JP2000260231A - Film with conductive thin film and its manufacture - Google Patents

Film with conductive thin film and its manufacture

Info

Publication number
JP2000260231A
JP2000260231A JP11060269A JP6026999A JP2000260231A JP 2000260231 A JP2000260231 A JP 2000260231A JP 11060269 A JP11060269 A JP 11060269A JP 6026999 A JP6026999 A JP 6026999A JP 2000260231 A JP2000260231 A JP 2000260231A
Authority
JP
Japan
Prior art keywords
thin film
film
conductive thin
cracks
base material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP11060269A
Other languages
Japanese (ja)
Other versions
JP4374642B2 (en
Inventor
Asaaki Yanaka
雅顕 谷中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toppan Inc
Original Assignee
Toppan Printing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toppan Printing Co Ltd filed Critical Toppan Printing Co Ltd
Priority to JP06026999A priority Critical patent/JP4374642B2/en
Publication of JP2000260231A publication Critical patent/JP2000260231A/en
Application granted granted Critical
Publication of JP4374642B2 publication Critical patent/JP4374642B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Liquid Crystal (AREA)
  • Non-Insulated Conductors (AREA)

Abstract

PROBLEM TO BE SOLVED: To manufacture a film without employing a complicated process such as lithography or etching, to remarkably simplify its process, and to reduce its manufacturing cost by providing multiple linear conductive film wiring patterns formed on one surface or both surfaces of a film-like insulating base material and separated from one another by cracks. SOLUTION: When a material having a thin film/base material structure is pulled in one direction, both the thin film 1 and the base material 2 extend to the same extent until the pulling reaches the tensile critical strain of the thin film 1, and when the strain due to the pulling reaches the critical value of the thin film 1, cracks 3 perpendicular to the pulling direction are produced in only the thin film 1. When the pulling is further continued, the thin film 1 is pulled through shearing stress on their interface, provided that the adhesion between the thin film and the base material remains, and more cracks 3 are produced almost evenly in the surface of the thin film, and the thin film 1 is brought into a form where elongated strip-like elements are continuously arranged, so that multiple linear conductive thin film wiring patterns are formed.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は微細に分離された線
状の導電性薄膜/基材系全般に関わる。導電性薄膜の膜
厚や基材の厚さの範囲には幅があるが、本発明において
は特に厚さによる適応制限は受けない。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a finely divided linear conductive thin film / substrate system in general. Although the range of the thickness of the conductive thin film and the thickness of the base material may vary, the present invention is not particularly limited by the thickness.

【0002】[0002]

【従来の技術】近年、導電性薄膜材料は産業のいたると
ころで広く使われている。特に透明導電性薄膜材料は、
液晶ディスプレイなどのマトリクス駆動のための電極と
して用いられ、需要が急激に高まってきている。一般的
な液晶ディスプレイの断面を図6に示した。通常、透明
導電性薄膜(以下、特にことわらない限り“導電膜”と
呼ぶ)20は、液晶ディスプレイに用いられる場合、液
晶22を挟み込んでいる2枚のガラス板21それぞれの
片面に形成される。また最近では、ディスプレイ自体の
軽量化、フレキシブル化のためガラス板の代わりにプラ
スチック板(フィルム)が使われる場合がある。この場
合も、導電膜はやはり、2枚のプラスチック板(フィル
ム)それぞれに片面に形成される。
2. Description of the Related Art In recent years, conductive thin film materials have been widely used throughout the industry. In particular, transparent conductive thin film materials
It is used as an electrode for driving a matrix of a liquid crystal display or the like, and the demand is rapidly increasing. FIG. 6 shows a cross section of a general liquid crystal display. In general, when used for a liquid crystal display, a transparent conductive thin film (hereinafter, referred to as a “conductive film”) 20 is formed on one surface of each of two glass plates 21 sandwiching a liquid crystal 22. . Recently, a plastic plate (film) may be used instead of a glass plate to reduce the weight and flexibility of the display itself. Also in this case, the conductive film is formed on one surface of each of the two plastic plates (films).

【0003】しかしながら、ディスプレイのマトリクス
駆動のための電極として用いるには、始め等方的な導電
膜は、非常に面倒なパターンエッチングなどにより、図
7(a)に示すように透明導電性薄膜20は電気的に孤
立した細長い短冊状要素の列に加工され、各要素は駆動
回路に接続される。加工を施された導電膜(付きガラス
板)は、図7(b)に示すように互いに90度ずらして
配置される。任意のディスプレイマトリクス要素(i,
j)に電圧を付加する場合、片面のi番目の短冊状要素
と他の片面のj番目の要素に電圧を付加させることによ
り行う。
However, to be used as an electrode for driving a matrix of a display, an isotropic conductive film is initially formed by a very troublesome pattern etching as shown in FIG. Are processed into a row of electrically isolated elongated strips, each connected to a drive circuit. The processed conductive films (the attached glass plates) are arranged so as to be shifted from each other by 90 degrees as shown in FIG. 7B. Any display matrix element (i,
When a voltage is applied to j), a voltage is applied to the i-th strip-shaped element on one side and the j-th element on the other side.

【0004】つまり通常、導電膜は均一かつ電気的に等
方的に作製されるため、これをディスプレイの電極とし
て用いる場合、一方向に細分化するためのリソグラフ
ィ、パターンエッチングなどの加工工程が必要となる。
実際、この加工にはパターンエッチング前に、パターン
形成のためマスキングや光硬化性樹脂への露光など付随
する工程も多く、かつそれぞれの工程に高い精度が要求
せられるため、製造工程でしばしば問題となっている。
That is, since a conductive film is usually formed uniformly and electrically isotropically, when it is used as an electrode of a display, processing steps such as lithography and pattern etching for subdividing it in one direction are required. Becomes
In fact, this process involves many ancillary processes such as masking and exposure to a photocurable resin for pattern formation before pattern etching, and each process requires high precision. Has become.

【0005】[0005]

【発明が解決しようとする課題】本発明は、以上の問題
点に着目してなされたものであり、その課題とするとこ
ろは導電性薄膜をリソグラフィ、エッチングなどの複雑
な工程を経ずに簡便な方法で隣り合った配線との電気的
絶縁性を有した導電性薄膜付きフィルムを提供すること
である。本発明により、例えば、液晶ディスプレイを製
造する際の工程が大幅に簡略化され、製造コストの大幅
な低下が期待できる。
SUMMARY OF THE INVENTION The present invention has been made in view of the above-mentioned problems, and an object of the present invention is to provide a method for forming a conductive thin film without a complicated process such as lithography and etching. An object of the present invention is to provide a film with a conductive thin film having electrical insulation between adjacent wirings by a simple method. According to the present invention, for example, a process for manufacturing a liquid crystal display is greatly simplified, and a significant reduction in manufacturing cost can be expected.

【0006】[0006]

【課題を解決するための手段】上記課題を解決するため
に本発明が提供する手段は、先ず請求項1においては、
フィルム状絶縁性基材の片面もしくは両面に形成され、
クラックによりお互いに分離された多数本の線状の導電
性薄膜の配線を備える導電性薄膜付きフィルムである。
Means provided by the present invention to solve the above problems are as follows.
Formed on one or both sides of a film-like insulating substrate,
This is a film with a conductive thin film provided with a plurality of linear conductive thin film wirings separated from each other by cracks.

【0007】又、請求項2においては、前記フィルム状
絶縁性基材の破壊ひずみが、前記導電性薄膜の破壊ひず
みより大きい請求項1記載の導電性薄膜付きフィルムで
ある。
According to a second aspect of the present invention, there is provided the film with a conductive thin film according to the first aspect, wherein the breaking strain of the film-like insulating substrate is larger than the breaking strain of the conductive thin film.

【0008】又、請求項3においては、前記導電性薄膜
のクラックが非導体で塞がれていることを特徴とする請
求項1又は請求項2に記載の導電性薄膜付きフィルムで
ある。
According to a third aspect of the present invention, there is provided the film with a conductive thin film according to the first or second aspect, wherein cracks in the conductive thin film are closed by a non-conductor.

【0009】又、請求項4においては、導電性薄膜を、
破壊ひずみが該導電性薄膜の破壊ひずみよりも大きいフ
ィルム状絶縁性基材の片面もしくは両面に形成して材料
とし、該材料を一方向に引っ張り、引っ張り方向に垂直
なクラックを多数生じさせ、お互いに分離された多数本
の線状の導電性薄膜の配線を形成することを特徴とする
導電性薄膜付きフィルムの製造方法である。
According to a fourth aspect of the present invention, the conductive thin film comprises:
A film is formed on one or both sides of a film-like insulating substrate having a breaking strain larger than the breaking strain of the conductive thin film to form a material, and the material is pulled in one direction to generate a number of cracks perpendicular to the pulling direction. A method for producing a film with a conductive thin film, comprising forming a plurality of linear conductive thin film wirings separated into a plurality of lines.

【0010】又、請求項5においては、前記材料の引っ
張りは少なくとも基材が塑性変形を起こすまで行い、除
荷後も一方向導電性を保つことを特徴とする請求項4に
記載の導電性薄膜付きフィルムの製造方法である。
According to a fifth aspect of the present invention, the material is pulled at least until the base material undergoes plastic deformation, and the one-way conductivity is maintained even after unloading. This is a method for producing a film with a thin film.

【0011】又、請求項6においては、前記材料の引っ
張りは少なくとも前記導電性薄膜がバックリング破壊が
生じる以内に留め、除荷後も一方向導電性を保つことを
特徴とする請求項4又は請求項5に記載の導電性薄膜付
きフィルムの製造方法である。
According to a sixth aspect of the present invention, the pulling of the material is stopped at least within the time that the conductive thin film causes a buckling breakdown, and the one-way conductivity is maintained even after unloading. A method for producing a film with a conductive thin film according to claim 5.

【0012】[0012]

【発明の実施の形態】本発明において、まず一般的に薄
膜/基材からなる2層構造の材料において基材の破壊ひ
ずみが薄膜のそれよりも大きい場合、薄膜/基材系を一
方向に引っ張った時に薄膜に生じるクラックについて述
べる。
DESCRIPTION OF THE PREFERRED EMBODIMENTS In the present invention, in general, when a material having a two-layer structure composed of a thin film / substrate has a larger strain than that of a thin film, the thin film / substrate system is moved in one direction. The crack that occurs in the thin film when pulled is described.

【0013】図1は、薄膜/基材系の材料を一方向に引
っ張った時の説明図で、(a)は引っ張りが薄膜1の臨
界ひずみ以下の場合、(b)は引っ張りが臨界ひずみ以
上の場合である。薄膜1の引っぱり臨界ひずみまでは薄
膜1、基材2とも同程度に延びるが、ひずみが薄膜1の
臨界値に達すると、薄膜1のみに引っぱり方向に直角な
クラックが生じる。さらに引っぱり続けると、薄膜/基
材間の付着が残っていれば、界面でのずり応力を通して
薄膜1は引っ張られ、さらなるクラック3が薄膜表面に
ほぼ均等に生じ、薄膜1は一方向に細長い短冊状要素が
連続して並んだ状態となる。
FIGS. 1A and 1B are explanatory diagrams when a thin film / substrate material is pulled in one direction. FIG. 1A shows a case where the tension is equal to or less than the critical strain of the thin film 1, and FIG. Is the case. Both the thin film 1 and the base material 2 extend to the same degree as the tensile strain of the thin film 1, but when the strain reaches the critical value of the thin film 1, cracks are generated only in the thin film 1 at right angles to the pulling direction. When the film is further pulled, if the adhesion between the thin film and the substrate remains, the thin film 1 is pulled through the shear stress at the interface, further cracks 3 are generated almost uniformly on the thin film surface, and the thin film 1 is elongated in one direction. The shape elements are continuously arranged.

【0014】次に、導電性薄膜/フィルム(基板)状絶
縁性基材の場合について述べる。一般的に導電性薄膜の
引っ張り臨界ひずみの方がフィルム(基板)状絶縁性基
材のそれよりも小さいので、上述したように一方向に引
っ張ることにより導電性薄膜にクラックが生じ、薄膜は
一方向に細長い短冊状要素の列となる。この時、短冊の
長辺方向(引っ張り方向に直角)の抵抗は膜が破壊する
前とほとんど変わらず低いままであるが、各短冊要素は
クラックによって電気的に絶縁しているので、始めは等
方的に導電性をもった導電性薄膜が、短辺方向(引っ張
り方向)には抵抗値は大きなものとなる。従って、一方
向に細長い短冊状要素の列は、多数本の線状の導電性薄
膜の配線となる。これにより、導電膜が形成された導電
性薄膜付きフィルム(基板)は、短冊状要素に加工され
た多数本の導電性薄膜の配線を備える一方向透明導電性
薄膜付きフィルム(基板)として作用するものであり、
そのまま液晶ディスプレイなどをマトリックス駆動可能
な電極となる。
Next, the case of a conductive thin film / film (substrate) -like insulating substrate will be described. In general, the critical tensile strain of a conductive thin film is smaller than that of a film (substrate) -like insulating base material. A row of strip-shaped elements elongated in the direction. At this time, the resistance in the long side direction (perpendicular to the pulling direction) of the strip remains almost the same as before the film was destroyed, but since each strip element is electrically insulated by cracks, the resistance is initially low. A conductive thin film having an anisotropic conductivity has a large resistance value in a short side direction (tensile direction). Therefore, a row of strip-shaped elements elongated in one direction becomes wiring of a large number of linear conductive thin films. Thereby, the film (substrate) with a conductive thin film on which the conductive film is formed acts as a film (substrate) with a unidirectional transparent conductive thin film provided with a plurality of conductive thin film wirings processed into strip-shaped elements. Things,
It becomes an electrode that can directly drive a liquid crystal display or the like in a matrix.

【0015】[0015]

【実施例】次に本発明に係わる、一方向透明導電性薄膜
付きフィルム(板)とその製造方法の実施例を、図面を
基にさらに詳細に説明する。
Next, examples of a film (plate) with a one-way transparent conductive thin film and a method of manufacturing the same according to the present invention will be described in more detail with reference to the drawings.

【0016】<実施例1>具体的な材料として、フィル
ム(板)状絶縁性基材に厚さ100μmのPETフィル
ムを、導電性薄膜としてITO薄膜を、巻取り製膜装置
を用いて基材片面に全面一様に形成したものを試料とし
て用いた。ITO薄膜の厚さは150nmであった。I
TO膜の表面電気抵抗測定にはロレスタAP(三菱油
化)を用いた。製膜した試料について表面電気抵抗測定
をした結果、膜の面内方向でほば一定な300Ω/□と
いう値を得た。
<Example 1> As a specific material, a PET (film) having a thickness of 100 μm was used as a film (plate) -like insulating base material, an ITO thin film was used as a conductive thin film, and the base material was formed using a winding film forming apparatus. A sample uniformly formed on one side was used as a sample. The thickness of the ITO thin film was 150 nm. I
Loresta AP (Mitsubishi Yuka) was used to measure the surface electric resistance of the TO film. As a result of measuring the surface electric resistance of the formed sample, a substantially constant value of 300Ω / □ was obtained in the in-plane direction of the film.

【0017】次に、この試料を一方向引張り試験機にセ
ットしITO薄膜にクラックが生じるまで引っ張った
(約2.2%)。このときITO薄膜に生じたクラック
を図2に示す。クラックによって、薄膜は一方向に細長
い短冊状要素が並んだものとなっていることがわかる。
つづいて、この試料を試験機から外して除荷し表面電気
抵抗測定を通常の方法で行った。測定にはロレスタAP
(三菱油化)を用いて、四端子方による抵抗値測定を行
った。結果を図3に示す。図の横軸はクラックと四端子
プローブとの角度のずれを示している。プローブとクラ
ックが平行の時、ずれは0度である。縦軸は測定した抵
抗値を、クラックを挟まない0度のときの抵抗値で規格
化したものの、対数値である。クラック方向では初期抵
抗値とあまり変わらないが、そこからわずかに角度がず
れると急激な抵抗の増加を示しており、極めてシャープ
な一方向導電特性を持つことが分かる。しかしながら、
このような鋭い一方向導電特性を持たせるためには材料
の最終引張り率に注意を要する。すなわち、本実施例で
用いたITO/PET系の場合、ITOには約1.0%
でクラックが生じるが、この引張り率で試験機から外し
除荷してしまうと、PETフィルムの弾性によりクラッ
クが再び閉じて導電性が復活し、一方向導電特性はほぼ
消えてしまう。つまり、除荷した後もクラックが閉じな
いよう、基材の降伏ひずみ以上に引っ張り、基材が塑性
変形を起こすまで行うことが重要である。本実施例でも
ちいたPETフィルムの降伏ひずみは約2.0%であっ
たため、上述したように、約2.2%まで引っ張った試
料では、除荷後も鋭い一方向導電特性を保ち続けた。
Next, the sample was set in a unidirectional tensile tester and pulled until a crack occurred in the ITO thin film (about 2.2%). FIG. 2 shows cracks generated in the ITO thin film at this time. It can be seen that the thin film is formed by arranging elongated strip-shaped elements in one direction due to cracks.
Subsequently, the sample was removed from the tester and unloaded, and the surface electric resistance was measured by a usual method. Loresta AP for measurement
(Mitsubishi Yuka) was used to measure the resistance value of the four terminals. The results are shown in FIG. The horizontal axis in the figure shows the deviation of the angle between the crack and the four-terminal probe. When the probe and the crack are parallel, the deviation is 0 degree. The vertical axis is a logarithmic value obtained by normalizing the measured resistance value with the resistance value at 0 degree without cracks. In the crack direction, the resistance value is not much different from the initial resistance value, but when the angle is slightly deviated therefrom, a sharp increase in resistance is shown, indicating that it has an extremely sharp one-way conductive characteristic. However,
In order to have such a sharp one-way conductive property, attention must be paid to the final tensile rate of the material. That is, in the case of the ITO / PET system used in this embodiment, about 1.0%
However, if the load is removed from the testing machine at this tensile rate and the load is removed, the crack is closed again due to the elasticity of the PET film, the conductivity is restored, and the one-way conductive property almost disappears. In other words, it is important that the substrate be pulled beyond the yield strain of the substrate so that the crack is not closed even after unloading, and the process is performed until the substrate undergoes plastic deformation. Since the yield strain of the PET film used in this example was about 2.0%, as described above, the sample pulled to about 2.2% maintained sharp one-way conductive properties even after unloading. .

【0018】あるいは、他の理由により基材が降伏する
まで引っ張らない場合は、透明導電性薄膜付きフィルム
(板)材料を所望の値まで引っ張った後、引っ張った状
態で薄膜の上にあらたに不導体のコーティングを行い、
クラックを不導体で塞いでしまう、という方法が有効で
ある。また、残留ひずみは大きいが、材料を引っ張った
ままの状態でディスプレー電極として用いてもクラック
は開口しているので一方向導電特性は保たれる。
Alternatively, when the substrate is not pulled until the substrate yields for other reasons, the film (plate) material with a transparent conductive thin film is pulled to a desired value, and then the film is not renewed on the thin film in the pulled state. Conductor coating,
A method of closing a crack with a nonconductor is effective. Further, although the residual strain is large, even when the material is used as a display electrode while being pulled, the crack is opened, so that the one-way conductive property is maintained.

【0019】ところで上述したように、薄膜の破壊は、
先ず、引張り方向に垂直なクラック状の破壊が多数生じ
る。さらに引張りを続けると、今度は引張り方向に平行
な破壊が多数生ずる。図4にこれらの破壊の生じた状態
を示す。この破壊は、引張り方向に垂直な方向にはポア
ッソン効果によって薄膜、基材ともに圧縮される際、薄
膜と基材ではポアッソン比が異なる(通常は(基材のボ
アッソン比)>(薄膜のボアッソン比))ために起こる
圧縮破壊であり、本明細書中では、この破壊を、バック
リング破壊と呼ぶ。
As described above, the destruction of the thin film is as follows.
First, many crack-like fractures perpendicular to the tensile direction occur. When the tension is further continued, a large number of fractures are generated in parallel with the tensile direction. FIG. 4 shows a state in which these destructions have occurred. When the thin film and the base material are compressed by the Poisson effect in a direction perpendicular to the tensile direction, the thin film and the base material have different Poisson's ratios. )), And is referred to herein as buckling failure.

【0020】材料をこの破壊が生じるまで引張ると、ク
ラック4方向の高導電特性が失われてしまうため、最終
引張り率は、パックリング破壊5が生じる以前に留める
ことが重要である。ちなみに、本実施例の材料の場合で
も、初期バックリング破壊は、5%を越えた辺りから見
られ、そのぐらいの高引っ張り状態になると、クラック
方向の表面抵抗値の増加が見られた。
It is important to keep the final tensile ratio before the pack ring failure 5 because if the material is pulled until this failure occurs, the high conductivity properties in the direction of the crack 4 will be lost. Incidentally, even in the case of the material of this example, the initial buckling failure was observed at around 5% or more, and when the high tensile state was reached, an increase in the surface resistance in the crack direction was observed.

【0021】尚、本実施例に用いた材質以外の材料につ
いても、基材の破壊ひずみが薄膜のそれよりも大きい場
合、本発明は有効である。また、基材の両面に導電性薄
膜を形成し、クラックを生じさせ利用することも可能で
ある。
The present invention is also effective for materials other than the materials used in the present embodiment when the breaking strain of the substrate is larger than that of the thin film. It is also possible to form a conductive thin film on both surfaces of the base material to generate cracks and use them.

【0022】<実施例2>次に、実施例1で作製した一
方向導電フィルムを用いて液晶ディスプレイを作成し
た。図5はこのディスプレイを平面で表した概念図で、
(a)は全体の平面概念図、(b)は部分拡大した平面
概念図である。本発明に係る一方向性導電フイルム以外
の部分については、図6や図7に示した従来の液晶ディ
スプレイと同じ構造で、又作成方法も同様である。
Example 2 Next, a liquid crystal display was produced using the one-way conductive film produced in Example 1. FIG. 5 is a conceptual diagram showing the display in a plane.
(A) is a conceptual plan view of the whole, and (b) is a conceptual plan view partially enlarged. Portions other than the unidirectional conductive film according to the present invention have the same structure as the conventional liquid crystal display shown in FIGS. 6 and 7, and the manufacturing method is also the same.

【0023】まず、実施例1で得られた一方向性導電フ
ィルムを上部電極用と下部電極用の2枚を用意した。そ
の後駆動用上部電極8、下部電極7を設けた。電極7、
8は、金属材料をフィルムに蒸着し、通常のフォトリソ
技術によるパターニング、エッチング等により設けた。
この時各電極間は1本以上のクラック(上部電極用)1
0、(下部電極用)9で電極間が電気的に絶縁されるよ
うに作成した。つぎに、液晶パネルを構成する2枚のガ
ラス板(導電性なし)にこれらのフィルムをそれぞれ貼
り付け、さらにこの2枚のガラス板を上部電極用を上側
にし、それぞれ90度回転して貼り付けた。なお、この
とき上下の各電極に接続されている短冊状の薄膜配線の
交差部分が、表示マトリックス要素6となる。また、ガ
ラスを張り付けるに際して、事前に通常の液晶パネルの
作成方法と同様にして2ガラス間の内側に当たる側に配
向膜形成、配向処理しておいた。つぎに、液晶封入等を
実行し液晶パネルとした。これを実験用の簡易マトリク
ス駆動回路(64pixel*64pixel、36d
pi)に接続しディスプレー表示を行った。その結果、
液晶ディスプレーとして精度良く、良好なマトリクス駆
動が見られ、本発明の有用性が確認された。
First, two unidirectional conductive films obtained in Example 1 were prepared for an upper electrode and a lower electrode. Thereafter, a driving upper electrode 8 and a lower electrode 7 were provided. Electrode 7,
In No. 8, a metal material was vapor-deposited on a film and provided by patterning, etching, or the like using a normal photolithography technique.
At this time, one or more cracks (for the upper electrode) 1
0 (for the lower electrode) 9 was prepared so that the electrodes were electrically insulated. Next, these films were attached to two glass plates (without conductivity) constituting a liquid crystal panel, respectively, and further, these two glass plates were attached by rotating them by 90 degrees with the upper electrode side facing upward. Was. At this time, the intersection of the strip-shaped thin film wires connected to the upper and lower electrodes becomes the display matrix element 6. Further, when attaching the glass, an alignment film was formed and aligned on the side corresponding to the inside between the two glasses in advance in the same manner as in a normal liquid crystal panel production method. Next, liquid crystal sealing and the like were performed to obtain a liquid crystal panel. This is converted to a simple matrix drive circuit for experiments (64 pixels * 64 pixels, 36d
pi) and the display was displayed. as a result,
A good matrix drive was observed with high precision as a liquid crystal display, confirming the usefulness of the present invention.

【0024】[0024]

【発明の効果】本発明により、始めは等方的に導電性を
持った導電性薄膜付きフィルム(板)を、エッチングな
どの複雑な工程を使わず、単に一方向に引っ張ることに
より、電気的に孤立した一方向に細長い短冊状要素の列
に加工し、一方向(透明)導電性薄膜付きフィルム
(板)を作製することが可能となる。これにより、例え
ば、液晶ディスプレーを製造する際の工程が大幅に簡略
化され、製造コストの大幅な低下が期待できる。
According to the present invention, a film (plate) with a conductive thin film having isotropic conductivity at first is simply pulled in one direction without using a complicated process such as etching, and thus, the electrical conductivity is reduced. It is possible to produce a film (plate) with a unidirectional (transparent) conductive thin film by processing it into a row of strip-shaped elements that are elongated in one direction and isolated in one direction. This greatly simplifies the process of manufacturing a liquid crystal display, for example, and can greatly reduce manufacturing costs.

【図面の簡単な説明】[Brief description of the drawings]

【図1】薄膜/基材系の材料を一方向引っ張りにより生
じる薄膜クラックの説明図であり、(a)は引っ張りが
薄膜の臨界ひずみ以下の場合の説明図、(b)は引っ張
りが臨界ひずみ以上の場合の説明図。
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is an explanatory diagram of a thin film crack generated by unidirectional stretching of a thin film / substrate system material, (a) is an explanatory diagram when the tensile is equal to or less than the critical strain of the thin film, and (b) is a critical strain of the thin film. FIG.

【図2】ITO薄膜/PETフィルム試料を約2.2%
引っ張った後、薄膜に生じたクラックの模様を表した平
面図。
FIG. 2: About 2.2% of ITO thin film / PET film sample
The top view showing the pattern of the crack which arose in the thin film after pulling.

【図3】ITO/PET試料の2.2%引っ張り後の表
面電気抵抗の面内異方性を表した特性図。
FIG. 3 is a characteristic diagram showing in-plane anisotropy of surface electric resistance of an ITO / PET sample after being pulled by 2.2%.

【図4】ITO薄膜に生じたバックリング破壊の模様を
表した平面図。
FIG. 4 is a plan view showing a pattern of buckling destruction generated in the ITO thin film.

【図5】一方向透明導電性薄膜付きフィルムによる液晶
ディスプレイのマトリックス駆動例を示す概念図。
FIG. 5 is a conceptual diagram showing an example of matrix driving of a liquid crystal display using a film with a unidirectional transparent conductive thin film.

【図6】一般的な液晶ディスプレイの概念を断面で表す
説明図。
FIG. 6 is an explanatory diagram showing a concept of a general liquid crystal display in a cross section.

【図7】一般的な液晶ディスプレイ電極とそのマトリッ
クス駆動を表す説明図で、(a)は透明導電性薄膜と基
板と液晶との相互関係を示す説明図、(b)はディスプ
レイマトリックス要素の相互関係を表す説明図。
7A and 7B are explanatory diagrams showing general liquid crystal display electrodes and matrix driving thereof, wherein FIG. 7A is an explanatory diagram showing the relationship between a transparent conductive thin film, a substrate and liquid crystal, and FIG. Explanatory drawing showing a relationship.

【符号の説明】[Explanation of symbols]

1・・・薄膜 2・・・基材 3・・・クラック 4・・・クラック 5・・・バックリング破壊 6・・・表示マトリックス要素 7・・・駆動用下部電極 8・・・駆動用上部電極 9・・・下部電極用クラック 10・・・上部電極用クラック 20・・・透明導電性薄膜 21・・・ガラス板(プラスチックフィルム板) 22・・・液晶 DESCRIPTION OF SYMBOLS 1 ... Thin film 2 ... Base material 3 ... Crack 4 ... Crack 5 ... Buckling destruction 6 ... Display matrix element 7 ... Lower electrode for driving 8 ... Upper part for driving Electrode 9 Crack for lower electrode 10 Crack for upper electrode 20 Transparent conductive thin film 21 Glass plate (plastic film plate) 22 Liquid crystal

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】フィルム状絶縁性基材の片面もしくは両面
に形成され、クラックによりお互いに分離された多数本
の線状の導電性薄膜の配線を備える導電性薄膜付きフィ
ルム。
1. A film with a conductive thin film formed on one or both surfaces of a film-like insulating substrate and provided with a plurality of linear conductive thin film wirings separated from each other by cracks.
【請求項2】前記フィルム状絶縁性基材の破壊ひずみ
が、前記導電性薄膜の破壊ひずみより大きい請求項1記
載の導電性薄膜付きフィルム。
2. The film with a conductive thin film according to claim 1, wherein the breaking strain of the film-like insulating substrate is larger than the breaking strain of the conductive thin film.
【請求項3】前記導電性薄膜のクラックが非導体で塞が
れていることを特徴とする請求項1又は請求項2に記載
の導電性薄膜付きフィルム。
3. The film with a conductive thin film according to claim 1, wherein cracks in the conductive thin film are closed by a non-conductor.
【請求項4】導電性薄膜を、破壊ひずみが該導電性薄膜
の破壊ひずみよりも大きいフィルム状絶縁性基材の片面
もしくは両面に形成して材料とし、該材料を一方向に引
っ張り、引っ張り方向に垂直なクラックを多数生じさ
せ、お互いに分離された多数本の線状の導電性薄膜の配
線を形成することを特徴とする導電性薄膜付きフィルム
の製造方法。
4. A conductive thin film is formed on one or both sides of a film-like insulating base material having a breaking strain larger than the breaking strain of the conductive thin film, and the material is pulled in one direction. A method for producing a film with a conductive thin film, characterized in that a large number of cracks perpendicular to the thin film are generated, and a large number of linear conductive thin film wirings separated from each other are formed.
【請求項5】前記材料の引っ張りは少なくとも基材が塑
性変形を起こすまで行い、除荷後も一方向導電性を保つ
ことを特徴とする請求項4に記載の導電性薄膜付きフィ
ルムの製造方法。
5. The method for producing a film with a conductive thin film according to claim 4, wherein the stretching of the material is performed at least until the substrate undergoes plastic deformation, and the unidirectional conductivity is maintained even after unloading. .
【請求項6】前記材料の引っ張りは少なくとも前記導電
性薄膜がバックリング破壊が生じる以内に留め、除荷後
も一方向導電性を保つことを特徴とする請求項4又は請
求項5に記載の導電性薄膜付きフィルムの製造方法。
6. The method according to claim 4, wherein the pulling of the material is stopped at least within the time that the conductive thin film causes buckling breakage, and the unidirectional conductivity is maintained even after unloading. A method for producing a film with a conductive thin film.
JP06026999A 1999-03-08 1999-03-08 Film with conductive thin film and method for producing the same Expired - Fee Related JP4374642B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP06026999A JP4374642B2 (en) 1999-03-08 1999-03-08 Film with conductive thin film and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP06026999A JP4374642B2 (en) 1999-03-08 1999-03-08 Film with conductive thin film and method for producing the same

Publications (2)

Publication Number Publication Date
JP2000260231A true JP2000260231A (en) 2000-09-22
JP4374642B2 JP4374642B2 (en) 2009-12-02

Family

ID=13137261

Family Applications (1)

Application Number Title Priority Date Filing Date
JP06026999A Expired - Fee Related JP4374642B2 (en) 1999-03-08 1999-03-08 Film with conductive thin film and method for producing the same

Country Status (1)

Country Link
JP (1) JP4374642B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113035441A (en) * 2020-12-04 2021-06-25 东莞庆泰电线电缆有限公司 Filter band and manufacturing method thereof and unshielded signal transmission line

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113035441A (en) * 2020-12-04 2021-06-25 东莞庆泰电线电缆有限公司 Filter band and manufacturing method thereof and unshielded signal transmission line

Also Published As

Publication number Publication date
JP4374642B2 (en) 2009-12-02

Similar Documents

Publication Publication Date Title
Park et al. Mechanical stability of externally deformed indium–tin–oxide films on polymer substrates
TWI289715B (en) In-plane switching type liquid crystal display panel with wide column spacers for keeping gap constant and process for fabrication thereof
KR20000053387A (en) Liquid crystal display panel
CN106783880A (en) A kind of flexible display panels and its manufacture craft
TW487897B (en) Liquid crystal display panel and method of manufacturing the same
US20060050194A1 (en) Display substrate and method of manufacturing the same
TW594337B (en) Method of forming a liquid crystal display panel
US8830412B2 (en) Substrate and manufacturing method of panel display device and corresponding liquid crystal display panel
JP4374642B2 (en) Film with conductive thin film and method for producing the same
CN112014007B (en) Array type flexible pressure sensor with high mechanical strength and preparation method thereof
CN103926773A (en) Array substrate, liquid crystal display panel and display device
Hong et al. Ultra‐Stretchable Kirigami Piezo‐Metamaterials for Sensing Coupled Large Deformations
JPH0483227A (en) Liquid crystal display element and its manufacture
JP4131053B2 (en) Film with linear conductive thin film and method for producing the same
JP2001021447A (en) Probe block for inspecting liquid crystal display device, and its manufacture
US20210333914A1 (en) Flexible touch screen structure and manufacturing method thereof
JP2000162984A (en) Film with conductive thin film and its production
TW201135314A (en) Touch sensing panel, touch display panel, and manufacturing method of touch sensing panel
JPH0394223A (en) Manufacture of active matrix display device
US11886070B2 (en) Display panel and method of manufacturing the display panel
US20220045104A1 (en) Display panel, display device, and display system
CN208818981U (en) Full view liquid crystal display panel
KR101010470B1 (en) Array substrate for LCD
JP3982055B2 (en) Film-shaped flat cable and manufacturing method thereof
US20050121797A1 (en) Configuration for testing the bonding positions of conductive drops and test method for using the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060203

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090522

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A132

Effective date: 20090602

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090722

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090818

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090831

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120918

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120918

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130918

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees