JP4378475B2 - Method for reinforcing the surface of metallic porous materials - Google Patents

Method for reinforcing the surface of metallic porous materials Download PDF

Info

Publication number
JP4378475B2
JP4378475B2 JP2003360063A JP2003360063A JP4378475B2 JP 4378475 B2 JP4378475 B2 JP 4378475B2 JP 2003360063 A JP2003360063 A JP 2003360063A JP 2003360063 A JP2003360063 A JP 2003360063A JP 4378475 B2 JP4378475 B2 JP 4378475B2
Authority
JP
Japan
Prior art keywords
tool
porous material
metal porous
metal
vicinity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2003360063A
Other languages
Japanese (ja)
Other versions
JP2005118866A (en
Inventor
湧宰 權
尚文 斎藤
一典 重松
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Advanced Industrial Science and Technology AIST filed Critical National Institute of Advanced Industrial Science and Technology AIST
Priority to JP2003360063A priority Critical patent/JP4378475B2/en
Publication of JP2005118866A publication Critical patent/JP2005118866A/en
Application granted granted Critical
Publication of JP4378475B2 publication Critical patent/JP4378475B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Pressure Welding/Diffusion-Bonding (AREA)

Description

本発明は、摩擦力と塑性加工を応用した金属製多孔質材料の表面強化方法、特に、金属製多孔質材料の表面近傍の強度を高めるともに、その表面を平滑にして意匠性を高めることを可能とする技術に関するものであり、更に詳しくは、気孔率100%未満の金属製多孔質材料の表層部に、工具を回転させながら接触させ、更に、圧力を加えて押し込み、金属製多孔質材料の表面近傍を圧縮及び塑性変形させることにより局所的に空孔(セル)を押しつぶして緻密化し、金属製多孔質材料表面に強化層を形成することを特徴とする金属製多孔質材料の表面強化方法等に関するものである。
本発明は、気孔の大きさ、形態、量に応じて様々な特徴を発揮する材料として、超軽量材料、エネルギー吸収材料、振動吸収材料、防音材料、及び断熱材料等に利用される金属製多孔質材料の製造技術の分野において、また、新機能の発現や、機能の高度化の可能性の大きい次世代材料として注目されている金属製多孔質材料の利用技術の分野において、表面が強化された新しい金属製多孔質材料及びその表面強化方法を提供するものとして有用である。
The present invention, surface enhancement method of applying the plastic working and the frictional force metallic porous material, in particular, metallic porous material enhances the strength of the vicinity of the surface of and the monitor, the design property and the surface smoothness More specifically, the technology relates to a technology that can be increased, and more specifically, a metal porous material having a porosity of less than 100% is brought into contact with the surface layer portion while rotating the tool, and further pressed to apply pressure. A porous metal material characterized by compressing and plastically deforming the vicinity of the surface of the porous material to locally crush the pores (cells) to form a reinforcing layer on the surface of the metallic porous material It is related with the surface reinforcement method of this.
The present invention is a metal porous material used as an ultralight material, an energy absorbing material, a vibration absorbing material, a soundproofing material, a heat insulating material, etc. as a material that exhibits various characteristics according to the size, form, and amount of pores. The surface has been strengthened in the field of quality material manufacturing technology, and in the field of utilization technology of metallic porous materials, which is attracting attention as a next-generation material that has a high potential for new functions and advanced functions. The present invention is useful as a new metal porous material and a method for strengthening the surface thereof.

発泡アルミニウム合金に代表される金属製多孔質材料は、従来は、断熱、振動、及び吸収等を目的として、例えば、部屋の内装、建物の外壁、高速道路等の騒音発生源の遮音壁等に貼付されて用いられることが多い。また、この材料は、一般の金属材料に比較して、単位体積あたりの質量が極めて軽いので、自動車等の軽量化による燃料消費率の向上が期待でき、また、エネルギー吸収性に優れていることから、耐衝突用自動車部品としても有望視されている材料である。   Conventionally, metal porous materials represented by foamed aluminum alloys have been affixed to, for example, interiors of rooms, exterior walls of buildings, and sound insulation walls of noise sources such as expressways for the purpose of heat insulation, vibration, and absorption. Often used. In addition, this material has an extremely light mass per unit volume compared to general metal materials, so it can be expected to improve the fuel consumption rate by reducing the weight of automobiles, etc., and has excellent energy absorption. Therefore, it is a promising material as a collision-resistant automobile part.

一般に、金属製多孔質材料の強度は、非常に低いことから、金属製多孔質材料の両面を薄いアルミニウム合金等の金属板で挟み、金属板と当該多孔質材料とを、ロウ付けや樹脂系接着剤等で接着してサンドイッチ構造を形成することが行われてきた。これらは、多孔体の強度を補い、破壊を防止すると同時に、表面を平滑な金属板とすることで壁などに固定しやすくすること、表面塗装等の意匠性を高めるための後工程を容易にすること等のために行われる。例えば、金属製多孔質材料の板材は、それ自体を曲げ変形させようとすると容易に壊れてしまい変形させることができないが、両面を金属薄板で挟んだサンドイッチ構造にすると、金属製多孔質材料のみでは不可能だった曲げ加工が可能になる。   Generally, since the strength of a metal porous material is very low, both sides of the metal porous material are sandwiched between thin metal plates such as an aluminum alloy, and the metal plate and the porous material are brazed or resin-based. It has been performed to form a sandwich structure by bonding with an adhesive or the like. These make up the strength of the porous body and prevent breakage, and at the same time make it easy to fix to the wall etc. by making the surface a smooth metal plate, and easy post-process to enhance the design such as surface coating It is done to do. For example, a plate made of a metal porous material is easily broken and cannot be deformed if it is bent and deformed. However, if a sandwich structure in which both sides are sandwiched between metal plates, only a metal porous material is formed. Then, bending that was impossible is possible.

しかしながら、一般に、金属製多孔質材料と金属薄板とを接着する場合、その接触面積は非常に小さくなるため、両者を強固に接着するには相当量のロウ付け、あるいは樹脂系接着剤が必要になる。また、接触面積が小さいことは、ひいては接着力の低下の原因となるため、多孔体と表面に接着している金属薄板の間には、常に剥離の危険が存在する。更に、簡便な樹脂系接着剤を用いた場合には、高温部位等の接着剤の強度を低下させ得る環境下では使用できないという欠点があり、これらが、金属製多孔質材料の適用範囲を狭めている要因の一つとなっていた。   However, in general, when bonding a metal porous material and a metal thin plate, the contact area is very small, so a considerable amount of brazing or resin adhesive is required to firmly bond the two. Become. In addition, since the small contact area causes a decrease in the adhesive strength, there is always a risk of peeling between the porous body and the metal thin plate bonded to the surface. Furthermore, when a simple resin adhesive is used, there is a drawback that it cannot be used in an environment where the strength of the adhesive such as a high-temperature part can be reduced, which narrows the application range of the metal porous material. It was one of the factors.

先行文献に示されているような、金属パイプの内部等の閉鎖空間を多孔質金属で満たし、その一部分を概知の接着方法で固定する方法(特許文献1)は、外側の金属パイプと多孔質材料の分離が容易に起きない部材、形状の組み合わせにおいては効果を発揮するものの、多孔質材料の一面のみを緻密化し、残りの面がオープンになっている部材の製造に対しては適用できない。また、塑性加工と放電加工を併用することにより、金属製多孔質材料の気孔率分布を制御する方法が提案されている(特許文献2)。これは、金属製多孔質材料に対して型彫り放電加工による除去加工を行い、板材の厚さに分布が有る多孔質体板材を製造し、その後で一軸圧縮又は圧延加工を行うことで任意の気孔率分布を有する多孔質体の板材を得るものである。しかし、この方法では、板材の水平方向の嵩密度の分布を得ることは可能であるが、板厚方向の分布を制御することは不可能である。即ち、多孔質材料の表面のみを緻密化して内部が多孔質の状態を維持することは不可能である。   A method (Patent Document 1) in which a closed space such as the interior of a metal pipe is filled with a porous metal and a part thereof is fixed by a well-known bonding method as shown in the prior art (Patent Document 1) Although it is effective in the combination of members and shapes that do not easily separate the porous material, it cannot be applied to the manufacture of members in which only one surface of the porous material is densified and the remaining surface is open . Moreover, the method of controlling the porosity distribution of a metal porous material by using plastic processing and electric discharge processing together is proposed (patent document 2). This is a process of removing the metal porous material by die-sinking electric discharge machining, producing a porous plate material having a distribution in the thickness of the plate material, and then performing uniaxial compression or rolling process to make any desired A porous plate having a porosity distribution is obtained. However, with this method, it is possible to obtain the distribution of the bulk density of the plate material in the horizontal direction, but it is impossible to control the distribution of the plate thickness direction. That is, it is impossible to maintain a porous state by densifying only the surface of the porous material.

また、金属製多孔質材料の表面に、緻密な構造体を圧入する方法が提案されている(特許文献3)。この方法は、プレスを用いて、多孔質材料の表面にタイル等の緻密な板材等を圧入するものである。しかし、この方法では、多孔質金属材料の全面にわたる圧入を行うことは原理上不可能であり、構造体の表層部に占める板材等の割合は、50%以下であることが好ましいとされている。更に、圧入した構造体と多孔質材料は、物理的、化学的に結合していないため、結合力は弱く、結合力を高めるためは、高温に加熱しながら圧入する等の工程が必要である。また、全く別の、多孔質―金属複合板の作製方法として、緻密な金属の表面を腐食し、選択的に金属を溶出させることにより、表面のみ多孔質化する方法が提案されている(特許文献4)。しかし、この方法では、適用できる合金系がCu−Fe合金などに限られるほか、得られる多孔質層の厚さは一般に1〜2mm程度であるため、遮音パネルに用いられる多孔質材料厚板には適用できない。   Further, a method has been proposed in which a dense structure is pressed into the surface of a metal porous material (Patent Document 3). In this method, a dense plate material such as a tile is pressed into the surface of a porous material using a press. However, in this method, it is impossible in principle to perform press-fitting over the entire surface of the porous metal material, and the ratio of the plate material or the like in the surface layer portion of the structure is preferably 50% or less. . Furthermore, since the press-fitted structure and the porous material are not physically and chemically bonded, the bonding force is weak, and in order to increase the bonding force, a process such as pressing while heating to a high temperature is required. . In addition, a completely different method for producing a porous-metal composite plate has been proposed in which only the surface is made porous by corroding the surface of a dense metal and selectively eluting the metal (patent) Reference 4). However, in this method, the applicable alloy system is limited to Cu-Fe alloy and the like, and the thickness of the obtained porous layer is generally about 1 to 2 mm. Is not applicable.

一方、回転工具を用いた表面改質手法に関しては、他の文献において、アルミニウム及びアルミニウム合金の組織制御法が提案されている(特許文献5、非特許文献1〜4)。これらの方法は、回転する工具を被加工材に押し付け、機械的撹拌による巨大な塑性ひずみと摩擦熱による温度上昇により動的な再結晶を誘起するものであり、基本的には、緻密な金属材料を対象としたミクロレベルの組織制御手法である。しかし,この方法では、本発明の工具の圧入による空孔(セル)のマクロレベルの変形と、摩擦による表面平滑化を利用するものと、その目的もメカニズムも根本的に異なっている。   On the other hand, with respect to the surface modification method using a rotating tool, a structure control method of aluminum and aluminum alloy has been proposed in other documents (Patent Document 5, Non-Patent Documents 1 to 4). In these methods, a rotating tool is pressed against a work material, and dynamic recrystallization is induced by a huge plastic strain caused by mechanical stirring and a temperature rise caused by frictional heat. This is a micro-level structure control method for materials. However, in this method, the purpose and mechanism are fundamentally different from those using macro-level deformation of pores (cells) by press-fitting of the tool of the present invention and surface smoothing by friction.

特表平11−512171号公報Japanese National Patent Publication No. 11-512171 特開2002−254253号公報JP 2002-254253 A 特開平6−269851号公報Japanese Patent Laid-Open No. 6-269851 特開平6−100959号公報JP-A-6-100959 特開2002−249860号公報JP 2002-249860 A 重松一典,齋藤尚文,中村 守,玉木崇晴,駒谷武史,山内五郎,「摩擦撹拌を利用した工業用純アルミニウムの組織微細化」,軽金属学会第99回秋期大会講演概要,(2000), P161Shigenmatsu Kazunori, Saito Naofumi, Nakamura Mamoru, Tamaki Takaharu, Komagaya Takefumi, Yamauchi Goro, “Structural Refinement of Pure Aluminum for Industrial Use Using Friction Stirring”, Abstracts of the 99th Autumn Meeting of the Japan Institute of Light Metals, (2000), P161 駒谷武史,齋藤尚文,重松一典,玉木崇晴,山内五郎,中村 守,「摩擦撹拌を利用した工業用純アルミニウムの組織制御」,軽金属学会第100回春期大会講演概要,(2000), P141Takefumi Komatani, Naofumi Saito, Kazunori Shigematsu, Takaharu Tamaki, Goro Yamauchi, Mamoru Nakamura, "Structure Control of Industrial Pure Aluminum Using Friction Stirring", Abstracts of the 100th Spring Meeting of the Japan Institute of Light Metals, (2000), P141 斎藤 尚文,重松一典,駒谷 武史,玉木 崇晴,山内 五郎,中村 守, 「Grain Refinement of 1050 AluminumAlloy by Friction Stir Processing」, Journal of Materials Science Letters ,Vol.20,No.20,(2001) p1913Naofumi Saito, Kazunori Shigematsu, Takeshi Komatani, Takaharu Tamaki, Goro Yamauchi, Mamoru Nakamura, “Grain Refinement of 1050 Aluminum Alloy by Friction Stir Processing”, Journal of Materials Science Letters, Vol.20, No.20, (2001) p1913 権 湧宰,斎藤尚文,重松一典,中村守,駒谷武史,小野宗憲,「摩擦撹拌プロセスによる1050アルミニウム合金の結晶粒微細化」,日本金属学会第129回秋期大会講演概要,(2001)p.499Gon, Y., Saito, N., Shigematsu, K., Nakamura, M., Komatani, T., Ono, M., "The refinement of 1050 aluminum alloy by friction stir process", Outline of the 129th Autumn Meeting of the Japan Institute of Metals, (2001) p. .499

このような状況の中で、本発明者らは、上記従来技術に鑑みて、金属製多孔質材料の新しい表面強化方法を開発することを目標として鋭意研究を重ねた結果、回転工具による摩擦を利用した特定の表面強化及び平滑化方法を採用し、更に、表面強化及び表面平滑化に必要な条件を特定することで所期の目的を達成し得ることを見出し、本発明を完成するに至った。
即ち、本発明の目的は、金属製多孔質材料の表面に金属板等を接着することなく高強度層を形成することにより、表面の強度が高められた金属製多孔質材料及びその表面強化方法を提供することである。
また、本発明の目的は、表面の強化層と金属製多孔質材料の間は強固に結合しているため剥離の危険が無く、かつ、樹脂系接着剤を用いないため、従来使用が不可能であった、高温部位等の、接着材の強度を低下させ得る環境下においても使用可能な金属製多孔質材料の表面強化方法を提供することである。
更に、本発明の目的は、金属製多孔質材料に、表面塗装等による意匠性の向上を容易に行い得る平滑面をもった強化層が形成可能な表面強化方法を提供することである。
Under such circumstances, the present inventors have conducted intensive research with the goal of developing a new surface strengthening method for metallic porous materials in view of the above-described conventional techniques, and as a result, friction caused by a rotating tool is reduced. It was found that the intended purpose could be achieved by adopting the specific surface strengthening and smoothing method used and further specifying the conditions necessary for surface strengthening and surface smoothing, and the present invention was completed. It was.
That is, an object of the present invention is to form a metal porous material whose surface strength is increased by forming a high-strength layer without adhering a metal plate or the like on the surface of the metal porous material, and a method for strengthening the surface of the metal porous material. Is to provide.
In addition, the object of the present invention is that there is no risk of peeling because the reinforcing layer on the surface and the metal porous material are firmly bonded, and since no resin adhesive is used, conventional use is impossible. An object of the present invention is to provide a method for strengthening the surface of a metallic porous material that can be used even in an environment where the strength of an adhesive such as a high-temperature part can be reduced.
Furthermore, the objective of this invention is providing the surface reinforcement | strengthening method which can form the reinforcement | strengthening layer with the smooth surface which can perform the improvement of the design property by surface coating etc. to a metal porous material easily.

上記課題を解決するための本発明は、以下の技術的手段から構成される。
(1)表層部の表面近傍の気孔率が0超〜100%未満であって、回転工具の圧入により該表面近傍に含まれる空孔の変形が可能な金属製多孔質材料の表層部に、工具を回転させながら接触させ、更に、圧力を加えて押し込み、金属製多孔質材料の表面近傍を圧縮及び塑性変形させることにより該表面近傍の空孔を押しつぶして緻密化し、強化する金属製多孔質材料の表面強化方法であって、
工具の回転軸と金属製多孔質材料表面の法線方向の成す角度θが45度以下の範囲であり、かつ、工具の押し込み量hがh<d・Sinθ(ただし、dは工具底面の直径、θは0ではない)を満たし、更に、工具を水平方向に、かつ工具が進行方向に対して後方に傾いている状態で移動させること、あるいは工具の回転軸と金属製多孔質材料表面の法線方向の成す角度θが0度であり、かつ工具を水平方向に移動することなく、垂直方向に押し込むことにより任意の範囲を強化することを特徴とする金属製多孔質材料の表面強化方法。
(2)金属製多孔質材料の表面近傍を塑性変形させると同時に表面を摩擦して平滑化する、前記(1)に記載の金属製多孔質材料の表面強化方法。
)工具の回転数が1000〜2000rpmである、前記(1)又は(2)に記載の金属製多孔質材料の表面強化方法。
)金属製多孔質材料が、発泡アルミニウム合金である、前記(1)から()のいずれかに記載の金属製多孔質材料の表面強化方法。
)回転工具の圧入により該表面近傍に含まれる空孔の変形が可能な金属製多孔質材料の表層部に、工具を回転させながら接触させ、更に、圧力を加えて押し込み、工具の回転軸と金属製多孔質材料表面の法線方向の成す角度θが45度以下の範囲であり、かつ、工具の押し込み量hがh<d・Sinθ(ただし、dは工具底面の直径、θは0ではない)を満たし、更に、工具を水平方向に、かつ工具が進行方向に対して後方に傾いている状態で移動させること、あるいは工具の回転軸と金属製多孔質材料表面の法線方向の成す角度θが0度であり、かつ、工具を水平方向に移動することなく、垂直方向に押し込むことで作製してなる金属製多孔質材料であって、表層部の表面近傍の気孔率が0超〜100%未満であり、金属製多孔質材料の表面近傍が圧縮及び塑性変形されて該表面近傍の空孔が押しつぶされて緻密化され、強化された構造を有することを特徴とする金属製多孔質材料。
)金属製多孔質材料の表面近傍が塑性変形され、かつ表面が摩擦されて平滑化された構造を有する、前記()に記載の金属製多孔質材料。
The present invention for solving the above-described problems comprises the following technical means.
(1) In the surface layer portion of the metal porous material having a porosity near the surface of the surface layer portion of more than 0 to less than 100% and capable of deformation of pores included in the vicinity of the surface by press-fitting of a rotary tool, Metal porous that makes contact while rotating the tool, and further presses and compresses, compresses and plastically deforms the vicinity of the surface of the metal porous material, crushes and densifies the pores near the surface, and strengthens the metal porous A method for strengthening the surface of a material,
The angle θ between the rotation axis of the tool and the normal direction of the surface of the metal porous material is in the range of 45 degrees or less, and the pushing amount h of the tool is h <d · Sinθ (where d is the diameter of the tool bottom surface) , Θ is not 0 ), and the tool is moved in the horizontal direction and the tool is tilted backward with respect to the traveling direction , or the rotation axis of the tool and the surface of the metal porous material A method for strengthening a surface of a metal porous material, characterized in that an angle θ formed by a normal direction is 0 degree, and an arbitrary range is strengthened by pushing a tool in a vertical direction without moving the tool in a horizontal direction .
(2) The method for reinforcing the surface of a metal porous material according to (1), wherein the surface of the metal porous material is plastically deformed and simultaneously the surface is rubbed and smoothed.
( 3 ) The method for reinforcing the surface of a metallic porous material according to (1) or (2 ), wherein the rotational speed of the tool is 1000 to 2000 rpm.
( 4 ) The method for reinforcing the surface of a metallic porous material according to any one of (1) to ( 3 ), wherein the metallic porous material is a foamed aluminum alloy.
( 5 ) The tool is brought into contact with the surface layer of a metal porous material capable of deforming the voids contained in the vicinity of the surface by press-fitting of the rotating tool, and the tool is further rotated by applying pressure to rotate the tool. The angle θ between the axis and the normal direction of the surface of the metal porous material is in the range of 45 degrees or less, and the tool push-in amount h is h <d · Sinθ (where d is the diameter of the tool bottom , θ is And the tool is moved in the horizontal direction and the tool is tilted backward with respect to the direction of travel, or the axis of rotation of the tool and the normal direction of the metal porous material surface. Is a metal porous material produced by pushing the tool in the vertical direction without moving the tool in the horizontal direction, and the porosity near the surface of the surface layer portion is More than 0 to less than 100% of the metallic porous material A metal porous material characterized by having a structure in which the vicinity of the surface is compressed and plastically deformed, and the pores in the vicinity of the surface are crushed and densified to have a strengthened structure.
( 6 ) The metallic porous material according to ( 5 ) above, wherein the metallic porous material has a structure in which the vicinity of the surface is plastically deformed and the surface is rubbed and smoothed.

次に、本発明について更に詳細に説明する。
以下、本発明を、図面を参照しつつ、その具体的構成について詳細に説明する。
図1に、本発明の、金属製多孔質材料の表層部に工具を回転させながら接触させ、同時に圧力を加えて金属製多孔質材料の表面近傍を塑性変形させることにより局所的に空孔(セル)を押しつぶして緻密化し、表面を摩擦して平滑化する工程を概念的に示す。図1において、回転工具1は、高速で回転しながら、工具底面1aで金属製多孔質材料被加工材2の表面に、垂直に押し付けられ、その表面近傍を塑性変形させることにより局所的に空孔(セル)を押しつぶして緻密化する、と同時に、緻密化された部分を工具底面1aにより高速で摩擦し、緻密化を促進するとともに平滑化する。この時、工具1の押し込み量を変化させることにより、使用目的に応じて緻密化の程度及び平滑化の程度を変化させることができる。
Next, the present invention will be described in more detail.
Hereinafter, the specific configuration of the present invention will be described in detail with reference to the drawings.
In FIG. 1, the surface of the metallic porous material according to the present invention is brought into contact with the surface layer while rotating, and at the same time, pressure is applied to plastically deform the vicinity of the surface of the metallic porous material to locally provide pores ( The process of crushing and densifying the cell) and frictionally smoothing the surface is conceptually shown. In FIG. 1, while rotating at a high speed, the rotary tool 1 is pressed vertically against the surface of the metal porous material workpiece 2 at the tool bottom surface 1a, and the vicinity of the surface is plastically deformed so as to be locally empty. The hole (cell) is crushed and densified, and at the same time, the densified portion is rubbed at high speed by the tool bottom surface 1a to promote densification and smooth the surface. At this time, by changing the pressing amount of the tool 1, the degree of densification and the degree of smoothing can be changed according to the purpose of use.

図2に、工具1の回転軸と金属製多孔質材料の表面の成す角度θを45度以下の範囲とし、同時に工具を水平方向に移動させ、広い範囲に渉って金属製多孔質材料の表面を強化する方法について概念的に示す。工具は進行方向に対して後方に傾いている。この時、工具の傾き角は、45度以下が望ましく、これは、傾き角が45度以上では表面粗さが非常に大きくなり、表面の平滑性が失われるためである。また、工具の押し込み量は、工具底面の縁部上端が被加工材である金属製多孔質材料の表面より上部にあることが望ましい。これは、工具縁部が多孔質材料の表面より上部にある場合には、工具の水平方向への移動の際、多孔質材料は工具底面1aに沿って下部に押し下げられ、緻密化が行われるが、逆に、工具上縁部が多孔質材料の表面より下部にある場合には、工具の縁部より上部にある多孔質金属材料は、工具底面に沿って下部に移動せず、上部に排除されることになるためである。したがって、押し込み量hは、工具の直径をd、工具の回転軸の傾きをθとすると、h<d・Sinθ(θは0ではない。)を満たすことが望ましい。図2に、h=d・Sinθのときの模式図を示す。工具の回転数は1000〜2000rpmが望ましい。これは、この範囲外では表面あらさが大きくなると同時に、充分な強度を持った強化層が形成されないためである。
一方、処理に用いられる工具の材質としては、JISに規定された工具鋼、ダイス鋼等が任意に用いられるが、金属製多孔質材料に接触する工具底面は平滑に仕上げられていることが望ましい。また、アルミニウム合金製多孔質材料の処理を行う際に、しばしば、工具底面にアルミニウム合金が付着し、工具底面の表面あらさが大きくなる場合があるが、これは、速やかに除去し、工具底面を常に平滑に保つことが望ましい。
In FIG. 2, the angle θ formed by the rotation axis of the tool 1 and the surface of the metal porous material is set to a range of 45 degrees or less, and at the same time, the tool is moved in the horizontal direction. The method of strengthening the surface is shown conceptually. The tool is tilted backward with respect to the direction of travel. At this time, the inclination angle of the tool is desirably 45 degrees or less, and when the inclination angle is 45 degrees or more, the surface roughness becomes very large and the smoothness of the surface is lost. Further, it is desirable that the amount of pressing of the tool is such that the upper end of the edge of the bottom surface of the tool is above the surface of the metal porous material that is the workpiece. This is because, when the tool edge is above the surface of the porous material, the porous material is pushed down along the tool bottom surface 1a when the tool is moved in the horizontal direction, and densification is performed. However, if the upper edge of the tool is below the surface of the porous material, the porous metal material above the edge of the tool does not move downward along the bottom of the tool, It is because it will be excluded. Therefore, it is desirable that the pushing amount h satisfy h <d · Sinθ (θ is not 0), where d is the diameter of the tool and θ is the inclination of the rotation axis of the tool. FIG. 2 is a schematic diagram when h = d · Sinθ. The rotation speed of the tool is preferably 1000 to 2000 rpm. This is because the surface roughness increases outside this range, and at the same time, a reinforcing layer having sufficient strength is not formed.
On the other hand, as the material of the tool used for the treatment, tool steel, die steel, etc. specified in JIS are arbitrarily used, but it is desirable that the bottom surface of the tool contacting the metal porous material is finished smoothly. . In addition, when processing an aluminum alloy porous material, the aluminum alloy often adheres to the bottom surface of the tool, and the surface roughness of the tool bottom surface may increase. It is desirable to keep it always smooth.

次に、このようにして作製される本発明の金属製多孔質材料の表面構造について簡単に説明する。
金属製多孔体の表面に押し付けられた工具は、金属製多孔質材料の表面近傍の空孔(セル)を押し潰すことで緻密化し、嵩密度を上昇させる。この時、押しつぶされる空孔(セル)は表面近傍に限定され、工具先端から1mm程度内部から下部では空孔は潰されておらず、当初のセル構造を維持している。このため、金属製多孔体に付与された遮音、断熱等の有益な特性は全く損なわれない。更に、工具は、非常に高速で回転しているため、工具底面で金属製多孔質材料表面を高速で摩擦し、緻密化を更に進行させると同時に、表面に平滑性を付与する。本発明の方法は、金属多孔製材料であれば材質を選ばないが、例えば、アルミニウム及びアルミニウム合金で製造された発泡金属、多孔質金属の原材料に好適に適用される。これらの原材料を製造する方法及び手段については、特に制限されるものではなく、その使用目的に応じて適宜の方法及び手段を使用することができる。
Next, the surface structure of the metal porous material of the present invention thus produced will be briefly described.
The tool pressed against the surface of the metal porous body is densified by crushing pores (cells) in the vicinity of the surface of the metal porous material, thereby increasing the bulk density. At this time, the holes (cells) to be crushed are limited to the vicinity of the surface, and the holes are not crushed from the inside to the bottom about 1 mm from the tool tip, and the original cell structure is maintained. For this reason, useful properties such as sound insulation and heat insulation imparted to the metal porous body are not impaired at all. Furthermore, since the tool rotates at a very high speed, the metal porous material surface is rubbed at the high speed at the bottom surface of the tool, and the densification is further advanced, and at the same time, the surface is made smooth. The method of the present invention is not limited to any material as long as it is a porous metal material. For example, the method of the present invention is suitably applied to foam metal and porous metal raw materials made of aluminum and aluminum alloys. The method and means for producing these raw materials are not particularly limited, and appropriate methods and means can be used according to the purpose of use.

本発明は、気孔率100%未満の金属製多孔質材料の表層部に、工具を回転させながら接触させ、更に、圧力を加えて押し込み、金属製多孔質材料の表面近傍を圧縮及び塑性変形させることにより局所的に空孔(セル)を押しつぶして緻密化し、金属製多孔質材料表面に強化層を形成した金属製多孔質材料及びその表面強化方法に係るものであり、本発明により、(1)金属製多孔質材料の表面に金属板等を接着することなく、金属高強度層を表面に形成することができる、(2)表面の緻密化した強化層により強度が高められた金属製多孔質材料を製造することができる、(3)表面の強化層と金属製多孔体の間は強固に結合しているため剥離の危険が無い、(4)樹脂系接着剤を用いないため、従来は使用が不可能であった高温部位等の接着剤の強度を低下させ得る環境下においても使用可能な金属製多孔質材料が製造できる、(5)金属性多孔製材料の表面の強化された平滑な表面には、塗装等による意匠性の向上を容易に行うことができる、という効果が奏される。   In the present invention, the surface of the metallic porous material having a porosity of less than 100% is brought into contact with the tool while rotating, and further pressed into the surface to compress and plastically deform the vicinity of the surface of the metallic porous material. The present invention relates to a metal porous material in which pores (cells) are locally crushed and densified, and a reinforcing layer is formed on the surface of the metal porous material, and a method for strengthening the surface thereof. ) A metal high-strength layer can be formed on the surface without adhering a metal plate or the like to the surface of the metal porous material. (2) Metal porous whose strength is enhanced by a densified reinforcing layer on the surface. (3) There is no risk of delamination because the reinforcing layer on the surface and the metal porous body are firmly bonded. (4) Since no resin adhesive is used, Is a high temperature part that could not be used A metal porous material that can be used even in an environment where the strength of the adhesive can be reduced can be produced. (5) The surface of the porous metal material that has been reinforced has a smooth surface that is designed by painting or the like. There is an effect that the improvement can be easily performed.

次に、実施例として、アルミニウム合金発泡材料を対象とした本発明による表面強化層の作製例を示し、本発明を具体的に説明するが、本発明は、以下の実施例によって何ら限定されるものではない。   Next, as an example, a preparation example of a surface reinforcing layer according to the present invention for an aluminum alloy foam material will be shown and the present invention will be specifically described. However, the present invention is not limited in any way by the following examples. It is not a thing.

本実施例では、工具の回転軸と金属製多孔質材料表面の法線方向の成す角度θが0度であり、かつ、工具を水平方向に移動することなく、垂直方向に任意の量押し込むことにより金属製多孔体の表面近傍を緻密化し、金属製多孔質材料表面に強化層を形成した。
図3に、厚さ約30mmの発泡アルミニウム合金板材に、本発明により回転工具で表面強化層の作製を行った例(左図)と、比較のため、回転を伴わない工具で単純圧縮加工を行った比較例(右図)を並べて示す。表面強化層を作製する実施例での条件は、工具の回転軸と金属製多孔質材料表面の法線方向との成す角度は0度、スチール製で、直径が15mmの工具を使用し、回転数1550rpmで、押し込み量は約15mmであった。比較例は、回転を伴わない工具で単純圧縮を行った以外は、実施例1と同様の条件で表面強化層を作製した。図3の左図によると、本発明による回転工具による摩擦圧縮では、処理部の表面にセル構造は殆ど残存しておらず、非常に緻密化、平滑化されていることが分かる。一方、比較例の、図3の右図によると、表面には多孔質材料のセル構造がそのまま残存しており、殆ど緻密化が行われていないことが分かる。
In this embodiment, the angle θ formed between the rotation axis of the tool and the normal direction of the surface of the metal porous material is 0 degree, and the tool is pushed in an arbitrary amount in the vertical direction without moving in the horizontal direction. Thus, the vicinity of the surface of the metal porous body was densified to form a reinforcing layer on the surface of the metal porous material.
Figure 3 shows a simple compression process using a tool that does not rotate for comparison with an example in which a surface-enhanced layer was produced with a rotating tool according to the present invention (left figure) on a foamed aluminum alloy sheet having a thickness of about 30 mm. The comparative example (right figure) performed is shown side by side. The conditions in the embodiment for producing the surface reinforcing layer are as follows. The angle between the rotation axis of the tool and the normal direction of the surface of the metal porous material is 0 degree, and the tool is made of steel and has a diameter of 15 mm. The pushing amount was about 15 mm at several 1550 rpm. In the comparative example, a surface reinforcing layer was produced under the same conditions as in Example 1 except that simple compression was performed with a tool that did not rotate. According to the left diagram of FIG. 3, in the friction compression by the rotary tool according to the present invention, it can be seen that the cell structure hardly remains on the surface of the processing portion and is very dense and smooth. On the other hand, according to the right figure of FIG. 3 of the comparative example, it can be seen that the cell structure of the porous material remains on the surface as it is, and is hardly densified.

本実施例では、工具の回転軸と金属製多孔質材料表面の法線方向の成す角度θが45度以下の範囲であり、かつ、工具の押し込み量hがh<d・Sinθ(ただし、dは工具底面の直径、θは0ではない。)を満たし、更に、工具を水平方向に移動させることにより任意の範囲に強化層を形成した。表面強化層の作製は、工具の回転軸と金属製多孔質材料表面の法線方向との成す角度を20度とし、工具の回転数1390rpmで、速度155mm/minで水平方向に移動させ、幅約15mm×長さ約100mmの長方形領域に強化処理を行った。
得られた強化層に対し鋼球圧入試験を行い、圧入量と荷重の関係を調べた。鋼球の直径は10mm、圧入量は最大5mmとし、圧入時の荷重と圧入量の関連を調べた。本発明の上記条件で、処理されたアルミニウム合金製多孔質金属材料の荷重−圧入量曲線(9)と、非処理の多孔質材料との荷重−圧入量曲線(10)を図4に示す。同一圧入量で比較した場合、本発明を適用した試料は、適用しなかった試料の約3倍の荷重を示していることが図4より分かる。これは、本発明を適用した試料は、外部応力に対して材料強度が約3倍まで高められたことを示しており、本発明の効果が顕著であることが実証される。
In this embodiment, the angle θ formed between the rotation axis of the tool and the normal direction of the surface of the metal porous material is in the range of 45 degrees or less, and the pushing amount h of the tool is h <d · Sinθ (where d Is the diameter of the bottom surface of the tool, and θ is not 0). Further, the reinforcing layer was formed in an arbitrary range by moving the tool in the horizontal direction. The surface reinforcing layer is produced by setting the angle between the rotation axis of the tool and the normal direction of the metal porous material surface to 20 degrees, moving the tool horizontally at a speed of 155 mm / min at a rotation speed of 1390 rpm, Reinforcing treatment was performed on a rectangular area of about 15 mm × length of about 100 mm.
A steel ball press-fit test was performed on the obtained reinforcing layer, and the relationship between the press-fit amount and the load was examined. The diameter of the steel ball was 10 mm, and the press-fit amount was 5 mm at the maximum, and the relationship between the press-fit load and the press-fit amount was examined. FIG. 4 shows a load-pressurization curve (9) of the treated aluminum alloy porous metal material and a load-pressurization curve (10) of the non-treated porous material under the above conditions of the present invention. It can be seen from FIG. 4 that, when compared with the same press-fitting amount, the sample to which the present invention is applied shows a load about three times that of the sample to which the present invention is not applied. This shows that the sample to which the present invention is applied has increased the material strength to about three times the external stress, and it is proved that the effect of the present invention is remarkable.

以上詳述したように、本発明は、摩擦力と塑性加工を応用した金属製多孔質材料の表面強化方法、特に、表面近傍の強度を高め、表面を平滑にして意匠性を高めることを可能とする表面強化方法及びその方法により製造された金属製多孔質材料に係るものであり、本発明により、気孔の大きさ、形態、量に応じて様々な特徴を発揮する魅力ある材料として、超軽量材料、エネルギー吸収材料、振動吸収材料、防音材料、断熱材料等として利用される金属製多孔質材料を提供できる。また、本発明は、新機能の発現や、機能の高度化の可能性の大きい将来性のある材料として使用し得る金属製多孔質材料を提供できる。また、本発明の表面強化金属製多孔質材料は、一般の金属材料に比較して、単位体積あたりの質量が極めて軽いので、自動車等の軽量化による燃料消費率の向上が期待でき、また、エネルギー吸収性に優れていることから、例えば、耐衝突用自動車部品としての利用が可能である。   As described above in detail, the present invention is a method for strengthening the surface of a metallic porous material using frictional force and plastic working, and in particular, it is possible to increase the strength in the vicinity of the surface, smooth the surface and improve the design. The present invention relates to a surface reinforcing method and a metallic porous material produced by the method, and according to the present invention, as an attractive material that exhibits various characteristics according to the size, form, and amount of pores, A metal porous material used as a lightweight material, energy absorbing material, vibration absorbing material, soundproofing material, heat insulating material or the like can be provided. In addition, the present invention can provide a metallic porous material that can be used as a promising material that has a high possibility of developing new functions and enhancing functions. In addition, the surface-reinforced metal porous material of the present invention has an extremely light mass per unit volume as compared with a general metal material, and therefore can be expected to improve the fuel consumption rate by reducing the weight of automobiles, etc. Since it is excellent in energy absorption, it can be used as, for example, a collision-resistant automobile part.

回転工具を水平方向に移動させずに金属製多孔質材料に圧入し、多孔質材料表面近傍に強化層を形成する工程の模式図を示す。The schematic diagram of the process of press-fitting into a metal porous material without moving a rotary tool in a horizontal direction and forming a reinforcing layer near the porous material surface is shown. 回転工具を水平方向に移動させ、広い範囲に渉って金属製多孔質材料の表面を強化する工程の模式図を示す。The schematic diagram of the process of moving the rotary tool in the horizontal direction and reinforcing the surface of the metal porous material over a wide range is shown. 実施例1で本発明を適用した試料(左図)と、回転を伴わない工具で圧縮した試料(右図)の外観写真を示す。The external appearance photograph of the sample (left figure) to which the present invention is applied in Example 1 and the sample (right figure) compressed with a tool without rotation is shown. 鋼球圧入試験の結果を示す。The result of a steel ball press-fitting test is shown.

符号の説明Explanation of symbols

(図1、2の符号)
1:回転工具
1a:回転工具の底面
2:金属製多孔質材料
2a:空孔
3:強化部
(図3の符号)
2:金属製多孔質材料
3:回転を伴う工具で圧縮した試料
4:回転を伴わない工具で圧縮した試料
(図4の符号)
9:回転を伴う工具で圧縮強化された金属製多孔質材料の荷重−圧入量曲線
10:回転を伴わない工具で圧縮された金属製多孔質材料の荷重−圧入量曲線
(Reference numerals in FIGS. 1 and 2)
1: Rotating tool 1a: Bottom surface of rotating tool 2: Metal porous material 2a: Holes 3: Reinforced portion (reference numeral in FIG. 3)
2: Metallic porous material 3: Sample compressed with a tool with rotation 4: Sample compressed with a tool without rotation (reference numeral in FIG. 4)
9: Load-indentation curve of a metal porous material compressed and strengthened with a tool with rotation 10: Load-indentation curve of a metal porous material compressed with a tool without rotation

Claims (6)

表層部の表面近傍の気孔率が0超〜100%未満であって、回転工具の圧入により該表面近傍に含まれる空孔の変形が可能な金属製多孔質材料の表層部に、工具を回転させながら接触させ、更に、圧力を加えて押し込み、金属製多孔質材料の表面近傍を圧縮及び塑性変形させることにより該表面近傍の空孔を押しつぶして緻密化し、強化する金属製多孔質材料の表面強化方法であって、
工具の回転軸と金属製多孔質材料表面の法線方向の成す角度θが45度以下の範囲であり、かつ、工具の押し込み量hがh<d・Sinθ(ただし、dは工具底面の直径、θは0ではない)を満たし、更に、工具を水平方向に、かつ工具が進行方向に対して後方に傾いている状態で移動させること、あるいは工具の回転軸と金属製多孔質材料表面の法線方向の成す角度θが0度であり、かつ工具を水平方向に移動することなく、垂直方向に押し込むことにより任意の範囲を強化することを特徴とする金属製多孔質材料の表面強化方法。
The porosity of the surface layer near the surface is more than 0 to less than 100%, and the tool is rotated on the surface of the metal porous material that can deform the pores included in the vicinity of the surface by press-fitting the rotary tool. The surface of the metal porous material that is pressed and pressed, and compresses and plastically deforms the vicinity of the surface of the metal porous material to crush and densify the pores near the surface of the metal porous material A strengthening method,
The angle θ between the rotation axis of the tool and the normal direction of the surface of the metal porous material is in the range of 45 degrees or less, and the pushing amount h of the tool is h <d · Sinθ (where d is the diameter of the tool bottom surface) , Θ is not 0 ), and the tool is moved in the horizontal direction and the tool is tilted backward with respect to the traveling direction , or the rotation axis of the tool and the surface of the metal porous material A method for strengthening a surface of a metal porous material, characterized in that an angle θ formed by a normal direction is 0 degree, and an arbitrary range is strengthened by pushing a tool in a vertical direction without moving the tool in a horizontal direction .
金属製多孔質材料の表面近傍を塑性変形させると同時に表面を摩擦して平滑化する、請求項1に記載の金属製多孔質材料の表面強化方法。   2. The method for reinforcing the surface of a metal porous material according to claim 1, wherein the surface vicinity of the metal porous material is plastically deformed and simultaneously the surface is rubbed and smoothed. 工具の回転数が1000〜2000rpmである、請求項1又は2に記載の金属製多孔質材料の表面強化方法。 The method for reinforcing the surface of a metal porous material according to claim 1 or 2 , wherein the rotational speed of the tool is 1000 to 2000 rpm. 金属製多孔質材料が、発泡アルミニウム合金である、請求項1からのいずれかに記載の金属製多孔質材料の表面強化方法。 The method for reinforcing the surface of a metallic porous material according to any one of claims 1 to 3 , wherein the metallic porous material is a foamed aluminum alloy. 回転工具の圧入により該表面近傍に含まれる空孔の変形が可能な金属製多孔質材料の表層部に、工具を回転させながら接触させ、更に、圧力を加えて押し込み、工具の回転軸と金属製多孔質材料表面の法線方向の成す角度θが45度以下の範囲であり、かつ、工具の押し込み量hがh<d・Sinθ(ただし、dは工具底面の直径、θは0ではない)を満たし、更に、工具を水平方向に、かつ工具が進行方向に対して後方に傾いている状態で移動させること、あるいは工具の回転軸と金属製多孔質材料表面の法線方向の成す角度θが0度であり、かつ、工具を水平方向に移動することなく、垂直方向に押し込むことで作製してなる金属製多孔質材料であって、表層部の表面近傍の気孔率が0超〜100%未満であり、金属製多孔質材料の表面近傍が圧縮及び塑性変形されて該表面近傍の空孔が押しつぶされて緻密化され、強化された構造を有することを特徴とする金属製多孔質材料。 The tool is rotated and brought into contact with the surface layer portion of the metal porous material that can deform the pores included in the vicinity of the surface by press-fitting of the rotary tool, and further, pressure is applied to push the rotary shaft of the tool and the metal. The angle θ formed by the normal direction of the surface of the porous material is in the range of 45 degrees or less, and the tool push-in amount h is h <d · Sinθ (where d is the diameter of the tool bottom and θ is not 0) ), And the tool is moved in the horizontal direction and the tool is tilted backward with respect to the direction of travel, or the angle between the rotation axis of the tool and the normal direction of the metal porous material surface. θ is 0 degree, and a metal porous material is produced by pushing a tool in the vertical direction without moving the tool in the horizontal direction, and the porosity in the vicinity of the surface of the surface layer portion is more than 0 Less than 100%, near the surface of metallic porous material There is densified being crushed vacancies of the surface vicinity is compressed and plastically deformed, metallic porous material characterized by having an enhanced structure. 金属製多孔質材料の表面近傍が塑性変形され、かつ表面が摩擦されて平滑化された構造を有する、請求項に記載の金属製多孔質材料。 6. The metallic porous material according to claim 5 , wherein the metallic porous material has a structure in which the vicinity of the surface of the metallic porous material is plastically deformed and the surface is rubbed and smoothed.
JP2003360063A 2003-10-20 2003-10-20 Method for reinforcing the surface of metallic porous materials Expired - Lifetime JP4378475B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003360063A JP4378475B2 (en) 2003-10-20 2003-10-20 Method for reinforcing the surface of metallic porous materials

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003360063A JP4378475B2 (en) 2003-10-20 2003-10-20 Method for reinforcing the surface of metallic porous materials

Publications (2)

Publication Number Publication Date
JP2005118866A JP2005118866A (en) 2005-05-12
JP4378475B2 true JP4378475B2 (en) 2009-12-09

Family

ID=34616029

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003360063A Expired - Lifetime JP4378475B2 (en) 2003-10-20 2003-10-20 Method for reinforcing the surface of metallic porous materials

Country Status (1)

Country Link
JP (1) JP4378475B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006346836A (en) * 2005-06-20 2006-12-28 Disco Abrasive Syst Ltd Method for removing workpiece from support substrate
JP5099290B2 (en) * 2006-02-14 2012-12-19 独立行政法人産業技術総合研究所 Metal panel member and manufacturing method thereof
JP5482658B2 (en) * 2008-09-12 2014-05-07 国立大学法人群馬大学 Precursor for foam metal and method for producing foam metal, and precursor for foam metal and foam metal produced by the production method
JP5371102B2 (en) * 2009-08-10 2013-12-18 地方独立行政法人 大阪市立工業研究所 Method for modifying cemented carbide and cemented carbide modified by the method
JP6125766B2 (en) * 2012-06-21 2017-05-10 川崎重工業株式会社 Manufacturing method and manufacturing apparatus for battery and buffer member

Also Published As

Publication number Publication date
JP2005118866A (en) 2005-05-12

Similar Documents

Publication Publication Date Title
Gu et al. Selective laser melting additive manufacturing of novel aluminum based composites with multiple reinforcing phases
Mistry et al. Research review of diversified reinforcement on aluminum metal matrix composites: fabrication processes and mechanical characterization
CN105648249B (en) A kind of preparation method of carbon nano tube enhanced aluminium base multilayer materials
JP4378475B2 (en) Method for reinforcing the surface of metallic porous materials
Yu et al. An investigation of interface bonding of bimetallic foils by combined accumulative roll bonding and asymmetric rolling techniques
Yang et al. Free abrasive machining in slicing brittle materials with wiresaw
CN109913678B (en) TiAl3Particle reinforced aluminum-based composite material and preparation method and application thereof
Tang et al. Surface treatment with the cold roll bonding process for an aluminum alloy and mild steel
Matsumoto et al. Plastic joining of open-cell nickel foam and polymethyl methacrylate (PMMA) sheet by friction stir incremental forming
Toroghinejad et al. Texture evolution of nanostructured aluminum/copper composite produced by the accumulative roll bonding and folding process
Azimi et al. Grain and texture evolution in nano/ultrafine-grained bimetallic Al/Ni composite during accumulative roll bonding
Hangai et al. Friction powder compaction for fabrication of open-cell aluminum foam by the sintering and dissolution process route
Heydari Vini et al. Investigation of bonding behavior of AA1050/AA5083 bimetallic laminates by roll bonding technique
Al-Alimi et al. Development of metal matrix composites and related forming techniques by direct recycling of light metals: A review
CN108588607A (en) The manufacturing process of large-size high-strength high tenacity TC11 titanium alloy thick-wall pipes
Liu et al. A strong, lightweight, and damping cermet material with a nacre-like ultrafine 3D interpenetrated architecture
Zhang et al. Enhanced strength and high-temperature wear resistance of Ti6Al4V alloy fabricated by laser solid forming
NOSKO et al. Sound absorption ability of aluminium foams
Tane et al. Anisotropic yield behavior of lotus-type porous iron: Measurements and micromechanical mean-field analysis
Matsumoto et al. Formation of skin surface layer on aluminum foam by friction stir powder incremental forming
Seth et al. Studies on the effect of processing parameters on microstructure and properties of magnesium compacts prepared via powder metallurgy
JP5099290B2 (en) Metal panel member and manufacturing method thereof
Bucher et al. Laser forming of sandwich panels with metal foam cores
Wang et al. Wear properties of Al/TiO2 composites fabricated via combined compo-casting and APB process
Safiri et al. Fabrication of Al-TiAl 3 Composite Via In-Situ Accumulative Roll Bonding (ARB) and Annealing

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050502

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080417

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080421

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080619

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081117

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090116

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090413

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090521

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090817

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

R150 Certificate of patent or registration of utility model

Ref document number: 4378475

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term