, and from the viewpoint of increasing the N solid solution amount in the austenite phase as much as possible, the Al content is set to 0.03% by mass or less. The Al content is desirably 0.025% by mass or less, and more desirably 0.020% by mass or less.

(14)O:0.020質量%以下
O含有量が過剰になると鋼の清浄度を低下させ、耐食性を劣化させるため、0.020質量%以下に規制する。O含有量は、望ましくは0.015質量%以下とするのがよく、より望ましくは0.010質量%以下とするのがよい。
(14) O: 0.020% by mass or less In order to reduce the cleanliness of the steel and deteriorate the corrosion resistance when the O content is excessive, the content is restricted to 0.020% by mass or less. The O content is desirably 0.015% by mass or less, and more desirably 0.010% by mass or less.

以下、本発明の高窒素オーステナイト系ステンレス鋼にさらに添加可能な元素について説明する。
(15)W:0.01質量%以上1.0質量%以下
Wは耐食性の向上に寄与するとともに、固溶強化元素として強度の向上にも寄与する。添加量が0.01質量%未満では効果に乏しく、1.0質量%を超える添加はMoと同様に、脆化相の生成により靭延性が低下し、熱間加工時にも有害となる不具合を招く。また、溶体化処理時の未固溶Cr窒化物を増大させ耐食性を著しく低下させる。W含有量は、望ましくは0.05質量%以上0.9質量%以下とするのがよく、より望ましくは0.1質量%以上0.8質量%以下とするのがよい。
Hereinafter, elements that can be further added to the high nitrogen austenitic stainless steel of the present invention will be described.
(15) W: 0.01% by mass or more and 1.0% by mass or less W contributes to improvement of corrosion resistance and contributes to improvement of strength as a solid solution strengthening element. If the amount added is less than 0.01% by mass, the effect is poor, and if it exceeds 1.0% by mass, as in the case of Mo, the toughness deteriorates due to the formation of an embrittled phase, which is also harmful during hot working. Invite. In addition, the undissolved Cr nitride during the solution treatment is increased and the corrosion resistance is remarkably lowered. The W content is desirably 0.05% by mass or more and 0.9% by mass or less, and more desirably 0.1% by mass or more and 0.8% by mass or less.

(16)Co:0.01質量%以上5.0質量%以下
Coは、耐食性の向上及び強度の向上に寄与する。添加量が0.01質量%未満では効果に乏しく、5.0質量%を超える添加はコストの上昇を招くと共に、溶体化処理時の未固溶Cr窒化物を増大させ耐食性を著しく低下させる不具合を招く。Co含有量は、望ましくは0.05質量%以上4.5質量%以下とするのがよく、より望ましくは0.1質量%以上4.0質量%以下とするのがよい。
強度及び耐食性向上の観点から、W及びCoは、上記範囲で1種又は2種を添加することができる。
(16) Co: 0.01% by mass or more and 5.0% by mass or less Co contributes to improvement of corrosion resistance and strength. If the amount added is less than 0.01% by mass, the effect is poor, and if it exceeds 5.0% by mass, the cost increases, and the insoluble Cr nitride during solution treatment increases and the corrosion resistance decreases significantly. Invite. The Co content is desirably 0.05% by mass or more and 4.5% by mass or less, and more desirably 0.1% by mass or more and 4.0% by mass or less.
From the viewpoint of improving strength and corrosion resistance, W and Co can be added in the above range.

(17)Ti:0.01質量%以上0.5質量%以下
(18)Nb:0.01質量%以上0.5質量%以下
(19)V:0.01質量%以上1.0質量%以下
(20)Ta:0.01質量%以上0.5質量%以下
Ti、Nb、V及びTaは、いずれもC,Nと結合して炭化物ないし炭窒化物を析出させ、強度の向上に寄与するとともに、該析出物によるピンニング効果によりオーステナイト結晶粒の成長を抑制し、結晶粒の微細化による強度及び靭性の向上に寄与する。各々添加量が0.01質量%未満では効果に乏しく、また、それぞれ上記上限値を超える添加は、鋼中に有害な酸化物ないし窒化物を生成し、耐食性を著しく低下させる他、有効な固溶N量を低下させ、強度も低下しやすくなる不具合を招く。Ti含有量は、望ましくは0.02質量%以上0.4質量%以下とするのがよく、より望ましくは0.03質量%以上0.3質量%以下とするのがよい。Nb含有量は、望ましくは0.02質量%以上0.4質量%以下とするのがよく、より望ましくは0.03質量%以上0.3質量%以下とするのがよい。V含有量は、望ましくは0.02質量%以上0.9質量%以下とするのがよく、より望ましくは0.03質量%以上0.8質量%以下とするのがよい。Ta含有量は、望ましくは0.02質量%以上0.4質量%以下とするのがよく、より望ましくは0.03質量%以上0.3質量%以下とするのがよい。
Ti、Nb、V及びTaは、それらのいずれか1種のみを添加することもできるし、2種以上を組み合わせて添加することもできる。
(17) Ti: 0.01% by mass to 0.5% by mass (18) Nb: 0.01% by mass to 0.5% by mass (19) V: 0.01% by mass to 1.0% by mass The following (20) Ta: 0.01% by mass or more and 0.5% by mass or less Ti, Nb, V and Ta all combine with C and N to precipitate carbide or carbonitride and contribute to the improvement of strength. At the same time, the pinning effect of the precipitates suppresses the growth of austenite crystal grains and contributes to the improvement of strength and toughness due to the refinement of crystal grains. When the addition amount is less than 0.01% by mass, the effect is poor, and when the addition exceeds the above upper limit value, harmful oxides or nitrides are formed in the steel, the corrosion resistance is remarkably lowered, and an effective solidity is added. The amount of dissolved N is reduced, and the strength tends to decrease. The Ti content is desirably 0.02% by mass or more and 0.4% by mass or less, and more desirably 0.03% by mass or more and 0.3% by mass or less. The Nb content is desirably 0.02 mass% or more and 0.4 mass% or less, and more desirably 0.03 mass% or more and 0.3 mass% or less. The V content is desirably 0.02% by mass or more and 0.9% by mass or less, and more desirably 0.03% by mass or more and 0.8% by mass or less. The Ta content is desirably 0.02 mass% or more and 0.4 mass% or less, and more desirably 0.03 mass% or more and 0.3 mass% or less.
Any one of Ti, Nb, V and Ta can be added, or two or more of them can be added in combination.

(21)B:0.001質量%以上0.01質量%以下;
Bは強度の向上及び熱間加工性の向上に有効な元素である。0.001質量%未満では効果に乏しく、0.01質量%を超える添加は却って熱間加工性を害するとともに耐食性も劣化させる。B含有量は、望ましくは0.001質量%以上0.008質量%以下とするのがよく、より望ましくは0.001質量%以上0.005質量%以下とするのがよい。
(21) B: 0.001% by mass or more and 0.01% by mass or less;
B is an element effective for improving the strength and hot workability. If it is less than 0.001% by mass, the effect is poor, and if it exceeds 0.01% by mass, the hot workability is adversely affected and the corrosion resistance is also deteriorated. The B content is desirably 0.001% by mass or more and 0.008% by mass or less, and more desirably 0.001% by mass or more and 0.005% by mass or less.

(22)Zr:0.01質量%以上0.50質量%以下
Zrは強度向上に有効な添加元素である。0.01質量%未満では効果に乏しく、0.50質量%を超える添加は靭延性の劣化を招く。Zr含有量は、望ましくは0.03質量%以上0.40質量%以下とするのがよく、より望ましくは0.05質量%以上0.30質量%以下とするのがよい。
(22) Zr: 0.01 mass% or more and 0.50 mass% or less Zr is an additive element effective for strength improvement. If it is less than 0.01% by mass, the effect is poor, and if it exceeds 0.50% by mass, the toughness deteriorates. The Zr content is desirably 0.03% by mass or more and 0.40% by mass or less, and more desirably 0.05% by mass or more and 0.30% by mass or less.

(23)Ca:0.001質量%以上0.01質量%以下
(24)Mg:0.001質量%以上0.01質量%以下;
Ca及びMgは、いずれも熱間加工性を向上させるために有効な添加元素である。過添加は耐食性、靭延性、熱間加工性を劣化させる。また、被削性を向上させる観点においても有効である。いずれも0.001質量%未満では効果に乏しく、0.01質量%を超える添加は却って熱間加工性を害する。Ca及びMgの含有量は、いずれも望ましくは0.001質量%以上0.008質量%以下とするのがよく、より望ましくは、0.001質量%以上0.005質量%以下とするのがよい。
B、Zr、Ca及びMgは、それらのいずれか1種のみを添加することもできるし、2種以上を組み合わせて添加することもできる。
(23) Ca: 0.001% by mass to 0.01% by mass (24) Mg: 0.001% by mass to 0.01% by mass;
Ca and Mg are both additive elements effective for improving hot workability. Excessive addition deteriorates corrosion resistance, toughness, and hot workability. It is also effective from the viewpoint of improving machinability. In any case, if the amount is less than 0.001% by mass, the effect is poor, and if it exceeds 0.01% by mass, hot workability is adversely affected. The contents of Ca and Mg are desirably 0.001% by mass or more and 0.008% by mass or less, and more desirably 0.001% by mass or more and 0.005% by mass or less. Good.
B, Zr, Ca and Mg can be added alone or in combination of two or more thereof.

(25)Te:0.005質量%以上0.05質量%以下
(26)Se:0.01質量%以上0.20質量%以下;
Te及びSeは、いずれも被削性を向上させるために有効な添加元素である。いずれも下限値未満では効果に乏しく、上限値を超える添加は耐食性、靭延性及び熱間加工性を劣化させるので好ましくない。Te含有量は、望ましくは0.01質量%以上0.04質量%以下とするのがよい。また、Se含有量は、望ましくは0.02質量%以上0.18質量%以下とするのがよく、より望ましくは0.05質量%以上0.15質量%以下とするのがよい。
(25) Te: 0.005 mass% or more and 0.05 mass% or less (26) Se: 0.01 mass% or more and 0.20 mass% or less;
Te and Se are both additive elements effective for improving machinability. In any case, the effect is poor below the lower limit, and addition exceeding the upper limit is not preferable because corrosion resistance, toughness, and hot workability deteriorate. The Te content is desirably 0.01% by mass or more and 0.04% by mass or less. The Se content is desirably 0.02% by mass or more and 0.18% by mass or less, and more desirably 0.05% by mass or more and 0.15% by mass or less.

上記本発明の高窒素オーステナイト系ステンレス鋼は、1100℃以上1250℃の溶体化処理(例えば、0.1時間以上2時間以下)を施すことが望ましい。例えば、上記組成となるように溶製後の本発明の鋼に熱間鍛造あるいは圧延を行ない、さらに上記温度範囲の溶体化処理を施すことで、析出したCr窒化物を再固溶させることができ、組織を均一化できるとともに、耐食性を著しく向上することができる。Cr窒化物は、本発明者の検討によると、特に直径(本明細書では、窒化物粒と同一面積の円の直径(以下、円換算径という)にて表す)2μm以上のCr窒化物が残留している場合に、耐食性低下への影響が大きくなる。なお、良好な耐食性を確保するためには、鋼の断面組織に、直径2μm以上のCr系窒化物が観察されないことが当然望ましい。この場合、本発明の範囲内のどのよう組成の鋼でも、溶体化処理温度が1100℃以上1250℃内に収まっていれば、直径2μm以上のCr系窒化物を必ず消滅させることができるわけではなく、後に実施例にて示す通り、鋼組成に応じて最適の溶体化処理温度を上記温度範囲にて選定しなければ、有害な直径2μm以上のCr系窒化物を十分に減少させることができないのである。   The high nitrogen austenitic stainless steel of the present invention is preferably subjected to a solution treatment (for example, 0.1 hours to 2 hours) at 1100 ° C. or more and 1250 ° C. For example, by hot forging or rolling the steel of the present invention after melting so as to have the above composition, and further subjecting it to a solution treatment in the above temperature range, the precipitated Cr nitride can be re-dissolved. The structure can be made uniform and the corrosion resistance can be remarkably improved. According to the study of the present inventor, the Cr nitride has a diameter of 2 μm or more especially in the diameter (in this specification, the diameter of a circle having the same area as the nitride grains (hereinafter referred to as a circle-converted diameter)). If it remains, the effect on the corrosion resistance is increased. In order to ensure good corrosion resistance, it is naturally desirable that Cr-based nitrides having a diameter of 2 μm or more are not observed in the cross-sectional structure of steel. In this case, in any composition steel within the scope of the present invention, if the solution treatment temperature is within the range of 1100 ° C. to 1250 ° C., the Cr-based nitride having a diameter of 2 μm or more cannot necessarily be eliminated. However, as will be shown later in Examples, unless the optimum solution treatment temperature is selected within the above temperature range according to the steel composition, harmful Cr-based nitrides having a diameter of 2 μm or more cannot be sufficiently reduced. It is.

そして、直径2μm以上のCr系窒化物が観察されない程度に上記溶体化処理を施すことにより、本発明の鋼は、引張強さにて1000MPa以上の高強度を実現することが可能となる。   And the steel of this invention can implement | achieve the high intensity | strength of 1000 Mpa or more by tensile strength by performing the said solution treatment to such an extent that Cr type nitride of diameter 2 micrometers or more is not observed.

本発明の高窒素オーステナイト系ステンレス鋼は線材化ないし板材化することができる。この場合、その線材化ないし板材化の少なくとも最終段の減面加工を、冷間伸線ないし冷間圧延などの冷間加工にて行なうことで、高強度化を一層顕著に達成できる。これにより、図1に示すごとく、線材100の場合は、その軸直交断面にて組織を観察したときに、また、図2に示すごとく、板材150の場合は圧延延伸方向と直交する断面にて組織を観察したときに、いずれも直径2μm以上のCr系窒化物が観察されず、かつ、オーステナイトマトリックス相の平均結晶粒径(円換算径による)が100μm以下の線材又は板材を得ることができる。オーステナイトマトリックス相の平均結晶粒径を微細組織にすることで非常に高強度であって、しかも高耐食性の線材ないし板材を得ることができる。具体的な強度レベルとしては1500MPa以上あるいは2000MPa以上が可能である(上限値に制限はないが、例えば2500MPa程度までは強度向上が可能である)。   The high nitrogen austenitic stainless steel of the present invention can be made into a wire or plate. In this case, high strength can be achieved more remarkably by performing at least the final surface reduction of the wire or plate material by cold working such as cold drawing or cold rolling. Thereby, as shown in FIG. 1, in the case of the wire 100, when the structure is observed in the axial orthogonal cross section, and as shown in FIG. 2, in the case of the plate 150, in the cross section orthogonal to the rolling drawing direction. When observing the structure, no Cr-based nitride having a diameter of 2 μm or more is observed, and a wire or plate having an austenite matrix phase average crystal grain size (depending on the circle equivalent diameter) of 100 μm or less can be obtained. . By making the average crystal grain size of the austenite matrix phase into a fine structure, it is possible to obtain a wire material or plate material having very high strength and high corrosion resistance. The specific strength level can be 1500 MPa or more or 2000 MPa or more (the upper limit is not limited, but the strength can be improved up to, for example, 2500 MPa).

上記線材ないし板材の最終的に得られる結晶粒径は、溶体化熱処理前に施される冷間加工の加工率(線材の場合は減面率、板材の場合は圧下率)により調整できる。平均結晶粒径が100μm以上では強度向上の効果が顕著でなく、上記温度域での溶体化処理によりある程度再結晶が進行することを考慮すると、平均結晶粒径が2μm以下とすることは工程上困難である。組織の微細化は、結晶粒成長抑制に効果のあるTi、Nb、V及びTaの1種又は2種以上を前述の範囲で添加した場合に、より顕著とできる場合がある。   The finally obtained crystal grain size of the wire or plate can be adjusted by the processing rate of cold working performed before the solution heat treatment (reduction ratio in the case of wire, reduction in the case of plate). When the average crystal grain size is 100 μm or more, the effect of improving the strength is not remarkable, and considering that recrystallization proceeds to some extent by the solution treatment in the above temperature range, the average crystal grain size is set to 2 μm or less in the process. Have difficulty. The refinement of the structure may be more prominent when one or more of Ti, Nb, V, and Ta, which are effective in suppressing crystal grain growth, are added in the aforementioned range.

以上、本発明の高窒素オーステナイト系ステンレス鋼によると、Niをほとんど含有することなく、溶体化処理状態で、例えばスーパーオーステナイト系ステンレス鋼であるSUS836Lと同程度の耐食性と、二相系ステンレス鋼であるSUS329J4Lよりも高強度を両立させることができる。また、溶体化処理後の冷間加工により線材、板材に成形された場合には、例えば1500MPa以上(さらには、2000MPa以上)の高強度を実現できる。   As described above, according to the high nitrogen austenitic stainless steel of the present invention, in a solution treatment state with almost no Ni, for example, the same level of corrosion resistance as SUS836L, which is a super austenitic stainless steel, and a duplex stainless steel Higher strength than some SUS329J4L can be achieved. Moreover, when it shape | molds to a wire and a board | plate material by the cold working after solution treatment, the high intensity | strength of 1500 Mpa or more (further 2000 Mpa or more) is realizable, for example.

本発明の高窒素オーステナイト系ステンレス鋼は、線材、棒鋼、帯鋼、板材、パイプ、鍛造品、型鋼等の様々な形状に加工可能であり、具体的には下記のような用途に好適である。   The high nitrogen austenitic stainless steel of the present invention can be processed into various shapes such as wire rod, bar steel, strip steel, plate material, pipe, forged product, die steel, etc., and is specifically suitable for the following uses. .

例えば、生体との接触を考慮すべき用途としては、人体に直接触れるネックレス、ピアス、指輪などの装飾品、腕時計の裏蓋、腕時計バンド等の時計部品、めがねフレーム等のめがね部品、ドアの取手等の家具用あるいは建築内装用金属部品、スプーン、フォーク、レードルなどの食器・調理用器具、家電製品用金属部品、歯間ブラシ、人工歯根あるいは矯正ワイヤーなどの歯科用材料、プレート、ボルト、ナット、ばね、ネジ、ワイヤー、電極、人工骨、人工関節などの生体用インプラント材料、注射針、ナイフ、メス、鋏、鉗子、手術用のドリルなどの医療用器具が好適である。   For example, applications that should be considered for contact with living bodies include necklaces, earrings, rings and other decorative items that directly touch the human body, watch back covers, watch parts such as watch bands, eyeglass parts such as eyeglass frames, and door handles. Metal parts for furniture such as furniture and interior decoration, tableware and cooking utensils such as spoons, forks, ladle, metal parts for home appliances, dental materials such as interdental brushes, artificial roots or orthodontic wires, plates, bolts, nuts Medical devices such as springs, screws, wires, electrodes, artificial implants such as artificial bones and artificial joints, injection needles, knives, scalpels, scissors, forceps and surgical drills are suitable.

また、通常の高強度・高耐食材にも適用でき、ボルト、ナット、シリンダーライナー、シャフト、ハブ、コネクター、軸受、レース、レール、歯車、ピン、ネジ、ロール、タービンブレード、金型、ダイス、ドリル、バルブ、弁座、刃物、ノズル、ガスケット、リング、ばねなど、海浜環境部材、工業炉部材、化学プラント部材、石油掘削部材、石油精製プラント部材、ごみ焼却炉部材、蒸気タービン部材、ガスタービン部材、原子炉部材(例えば加圧水型軽水炉の二次冷却水配管部材など)、航空機部材、建築・土木用構造部材(例えば、橋脚や釣り橋用部材等の橋梁用部材や高圧線の電柱や鉄塔等)、意匠用部材などを好適な用途として例示できる。   It can also be applied to ordinary high-strength and high-corrosion resistant materials, such as bolts, nuts, cylinder liners, shafts, hubs, connectors, bearings, races, rails, gears, pins, screws, rolls, turbine blades, dies, dies, Drills, valves, valve seats, blades, nozzles, gaskets, rings, springs, beach environment members, industrial furnace members, chemical plant members, oil drilling members, oil refining plant members, waste incinerator members, steam turbine members, gas turbines Members, nuclear reactor members (for example, secondary cooling water piping members for pressurized water reactors), aircraft members, structural members for construction and civil engineering (for example, bridge members such as piers and fishing bridge members, high-voltage power poles and towers) Etc.), members for design and the like can be exemplified as suitable applications.

さらに、非磁性が要求される高強度・高耐食材として、精密電子部品用のばね、シャフト、軸受、レース、ピン、ダイス、レールなど、プリント基板製造部品用のワイヤー、メッシュ、生体インプラント電極、MRI部品、薬品製造部品、ハンガー部材、リニアモーターカー部材、半導体製造装置部品、ピンセット、軸受、鋏、刃物などにも有効である。   Furthermore, as high-strength and high-corrosion-resistant materials that require non-magnetism, wires, meshes, biological implant electrodes for printed circuit board manufacturing parts such as springs, shafts, bearings, races, pins, dies, rails for precision electronic components, It is also effective for MRI parts, chemical manufacturing parts, hanger members, linear motor car members, semiconductor manufacturing equipment parts, tweezers, bearings, scissors, blades and the like.

Figure 0004379804
Figure 0004379804

Figure 0004379804
Figure 0004379804

Figure 0004379804
Figure 0004379804

Figure 0004379804
Figure 0004379804

雰囲気加圧可能な高周波誘導炉により、表1及び表2の組成を有する鋼を、溶解時の窒素分圧が50気圧以下となる加圧雰囲気にて溶解し、50kgの鋼塊に鋳造した。この鋼塊の底部より試験片を切り出し、窒素ブローホールの有無を目視にて確認した。続いてこの鋼塊を均質加熱後、熱間鍛造でφ24mmの丸棒とした。その後、該丸棒に1100〜1300℃の種々の温度で1時間保持した後水冷する溶体化処理を行ない、その後、その断面組織を学顕微鏡(倍率400倍)にて観察するとともに、円換算径にて直径2μm以上のCr系窒化物が存在しているかどうかを確認し、該Cr系窒化物の存在が認められなくなる最低温度を溶体化処理温度として決定した。そして、その決定された溶体化処理温度にて処理済みの鋼から試験片を採取して、以下の測定を行なった(比較例12〜14は、SUS836L、SUS329J4L及びSUS316に相当するものである)。
(1)平均結晶粒径
光学顕微鏡(100倍)にて断面組織上の任意の20視野を観察し、JIS:G0551に準じて平均結晶粒径を測定。
(2)引張強さ
JIS:Z2241に準拠した方法にて測定。
(3)孔食電位
JIS:G0577に準拠した方法にて測定。
Steels having the compositions shown in Tables 1 and 2 were melted in a pressurized atmosphere where the nitrogen partial pressure during melting was 50 atm or less by a high-frequency induction furnace capable of pressurizing in an atmosphere, and cast into a 50 kg steel ingot. A test piece was cut out from the bottom of the steel ingot, and the presence or absence of a nitrogen blowhole was visually confirmed. Subsequently, the steel ingot was homogeneously heated and then formed into a round bar having a diameter of 24 mm by hot forging. Thereafter, the round bar was subjected to a solution treatment in which it was kept at various temperatures of 1100 to 1300 ° C. for 1 hour and then cooled with water, and then the cross-sectional structure was observed with a scientific microscope (400 times magnification), and the diameter in terms of a circle Then, it was confirmed whether or not Cr-based nitride having a diameter of 2 μm or more was present, and the lowest temperature at which the presence of the Cr-based nitride was not recognized was determined as the solution treatment temperature. And the test piece was extract | collected from the steel processed at the determined solution treatment temperature, and the following measurements were performed (Comparative Examples 12-14 correspond to SUS836L, SUS329J4L, and SUS316). .
(1) Average crystal grain size Arbitrary 20 fields on the cross-sectional structure were observed with an optical microscope (100 times), and the average crystal grain size was measured according to JIS: G0551.
(2) Tensile strength Measured by a method based on JIS: Z2241.
(3) Pitting potential Measured by a method based on JIS: G0577.

また、実施例5、6、13については、50kg鋼塊を均質化加熱後、熱間鍛造及び熱間圧延でφ12.5の線材とした後、それぞれ上記決定された条件で溶体化処理を行ない、続いて減面率50%及び70%の冷間伸線加工を行ない、線径φ8.8mm及びφ6.8mmの線材を得た。これら線材についても、上記と同様の方法により、引張強さ及び平均結晶粒径を測定した。また、同じく実施例5、6、13については、50kg鋼塊を均質化加熱後、熱間鍛造及び熱間圧延で厚さ5mmの板材とした後、それぞれ上記決定された条件で溶体化処理を行ない、続いて圧下率50%及び70%の冷間圧延加工を行ない、厚さ2.5mm及び厚さ1.5mmの板材を得た。これら板材についても、上記と同様の方法により、引張強さ及び平均結晶粒径を測定した。以上の結果を表2及び表3に示す。   In Examples 5, 6, and 13, after the 50 kg steel ingot was homogenized and heated, it was subjected to solution treatment under the above-determined conditions after forming a φ12.5 wire by hot forging and hot rolling. Subsequently, cold drawing with a reduction in area of 50% and 70% was performed to obtain wire rods with a diameter of φ8.8 mm and φ6.8 mm. These wires were also measured for tensile strength and average crystal grain size by the same method as described above. Similarly, for Examples 5, 6, and 13, after homogenizing and heating a 50 kg steel ingot, a hot-forging and hot rolling to form a plate with a thickness of 5 mm, and then subjecting it to a solution treatment under the conditions determined above. Subsequently, cold rolling with a reduction ratio of 50% and 70% was performed to obtain a plate material having a thickness of 2.5 mm and a thickness of 1.5 mm. These plate materials were also measured for tensile strength and average crystal grain size by the same method as described above. The above results are shown in Tables 2 and 3.

表3の結果によると、実施例1〜13の鋼については、固溶化熱処理後の引張強さ及び孔食電位が示す耐食性のいずれにおいても極めて良好であり、比較例12〜14に示したSUS836L、SUS329J4L及びSUS316の周知のオーステナイト系ステンレス鋼よりも高レベルの強度及び耐食性が実現していることがわかる。また、表4の結果によると、冷間加工により線材化ないし板材化した本発明の鋼は、2000MPa以上の超高強度が実現していることもわかる。   According to the results of Table 3, the steels of Examples 1 to 13 are extremely good in both the tensile strength after the solution heat treatment and the corrosion resistance indicated by the pitting potential, and SUS836L shown in Comparative Examples 12-14. It can be seen that a higher level of strength and corrosion resistance is realized than the well known austenitic stainless steels of SUS329J4L and SUS316. Moreover, according to the result of Table 4, it turns out that the ultra high strength of 2000 Mpa or more is realized in the steel of the present invention which is made into a wire or plate by cold working.

線材の結晶粒径の定義を示す図。The figure which shows the definition of the crystal grain diameter of a wire. 板材の結晶粒径の定義を示す図。The figure which shows the definition of the crystal grain diameter of a board | plate material.

符号の説明Explanation of symbols

100 線材
150 板材
100 Wire 150 Plate

Claims (10)

Cr:24.0質量%以上35.0質量%以下;
Mo:0.05質量%以上8.0質量%以下;
Mn:0.2質量%以上10.0質量%以下;
Cu:0.01質量%以上4.0質量%以下;
N:0.8質量%以上1.5質量%以下を含有し、
Cの含有率が0.20質量%以下、Siの含有率が2.0質量%以下、Pの含有率が0.03質量%以下、Sの含有率が0.05質量%以下、Niの含有率が0.5質量%以下、Alの含有率が0.03質量%以下、Oの含有率が0.020質量%以下、残部がFe及び不可避的不純物とされ、さらに、
Crの含有率をWCr(質量%)、Moの含有率をWMo(質量%)、Nの含有率をWN(質量%)、Mnの含有率をWMn(質量%)としたとき、
η≡(WCr+3.3WMo+16WN)/WMn
にて表される組成パラメータηが5以上となるように、Cr、Mo、N及びMnの含有率が調整されてなることを特徴とする高窒素オーステナイト系ステンレス鋼。
Cr: 24.0 mass% or more and 35.0 mass% or less;
Mo: 0.05 mass% or more and 8.0 mass% or less;
Mn: 0.2% by mass or more and 10.0% by mass or less;
Cu: 0.01% by mass or more and 4.0% by mass or less;
N: 0.8% by mass or more and 1.5% by mass or less
C content is 0.20 mass% or less, Si content is 2.0 mass% or less, P content is 0.03 mass% or less, S content is 0.05 mass% or less, Ni The content is 0.5 mass% or less, the Al content is 0.03 mass% or less, the O content is 0.020 mass% or less , the balance is Fe and inevitable impurities ,
When the Cr content is WCr (mass%), the Mo content is WMo (mass%), the N content is WN (mass%), and the Mn content is WMn (mass%),
η≡ (WCr + 3.3WMo + 16WN) / WMn
A high nitrogen austenitic stainless steel, wherein the content of Cr, Mo, N and Mn is adjusted so that the composition parameter η represented by
W:0.01質量%以上1.0質量%以下;及び
Co:0.01質量%以上5.0質量%以下;
の1種又は2種を含有する請求項1記載の高窒素オーステナイト系ステンレス鋼。
W: 0.01% by mass or more and 1.0% by mass or less; and Co: 0.01% by mass or more and 5.0% by mass or less;
The high nitrogen austenitic stainless steel according to claim 1, which contains one or two of the following.
Ti:0.01質量%以上0.5質量%以下;
Nb:0.01質量%以上0.5質量%以下;
V:0.01質量%以上1.0質量%以下;及び
Ta:0.01質量%以上0.5質量%以下;
の1種又は2種以上を含有する請求項1又は請求項2に記載の高窒素オーステナイト系ステンレス鋼。
Ti: 0.01% by mass or more and 0.5% by mass or less;
Nb: 0.01% by mass or more and 0.5% by mass or less;
V: 0.01% by mass or more and 1.0% by mass or less; and Ta: 0.01% by mass or more and 0.5% by mass or less;
The high nitrogen austenitic stainless steel according to claim 1 or 2, containing one or more of the following.
B:0.001質量%以上0.01質量%以下;
Zr:0.01質量%以上0.50質量%以下;
Ca:0.001質量%以上0.01質量%以下;及び
Mg:0.001質量%以上0.01質量%以下;
の1種又は2種以上を含有する請求項1ないし請求項3のいずれか1項に記載の高窒素オーステナイト系ステンレス鋼。
B: 0.001 mass% or more and 0.01 mass% or less;
Zr: 0.01% by mass or more and 0.50% by mass or less;
Ca: 0.001% by mass or more and 0.01% by mass or less; and Mg: 0.001% by mass or more and 0.01% by mass or less;
The high nitrogen austenitic stainless steel according to any one of claims 1 to 3, comprising one or more of the following.
Te:0.005質量%以上0.05質量%以下;及び
Se:0.01質量%以上0.20質量%以下;
の1種又は2種を含有する請求項1ないし請求項4のいずれか1項に記載の高窒素オーステナイト系ステンレス鋼。
Te: 0.005 mass% or more and 0.05 mass% or less; and Se: 0.01 mass% or more and 0.20 mass% or less;
The high nitrogen austenitic stainless steel according to any one of claims 1 to 4, comprising one or two of the following.
1100℃以上1250℃の溶体化処理を施した後、断面組織を観察したときに、直径2μm以上のCr系窒化物が観察されないことを特徴とする請求項1ないし請求項5のいずれか1項に高窒素オーステナイト系ステンレス鋼。 6. The Cr-based nitride having a diameter of 2 μm or more is not observed when the cross-sectional structure is observed after the solution treatment at 1100 ° C. or more and 1250 ° C. 6. High nitrogen austenitic stainless steel. 前記溶体化処理を施した後の引張強さが1000MPa以上である請求項6に記載の高窒素オーステナイト系ステンレス鋼。 The high nitrogen austenitic stainless steel according to claim 6, wherein the tensile strength after the solution treatment is 1000 MPa or more. 冷間加工により線材化され、かつ、軸直交断面にて組織を観察したときに、直径2μm以上のCr系窒化物が観察されず、かつ、オーステナイトマトリックス相の平均結晶粒径が100μm以下である請求項1ないし請求項6のいずれか1項に記載の高窒素オーステナイト系ステンレス鋼。 When a wire is formed by cold working and the structure is observed in a cross section orthogonal to the axis, Cr-based nitride having a diameter of 2 μm or more is not observed, and the average crystal grain size of the austenite matrix phase is 100 μm or less. The high nitrogen austenitic stainless steel according to any one of claims 1 to 6. 冷間加工により板材化され、かつ、板材の加工延伸方向と直交する断面にて組織を観察したときに、直径2μm以上のCr系窒化物が観察されず、かつ、オーステナイトマトリックス相の平均結晶粒径が100μm以下である請求項1ないし請求項6のいずれか1項に記載の高窒素オーステナイト系ステンレス鋼。 When a microstructure is observed in a cross-section that is made into a plate material by cold working and is orthogonal to the work drawing direction of the plate material, no Cr-based nitride having a diameter of 2 μm or more is observed, and the average crystal grain of the austenite matrix phase The high nitrogen austenitic stainless steel according to any one of claims 1 to 6, having a diameter of 100 µm or less. 引張強さが1500MPa以上である請求項8又は請求項9に記載の高窒素オーステナイト系ステンレス鋼。
The high nitrogen austenitic stainless steel according to claim 8 or 9, wherein the tensile strength is 1500 MPa or more.
JP2004235880A 2004-08-13 2004-08-13 High nitrogen austenitic stainless steel Expired - Fee Related JP4379804B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2004235880A JP4379804B2 (en) 2004-08-13 2004-08-13 High nitrogen austenitic stainless steel
EP05107313.8A EP1626101B1 (en) 2004-08-13 2005-08-09 High-nitrogen austenitic stainless steel
US11/201,314 US20060034724A1 (en) 2004-08-13 2005-08-11 High-nitrogen austenitic stainless steel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004235880A JP4379804B2 (en) 2004-08-13 2004-08-13 High nitrogen austenitic stainless steel

Publications (2)

Publication Number Publication Date
JP2006052452A JP2006052452A (en) 2006-02-23
JP4379804B2 true JP4379804B2 (en) 2009-12-09

Family

ID=35311901

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004235880A Expired - Fee Related JP4379804B2 (en) 2004-08-13 2004-08-13 High nitrogen austenitic stainless steel

Country Status (3)

Country Link
US (1) US20060034724A1 (en)
EP (1) EP1626101B1 (en)
JP (1) JP4379804B2 (en)

Families Citing this family (207)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10316616B2 (en) 2004-05-28 2019-06-11 Schlumberger Technology Corporation Dissolvable bridge plug
JP4845109B2 (en) * 2005-07-19 2011-12-28 独立行政法人物質・材料研究機構 Nickel-free high-nitrogen stainless steel, living body or medical implants using the same, jewelry, kitchen appliances, etc.
JP5223046B2 (en) * 2005-11-02 2013-06-26 国立大学法人九州大学 Grain refinement heat treatment method of high nitrogen nickel-free austenitic stainless steel for biological use
JP4915202B2 (en) * 2005-11-03 2012-04-11 大同特殊鋼株式会社 High nitrogen austenitic stainless steel
US8770261B2 (en) 2006-02-09 2014-07-08 Schlumberger Technology Corporation Methods of manufacturing degradable alloys and products made from degradable alloys
JP2007248397A (en) * 2006-03-17 2007-09-27 Seiko Epson Corp Decoration and timepiece
US7846272B2 (en) * 2006-04-28 2010-12-07 Gm Global Technology Operations, Inc. Treated austenitic steel for vehicles
US7658883B2 (en) 2006-12-18 2010-02-09 Schlumberger Technology Corporation Interstitially strengthened high carbon and high nitrogen austenitic alloys, oilfield apparatus comprising same, and methods of making and using same
JP5176561B2 (en) * 2007-07-02 2013-04-03 新日鐵住金株式会社 Manufacturing method of high alloy pipe
JP5217576B2 (en) * 2008-04-02 2013-06-19 大同特殊鋼株式会社 Austenitic stainless steel for heat-resistant parts and heat-resistant parts using the same
US20090250185A1 (en) * 2008-04-03 2009-10-08 Deepak Saha Methods for casting stainless steel and articles prepared therefrom
US8430075B2 (en) * 2008-12-16 2013-04-30 L.E. Jones Company Superaustenitic stainless steel and method of making and use thereof
EP2644734B1 (en) * 2010-11-26 2018-03-28 National Institute for Materials Science Nickel-free stainless steel stent
JP5616299B2 (en) * 2011-08-09 2014-10-29 ガウス株式会社 Nickel- and manganese-free high N austenitic stainless steel sintering powder for biomedical or medical equipment, and biomedical or medical sintered equipment using the powder
DE102011082905A1 (en) * 2011-09-19 2013-03-21 Schaeffler Technologies AG & Co. KG Component e.g. bearing ring, is useful in rolling bearing e.g. spindle bearing, where component is formed from steel, which comprises carbon, nitrogen, chromium, molybdenum and vanadium and is prepared by powder metallurgical process
JP5846555B2 (en) * 2011-11-30 2016-01-20 国立研究開発法人物質・材料研究機構 Nickel-free high-nitrogen stainless steel rolling / drawing method, nickel-free high-nitrogen stainless steel seamless tubule and method for producing the same
CN103185263A (en) * 2011-12-30 2013-07-03 北京谊安医疗系统股份有限公司 Environment lighting lamp device for medical suspension bridge
RU2499075C1 (en) * 2012-08-21 2013-11-20 Российская Федерация, от имени которой выступает Государственная корпорация по атомной энергии "Росатом" Corrosion-resistant austenitic steel
CN103667861B (en) * 2012-08-30 2016-10-05 日本活塞环株式会社 Cylinder jacket
EP2728028B1 (en) * 2012-11-02 2018-04-04 The Swatch Group Research and Development Ltd. Edelstahllegierung ohne Nickel
US10009065B2 (en) 2012-12-05 2018-06-26 At&T Intellectual Property I, L.P. Backhaul link for distributed antenna system
US9113347B2 (en) 2012-12-05 2015-08-18 At&T Intellectual Property I, Lp Backhaul link for distributed antenna system
JP6115935B2 (en) * 2013-01-25 2017-04-19 セイコーインスツル株式会社 Aging heat treated material made of duplex stainless steel, diaphragm, pressure sensor, diaphragm valve using the same, and method for producing duplex stainless steel
US9999038B2 (en) 2013-05-31 2018-06-12 At&T Intellectual Property I, L.P. Remote distributed antenna system
US9525524B2 (en) 2013-05-31 2016-12-20 At&T Intellectual Property I, L.P. Remote distributed antenna system
US8897697B1 (en) 2013-11-06 2014-11-25 At&T Intellectual Property I, Lp Millimeter-wave surface-wave communications
US9209902B2 (en) 2013-12-10 2015-12-08 At&T Intellectual Property I, L.P. Quasi-optical coupler
JP6095619B2 (en) * 2014-08-19 2017-03-15 日新製鋼株式会社 Austenitic stainless steel sheet and metal gasket
US9692101B2 (en) 2014-08-26 2017-06-27 At&T Intellectual Property I, L.P. Guided wave couplers for coupling electromagnetic waves between a waveguide surface and a surface of a wire
US9768833B2 (en) 2014-09-15 2017-09-19 At&T Intellectual Property I, L.P. Method and apparatus for sensing a condition in a transmission medium of electromagnetic waves
US10063280B2 (en) 2014-09-17 2018-08-28 At&T Intellectual Property I, L.P. Monitoring and mitigating conditions in a communication network
US9628854B2 (en) 2014-09-29 2017-04-18 At&T Intellectual Property I, L.P. Method and apparatus for distributing content in a communication network
US9615269B2 (en) 2014-10-02 2017-04-04 At&T Intellectual Property I, L.P. Method and apparatus that provides fault tolerance in a communication network
US9685992B2 (en) 2014-10-03 2017-06-20 At&T Intellectual Property I, L.P. Circuit panel network and methods thereof
US9503189B2 (en) 2014-10-10 2016-11-22 At&T Intellectual Property I, L.P. Method and apparatus for arranging communication sessions in a communication system
US9973299B2 (en) 2014-10-14 2018-05-15 At&T Intellectual Property I, L.P. Method and apparatus for adjusting a mode of communication in a communication network
US9762289B2 (en) 2014-10-14 2017-09-12 At&T Intellectual Property I, L.P. Method and apparatus for transmitting or receiving signals in a transportation system
US9653770B2 (en) 2014-10-21 2017-05-16 At&T Intellectual Property I, L.P. Guided wave coupler, coupling module and methods for use therewith
US9627768B2 (en) 2014-10-21 2017-04-18 At&T Intellectual Property I, L.P. Guided-wave transmission device with non-fundamental mode propagation and methods for use therewith
US9577306B2 (en) 2014-10-21 2017-02-21 At&T Intellectual Property I, L.P. Guided-wave transmission device and methods for use therewith
US9780834B2 (en) 2014-10-21 2017-10-03 At&T Intellectual Property I, L.P. Method and apparatus for transmitting electromagnetic waves
US9564947B2 (en) 2014-10-21 2017-02-07 At&T Intellectual Property I, L.P. Guided-wave transmission device with diversity and methods for use therewith
US9769020B2 (en) 2014-10-21 2017-09-19 At&T Intellectual Property I, L.P. Method and apparatus for responding to events affecting communications in a communication network
US9520945B2 (en) 2014-10-21 2016-12-13 At&T Intellectual Property I, L.P. Apparatus for providing communication services and methods thereof
US9312919B1 (en) 2014-10-21 2016-04-12 At&T Intellectual Property I, Lp Transmission device with impairment compensation and methods for use therewith
US10009067B2 (en) 2014-12-04 2018-06-26 At&T Intellectual Property I, L.P. Method and apparatus for configuring a communication interface
US9800327B2 (en) 2014-11-20 2017-10-24 At&T Intellectual Property I, L.P. Apparatus for controlling operations of a communication device and methods thereof
US9997819B2 (en) 2015-06-09 2018-06-12 At&T Intellectual Property I, L.P. Transmission medium and method for facilitating propagation of electromagnetic waves via a core
US10340573B2 (en) 2016-10-26 2019-07-02 At&T Intellectual Property I, L.P. Launcher with cylindrical coupling device and methods for use therewith
US9954287B2 (en) 2014-11-20 2018-04-24 At&T Intellectual Property I, L.P. Apparatus for converting wireless signals and electromagnetic waves and methods thereof
US9742462B2 (en) 2014-12-04 2017-08-22 At&T Intellectual Property I, L.P. Transmission medium and communication interfaces and methods for use therewith
US9680670B2 (en) 2014-11-20 2017-06-13 At&T Intellectual Property I, L.P. Transmission device with channel equalization and control and methods for use therewith
US9544006B2 (en) 2014-11-20 2017-01-10 At&T Intellectual Property I, L.P. Transmission device with mode division multiplexing and methods for use therewith
US9654173B2 (en) 2014-11-20 2017-05-16 At&T Intellectual Property I, L.P. Apparatus for powering a communication device and methods thereof
US9461706B1 (en) 2015-07-31 2016-10-04 At&T Intellectual Property I, Lp Method and apparatus for exchanging communication signals
US10243784B2 (en) 2014-11-20 2019-03-26 At&T Intellectual Property I, L.P. System for generating topology information and methods thereof
US10144036B2 (en) 2015-01-30 2018-12-04 At&T Intellectual Property I, L.P. Method and apparatus for mitigating interference affecting a propagation of electromagnetic waves guided by a transmission medium
US9876570B2 (en) 2015-02-20 2018-01-23 At&T Intellectual Property I, Lp Guided-wave transmission device with non-fundamental mode propagation and methods for use therewith
US9749013B2 (en) 2015-03-17 2017-08-29 At&T Intellectual Property I, L.P. Method and apparatus for reducing attenuation of electromagnetic waves guided by a transmission medium
US9705561B2 (en) 2015-04-24 2017-07-11 At&T Intellectual Property I, L.P. Directional coupling device and methods for use therewith
US10224981B2 (en) 2015-04-24 2019-03-05 At&T Intellectual Property I, Lp Passive electrical coupling device and methods for use therewith
US9948354B2 (en) 2015-04-28 2018-04-17 At&T Intellectual Property I, L.P. Magnetic coupling device with reflective plate and methods for use therewith
US9793954B2 (en) 2015-04-28 2017-10-17 At&T Intellectual Property I, L.P. Magnetic coupling device and methods for use therewith
US9748626B2 (en) 2015-05-14 2017-08-29 At&T Intellectual Property I, L.P. Plurality of cables having different cross-sectional shapes which are bundled together to form a transmission medium
US9490869B1 (en) 2015-05-14 2016-11-08 At&T Intellectual Property I, L.P. Transmission medium having multiple cores and methods for use therewith
US9871282B2 (en) 2015-05-14 2018-01-16 At&T Intellectual Property I, L.P. At least one transmission medium having a dielectric surface that is covered at least in part by a second dielectric
US10679767B2 (en) 2015-05-15 2020-06-09 At&T Intellectual Property I, L.P. Transmission medium having a conductive material and methods for use therewith
US10650940B2 (en) 2015-05-15 2020-05-12 At&T Intellectual Property I, L.P. Transmission medium having a conductive material and methods for use therewith
US9917341B2 (en) 2015-05-27 2018-03-13 At&T Intellectual Property I, L.P. Apparatus and method for launching electromagnetic waves and for modifying radial dimensions of the propagating electromagnetic waves
US10154493B2 (en) 2015-06-03 2018-12-11 At&T Intellectual Property I, L.P. Network termination and methods for use therewith
US10812174B2 (en) 2015-06-03 2020-10-20 At&T Intellectual Property I, L.P. Client node device and methods for use therewith
US10103801B2 (en) 2015-06-03 2018-10-16 At&T Intellectual Property I, L.P. Host node device and methods for use therewith
US9866309B2 (en) 2015-06-03 2018-01-09 At&T Intellectual Property I, Lp Host node device and methods for use therewith
US10348391B2 (en) 2015-06-03 2019-07-09 At&T Intellectual Property I, L.P. Client node device with frequency conversion and methods for use therewith
US9912381B2 (en) 2015-06-03 2018-03-06 At&T Intellectual Property I, Lp Network termination and methods for use therewith
US9913139B2 (en) 2015-06-09 2018-03-06 At&T Intellectual Property I, L.P. Signal fingerprinting for authentication of communicating devices
US9608692B2 (en) 2015-06-11 2017-03-28 At&T Intellectual Property I, L.P. Repeater and methods for use therewith
US10142086B2 (en) 2015-06-11 2018-11-27 At&T Intellectual Property I, L.P. Repeater and methods for use therewith
US9820146B2 (en) 2015-06-12 2017-11-14 At&T Intellectual Property I, L.P. Method and apparatus for authentication and identity management of communicating devices
US9667317B2 (en) 2015-06-15 2017-05-30 At&T Intellectual Property I, L.P. Method and apparatus for providing security using network traffic adjustments
US9865911B2 (en) 2015-06-25 2018-01-09 At&T Intellectual Property I, L.P. Waveguide system for slot radiating first electromagnetic waves that are combined into a non-fundamental wave mode second electromagnetic wave on a transmission medium
US9509415B1 (en) 2015-06-25 2016-11-29 At&T Intellectual Property I, L.P. Methods and apparatus for inducing a fundamental wave mode on a transmission medium
US9640850B2 (en) 2015-06-25 2017-05-02 At&T Intellectual Property I, L.P. Methods and apparatus for inducing a non-fundamental wave mode on a transmission medium
US9882257B2 (en) 2015-07-14 2018-01-30 At&T Intellectual Property I, L.P. Method and apparatus for launching a wave mode that mitigates interference
US10341142B2 (en) 2015-07-14 2019-07-02 At&T Intellectual Property I, L.P. Apparatus and methods for generating non-interfering electromagnetic waves on an uninsulated conductor
US9847566B2 (en) 2015-07-14 2017-12-19 At&T Intellectual Property I, L.P. Method and apparatus for adjusting a field of a signal to mitigate interference
US9836957B2 (en) 2015-07-14 2017-12-05 At&T Intellectual Property I, L.P. Method and apparatus for communicating with premises equipment
US9853342B2 (en) 2015-07-14 2017-12-26 At&T Intellectual Property I, L.P. Dielectric transmission medium connector and methods for use therewith
US10205655B2 (en) 2015-07-14 2019-02-12 At&T Intellectual Property I, L.P. Apparatus and methods for communicating utilizing an antenna array and multiple communication paths
US10033108B2 (en) 2015-07-14 2018-07-24 At&T Intellectual Property I, L.P. Apparatus and methods for generating an electromagnetic wave having a wave mode that mitigates interference
US10320586B2 (en) 2015-07-14 2019-06-11 At&T Intellectual Property I, L.P. Apparatus and methods for generating non-interfering electromagnetic waves on an insulated transmission medium
US10170840B2 (en) 2015-07-14 2019-01-01 At&T Intellectual Property I, L.P. Apparatus and methods for sending or receiving electromagnetic signals
US10044409B2 (en) 2015-07-14 2018-08-07 At&T Intellectual Property I, L.P. Transmission medium and methods for use therewith
US9722318B2 (en) 2015-07-14 2017-08-01 At&T Intellectual Property I, L.P. Method and apparatus for coupling an antenna to a device
US9628116B2 (en) 2015-07-14 2017-04-18 At&T Intellectual Property I, L.P. Apparatus and methods for transmitting wireless signals
US10033107B2 (en) 2015-07-14 2018-07-24 At&T Intellectual Property I, L.P. Method and apparatus for coupling an antenna to a device
US10148016B2 (en) 2015-07-14 2018-12-04 At&T Intellectual Property I, L.P. Apparatus and methods for communicating utilizing an antenna array
US9793951B2 (en) 2015-07-15 2017-10-17 At&T Intellectual Property I, L.P. Method and apparatus for launching a wave mode that mitigates interference
US10090606B2 (en) 2015-07-15 2018-10-02 At&T Intellectual Property I, L.P. Antenna system with dielectric array and methods for use therewith
US9608740B2 (en) 2015-07-15 2017-03-28 At&T Intellectual Property I, L.P. Method and apparatus for launching a wave mode that mitigates interference
US9912027B2 (en) 2015-07-23 2018-03-06 At&T Intellectual Property I, L.P. Method and apparatus for exchanging communication signals
US10784670B2 (en) 2015-07-23 2020-09-22 At&T Intellectual Property I, L.P. Antenna support for aligning an antenna
US9749053B2 (en) 2015-07-23 2017-08-29 At&T Intellectual Property I, L.P. Node device, repeater and methods for use therewith
US9948333B2 (en) 2015-07-23 2018-04-17 At&T Intellectual Property I, L.P. Method and apparatus for wireless communications to mitigate interference
US9871283B2 (en) 2015-07-23 2018-01-16 At&T Intellectual Property I, Lp Transmission medium having a dielectric core comprised of plural members connected by a ball and socket configuration
US9735833B2 (en) 2015-07-31 2017-08-15 At&T Intellectual Property I, L.P. Method and apparatus for communications management in a neighborhood network
US9967173B2 (en) 2015-07-31 2018-05-08 At&T Intellectual Property I, L.P. Method and apparatus for authentication and identity management of communicating devices
US10020587B2 (en) 2015-07-31 2018-07-10 At&T Intellectual Property I, L.P. Radial antenna and methods for use therewith
US9904535B2 (en) 2015-09-14 2018-02-27 At&T Intellectual Property I, L.P. Method and apparatus for distributing software
US10009901B2 (en) 2015-09-16 2018-06-26 At&T Intellectual Property I, L.P. Method, apparatus, and computer-readable storage medium for managing utilization of wireless resources between base stations
US10136434B2 (en) 2015-09-16 2018-11-20 At&T Intellectual Property I, L.P. Method and apparatus for use with a radio distributed antenna system having an ultra-wideband control channel
US10009063B2 (en) 2015-09-16 2018-06-26 At&T Intellectual Property I, L.P. Method and apparatus for use with a radio distributed antenna system having an out-of-band reference signal
US10079661B2 (en) 2015-09-16 2018-09-18 At&T Intellectual Property I, L.P. Method and apparatus for use with a radio distributed antenna system having a clock reference
US9705571B2 (en) 2015-09-16 2017-07-11 At&T Intellectual Property I, L.P. Method and apparatus for use with a radio distributed antenna system
US10051629B2 (en) 2015-09-16 2018-08-14 At&T Intellectual Property I, L.P. Method and apparatus for use with a radio distributed antenna system having an in-band reference signal
US9769128B2 (en) 2015-09-28 2017-09-19 At&T Intellectual Property I, L.P. Method and apparatus for encryption of communications over a network
US20170088910A1 (en) * 2015-09-29 2017-03-30 Exxonmobil Research And Engineering Company Corrosion and cracking resistant high manganese austenitic steels containing passivating elements
US9729197B2 (en) 2015-10-01 2017-08-08 At&T Intellectual Property I, L.P. Method and apparatus for communicating network management traffic over a network
US9876264B2 (en) 2015-10-02 2018-01-23 At&T Intellectual Property I, Lp Communication system, guided wave switch and methods for use therewith
US9882277B2 (en) 2015-10-02 2018-01-30 At&T Intellectual Property I, Lp Communication device and antenna assembly with actuated gimbal mount
US10074890B2 (en) 2015-10-02 2018-09-11 At&T Intellectual Property I, L.P. Communication device and antenna with integrated light assembly
US10665942B2 (en) 2015-10-16 2020-05-26 At&T Intellectual Property I, L.P. Method and apparatus for adjusting wireless communications
US10355367B2 (en) 2015-10-16 2019-07-16 At&T Intellectual Property I, L.P. Antenna structure for exchanging wireless signals
US10051483B2 (en) 2015-10-16 2018-08-14 At&T Intellectual Property I, L.P. Method and apparatus for directing wireless signals
RU2608251C1 (en) * 2015-11-18 2017-01-17 Федеральное государственное автономное образовательное учреждение высшего образования "Белгородский государственный национальный исследовательский университет" (НИУ "БелГУ") Cold-resistant austenitic high-strength steel
EP3390679B1 (en) 2015-12-14 2022-07-13 Swagelok Company Highly alloyed stainless steel forgings made without solution anneal
EP3249059A1 (en) 2016-05-27 2017-11-29 The Swatch Group Research and Development Ltd. Method for thermal treatment of austenitic steels and austenitic steels thus obtained
CN108368560B (en) * 2016-08-17 2020-06-02 华为技术有限公司 High-nitrogen stainless steel and heat treatment process thereof
US9912419B1 (en) 2016-08-24 2018-03-06 At&T Intellectual Property I, L.P. Method and apparatus for managing a fault in a distributed antenna system
US9860075B1 (en) 2016-08-26 2018-01-02 At&T Intellectual Property I, L.P. Method and communication node for broadband distribution
US10291311B2 (en) 2016-09-09 2019-05-14 At&T Intellectual Property I, L.P. Method and apparatus for mitigating a fault in a distributed antenna system
US11032819B2 (en) 2016-09-15 2021-06-08 At&T Intellectual Property I, L.P. Method and apparatus for use with a radio distributed antenna system having a control channel reference signal
US10135146B2 (en) 2016-10-18 2018-11-20 At&T Intellectual Property I, L.P. Apparatus and methods for launching guided waves via circuits
US10340600B2 (en) 2016-10-18 2019-07-02 At&T Intellectual Property I, L.P. Apparatus and methods for launching guided waves via plural waveguide systems
US10135147B2 (en) 2016-10-18 2018-11-20 At&T Intellectual Property I, L.P. Apparatus and methods for launching guided waves via an antenna
US10374316B2 (en) 2016-10-21 2019-08-06 At&T Intellectual Property I, L.P. System and dielectric antenna with non-uniform dielectric
US9876605B1 (en) 2016-10-21 2018-01-23 At&T Intellectual Property I, L.P. Launcher and coupling system to support desired guided wave mode
US10811767B2 (en) 2016-10-21 2020-10-20 At&T Intellectual Property I, L.P. System and dielectric antenna with convex dielectric radome
US9991580B2 (en) 2016-10-21 2018-06-05 At&T Intellectual Property I, L.P. Launcher and coupling system for guided wave mode cancellation
US10312567B2 (en) 2016-10-26 2019-06-04 At&T Intellectual Property I, L.P. Launcher with planar strip antenna and methods for use therewith
US10291334B2 (en) 2016-11-03 2019-05-14 At&T Intellectual Property I, L.P. System for detecting a fault in a communication system
US10224634B2 (en) 2016-11-03 2019-03-05 At&T Intellectual Property I, L.P. Methods and apparatus for adjusting an operational characteristic of an antenna
US10225025B2 (en) 2016-11-03 2019-03-05 At&T Intellectual Property I, L.P. Method and apparatus for detecting a fault in a communication system
US10498044B2 (en) 2016-11-03 2019-12-03 At&T Intellectual Property I, L.P. Apparatus for configuring a surface of an antenna
US10340601B2 (en) 2016-11-23 2019-07-02 At&T Intellectual Property I, L.P. Multi-antenna system and methods for use therewith
US10178445B2 (en) 2016-11-23 2019-01-08 At&T Intellectual Property I, L.P. Methods, devices, and systems for load balancing between a plurality of waveguides
US10090594B2 (en) 2016-11-23 2018-10-02 At&T Intellectual Property I, L.P. Antenna system having structural configurations for assembly
US10340603B2 (en) 2016-11-23 2019-07-02 At&T Intellectual Property I, L.P. Antenna system having shielded structural configurations for assembly
US10535928B2 (en) 2016-11-23 2020-01-14 At&T Intellectual Property I, L.P. Antenna system and methods for use therewith
US10305190B2 (en) 2016-12-01 2019-05-28 At&T Intellectual Property I, L.P. Reflecting dielectric antenna system and methods for use therewith
US10361489B2 (en) 2016-12-01 2019-07-23 At&T Intellectual Property I, L.P. Dielectric dish antenna system and methods for use therewith
US10819035B2 (en) 2016-12-06 2020-10-27 At&T Intellectual Property I, L.P. Launcher with helical antenna and methods for use therewith
US10637149B2 (en) 2016-12-06 2020-04-28 At&T Intellectual Property I, L.P. Injection molded dielectric antenna and methods for use therewith
US9927517B1 (en) 2016-12-06 2018-03-27 At&T Intellectual Property I, L.P. Apparatus and methods for sensing rainfall
US10727599B2 (en) 2016-12-06 2020-07-28 At&T Intellectual Property I, L.P. Launcher with slot antenna and methods for use therewith
US10694379B2 (en) 2016-12-06 2020-06-23 At&T Intellectual Property I, L.P. Waveguide system with device-based authentication and methods for use therewith
US10135145B2 (en) 2016-12-06 2018-11-20 At&T Intellectual Property I, L.P. Apparatus and methods for generating an electromagnetic wave along a transmission medium
US10382976B2 (en) 2016-12-06 2019-08-13 At&T Intellectual Property I, L.P. Method and apparatus for managing wireless communications based on communication paths and network device positions
US10326494B2 (en) 2016-12-06 2019-06-18 At&T Intellectual Property I, L.P. Apparatus for measurement de-embedding and methods for use therewith
US10755542B2 (en) 2016-12-06 2020-08-25 At&T Intellectual Property I, L.P. Method and apparatus for surveillance via guided wave communication
US10020844B2 (en) 2016-12-06 2018-07-10 T&T Intellectual Property I, L.P. Method and apparatus for broadcast communication via guided waves
US10439675B2 (en) 2016-12-06 2019-10-08 At&T Intellectual Property I, L.P. Method and apparatus for repeating guided wave communication signals
US10243270B2 (en) 2016-12-07 2019-03-26 At&T Intellectual Property I, L.P. Beam adaptive multi-feed dielectric antenna system and methods for use therewith
US10168695B2 (en) 2016-12-07 2019-01-01 At&T Intellectual Property I, L.P. Method and apparatus for controlling an unmanned aircraft
US10027397B2 (en) 2016-12-07 2018-07-17 At&T Intellectual Property I, L.P. Distributed antenna system and methods for use therewith
US10446936B2 (en) 2016-12-07 2019-10-15 At&T Intellectual Property I, L.P. Multi-feed dielectric antenna system and methods for use therewith
US10139820B2 (en) 2016-12-07 2018-11-27 At&T Intellectual Property I, L.P. Method and apparatus for deploying equipment of a communication system
US10359749B2 (en) 2016-12-07 2019-07-23 At&T Intellectual Property I, L.P. Method and apparatus for utilities management via guided wave communication
US9893795B1 (en) 2016-12-07 2018-02-13 At&T Intellectual Property I, Lp Method and repeater for broadband distribution
US10389029B2 (en) 2016-12-07 2019-08-20 At&T Intellectual Property I, L.P. Multi-feed dielectric antenna system with core selection and methods for use therewith
US10547348B2 (en) 2016-12-07 2020-01-28 At&T Intellectual Property I, L.P. Method and apparatus for switching transmission mediums in a communication system
US10777873B2 (en) 2016-12-08 2020-09-15 At&T Intellectual Property I, L.P. Method and apparatus for mounting network devices
US9911020B1 (en) 2016-12-08 2018-03-06 At&T Intellectual Property I, L.P. Method and apparatus for tracking via a radio frequency identification device
US10411356B2 (en) 2016-12-08 2019-09-10 At&T Intellectual Property I, L.P. Apparatus and methods for selectively targeting communication devices with an antenna array
US10326689B2 (en) 2016-12-08 2019-06-18 At&T Intellectual Property I, L.P. Method and system for providing alternative communication paths
US10916969B2 (en) 2016-12-08 2021-02-09 At&T Intellectual Property I, L.P. Method and apparatus for providing power using an inductive coupling
US10938108B2 (en) 2016-12-08 2021-03-02 At&T Intellectual Property I, L.P. Frequency selective multi-feed dielectric antenna system and methods for use therewith
US10601494B2 (en) 2016-12-08 2020-03-24 At&T Intellectual Property I, L.P. Dual-band communication device and method for use therewith
US9998870B1 (en) 2016-12-08 2018-06-12 At&T Intellectual Property I, L.P. Method and apparatus for proximity sensing
US10389037B2 (en) 2016-12-08 2019-08-20 At&T Intellectual Property I, L.P. Apparatus and methods for selecting sections of an antenna array and use therewith
US10530505B2 (en) 2016-12-08 2020-01-07 At&T Intellectual Property I, L.P. Apparatus and methods for launching electromagnetic waves along a transmission medium
US10103422B2 (en) 2016-12-08 2018-10-16 At&T Intellectual Property I, L.P. Method and apparatus for mounting network devices
US10069535B2 (en) 2016-12-08 2018-09-04 At&T Intellectual Property I, L.P. Apparatus and methods for launching electromagnetic waves having a certain electric field structure
US10264586B2 (en) 2016-12-09 2019-04-16 At&T Mobility Ii Llc Cloud-based packet controller and methods for use therewith
US9838896B1 (en) 2016-12-09 2017-12-05 At&T Intellectual Property I, L.P. Method and apparatus for assessing network coverage
US10340983B2 (en) 2016-12-09 2019-07-02 At&T Intellectual Property I, L.P. Method and apparatus for surveying remote sites via guided wave communications
CN107083519A (en) * 2017-02-22 2017-08-22 广东鑫发精密金属科技有限公司 A kind of stainless-steel cold-rolling precision spring steel band and preparation method thereof
US9973940B1 (en) 2017-02-27 2018-05-15 At&T Intellectual Property I, L.P. Apparatus and methods for dynamic impedance matching of a guided wave launcher
US10298293B2 (en) 2017-03-13 2019-05-21 At&T Intellectual Property I, L.P. Apparatus of communication utilizing wireless network devices
CN109642297A (en) * 2017-03-20 2019-04-16 苹果公司 The Solid Solution Nitriding of steel compositions and its stainless steel
CN107354399A (en) * 2017-07-11 2017-11-17 合肥众磊信息科技有限公司 A kind of alloy abrasion resistant steel
CN107587071B (en) * 2017-08-30 2019-05-24 武汉钢铁有限公司 A kind of tensile strength >=2100MPa bridge cable steel and production method
CN109722612B (en) * 2017-10-27 2021-02-26 宝武特种冶金有限公司 High-nitrogen austenitic stainless steel without nitrogen bubble formation and manufacturing method of extra-large electroslag ingot of high-nitrogen austenitic stainless steel
CN112004961A (en) * 2018-02-27 2020-11-27 索尼奥环球控股有限责任公司 Article having a protective layer of nitrogen alloy and method of producing the same
CA3033698A1 (en) 2018-10-10 2020-04-10 Repeat Precision, Llc Setting tools and assemblies for setting a downhole isolation device such as a frac plug
CN109352274B (en) * 2018-11-06 2019-10-01 湖北第二师范学院 One kind flexible can bend minimally invasive tungsten needle electrode surgery knife and its production method
CH715726B1 (en) * 2019-01-11 2022-10-14 Richemont Int Sa Process for obtaining a functional component for a watch movement.
CN110042326B (en) * 2019-05-21 2020-05-22 马鞍山市庄芝耐磨合金有限公司 Centrifugal casting stirring impeller and method
WO2021026778A1 (en) * 2019-08-13 2021-02-18 采纳科技股份有限公司 Stainless steel material capable of improving the rigidity and toughness of injection needle
WO2021070529A1 (en) * 2019-10-07 2021-04-15 昭和電工株式会社 Corrosion-resistant member
CN111575596B (en) * 2019-10-15 2021-11-09 哈尔滨工程大学 Irradiation-resistant Cu-containing nanocluster reinforced high-strength low-alloy steel and preparation method thereof
CN113088816B (en) * 2021-03-27 2021-10-12 京泰控股集团有限公司 Steel material for furniture and preparation method thereof
CN113249655B (en) * 2021-05-13 2021-09-24 北京中科领德健康科技有限公司 High-nitrogen nickel-free low-manganese antibacterial alloy, preparation method thereof and medical instrument product
CN113308635B (en) * 2021-05-19 2021-11-30 北京科技大学 Low-thermal-neutron absorption cross section entropy alloy with nanometer precipitated phase and preparation method
WO2023014411A1 (en) * 2021-08-06 2023-02-09 Halliburton Energy Services, Inc. High strength stainless steel material
CN114032461B (en) * 2021-11-04 2022-05-27 华北理工大学 High-nitrogen steel with high strength, low yield ratio and high corrosion resistance for marine engineering and preparation method thereof
WO2024056822A1 (en) * 2022-09-14 2024-03-21 Danmarks Tekniske Universitet Methods for improving corrosion and wear resistance and strength of essentially nickel-free high-manganese austenitic stainless steel components

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3936297A (en) * 1972-05-08 1976-02-03 Allegheny Ludlum Industries, Inc. Method of producing austenitic stainless steel
US4116683A (en) * 1973-04-11 1978-09-26 Institute Po Metaloznanie I Technologia Na Metalite Nickel-free austenitic corrosion-resistant steel
US3904401A (en) * 1974-03-21 1975-09-09 Carpenter Technology Corp Corrosion resistant austenitic stainless steel
BG29797A1 (en) * 1979-06-27 1981-02-16 Rashev Austenite corrosion resistant steel
DE4023462C1 (en) * 1989-10-12 1991-07-04 Vereinigte Schmiedewerke Gmbh, 4630 Bochum, De
JP2591256B2 (en) * 1990-05-21 1997-03-19 住友金属工業株式会社 High strength non-magnetic steel
FR2672904B1 (en) * 1991-02-14 1993-05-07 Aubert & Duval Acieries NON-MAGNETIC STAINLESS STEEL BASED ON MANGANESE-CHROME RESISTANT TO CORROSION UNDER STRESS, METHOD OF MANUFACTURING A LONG-LENGTH NON-MAGNETIC STEEL BAR.
CH688862A5 (en) * 1995-01-03 1998-04-30 Basf Ag Nickel-free austenitic chromium steel
CH688914A5 (en) * 1995-01-12 1998-05-29 Basf Ag Stainless steel with very low nickel@ content and homogeneous austenitic structure
DE19513407C1 (en) * 1995-04-08 1996-10-10 Vsg En & Schmiedetechnik Gmbh Steel alloy used for jewellery implants and dental applications
DE19607828C2 (en) * 1995-04-15 2003-06-18 Vsg En Und Schmiedetechnik Gmb Process for producing an austenitic Cv-Mn steel
CH694401A5 (en) * 1999-05-26 2004-12-31 Basf Ag Low-nickel, low-molybdenum, biocompatible, non-allergenic, corrosion-resistant austenitic steel.
JP4538966B2 (en) * 2001-02-05 2010-09-08 大同特殊鋼株式会社 High strength and high corrosion resistance nonmagnetic stainless steel

Also Published As

Publication number Publication date
JP2006052452A (en) 2006-02-23
EP1626101A1 (en) 2006-02-15
US20060034724A1 (en) 2006-02-16
EP1626101B1 (en) 2015-01-28

Similar Documents

Publication Publication Date Title
JP4379804B2 (en) High nitrogen austenitic stainless steel
JP4915202B2 (en) High nitrogen austenitic stainless steel
JP5217576B2 (en) Austenitic stainless steel for heat-resistant parts and heat-resistant parts using the same
US11085093B2 (en) Ultra-high strength maraging stainless steel with salt-water corrosion resistance
EP1471158B1 (en) Austenitic stainless steel
US7083687B2 (en) Super-elastic titanium alloy for medical uses
JP4427790B2 (en) Martensitic stainless steel
JP2008127590A (en) Austenitic stainless steel
JP2002256397A (en) High hardness martensitic stainless steel having excellent corrosion resistance
JP2006274443A (en) Nonmagnetc high-hardness alloy
US20070044872A1 (en) Precipitation-strengthened nickel-iron-chromium alloy and process therefor
JPWO2018066579A1 (en) NiCrFe alloy
JP2005248263A (en) Martensitic stainless steel
JP5212774B2 (en) Hot tool steel excellent in toughness and high temperature strength and method for producing the same
JP5412914B2 (en) High strength α + β type titanium alloy having excellent fracture toughness and method for producing the same
JP2007063658A (en) Martensitic stainless steel
JP3768091B2 (en) High strength and high corrosion resistance martensitic stainless steel and manufacturing method thereof
WO2017168806A1 (en) Chromium-based two-phase alloy product and production method therefor
JP7131332B2 (en) Austenitic heat-resistant alloys and parts of austenitic heat-resistant alloys
EP2806047B1 (en) Precipitation hardened fe-ni alloy
WO2017037851A1 (en) Cr-BASED TWO-PHASE ALLOY AND PRODUCT USING SAID TWO-PHASE ALLOY
JPH10245656A (en) Martensitic stainless steel excellent in cold forgeability
JP5488973B2 (en) High hardness steel with excellent softening resistance
CN109715839A (en) Shaft member
WO2017168640A1 (en) Chromium-based two-phase alloy product and method for producing same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070629

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090623

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090629

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090807

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090828

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090910

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121002

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131002

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees