JP4374642B2 - Film with conductive thin film and method for producing the same - Google Patents

Film with conductive thin film and method for producing the same Download PDF

Info

Publication number
JP4374642B2
JP4374642B2 JP06026999A JP6026999A JP4374642B2 JP 4374642 B2 JP4374642 B2 JP 4374642B2 JP 06026999 A JP06026999 A JP 06026999A JP 6026999 A JP6026999 A JP 6026999A JP 4374642 B2 JP4374642 B2 JP 4374642B2
Authority
JP
Japan
Prior art keywords
film
thin film
conductive thin
base material
conductive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP06026999A
Other languages
Japanese (ja)
Other versions
JP2000260231A (en
Inventor
雅顕 谷中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toppan Inc
Original Assignee
Toppan Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toppan Inc filed Critical Toppan Inc
Priority to JP06026999A priority Critical patent/JP4374642B2/en
Publication of JP2000260231A publication Critical patent/JP2000260231A/en
Application granted granted Critical
Publication of JP4374642B2 publication Critical patent/JP4374642B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Liquid Crystal (AREA)
  • Non-Insulated Conductors (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は微細に分離された線状の導電性薄膜/基材系全般に関わる。導電性薄膜の膜厚や基材の厚さの範囲には幅があるが、本発明においては特に厚さによる適応制限は受けない。
【0002】
【従来の技術】
近年、導電性薄膜材料は産業のいたるところで広く使われている。特に透明導電性薄膜材料は、液晶ディスプレイなどのマトリクス駆動のための電極として用いられ、需要が急激に高まってきている。一般的な液晶ディスプレイの断面を図6に示した。通常、透明導電性薄膜(以下、特にことわらない限り“導電膜”と呼ぶ)20は、液晶ディスプレイに用いられる場合、液晶22を挟み込んでいる2枚のガラス板21それぞれの片面に形成される。また最近では、ディスプレイ自体の軽量化、フレキシブル化のためガラス板の代わりにプラスチック板(フィルム)が使われる場合がある。この場合も、導電膜はやはり、2枚のプラスチック板(フィルム)それぞれに片面に形成される。
【0003】
しかしながら、ディスプレイのマトリクス駆動のための電極として用いるには、始め等方的な導電膜は、非常に面倒なパターンエッチングなどにより、図7(a)に示すように透明導電性薄膜20は電気的に孤立した細長い短冊状要素の列に加工され、各要素は駆動回路に接続される。
加工を施された導電膜(付きガラス板)は、図7(b)に示すように互いに90度ずらして配置される。任意のディスプレイマトリクス要素(i,j)に電圧を付加する場合、片面のi番目の短冊状要素と他の片面のj番目の要素に電圧を付加させることにより行う。
【0004】
つまり通常、導電膜は均一かつ電気的に等方的に作製されるため、これをディスプレイの電極として用いる場合、一方向に細分化するためのリソグラフィ、パターンエッチングなどの加工工程が必要となる。
実際、この加工にはパターンエッチング前に、パターン形成のためマスキングや光硬化性樹脂への露光など付随する工程も多く、かつそれぞれの工程に高い精度が要求せられるため、製造工程でしばしば問題となっている。
【0005】
【発明が解決しようとする課題】
本発明は、以上の問題点に着目してなされたものであり、その課題とするところは導電性薄膜をリソグラフィ、エッチングなどの複雑な工程を経ずに簡便な方法で隣り合った配線との電気的絶縁性を有した導電性薄膜付きフィルムを提供することである。本発明により、例えば、液晶ディスプレイを製造する際の工程が大幅に簡略化され、製造コストの大幅な低下が期待できる。
【0006】
【課題を解決するための手段】
上記課題を解決するために本発明が提供する手段は、先ず請求項1においては、フィルム状絶縁性基材の片面もしくは両面に形成され、クラックによりお互いに分離された多数本の線状の導電性薄膜の配線を備えており、導電性薄膜のクラックが非導体で塞がれていることを特徴とする導電性薄膜付きフィルムである。
【0007】
又、請求項2においては、前記フィルム状絶縁性基材の破壊ひずみが、前記導電性薄膜の破壊ひずみより大きい請求項1記載の導電性薄膜付きフィルムである。
【0008】
又、請求項3においては、導電性薄膜を、破壊ひずみが該導電性薄膜の破壊ひずみよりも大きいフィルム状絶縁性基材の片面もしくは両面に形成して材料とし、該材料を一方向に引っ張り、引っ張り方向に垂直なクラックを多数生じさせ、お互いに分離された多数本の線状の導電性薄膜の配線を形成し、材料の引っ張りは少なくとも前記導電性薄膜がバックリング破壊が生じる以内に留め、除荷後も一方向導電性を保つことを特徴とする導電性薄膜付きフィルムの製造方法である。
【0009】
又、請求項4においては、前記材料の引っ張りは少なくとも基材が塑性変形を起こすまで行い、除荷後も一方向導電性を保つことを特徴とする請求項3に記載の導電性薄膜付きフィルムの製造方法である。
【0012】
【発明の実施の形態】
本発明において、まず一般的に薄膜/基材からなる2層構造の材料において基材の破壊ひずみが薄膜のそれよりも大きい場合、薄膜/基材系を一方向に引っ張った時に薄膜に生じるクラックについて述べる。
【0013】
図1は、薄膜/基材系の材料を一方向に引っ張った時の説明図で、(a)は引っ張りが薄膜1の臨界ひずみ以下の場合、(b)は引っ張りが臨界ひずみ以上の場合である。薄膜1の引っぱり臨界ひずみまでは薄膜1、基材2とも同程度に延びるが、ひずみが薄膜1の臨界値に達すると、薄膜1のみに引っぱり方向に直角なクラックが生じる。さらに引っぱり続けると、薄膜/基材間の付着が残っていれば、界面でのずり応力を通して薄膜1は引っ張られ、さらなるクラック3が薄膜表面にほぼ均等に生じ、薄膜1は一方向に細長い短冊状要素が連続して並んだ状態となる。
【0014】
次に、導電性薄膜/フィルム(基板)状絶縁性基材の場合について述べる。一般的に導電性薄膜の引っ張り臨界ひずみの方がフィルム(基板)状絶縁性基材のそれよりも小さいので、上述したように一方向に引っ張ることにより導電性薄膜にクラックが生じ、薄膜は一方向に細長い短冊状要素の列となる。この時、短冊の長辺方向(引っ張り方向に直角)の抵抗は膜が破壊する前とほとんど変わらず低いままであるが、各短冊要素はクラックによって電気的に絶縁しているので、始めは等方的に導電性をもった導電性薄膜が、短辺方向(引っ張り方向)には抵抗値は大きなものとなる。従って、一方向に細長い短冊状要素の列は、多数本の線状の導電性薄膜の配線となる。
これにより、導電膜が形成された導電性薄膜付きフィルム(基板)は、短冊状要素に加工された多数本の導電性薄膜の配線を備える一方向透明導電性薄膜付きフィルム(基板)として作用するものであり、そのまま液晶ディスプレイなどをマトリックス駆動可能な電極となる。
【0015】
【実施例】
次に本発明に係わる、一方向透明導電性薄膜付きフィルム(板)とその製造方法の実施例を、図面を基にさらに詳細に説明する。
【0016】
<実施例1>
具体的な材料として、フィルム(板)状絶縁性基材に厚さ100μmのPETフィルムを、導電性薄膜としてITO薄膜を、巻取り製膜装置を用いて基材片面に全面一様に形成したものを試料として用いた。ITO薄膜の厚さは150nmであった。ITO膜の表面電気抵抗測定にはロレスタAP(三菱油化)を用いた。製膜した試料について表面電気抵抗測定をした結果、膜の面内方向でほば一定な300Ω/□という値を得た。
【0017】
次に、この試料を一方向引張り試験機にセットしITO薄膜にクラックが生じるまで引っ張った(約2.2%)。このときITO薄膜に生じたクラックを図2に示す。クラックによって、薄膜は一方向に細長い短冊状要素が並んだものとなっていることがわかる。つづいて、この試料を試験機から外して除荷し表面電気抵抗測定を通常の方法で行った。測定にはロレスタAP(三菱油化)を用いて、四端子方による抵抗値測定を行った。結果を図3に示す。図の横軸はクラックと四端子プローブとの角度のずれを示している。プローブとクラックが平行の時、ずれは0度である。縦軸は測定した抵抗値を、クラックを挟まない0度のときの抵抗値で規格化したものの、対数値である。クラック方向では初期抵抗値とあまり変わらないが、そこからわずかに角度がずれると急激な抵抗の増加を示しており、極めてシャープな一方向導電特性を持つことが分かる。しかしながら、このような鋭い一方向導電特性を持たせるためには材料の最終引張り率に注意を要する。すなわち、本実施例で用いたITO/PET系の場合、ITOには約1.0%でクラックが生じるが、この引張り率で試験機から外し除荷してしまうと、PETフィルムの弾性によりクラックが再び閉じて導電性が復活し、一方向導電特性はほぼ消えてしまう。つまり、除荷した後もクラックが閉じないよう、基材の降伏ひずみ以上に引っ張り、基材が塑性変形を起こすまで行うことが重要である。本実施例でもちいたPETフィルムの降伏ひずみは約2.0%であったため、上述したように、約2.2%まで引っ張った試料では、除荷後も鋭い一方向導電特性を保ち続けた。
【0018】
あるいは、他の理由により基材が降伏するまで引っ張らない場合は、透明導電性薄膜付きフィルム(板)材料を所望の値まで引っ張った後、引っ張った状態で薄膜の上にあらたに不導体のコーティングを行い、クラックを不導体で塞いでしまう、という方法が有効である。また、残留ひずみは大きいが、材料を引っ張ったままの状態でディスプレー電極として用いてもクラックは開口しているので一方向導電特性は保たれる。
【0019】
ところで上述したように、薄膜の破壊は、先ず、引張り方向に垂直なクラック状の破壊が多数生じる。さらに引張りを続けると、今度は引張り方向に平行な破壊が多数生ずる。図4にこれらの破壊の生じた状態を示す。
この破壊は、引張り方向に垂直な方向にはポアッソン効果によって薄膜、基材ともに圧縮される際、薄膜と基材ではポアッソン比が異なる(通常は(基材のボアッソン比)>(薄膜のボアッソン比))ために起こる圧縮破壊であり、本明細書中では、この破壊を、バックリング破壊と呼ぶ。
【0020】
材料をこの破壊が生じるまで引張ると、クラック4方向の高導電特性が失われてしまうため、最終引張り率は、パックリング破壊5が生じる以前に留めることが重要である。ちなみに、本実施例の材料の場合でも、初期バックリング破壊は、5%を越えた辺りから見られ、そのぐらいの高引っ張り状態になると、クラック方向の表面抵抗値の増加が見られた。
【0021】
尚、本実施例に用いた材質以外の材料についても、基材の破壊ひずみが薄膜のそれよりも大きい場合、本発明は有効である。また、基材の両面に導電性薄膜を形成し、クラックを生じさせ利用することも可能である。
【0022】
<実施例2>
次に、実施例1で作製した一方向導電フィルムを用いて液晶ディスプレイを作成した。図5はこのディスプレイを平面で表した概念図で、(a)は全体の平面概念図、(b)は部分拡大した平面概念図である。本発明に係る一方向性導電フイルム以外の部分については、図6や図7に示した従来の液晶ディスプレイと同じ構造で、又作成方法も同様である。
【0023】
まず、実施例1で得られた一方向性導電フィルムを上部電極用と下部電極用の2枚を用意した。その後駆動用上部電極8、下部電極7を設けた。電極7、8は、金属材料をフィルムに蒸着し、通常のフォトリソ技術によるパターニング、エッチング等により設けた。この時各電極間は1本以上のクラック(上部電極用)10、(下部電極用)9で電極間が電気的に絶縁されるように作成した。つぎに、液晶パネルを構成する2枚のガラス板(導電性なし)にこれらのフィルムをそれぞれ貼り付け、さらにこの2枚のガラス板を上部電極用を上側にし、それぞれ90度回転して貼り付けた。なお、このとき上下の各電極に接続されている短冊状の薄膜配線の交差部分が、表示マトリックス要素6となる。また、ガラスを張り付けるに際して、事前に通常の液晶パネルの作成方法と同様にして2ガラス間の内側に当たる側に配向膜形成、配向処理しておいた。つぎに、液晶封入等を実行し液晶パネルとした。これを実験用の簡易マトリクス駆動回路(64pixel*64pixel、36dpi)に接続しディスプレー表示を行った。その結果、液晶ディスプレーとして精度良く、良好なマトリクス駆動が見られ、本発明の有用性が確認された。
【0024】
【発明の効果】
本発明により、始めは等方的に導電性を持った導電性薄膜付きフィルム(板)を、エッチングなどの複雑な工程を使わず、単に一方向に引っ張ることにより、電気的に孤立した一方向に細長い短冊状要素の列に加工し、一方向(透明)導電性薄膜付きフィルム(板)を作製することが可能となる。
これにより、例えば、液晶ディスプレーを製造する際の工程が大幅に簡略化され、製造コストの大幅な低下が期待できる。
【図面の簡単な説明】
【図1】薄膜/基材系の材料を一方向引っ張りにより生じる薄膜クラックの説明図であり、(a)は引っ張りが薄膜の臨界ひずみ以下の場合の説明図、(b)は引っ張りが臨界ひずみ以上の場合の説明図。
【図2】ITO薄膜/PETフィルム試料を約2.2%引っ張った後、薄膜に生じたクラックの模様を表した平面図。
【図3】ITO/PET試料の2.2%引っ張り後の表面電気抵抗の面内異方性を表した特性図。
【図4】ITO薄膜に生じたバックリング破壊の模様を表した平面図。
【図5】一方向透明導電性薄膜付きフィルムによる液晶ディスプレイのマトリックス駆動例を示す概念図。
【図6】一般的な液晶ディスプレイの概念を断面で表す説明図。
【図7】一般的な液晶ディスプレイ電極とそのマトリックス駆動を表す説明図で、(a)は透明導電性薄膜と基板と液晶との相互関係を示す説明図、(b)はディスプレイマトリックス要素の相互関係を表す説明図。
【符号の説明】
1・・・薄膜
2・・・基材
3・・・クラック
4・・・クラック
5・・・バックリング破壊
6・・・表示マトリックス要素
7・・・駆動用下部電極
8・・・駆動用上部電極
9・・・下部電極用クラック
10・・・上部電極用クラック
20・・・透明導電性薄膜
21・・・ガラス板(プラスチックフィルム板)
22・・・液晶
[0001]
BACKGROUND OF THE INVENTION
The present invention relates generally to finely separated linear conductive thin film / substrate systems. The range of the thickness of the conductive thin film and the thickness of the substrate varies, but the present invention is not particularly limited by the thickness.
[0002]
[Prior art]
In recent years, conductive thin film materials have been widely used throughout the industry. In particular, the transparent conductive thin film material is used as an electrode for driving a matrix of a liquid crystal display or the like, and the demand is rapidly increasing. A cross section of a general liquid crystal display is shown in FIG. Usually, a transparent conductive thin film (hereinafter referred to as “conductive film” unless otherwise specified) 20 is formed on one side of each of two glass plates 21 sandwiching a liquid crystal 22 when used in a liquid crystal display. . Recently, a plastic plate (film) may be used instead of a glass plate to reduce the weight and flexibility of the display itself. Also in this case, the conductive film is formed on one side of each of the two plastic plates (films).
[0003]
However, when used as an electrode for driving a matrix of a display, an initially isotropic conductive film is electrically etched by very troublesome pattern etching and the like, as shown in FIG. Are processed into a series of isolated strip-shaped elements, and each element is connected to a drive circuit.
The processed conductive film (attached glass plate) is shifted by 90 degrees from each other as shown in FIG. When a voltage is applied to an arbitrary display matrix element (i, j), the voltage is applied to the i-th strip element on one side and the j-th element on the other side.
[0004]
In other words, since the conductive film is usually formed uniformly and electrically isotropically, when it is used as an electrode of a display, processing steps such as lithography and pattern etching for subdividing in one direction are required.
In fact, this process involves many processes such as masking and exposure to photo-curing resin for pattern formation before pattern etching, and each process requires high accuracy, and is often a problem in the manufacturing process. It has become.
[0005]
[Problems to be solved by the invention]
The present invention has been made paying attention to the above-mentioned problems, and the problem is that the conductive thin film can be connected to the adjacent wiring by a simple method without complicated processes such as lithography and etching. It is an object to provide a film with a conductive thin film having electrical insulation. According to the present invention, for example, a process for manufacturing a liquid crystal display is greatly simplified, and a significant reduction in manufacturing cost can be expected.
[0006]
[Means for Solving the Problems]
In order to solve the above-mentioned problems, the means provided by the present invention is as follows. First, in claim 1, a plurality of linear conductors formed on one side or both sides of a film-like insulating substrate and separated from each other by cracks. It is a film with a conductive thin film characterized by comprising a conductive thin film wiring and cracks in the conductive thin film being closed with a non-conductor .
[0007]
Moreover, in Claim 2, it is a film with an electroconductive thin film of Claim 1 whose fracture strain of the said film-like insulating base material is larger than the fracture strain of the said electroconductive thin film.
[0008]
According to a third aspect of the present invention, a conductive thin film is formed on one or both surfaces of a film-like insulating base material having a breaking strain larger than that of the conductive thin film, and the material is pulled in one direction. A large number of cracks perpendicular to the tensile direction are generated, and a plurality of linear conductive thin film wirings separated from each other are formed, and the pulling of the material is stopped at least within the time when the conductive thin film causes buckling failure. A method for producing a film with a conductive thin film characterized by maintaining unidirectional conductivity even after unloading .
[0009]
4. The film with a conductive thin film according to claim 3 , wherein the pulling of the material is performed at least until the base material undergoes plastic deformation, and the unidirectional conductivity is maintained even after unloading. It is a manufacturing method .
[0012]
DETAILED DESCRIPTION OF THE INVENTION
In the present invention, first, when the fracture strain of the base material is larger than that of the thin film in the material of the two-layer structure generally consisting of the thin film / base material, the crack generated in the thin film when the thin film / base material system is pulled in one direction Is described.
[0013]
FIGS. 1A and 1B are explanatory views when a thin film / base material is pulled in one direction. FIG. 1A shows a case where the tensile force is less than the critical strain of the thin film 1, and FIG. is there. The thin film 1 extends to the same extent as the thin film 1 and the substrate 2 up to the critical strain, but when the strain reaches the critical value of the thin film 1, only the thin film 1 has a crack perpendicular to the pulling direction. When the film is further pulled, if the adhesion between the thin film / substrate remains, the thin film 1 is pulled through the shear stress at the interface, and further cracks 3 are generated almost evenly on the thin film surface. It will be in the state where the shape elements were lined up continuously.
[0014]
Next, the case of a conductive thin film / film (substrate) insulating base material will be described. In general, the tensile critical strain of a conductive thin film is smaller than that of a film (substrate) -like insulating base material, so that the conductive thin film is cracked by pulling in one direction as described above. It becomes a row of strip-shaped elements elongated in the direction. At this time, the resistance in the long side direction of the strip (perpendicular to the pulling direction) remains almost the same as before the film breaks, but each strip element is electrically insulated by cracks, so at first, etc. A conductive thin film having conductivity in a lateral direction has a large resistance value in the short side direction (tensile direction). Therefore, the row of strip-shaped elements elongated in one direction becomes a wiring of a large number of linear conductive thin films.
Thereby, the film (substrate) with a conductive thin film on which the conductive film is formed acts as a film (substrate) with a unidirectional transparent conductive thin film including a plurality of conductive thin film wirings processed into strip-shaped elements. It becomes an electrode that can drive a liquid crystal display or the like as it is.
[0015]
【Example】
Next, examples of a film (plate) with a unidirectional transparent conductive thin film and a manufacturing method thereof according to the present invention will be described in more detail with reference to the drawings.
[0016]
<Example 1>
As a specific material, a PET film having a thickness of 100 μm was formed on a film (plate) -like insulating base material, an ITO thin film was formed as a conductive thin film, and the entire surface was uniformly formed on one side of the base material using a winding film forming apparatus. A sample was used as a sample. The thickness of the ITO thin film was 150 nm. Loresta AP (Mitsubishi Yuka) was used to measure the surface electrical resistance of the ITO film. As a result of measuring the surface electrical resistance of the film-formed sample, a value of 300Ω / □, which is almost constant in the in-plane direction of the film, was obtained.
[0017]
Next, this sample was set in a unidirectional tensile tester and pulled until a crack was generated in the ITO thin film (about 2.2%). The crack which arose in the ITO thin film at this time is shown in FIG. It can be seen that the thin film has elongated strips arranged in one direction due to the crack. Subsequently, the sample was removed from the testing machine and unloaded, and the surface electric resistance was measured by a normal method. For the measurement, a resistance value was measured with a four-terminal method using Loresta AP (Mitsubishi Yuka). The results are shown in FIG. The horizontal axis of the figure shows the angle deviation between the crack and the four-terminal probe. When the probe and the crack are parallel, the deviation is 0 degrees. The vertical axis represents the logarithmic value of the measured resistance value normalized by the resistance value at 0 degree with no cracks sandwiched. The initial resistance value in the crack direction is not much different from the initial resistance value, but when the angle is slightly deviated from the initial resistance value, an abrupt increase in resistance is shown, indicating that it has extremely sharp unidirectional conductivity characteristics. However, in order to have such a sharp unidirectional conductive characteristic, attention must be paid to the final tensile rate of the material. In other words, in the case of the ITO / PET system used in this example, cracks occur in ITO at about 1.0%, but if this is removed from the tester at this tensile rate and unloaded, cracks occur due to the elasticity of the PET film. Is closed again, the conductivity is restored, and the unidirectional conductivity is almost lost. That is, it is important to pull until the base material undergoes plastic deformation by pulling more than the yield strain of the base material so that the crack does not close after unloading. Since the yield strain of the PET film used in this example was about 2.0%, as described above, the sample pulled to about 2.2% continued to maintain sharp unidirectional conductivity characteristics after unloading. .
[0018]
Alternatively, if the substrate is not pulled until the substrate yields for other reasons, after the film (plate) material with the transparent conductive thin film is pulled to the desired value, the non-conductive coating is newly applied on the thin film in the pulled state. It is effective that the crack is closed with a nonconductor. In addition, although the residual strain is large, even if it is used as a display electrode in a state where the material is pulled, the crack is opened, so that the unidirectional conductivity characteristic is maintained.
[0019]
By the way, as described above, the thin film breaks first with many crack-like breaks perpendicular to the tensile direction. If the pulling is continued, many fractures parallel to the pulling direction occur. FIG. 4 shows the state in which these destructions occur.
When the thin film and the substrate are compressed by the Poisson effect in the direction perpendicular to the tensile direction, the Poisson's ratio differs between the thin film and the substrate (usually (Boisson ratio of the substrate)> (Boisson ratio of the thin film). )), And is referred to as buckling failure in this specification.
[0020]
If the material is pulled until this failure occurs, the high conductivity properties in the direction of the crack 4 are lost, so it is important that the final tensile rate remains before the pack ring failure 5 occurs. Incidentally, even in the case of the material of this example, the initial buckling fracture was seen from around 5%, and when it was in such a high tensile state, the surface resistance value in the crack direction was increased.
[0021]
It should be noted that the present invention is also effective for materials other than those used in the present embodiment when the fracture strain of the substrate is larger than that of the thin film. Moreover, it is also possible to form a conductive thin film on both surfaces of a base material and generate cracks for use.
[0022]
<Example 2>
Next, a liquid crystal display was produced using the unidirectional conductive film produced in Example 1. FIGS. 5A and 5B are conceptual diagrams showing the display in a plane. FIG. 5A is an overall plan conceptual diagram, and FIG. 5B is a partially enlarged plan conceptual diagram. The portions other than the unidirectional conductive film according to the present invention have the same structure as the conventional liquid crystal display shown in FIGS. 6 and 7, and the production method is the same.
[0023]
First, two unidirectional conductive films obtained in Example 1 were prepared for an upper electrode and a lower electrode. Thereafter, an upper electrode 8 for driving and a lower electrode 7 were provided. The electrodes 7 and 8 were provided by vapor-depositing a metal material on a film and patterning, etching, or the like using a normal photolithography technique. At this time, each electrode was created so that the electrodes were electrically insulated by one or more cracks (for upper electrode) 10 and (for lower electrode) 9. Next, these films are pasted on the two glass plates (no electrical conductivity) constituting the liquid crystal panel, and the two glass plates are placed on the upper electrode, and each is rotated 90 degrees and pasted. It was. At this time, the intersecting portion of the strip-shaped thin film wirings connected to the upper and lower electrodes becomes the display matrix element 6. In addition, when the glass is pasted, an alignment film is formed and aligned in advance on the side corresponding to the inner side between the two glasses in the same manner as a method for producing a normal liquid crystal panel. Next, liquid crystal sealing or the like was performed to obtain a liquid crystal panel. This was connected to an experimental simple matrix drive circuit (64 pixels * 64 pixels, 36 dpi) to perform display display. As a result, good matrix driving was observed with high accuracy as a liquid crystal display, and the usefulness of the present invention was confirmed.
[0024]
【The invention's effect】
According to the present invention, a film (plate) with a conductive thin film having isotropic conductivity at first is electrically isolated in one direction by simply pulling in one direction without using a complicated process such as etching. It is possible to produce a film (plate) with a unidirectional (transparent) conductive thin film by processing it into a row of elongated strip-like elements.
Thereby, for example, the process for manufacturing a liquid crystal display is greatly simplified, and a significant reduction in manufacturing cost can be expected.
[Brief description of the drawings]
BRIEF DESCRIPTION OF DRAWINGS FIG. 1 is an explanatory view of a thin film crack caused by unidirectional pulling of a thin film / base material, (a) is an explanatory view when the tensile force is equal to or lower than the critical strain of the thin film, and (b) is a tensile strain that is critical strain. Explanatory drawing in the above case.
FIG. 2 is a plan view showing a pattern of cracks generated in the thin film after the ITO thin film / PET film sample was pulled about 2.2%.
FIG. 3 is a characteristic diagram showing in-plane anisotropy of surface electrical resistance after pulling 2.2% of an ITO / PET sample.
FIG. 4 is a plan view showing a pattern of buckling breakage occurring in an ITO thin film.
FIG. 5 is a conceptual diagram showing an example of matrix driving of a liquid crystal display using a film with a unidirectional transparent conductive thin film.
FIG. 6 is an explanatory view showing the concept of a general liquid crystal display in section.
7A and 7B are explanatory diagrams showing a general liquid crystal display electrode and its matrix driving, in which FIG. 7A is an explanatory diagram showing the mutual relationship between the transparent conductive thin film, the substrate, and the liquid crystal, and FIG. Explanatory drawing showing a relationship.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... Thin film 2 ... Base material 3 ... Crack 4 ... Crack 5 ... Buckling destruction 6 ... Display matrix element 7 ... Lower electrode for drive 8 ... Upper part for drive Electrode 9 ... Lower electrode crack 10 ... Upper electrode crack 20 ... Transparent conductive thin film 21 ... Glass plate (plastic film plate)
22 ... Liquid crystal

Claims (4)

フィルム状絶縁性基材の片面もしくは両面に形成され、クラックによりお互いに分離された多数本の線状の導電性薄膜の配線を備えており、導電性薄膜のクラックが非導体で塞がれていることを特徴とする導電性薄膜付きフィルム。It is formed on one or both sides of a film-like insulating base material, and it has a large number of linear conductive thin-film wirings separated from each other by cracks. A film with a conductive thin film characterized by comprising: 前記フィルム状絶縁性基材の破壊ひずみが、前記導電性薄膜の破壊ひずみより大きい請求項1記載の導電性薄膜付きフィルム。The film with a conductive thin film according to claim 1, wherein a fracture strain of the film-like insulating substrate is larger than a fracture strain of the conductive thin film. 導電性薄膜を、破壊ひずみが該導電性薄膜の破壊ひずみよりも大きいフィルム状絶縁性基材の片面もしくは両面に形成して材料とし、該材料を一方向に引っ張り、引っ張り方向に垂直なクラックを多数生じさせ、お互いに分離された多数本の線状の導電性薄膜の配線を形成し、材料の引っ張りは少なくとも前記導電性薄膜がバックリング破壊が生じる以内に留め、除荷後も一方向導電性を保つことを特徴とする導電性薄膜付きフィルムの製造方法。A conductive thin film is formed on one or both sides of a film-like insulating base material whose fracture strain is larger than that of the conductive thin film, and the material is pulled in one direction, and a crack perpendicular to the tensile direction is formed. A large number of wires are formed , which are separated from each other to form a plurality of linear conductive thin-film wirings. The pulling of the material is stopped at least within the time when the conductive thin-film breaks down. The manufacturing method of the film with an electroconductive thin film characterized by maintaining property . 前記材料の引っ張りは少なくとも基材が塑性変形を起こすまで行い、除荷後も一方向導電性を保つことを特徴とする請求項に記載の導電性薄膜付きフィルムの製造方法。The method for producing a film with a conductive thin film according to claim 3 , wherein the pulling of the material is performed at least until the base material undergoes plastic deformation, and the unidirectional conductivity is maintained even after unloading.
JP06026999A 1999-03-08 1999-03-08 Film with conductive thin film and method for producing the same Expired - Fee Related JP4374642B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP06026999A JP4374642B2 (en) 1999-03-08 1999-03-08 Film with conductive thin film and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP06026999A JP4374642B2 (en) 1999-03-08 1999-03-08 Film with conductive thin film and method for producing the same

Publications (2)

Publication Number Publication Date
JP2000260231A JP2000260231A (en) 2000-09-22
JP4374642B2 true JP4374642B2 (en) 2009-12-02

Family

ID=13137261

Family Applications (1)

Application Number Title Priority Date Filing Date
JP06026999A Expired - Fee Related JP4374642B2 (en) 1999-03-08 1999-03-08 Film with conductive thin film and method for producing the same

Country Status (1)

Country Link
JP (1) JP4374642B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220181046A1 (en) * 2020-12-04 2022-06-09 Dongguan Ching Tai Electric Wire & Cable Co.,Ltd. Manufacturing method of a screening tape for an unshielded signal transmission cable

Also Published As

Publication number Publication date
JP2000260231A (en) 2000-09-22

Similar Documents

Publication Publication Date Title
Gong et al. Flexible strain sensor with high performance based on PANI/PDMS films
US11371961B2 (en) Method for assembling conductive particles into conductive pathways and sensors thus formed
Park et al. Mechanical stability of externally deformed indium–tin–oxide films on polymer substrates
US10203750B2 (en) Touch panel and a manufacturing method thereof
US9772523B2 (en) Display device
US5915285A (en) Transparent strain sensitive devices and method
JP2007511783A (en) Apparatus and method for manufacturing device having meander layer on flexible substrate
KR20000053387A (en) Liquid crystal display panel
US9233481B2 (en) Method of patterning electrically-conductive film on flexible substrates
TW201702835A (en) Pressure sensing touch panel
Shen et al. Study of indium tin oxide films deposited on colorless polyimide film by magnetron sputtering
US20060050194A1 (en) Display substrate and method of manufacturing the same
Jang et al. Stretchability of PMMA-supported CVD graphene and of its electrical contacts
JP4374642B2 (en) Film with conductive thin film and method for producing the same
US3134953A (en) Electric resistance devices
JP5605559B2 (en) High-sensitivity strain sensor consisting of nanofillers with metal surface treatment
CN112014007B (en) Array type flexible pressure sensor with high mechanical strength and preparation method thereof
CN111613130B (en) Display substrate, manufacturing method thereof and display panel
JP4131053B2 (en) Film with linear conductive thin film and method for producing the same
Hong et al. Ultra‐Stretchable Kirigami Piezo‐Metamaterials for Sensing Coupled Large Deformations
WO2008002140A1 (en) Improved common contact layout for flexible displays
CN108493329B (en) Electronic device, polarization system, electronic device module manufacturing method and electronic equipment
CN109817704A (en) A kind of thin film transistor and its manufacturing method, flexible base board and display device
TW201135314A (en) Touch sensing panel, touch display panel, and manufacturing method of touch sensing panel
JP2000162984A (en) Film with conductive thin film and its production

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060203

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090522

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A132

Effective date: 20090602

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090722

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090818

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090831

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120918

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120918

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130918

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees