JP4373687B2 - 濃度測定装置 - Google Patents

濃度測定装置 Download PDF

Info

Publication number
JP4373687B2
JP4373687B2 JP2003051778A JP2003051778A JP4373687B2 JP 4373687 B2 JP4373687 B2 JP 4373687B2 JP 2003051778 A JP2003051778 A JP 2003051778A JP 2003051778 A JP2003051778 A JP 2003051778A JP 4373687 B2 JP4373687 B2 JP 4373687B2
Authority
JP
Japan
Prior art keywords
light
light emitting
emitting means
incident
light detection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003051778A
Other languages
English (en)
Other versions
JP2004255075A (ja
Inventor
進 鈴木
幸雄 小林
鈴木  剛
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hamamatsu Photonics KK
Original Assignee
Hamamatsu Photonics KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hamamatsu Photonics KK filed Critical Hamamatsu Photonics KK
Priority to JP2003051778A priority Critical patent/JP4373687B2/ja
Publication of JP2004255075A publication Critical patent/JP2004255075A/ja
Application granted granted Critical
Publication of JP4373687B2 publication Critical patent/JP4373687B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Investigating Or Analysing Materials By Optical Means (AREA)
  • Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、散乱吸収体内での被測定成分の濃度情報を非侵襲的に測定する濃度測定装置に関する。
【0002】
【従来の技術】
散乱吸収体内での被測定成分の濃度情報を非侵襲的に測定する測定方法として、被測定成分の光吸収特性を利用して濃度情報を得る近赤外分光法などの分光法がある。この測定方法においては、近赤外光などの光を散乱吸収体に入射して、その内部を伝搬させ、出射された光の強度を検出し、その検出結果から散乱吸収体の濃度情報を得る。
【0003】
このような分光法の1つに、空間分解分光法(SRS:Spacially Resolved Spectroscopy)がある。SRSでは、散乱吸収体上の1つの光入射位置から入射された光を、該光入射位置からの距離が互いに異なる複数の光検出位置において検出する。または、1つの光検出位置からの距離が互いに異なる複数の光入射位置から入射された光を該光検出位置において検出する。そして、光入射位置と光検出位置との間の距離が互いに異なる複数の検出結果に基づいて、被測定成分の濃度に比例した値や酸素飽和度を求める。SRSは、他の分光法であるTRS(Time Resolved Spectroscopy)やPRS(Photo Reflectance Spectroscopy)に比べて、被測定成分濃度の定量的な測定をより簡易に実施できる方法として広く利用されている。
【0004】
一方、1つの光入射位置から入射された光を1つの光検出位置において検出することにより、光入射位置及び光検出位置の近傍における被測定成分濃度の時間的な相対変化を測定する方法がある。この方法はSRSに比べて測定結果の定量性に劣るが、散乱吸収体上に光入射位置及び光検出位置のうち少なくとも一方を多数配置することにより、散乱吸収体全体のうちどの部分の被測定成分濃度が時間変化しているかを測定することができる。この方法を用いて散乱吸収体全体における測定対象領域を最初に決定し、以後は該測定対象領域をSRSにより測定すれば、測定対象領域における被測定成分濃度を効率的に測定することができる。
【0005】
なお、被測定成分濃度の時間的な相対変化を測定する方法とSRSとを1つの装置を用いて実施するものとして、例えば特許文献1に開示された生体計測装置がある。この生体計測装置は、濃度の時間的な相対変化を測定する、または濃度に比例した値を測定するといった測定目的に応じた複数種のプローブを接続する共通の接続端子を備えている。また、接続端子は、プローブの測定端の個数と受光部(光検出位置)の個数とを積算した数のチャンネル数をもつ信号処理チャンネルを有している。
【0006】
【特許文献1】
特開平10−127612号公報
【0007】
【発明が解決しようとする課題】
測定対象領域を決定するために被測定成分濃度の時間的な相対変化を測定する場合、上記したように散乱吸収体上に光入射位置及び光検出位置のうち少なくとも一方を多数配置する。しかしながら、例えば特許文献1の生体測定装置のような構成においては、信号処理チャンネルが、プローブの測定端の個数と受光部(光検出位置)の個数とを積算した数のチャンネルを有している。従って、光検出位置を散乱吸収体上に多数配置する場合には、チャンネル数が例えば40以上と多くなり、装置が大型化する一因となる。
【0008】
また、測定対象領域を決定するのは初回の測定だけで、以後は少ないチャンネル数でのSRSにより測定対象領域内を測定するような場合、濃度測定装置が有するチャンネルのうち多くのチャンネルが2回目の測定以降には使用されないこととなる。従って、濃度測定装置を小型化するために、チャンネルを効率よく使用できる濃度測定装置が望まれている。
【0009】
本発明は、以上の問題点を解決するためになされたものであり、チャンネルを効率よく使用できる濃度測定装置を提供することを目的とする。
【0010】
【課題を解決するための手段】
本発明による濃度測定装置は、散乱吸収体内での被測定成分の濃度情報を非侵襲的に測定する濃度測定装置において、(a)散乱吸収体内部を伝搬した所定波長の光を所定の光検出位置から出射する複数の光出射手段を各々含む第1及び第2の光出射手段群と、(b)第1及び第2の光出射手段群のそれぞれに対応し、散乱吸収体に対して互いに異なる所定の光入射位置のそれぞれから所定波長の光を交互に入射する第1及び第2の光入射手段と、(c)第1及び第2の光出射手段群の各光出射手段に光学的に結合されており、各光出射手段を介して出射された所定波長の光の強度に基づいて複数の光検出信号を生成する信号生成手段と、(d)信号生成手段からの複数の光検出信号を入力する複数のチャンネル、及び複数の光検出信号に基づいて被測定成分の濃度情報を演算する演算手段を有する本体部と、(e)第1の光出射手段群に対応する複数の入力端子、及び第2の光出射手段群に対応する複数の入力端子と、複数のチャンネルのそれぞれと電気的に接続された複数の出力端子とを有し、複数のチャンネルとの対応関係を第1及び第2の光出射手段群のうちいずれかに切り替える切替手段と、(f)切替手段に対応関係の切り替えを指示するための指示手段とを備え、切替手段は、第1の光入射手段から所定波長の光を入射しているときには複数のチャンネルとの対応関係を第1の光出射手段群に切り替え、第2の光入射手段から所定波長の光が入射しているときには複数のチャンネルとの対応関係を第2の光出射手段群に切り替え、第1及び第2の光出射手段群及び切替手段と本体部とが互いに脱着可能であるることを特徴とする。
【0011】
上記した濃度測定装置においては、光入射手段により入射された光が第1または第2の光出射手段から出射され、信号生成手段によって複数の光検出信号が生成される。そして、第1及び第2の光出射手段複数のチャンネルとの対応関係が指示手段及び切替手段により適宜切り替えられることによって、チャンネルの数よりも多い光出射手段のそれぞれを介して出射した光に応じた全ての光検出信号がチャンネルを介して本体部に入力される。このように、本濃度測定装置によれば、指示手段及び切替手段によって第1及び第2の光出射手段複数のチャンネルとの対応関係が切り替わることにより、チャンネルを効率よく使用することができる。
【0012】
また、第1及び第2の光出射手段群及び切替手段と本体部とが互いに脱着可能であることによって、本体部が有するチャンネルをSRSでの濃度測定に利用することが可能となり、チャンネルをより効率よく使用することができる。
【0013】
また、濃度測定装置は、第1及び第2の光出射手段群のそれぞれを構成する光出射手段の数と、切替手段が有する複数の出力端子の数とが互いに同数であることを特徴としてもよい。
【0014】
また、濃度測定装置は、第1の光入射手段及び第1の光出射手段群、または第2の光入射手段及び第2の光出射手段群を所定の位置関係に保持するホルダをさらに備えると尚良い。これによって第1及び第2の光入射手段を各光入射位置に容易に配置するとともに、第1及び第2の光出射手段群の各光出射手段を各光検出位置に容易に配置することができる。
【0015】
また、濃度測定装置は、演算手段により演算された濃度情報を表示する表示手段をさらに備え、表示手段は、第1及び第2の光出射手段群のそれぞれに対応する各光検出位置における濃度変化を同時に表示することを特徴としてもよい。
【0016】
【発明の実施の形態】
以下、図面とともに本発明による濃度測定装置の好適な実施形態について説明する。なお、図面の説明においては同一要素には同一符号を付し、重複する説明を省略する。また、図面の寸法比率は、説明のものと必ずしも一致していない。
【0017】
(第1の実施の形態)
図1は、本発明による濃度測定装置の第1実施形態の構成を示すブロック図である。本実施形態による濃度測定装置は、散乱吸収体の所定の光入射位置に所定波長(λ1、λ2、λ3)の光を入射し、該散乱吸収体内を通って該散乱吸収体の所定の光検出位置に出射される光の強度を検出することにより被測定成分による光への影響を調べ、これに基づいて被測定成分の濃度情報を算出する装置である。また、本実施形態による濃度測定装置は、散乱吸収体として例えば生体を測定対象とし、被測定成分として例えば酸素化ヘモグロビン(O2Hb)及び脱酸素化ヘモグロビン(HHb)の濃度情報を測定するための近赤外線酸素モニタとして利用することができる。
【0018】
図1に示された濃度測定装置1は、本体部3、検出プローブ6、及び照射プローブ8を備えている。照射プローブ8は、光ファイバF1及びF2、並びにプラグ20を有している。
【0019】
光ファイバF1及びF2は、散乱吸収体に対して所定の光入射位置から所定波長の光を入射するための光入射手段である。光ファイバF1及びF2それぞれの一端は、光コネクタ18を介して本体部3に光学的に結合されている。また、光ファイバF1及びF2それぞれの他端には、プラグ20が設けられている。光ファイバF1及びF2それぞれのプラグ20は、光照射端E1及びE2それぞれを有している。光ファイバF1及びF2それぞれを伝搬した光は、光照射端E1及びE2それぞれから散乱吸収体に入射される。
【0020】
検出プローブ6は、配線5a〜5e、アダプタ7、光ファイバF11〜F24を備えている。配線5aの一端は、コネクタ13を介してアダプタ7に電気的に接続されている。また、配線5aの他端は、コネクタ15を介して本体部3に電気的に接続されている。配線5b〜5eの一端は、コネクタ11を介してアダプタ7に電気的に接続されている。また、配線5b〜5eの他端は、コネクタ17を介して本体部3に電気的に接続されている。検出プローブ6は、コネクタ15及び17において本体部3と脱着することが可能となっている。また、本実施形態においては、配線5a〜5eは例えば4〜5mといった長さである。
【0021】
光ファイバF11〜F24は、散乱吸収体内部を伝搬した所定波長の光を所定の光検出位置から出射するための光出射手段である。本実施形態においては、光ファイバF11〜F24は例えば2〜3mといった長さである。光ファイバF11〜F24の一端は、光コネクタ9を介してアダプタ7にそれぞれ光学的に結合されている。また、光ファイバF11〜F24の他端には、それぞれプラグ19が設けられている。光ファイバF11〜F24それぞれのプラグ19は、光検出端D11〜D24それぞれを有している。光検出端D11〜D24それぞれから出射された光は、光ファイバF11〜F24それぞれへ伝搬する。
【0022】
図2は、アダプタ7の内部構成を示すブロック図である。アダプタ7は、4つのフォトダイオードP11〜P14を含むフォトダイオードモジュール72aと、同じく4つのフォトダイオードP21〜P24を含むフォトダイオードモジュール72bとを有している。また、アダプタ7は、アナログ信号セレクタ71を有している。
【0023】
フォトダイオードP11〜P24は、例えばアバランシェフォトダイオードなどの光検出素子である。本実施形態では、フォトダイオードP11〜P24それぞれは、光ファイバF11〜F24それぞれを介して出射された所定波長の光の強度に基づいて光検出信号を生成するための信号生成手段として用いられる。フォトダイオードP11〜P24それぞれは、光コネクタ9を介して光ファイバF11〜F24それぞれに光学的に結合されており、光ファイバF11〜F24から受けた光の強度に応じた電気信号である光検出信号を生成する。また、フォトダイオードP11〜P24それぞれは、配線W11〜W24それぞれによってアナログ信号セレクタ71に電気的に接続されており、生成した光検出信号をアナログ信号セレクタ71へ出力する。
【0024】
アナログ信号セレクタ71は、配線W11〜W24と配線5b〜5eとの対応関係を切り替えるための手段である。アナログ信号セレクタ71は、入力端子I11〜I14及びI21〜I24、並びに出力端子73b〜73eを有している。入力端子I11〜I24それぞれは、配線W11〜W24それぞれに電気的に接続されており、フォトダイオードP11〜P24それぞれから光検出信号を入力する。出力端子73b〜73eそれぞれは、コネクタ11を介して配線5b〜5eそれぞれに電気的に接続されている。
【0025】
また、アナログ信号セレクタ71は、コネクタ13を介して配線5aに電気的に接続されている。配線5aは本体部3に接続されており、配線W11〜W24と配線5b〜5eとの対応関係を切り替えるための切替信号が本体部3から配線5aを介してアナログ信号セレクタ71へ送られる。アナログ信号セレクタ71は、本体部3からの切替信号に基づいて、出力端子73b〜73eに電気的に接続される入力端子を入力端子I11〜I14及び入力端子I21〜I24のいずれか一方に切り替える。
【0026】
再び図1を参照すると、本体部3は、操作スイッチ31、CPU32、表示手段33、データ出力手段34、A/D変換回路35、サンプルホールド回路36、増幅器37、LDドライバ38a及び38b、レーザダイオード39a及び39b、並びにデータバス40を備えている。
【0027】
LDドライバ38a及び38bは、レーザダイオード39a及び39bを駆動するための手段である。LDドライバ38a及び38bそれぞれは、レーザダイオード39a及び39bそれぞれに電気的に接続されている。また、LDドライバ38a及び38bは、データバス40に電気的に接続されており、同じくデータバス40に電気的に接続されているCPU32からレーザダイオード39a及び39bの駆動を指示するための指示信号を受ける。指示信号には、レーザダイオード39a及び39bから発光されるレーザ光の光強度や波長(例えば波長λ1、λ2、λ3のうちいずれかの波長)などの情報が含まれている。LDドライバ38a及び38bそれぞれは、CPU32から受けた指示信号に基づいてレーザダイオード39a及び39bそれぞれを駆動するための駆動信号を生成し、この駆動信号をレーザダイオード39a及び39bそれぞれに出力する。
【0028】
レーザダイオード39a及び39bは、光ファイバF1及びF2に波長λ1〜λ3といった所定波長のレーザ光を出力するための発光手段である。レーザダイオード39a及び39bは、LDドライバ38a及び38bから受けた駆動信号に基づいてレーザ光を発生する。レーザダイオード39a及び39bそれぞれは、光コネクタ18を介して光ファイバF1及びF2それぞれに光学的に結合されており、レーザ光を光ファイバF1及びF2それぞれへ出力する。
【0029】
操作スイッチ31は、検出プローブ6の配線W11〜W24と配線5b〜5eとの対応関係の切り替えをアナログ信号セレクタ71に指示するための指示手段である。操作スイッチ31は、例えば本体部3の側面に設けられた手動スイッチである。あるいは、操作スイッチ31は、例えばCPU32からの指示によって動作する自動スイッチであってもよい。操作スイッチ31は、配線W11〜W14と配線W21〜24とのうちいずれの配線を配線5b〜5eに電気的に接続するかを示す切替信号を生成する。操作スイッチ31は、データバス40、本体部3内の配線42、コネクタ15、及び配線5aを介してアナログ信号セレクタ71に電気的に接続されており、生成した切替信号をアナログ信号セレクタ71へ出力する。また、操作スイッチ31は、切替信号をデータバス40を介してCPU32へ出力する。
【0030】
増幅器37、サンプルホールド回路36、及びA/D変換回路35は、本体部3において光検出信号を入力し、デジタル信号化を行ってCPU32に出力するための手段である。これらの手段は、4本の配線5b〜5eを介して得られた4つの光検出信号を入力する4つのチャンネル4a〜4dを構成している。
【0031】
増幅器37は、光検出信号を増幅するための手段である。増幅器37は4つ設けられており、それぞれがコネクタ17を介して配線5b〜5eに電気的に接続されている。増幅器37は、配線5b〜5eを介してアダプタ7からそれぞれ光検出信号を受け取る。ここで、増幅器37が受け取る光検出信号は、光ファイバF11〜F24のうちアナログ信号セレクタ71によって配線5a〜5eに対応付けられた光ファイバから出射された光に関するものである。増幅器37は、受け取った光検出信号を増幅する。増幅器37は、サンプルホールド回路36に電気的に接続されており、増幅した光検出信号をサンプルホールド回路36へ出力する。
【0032】
サンプルホールド回路36は、4つの光検出信号の値を同時に保持(ホールド)するための手段である。サンプルホールド回路36は、データバス40に配線41を介して電気的に接続されており、光検出信号を保持するタイミングを示すサンプル信号をCPU32からデータバス40及び配線41を介して入力する。サンプルホールド回路36は、サンプル信号を受けると、増幅器37から受けた4つの光検出信号を同時に保持する。サンプルホールド回路36は、A/D変換回路35に電気的に接続されており、保持した4つの光検出信号それぞれをA/D変換回路35へ出力する。
【0033】
A/D変換回路35は、光検出信号をアナログ信号からデジタル信号に変換するための手段である。A/D変換回路35は、サンプルホールド回路36から受けた4つの光検出信号を順にデジタル信号に変換する。A/D変換回路35は、データバス40に電気的に接続されており、変換した光検出信号をデータバス40を介してCPU32へ出力する。
【0034】
CPU32は、A/D変換回路35から受けた光検出信号に基づいて散乱吸収体内部に含まれる被測定成分の濃度情報を演算するための演算手段である。CPU32は、光検出信号に基づいて被測定成分の濃度情報を演算し、演算結果をデータバス40を介して表示手段33及びデータ出力手段34へ送る。なお、光検出信号に基づく濃度情報の演算方法については後述する。また、CPU32は、前述したようにレーザダイオード39a及び39bの駆動を指示するための指示信号を生成し、この指示信号をLDドライバ38a及び38bへ出力する機能も備えている。また、CPU32は、サンプルホールド回路36が光検出信号を保持するタイミングを示すサンプル信号を生成して、このサンプル信号をサンプルホールド回路36に出力する機能も備えている。
【0035】
表示手段33は、データバス40に電気的に接続されており、データバス40を介してCPU32から送られた濃度情報に関する演算結果を表示する。なお、表示手段33における表示画面の例については後述する。また、データ出力手段34は、データバス40に電気的に接続されており、データバス40を介してCPU32から送られた濃度情報に関する演算結果を濃度測定装置1の外部へ出力する。
【0036】
図3は、濃度測定装置1が備えるホルダ50を示す斜視図である。ホルダ50は、散乱吸収体の表面上において光ファイバF1及び光ファイバF11〜F14を所定の位置関係に保持するための手段である。なお、光ファイバF2及び光ファイバF21〜F24に対してもホルダ50と同様のホルダが用いられる。ホルダ50は、シート51、バンド53、及び複数のソケット52を備えている。
【0037】
シート51は、散乱吸収体の表面に密着することが可能な、可撓性の材料からなっている。シート51の縁部には、シート51を挟んで互いに反対側に位置するように2本のバンド53が取り付けられている。バンド53は、シート51を散乱吸収体の表面に固定する。
【0038】
複数のソケット52は、光ファイバF1の端部に設けられているプラグ20、及び光ファイバF11〜F14の端部に設けられているプラグ19と嵌合する形状を有している。ソケット52はシート51上の所定の位置に配置されており、散乱吸収体表面における光入射位置及び光検出位置の位置関係を規定する。散乱吸収体内の被測定成分濃度を測定する際には、ホルダ50が散乱吸収体に装着され、光ファイバF1のプラグ20及び光ファイバF11〜F14のプラグF19がそれぞれ対応するソケット52に差し込まれる。
【0039】
図4(a)及び(b)は、散乱吸収体54aにおける光入射位置及び光検出位置の位置関係を説明するための図である。図4(a)では、散乱吸収体54aの例として人体の右側頭部が示されている。散乱吸収体54aの表面上にはホルダ50が装着されており、ホルダ50によって光入射位置及び光検出位置が規定されている。すなわち、光ファイバF11〜F14の光検出端D11〜D14が、ホルダ50上における正方形の四隅に位置している。この光検出端D11〜D14の位置が、光検出位置となる。また、光ファイバF1の光照射端E1が、当該正方形の中心に位置している。この光照射端E1の位置が、光入射位置となる。以上の位置関係において、光照射端E1から散乱吸収体54aに入射された光が、光検出端D11〜D14それぞれから出射される。
【0040】
図4(b)では、散乱吸収体54bの例として人体の左側頭部が示されている。この散乱吸収体54bにおいても、光検出端D21〜D24及び光照射端E2の位置関係が、図4(a)に示された散乱吸収体54aにおける光検出端D11〜D14及び光照射端E1の位置関係と同様に規定されている。
【0041】
図4(a)及び(b)のように、各光検出端D11〜D24それぞれが、1つの光照射端E1またはE2からの光を出射する配置を、第1のモードと称する。これに対し、光照射端E1及びE2双方からの光を出射する光検出端が存在する配置も可能である。このような配置を、第2のモードと称する。第2のモードについては、本実施形態の変形例として後に説明する。
【0042】
以上、本実施形態による濃度測定装置1の構成について説明した。続いて、濃度測定装置1の動作について説明する。
【0043】
図5は、濃度測定装置1における光照射端E1及びE2からの光照射タイミングとアナログ信号セレクタ71による切替タイミングとの関係を示す図である。図5を参照すると、光照射端E1及びE2から交互に光が入射されており、それに応じて切替信号もD1側(光検出端D11〜D14)とD2側(光検出端D21〜D24)とを切り替えている。なお、このように散乱吸収体に対して光照射端E1及びE2から光を交互に入射するのは、光照射端E1からの光と光照射端E2からの光とが散乱吸収体内部において互いに干渉することを防ぐためである。
【0044】
図5を参照すると、時刻t0〜t1において、光照射端E1からは光が散乱吸収体へ入射され(ON)、光照射端E2からは光が入射されない(OFF)。すなわち、レーザダイオード39aの駆動を指示するための指示信号が本体部3のCPU32からLDドライバ38aへ送られる。また、LDドライバ38bへは、指示信号が送られない。このときLDドライバ38aへ送られる指示信号には、レーザ光の波長をλ1とする指示が含まれている。
【0045】
LDドライバ38aは、CPU32からの指示信号に基づいて、レーザダイオード39aが波長λ1のレーザ光を発生するように駆動信号を生成してレーザダイオード39aへ出力する。レーザダイオード39aは、LDドライバ38aから駆動信号を受けて波長λ1のレーザ光を発生する。レーザ光は、光ファイバF1を伝搬して光照射端E1に達し、光入射位置にある光照射端E1から散乱吸収体内へ入射される。
【0046】
散乱吸収体内に入射されたレーザ光は、散乱吸収体内において散乱するとともに被測定成分に吸収されながら伝搬し、光検出位置に達する。光検出位置に達したレーザ光は、光検出位置にある光検出端D11〜D14から出射される。
【0047】
光検出端D11〜D14から出射されたレーザ光は、光ファイバF11〜F14を伝搬してアダプタ7内のフォトダイオードP11〜P14に達する。そして、フォトダイオードP11〜P14において、4つの光検出位置それぞれにおけるレーザ光の強度に応じた光検出信号が生成される。生成された光検出信号は、フォトダイオードP11〜P14からアナログ信号セレクタ71の入力端子I11〜I14へ送られる。
【0048】
ここで、時刻t0〜t1において、アナログ信号セレクタ71に入力される切替信号は、D1側すなわち光検出端D11〜D14を選択するように設定されている。この切替信号が操作スイッチ31からアナログ信号セレクタ71に送られると、アナログ信号セレクタ71内部では入力端子I11〜I14それぞれと出力端子73b〜73eそれぞれとが互いに電気的に接続される。これにより、光ファイバF11〜F14それぞれとチャンネル4a〜4dそれぞれとが互いに対応付けられる。そして、光検出信号が、出力端子73b〜73eから配線5b〜5eを介して本体部3に取り込まれる。本体部3では、光検出信号が、チャンネル4a〜4d及びデータバス40を介してCPU32に取り込まれる。
【0049】
続いて図5を参照すると、時刻t1〜t2において、光照射端E1からは光が散乱吸収体へ入射されず(OFF)、光照射端E2からは光が散乱吸収体へ入射される(ON)。すなわち、レーザダイオード39bの駆動を指示するための指示信号が本体部3のCPU32からLDドライバ38bへ送られる。また、LDドライバ38aへは、指示信号が送られない。このとき、時刻t0〜t1における指示信号と同様に、LDドライバ38bへ送られる指示信号には、レーザ光の波長をλ1とする指示が含まれている。
【0050】
LDドライバ38bは、駆動信号を生成してレーザダイオード39bへ出力する。レーザダイオード39bは、LDドライバ38bから駆動信号を受けて波長λ1のレーザ光を発生する。レーザ光は、光ファイバF2を伝搬して光照射端E2から散乱吸収体内へ入射される。散乱吸収体内に入射されたレーザ光は、散乱吸収体内を伝搬し、光検出端D21〜D24から出射される。
【0051】
光検出端D21〜D24から出射されたレーザ光は、光ファイバF21〜F24を伝搬してアダプタ7内のフォトダイオードP21〜P24に達する。そして、フォトダイオードP21〜P24において光検出信号が生成される。光検出信号は、フォトダイオードP21〜P24からアナログ信号セレクタ71の入力端子I21〜I24へ送られる。
【0052】
図5を参照すると、時刻t1〜t2において、アナログ信号セレクタ71に入力される切替信号は、D2側すなわち光検出端D21〜D24を選択するように設定されている。この切替信号が操作スイッチ31からアナログ信号セレクタ71に送られると、アナログ信号セレクタ71内部では出力端子73b〜73eに接続される入力端子が入力端子I11〜I14から入力端子I21〜I24へと切り替えられる。つまり、チャンネル4a〜4dに対応する光ファイバが、光ファイバF11〜F14から光ファイバF21〜F24へ切り替えられる。そして、光検出信号が、出力端子73b〜73eから配線5b〜5eを介して本体部3に取り込まれる。本体部3では、光検出信号が、チャンネル4a〜4d及びデータバス40を介してCPU32に取り込まれる。
【0053】
以後、時刻t2〜t3及び時刻t4〜t5における動作は、時刻t0〜t1における動作と略同様であり、時刻t3〜t4及び時刻t5〜t6における動作は、時刻t1〜t2における動作と略同様である。ただし、時刻t2〜t3及び時刻t3〜t4においては、LDドライバ38a及び38bへ送られる指示信号には、レーザ光の波長をλ2とする指示が含まれている。そして、レーザダイオード39a及び39bは、波長λ2のレーザ光を発生する。また、時刻t4〜t5及び時刻t5〜t6においては、LDドライバ38a及び38bへ送られる指示信号には、レーザ光の波長をλ3とする指示が含まれている。そして、レーザダイオード39a及び39bは、波長λ3のレーザ光を発生する。
【0054】
濃度測定装置1は、以上に説明した動作を複数回、例えば時刻T0及び時刻T1において行う。時刻T0と時刻T1との時間間隔は、図5に示された時刻t0〜t6の時間間隔よりも長く設定される。
【0055】
CPU32は、以上のようにして取り込んだ光検出信号に基づいて、散乱吸収体内の被測定成分の濃度情報を演算する。すなわち、ある光検出位置において、時刻T0におけるレーザ光波長λ1〜λ3それぞれに応じた光検出信号の値をDλ1(T0)〜Dλ3(T0)、同じく時刻T1における値をDλ1(T1)〜Dλ3(T1)とすると、時刻T0〜T1における検出光強度の変化量は、次の(1)〜(3)式のように表される。
【数1】
Figure 0004373687
ただし、(1)〜(3)式において、ΔOD1(T1)は波長λ1の検出光強度の変化量、ΔOD2(T1)は波長λ2の検出光強度の変化量、ΔOD3(T1)は波長λ3の検出光強度の変化量である。
【0056】
また、時刻T0〜T1における被測定成分の濃度変化量は、例えば被測定成分として酸素化ヘモグロビン(O2Hb)及び脱酸素化ヘモグロビン(HHb)の濃度変化量をそれぞれΔO2Hb(T1)及びΔHHb(T1)とすると、これらは次の(4)式によって求めることができる。
【数2】
Figure 0004373687
ただし、(4)式において、係数a11〜a23は、波長λ1、λ2、及びλ3の光に対するO2Hb及びHHbの吸収係数から求まる定数である。また、散乱吸収体内の総ヘモグロビン(cHb)濃度の変化量ΔcHb(T1)は、次の(5)式によって求めることができる。
【数3】
Figure 0004373687
CPU32は、光検出端D11〜D24のそれぞれに対応する光検出信号について上記の演算を行い、各光検出位置における被測定成分の濃度変化量を算出する。そして、CPU32は、算出した濃度変化量を被測定成分に関する濃度情報として表示手段33及びデータ出力手段34へ出力する。
【0057】
図6は、表示手段33の表示画面の一例を示す図である。表示手段33の画面33aは、各光検出位置における被測定成分の濃度変化量の遷移グラフを示す遷移表示部331と、各光検出位置における現時点での濃度変化状態を色で示す状態表示部332とを表示する。
【0058】
遷移表示部331は、各光検出位置のうち選択された光検出位置のそれぞれについて、ΔO2Hb、ΔHHb、及びΔcHbの遷移を表示する。例えば、遷移表示部331は、ΔO2Hbを赤色のグラフA11で表し、ΔHHbを青色のグラフB11で表し、ΔcHbを白色のグラフC11で表す。
【0059】
状態表示部332は、各光検出位置における現時点での濃度変化状態を示すための表示部分M11〜M24を、ΔO2Hb、ΔHHb、及びΔcHbそれぞれについて有している。表示部分M11〜M24それぞれは、各光検出端D11〜D24それぞれに対応している。状態表示部332では、表示部分M11〜M24の表示色が変化することにより、各光検出位置における現時点での濃度変化量が判断される。状態表示部332は、濃度変化量と表示部分M11〜M24の表示色との関係を示す色相表示部332aを有しており、表示部分M11〜M24の表示色は色相表示部332aに基づいて決定される。なお、濃度変化量と表示部分M11〜M24の表示色とを関係付ける方法の一例として、例えば濃度変化量が増加するほど濃い赤色とし、濃度変化量が減少するほど濃い青色とするといった方法がある。
【0060】
本実施形態による濃度測定装置1は、以上に説明した構成及び動作によって、以下の効果を奏する。すなわち、濃度測定装置1においては、光ファイバF1及びF2により入射された光が光ファイバF11〜F24から出射され、フォトダイオードP11〜P24によって光検出信号が生成される。そして、光ファイバF11〜F24と本体部3の第1〜第4のチャンネルとの対応関係が、操作スイッチ31及びアナログ信号セレクタ71により適宜切り替えられる。これにより、本体部3のチャンネル数(4つ)よりも多い8本の光ファイバF11〜F24のそれぞれから出射された光に応じた全ての光検出信号が、チャンネル4a〜4dを介して本体部3に入力される。このように、本実施形態による濃度測定装置1によれば、操作スイッチ31及びアナログ信号セレクタ71によって光ファイバF11〜F24とチャンネル4a〜4dとの対応関係が切り替わることにより、チャンネル4a〜4dを効率よく使用することができる。
【0061】
また、本実施形態による濃度測定装置1は、検出プローブ6と本体部3とが互いに脱着可能となっている。換言すれば、濃度測定装置1は、検出プローブ6が有する光ファイバF11〜F24及びアナログ信号セレクタ71と本体部3とが互いに脱着可能となっている。濃度測定装置1はこのような構成を有することが好ましく、これによって、本体部3のチャンネル4a〜4dにSRS用のプローブを接続することが可能となる。
【0062】
ここで、図7は、濃度測定装置1の検出プローブ6を本体部3から取り外してSRS用プローブ21a及び21bを本体部3に取り付けた状態を示すブロック図である。図7を参照すると、SRS用プローブ21aには、光照射端E1が取り付けられている。また、SRS用プローブ21aは、フォトダイオード23aを備えている。フォトダイオード23aは2つの受光部231a及び232aを有しており、受光部231a及び232a並びに光照射端E1が直線上に並ぶように配置されている。受光部231aは、増幅器27、配線5f、及びコネクタ17を介して本体部3のチャンネル4aに電気的に接続されている。また、受光部232aは、増幅器27、配線5g、及びコネクタ17を介して本体部3のチャンネル4bに電気的に接続されている。
【0063】
SRS用プローブ21bには、光照射端E2が取り付けられている。また、SRS用プローブ21bは、SRS用プローブ21aと同様に、受光部231b及び232bを有するフォトダイオード23bを備えている。受光部231bは、増幅器27、配線5h、及びコネクタ17を介して本体部3のチャンネル4cに電気的に接続されている。また、受光部232bは、増幅器27、配線5i、及びコネクタ17を介して本体部3のチャンネル4dに電気的に接続されている。
【0064】
被測定成分をSRSにより測定する場合には、上記したSRS用プローブ21a及び21bを用いる。そして、光照射端E1(E2)からの距離が異なる2つの受光部231a及び232a(231b及び232b)において受光した光に応じた光検出信号に基づいて、被測定成分の濃度に比例した値や酸素飽和度をCPU32が演算する。
【0065】
このように、本体部3のチャンネル4a〜4dにSRS用プローブ21a及び21bを接続することによって、本体部3が有するチャンネル4a〜4dをSRSでの濃度測定に利用することが可能となり、チャンネル4a〜4dをより効率よく使用することができる。
【0066】
この効果は、特に臨床現場において有効である。すなわち、臨床現場においては、SRSによる脳酸素飽和度測定の有効性が評価されており、脳機能測定においても脳の左右半球における活性の差異の測定や、既知の活性部位に対する測定などに多く用いられている。しかし、特定の刺激やタスクに対する脳の活性部位が特定できない場合は、活性部位が存在する可能性がある範囲内を比較的多くの測定位置(数箇所〜十数箇所)で測定して活性部位を特定する必要がある。そして、一たび活性部位が特定できれば、以後はその活性部位において1〜2箇所の測定位置を継続的に測定するのが一般的である。また、測定位置が毛髪のないところ(例えば前額部)であれば、定量性の高い濃度情報が得られるSRSプローブを用いて測定する。
【0067】
このように、臨床現場でも測定開始時点では多くの測定位置を測定するが、それ以後は、日常的な診断として1〜2箇所の測定位置を測定すれば充分である。従って、多くのチャンネルを備える濃度測定装置を臨床現場において有効活用することは難しく、このことが濃度測定装置の普及を妨げる一因となっている。
【0068】
本実施形態による濃度測定装置1によれば、検出プローブ6を用いることによって、少ないチャンネルで多くの測定位置を測定できる濃度測定装置を構成することができる。これにより、実用的な脳機能マッピングシステムが大変安価に実現できる。そして、通常はSRS用プローブ21a及び21bを用いることにより応用範囲が広く使用頻度が高いSRS濃度測定装置として使用できる。従って、装置の利用効率が高まり医療経費を大きく削減することができる。
【0069】
また、本実施形態による濃度測定装置1は、光ファイバF1(F2)の光照射端E1(E2)と光ファイバF11〜F14(F21〜F24)の光検出端D11〜D14(D21〜D24)とを所定の位置関係に保持するホルダ50を備えている。濃度測定装置1はこのようなホルダ50を備えることが好ましく、これによって、光照射端E1及びE2を散乱吸収体表面の光入射位置に容易に配置するとともに、光検出端D11〜D24を散乱吸収体表面の光検出位置に容易に配置することができる。
【0070】
図8〜図10は、本実施形態による濃度測定装置1の変形例を説明するための図である。図8は、本変形例における、散乱吸収体54b(左側頭部)での光入射位置及び光検出位置の位置関係を示す図である。本変形例においては、光検出端D11〜D14及びD21が、1つの正五角形の隅に位置しており、光照射端E1が、その正五角形の中心に位置している。また、光検出端D21〜D24及びD14が、他の正五角形の隅に位置しており、光照射端E2が、その正五角形の中心に位置している。
【0071】
図8に示された光照射端E1及びE2並びに光検出端D11〜D24の配置では、光検出端D21及びD14は、2つの光照射端E1及びE2からの光を出射するように配置されている。つまり、第2のモードとなる配置であり、各光検出端D11〜D24のうち光照射端E1及びE2双方からの光を出射する光検出端が存在する。従って、本実施形態による濃度測定装置1の動作において、光照射端E1から光を入射するとともにアナログ信号セレクタ71をD2側へ切り替える動作、及び光照射端E2から光を入射するとともにアナログ信号セレクタ71をD1側へ切り替える動作がさらに必要となる。
【0072】
図9は、本変形例における光照射端E1及びE2からの光照射タイミングとアナログ信号セレクタ71による切替タイミングとの関係を示す図である。図9を参照すると、時刻t0〜t1において、光照射端E1からは光が散乱吸収体へ入射され(ON)、光照射端E2からは光が入射されない(OFF)。また、アナログ信号セレクタ71に入力される切替信号は、D1側を選択するように設定されており、光照射端E1から散乱吸収体へ入射された光を光検出端D11〜D14から出射する。
【0073】
続いて、時刻t1〜t2において、光照射端E1からは光が散乱吸収体へ入射されず(OFF)、光照射端E2からは光が入射される(ON)。また、アナログ信号セレクタ71に入力される切替信号は、D1側を選択するように設定されたままであり、光照射端E2から散乱吸収体へ入射された光を光検出端D11〜D14から出射する。
【0074】
続いて、時刻t2〜t3において、光照射端E1からは光が散乱吸収体へ入射され(ON)、光照射端E2からは光が散乱吸収体へ入射されない(OFF)。また、アナログ信号セレクタ71に入力される切替信号は、D2側を選択するように切り替えられており、光照射端E1から散乱吸収体へ入射された光を光検出端D21〜D24から出射する。
【0075】
続いて、時刻t3〜t4において、光照射端E1からは光が散乱吸収体へ入射されず(OFF)、光照射端E2からは光が入射される(ON)。また、アナログ信号セレクタ71に入力される切替信号は、D2側を選択するように設定されたままであり、光照射端E2から散乱吸収体へ入射された光を光検出端D21〜D24から出射する。
【0076】
以上の時刻t0〜t4における動作では、いずれも散乱吸収体に入射するレーザ光の波長をλ1とする。そして、時刻t4〜t8において、散乱吸収体に入射するレーザ光の波長をλ2とし、時刻t8〜t12において、散乱吸収体に入射するレーザ光の波長をλ3として上記の動作を繰り返し行う。
【0077】
本変形例による濃度測定装置1によれば、第2のモードにより光照射端E1及びE2並びに光検出端D11〜D24を配置することが可能となるので、散乱吸収体表面において光入射位置及び光検出位置の多様な配置を実現できる。
【0078】
図10(a)及び(b)は、本実施形態による濃度測定装置1の他の変形例を説明するための図である。第2のモードによる配置としては、図8に示された配置の他に、例えば図10(a)に示されるような配置が可能である。図10(a)に示された配置では、散乱吸収体54の表面において、光検出端D11〜D13及びD21が1つの正方形の四隅に位置しており、その正方形の中心に位置する光照射端E1からの光を出射する。また、光検出端D21〜23及びD13が他の正方形の四隅に位置しており、その正方形の中心に位置する光照射端E2からの光を出射する。つまり、光検出端D21及びD13は、2つの光照射端E1及びE2からの光を出射する。
【0079】
また、第1のモードの変形例として、例えば図10(b)に示されたような配置も可能である。この配置では、散乱吸収体54の表面において、光検出端D11〜D24が正八角形の各隅に位置しており、その正八角形の中心に位置する光照射端E1からの光を出射する。この例では、光照射端E2を用いないため、光照射端E2から光を入射する動作が不要となる。
【0080】
(第2の実施の形態)
図11は、本発明による濃度測定装置の第2実施形態の構成を示すブロック図である。本実施形態による濃度測定装置2は、本体部3、検出プローブ6a、及び照射プローブ8aを備えている。これらのうち、本体部3の構成は第1実施形態による濃度測定装置1の本体部3の構成と同様なので、詳細な説明を省略する。
【0081】
照射プローブ8aは、光ファイバF3及びF4、並びにプラグ20を有している。光ファイバF3及びF4は、散乱吸収体に対して所定の光入射位置から所定波長の光を入射するための光入射手段である。光ファイバF3及びF4それぞれの一端は、光コネクタ18を介して本体部3に光学的に結合されている。また、光ファイバF3及びF4は、それぞれの他端が2本に分岐されており、分岐先にはそれぞれプラグ20が設けられている。そして、光ファイバF3の2つのプラグ20それぞれは、光照射端E11及びE12それぞれを有している。光ファイバF3を伝搬した光は、光照射端E11及びE12それぞれから散乱吸収体に入射される。また、光ファイバF4の2つのプラグ20それぞれは、光照射端E21及びE22それぞれを有している。光ファイバF3を伝搬した光は、光照射端E21及びE22それぞれから散乱吸収体に入射される。
【0082】
検出プローブ6aは、配線5a〜5e、アダプタ7、及び光ファイバF31〜F44を備えている。これらのうち、配線5a〜5e及びアダプタ7の構成は、第1実施形態と同様なので詳細な説明を省略する。
【0083】
光ファイバF31〜F44は、散乱吸収体内部を伝搬した所定波長の光を所定の光検出位置から出射するための光出射手段である。光ファイバF31〜F44の一端は、光コネクタ9を介してアダプタ7にそれぞれ光学的に結合されている。また、光ファイバF31〜F44は、それぞれの他端が2本に分岐されており、分岐先にはそれぞれプラグ19が設けられている。そして、例えば光ファイバF31の2つのプラグ19それぞれは、光検出端D111及びD112それぞれを有している。光検出端D111及びD112それぞれから入射された光は、光ファイバF31へ伝搬される。光ファイバF32〜F44それぞれにおいても光ファイバF31と同様に、プラグ19が光検出端D121〜D242それぞれを有しており、各光検出端から入射された光が、各光ファイバF32〜F44へ伝搬される。
【0084】
図12(a)〜(c)は、本実施形態における光照射端E11〜E22及び光検出端D111〜D242の配置例を示す図である。本実施形態では、各光ファイバF31〜F44それぞれが2つの光ファイバF3及びF4にそれぞれ対応する2つの光検出位置から光を出射するように、各光検出端が配置される。また、光ファイバF3及びF4がそれぞれ2つの光入射位置から光を入射するように、各光照射端が配置される。
【0085】
具体的には、図12(a)を参照すると、散乱吸収体54の表面において、光検出端D111、D121、D131、及びD141が正方形の四隅に位置しており、その正方形の中心に位置する光照射端E11からの光を出射する。また、光検出端D112、D122、D132、及びD142が別の正方形の四隅に位置しており、その正方形の中心に位置する光照射端E21からの光を出射する。また、光検出端D211、D221、D231、及びD241がさらに別の正方形の四隅に位置しており、その正方形の中心に位置する光照射端E12からの光を出射する。また、光検出端D212、D222、D232、及びD242がさらに別の正方形の四隅に位置しており、その正方形の中心に位置する光照射端E22からの光を出射する。
【0086】
また、図12(b)を参照すると、光検出端D111、D121、D131、及びD141が正方形の四隅に位置しており、その正方形の中心に位置する光照射端E11からの光を出射する。また、光検出端D121、D131、D112、及びD142が別の正方形の四隅に位置しており、その正方形の中心に位置する光照射端E21からの光を出射する。つまり、光検出端D121及びD131は、2つの光照射端E11及びE21からの光を出射するように配置されている。また、光検出端D211、D221、D231、及びD241がさらに別の正方形の四隅に位置しており、その正方形の中心に位置する光照射端E12からの光を出射する。また、光検出端D221、D231、D212、及びD242がさらに別の正方形の四隅に位置しており、その正方形の中心に位置する光照射端E22からの光を出射する。つまり、光検出端D221及びD231は、2つの光照射端E12及びE22からの光を出射するように配置されている。
【0087】
また、図12(c)を参照すると、光検出端D111、D121、D131、D141、D211、D221、D231、及びD241が八角形の各隅に位置しており、その八角形の中心に位置する光照射端E11からの光を出射する。また、光検出端D112、D122、D132、D142、D212、D222、D232、及びD242が別の八角形の各隅に位置しており、その八角形の中心に位置する光照射端E21からの光を出射する。
【0088】
以上の構成を有する濃度測定装置2では、第1実施形態による濃度測定装置1の変形例における動作(第2のモード、図9参照)と同様の動作によって、各光検出端D111〜D242における光検出信号が得られる。そして、得られた光検出信号に基づいて、第1実施形態による濃度測定装置1と同様の演算を行うことにより被測定成分の濃度情報として濃度変化量を求める。
【0089】
本実施形態による濃度測定装置2は、以上に説明した構成及び動作によって、以下の効果を奏する。すなわち、濃度測定装置2においては、光ファイバF31〜F44と本体部3のチャンネル4a〜4dとの対応関係が、操作スイッチ31及びアナログ信号セレクタ71により適宜切り替えられる。これにより、チャンネル4a〜4dを効率よく使用することができる。
【0090】
また、本実施形態による濃度測定装置2は、光入射手段として光ファイバを複数(2つの光ファイバF3及びF4)備えるとともに、光検出手段である光ファイバF31〜F44それぞれが2本に分岐している。そして、例えば光ファイバF31に注目すると、光ファイバF3の光入射位置(光照射端E11またはE12の位置)、及び光ファイバF4の光入射位置(光照射端E21またはE22の位置)にそれぞれ対応する2つの光検出端D111及びD112から光を出射している。濃度測定装置はこのような構成を備えることが好ましく、これによって、散乱吸収体へ光を入射するタイミングを光ファイバF3及びF4それぞれの間で調整することにより、例えば1つの光ファイバF31が2つの光検出位置に対応できる。従って、本体部3のチャンネル数を増すことなく、より多くの光検出位置を散乱吸収体上に設定することができる。なお、この効果は、光ファイバF32〜F44についても同様である。また、光ファイバF31〜F44は、2本に限らずさらに多くの本数に分岐していてもよい。
【0091】
また、本実施形態による濃度測定装置2は、光ファイバF3(F4)が2本に分岐しており、2つの光入射位置に対応する2つの光照射端E11及びE12(E21及びE22)から散乱吸収体へ光を入射している。濃度測定装置はこのような構成を備えることが好ましく、これによって、2つの光入射位置から入射された光を、複数の光検出位置のそれぞれから出射することにより、より多くの光入射位置を散乱吸収体上に設定することができる。なお、光ファイバF3及びF4は、2本に限らずさらに多くの本数に分岐していてもよい。
【0092】
なお、本実施形態のように光ファイバF3及びF4、並びに光ファイバF31〜F44を分岐すると、各光検出端から出射される光の強度は4分の1に低下する。しかしながら、光ファイバを分岐しない場合において光入射位置と光検出位置との距離を例えば5cmとして測定可能な濃度測定装置であれば、光ファイバを分岐した場合に光入射位置と光検出位置との距離を例えば3cmといった比較的短い距離とするとよい。これにより、散乱吸収体内部での光の減衰量は数10〜100分の1程度で済むので、当該濃度測定装置により充分に検出可能な光強度が得られる。
【0093】
本発明による濃度測定装置は、上記した実施形態に限られるものではなく、様々な変形が可能である。例えば、上記した各実施形態において、光入射位置及び光検出位置の配置例をいくつか示したが、光入射位置及び光検出位置の配置はこれらに限らず、他に様々な配置とすることができる。
【0094】
また、上記した各実施形態において、検出プローブは4つのチャンネルに対して8本の光ファイバを備えているが、チャンネル数及び光ファイバ本数はこれに限るものではない。例えば、3つのチャンネルに対して9本の光ファイバを備え、アナログ信号セレクタがこれらの接続状態を3段階で切り替えることにより全ての光ファイバをチャンネルと対応付けられるように構成してもよい。
【0095】
【発明の効果】
本発明による濃度測定装置によれば、指示手段及び切替手段によって光出射手段とチャンネルとの対応関係が切り替わることにより、チャンネルを効率よく使用することができる。
【図面の簡単な説明】
【図1】本発明による濃度測定装置の第1実施形態の構成を示すブロック図である。
【図2】アダプタの内部構成を示すブロック図である。
【図3】濃度測定装置が備えるホルダを示す斜視図である。
【図4】散乱吸収体((a)左側頭部、(b)右側頭部)における光入射位置及び光検出位置の位置関係を説明するための図である。
【図5】濃度測定装置における光照射端からの光照射タイミングとアナログ信号セレクタによる切替タイミングとの関係を示す図である。
【図6】表示手段の表示画面の一例を示す図である。
【図7】濃度測定装置の検出プローブを本体部から取り外してSRS用プローブを本体部に取り付けた状態を示すブロック図である。
【図8】濃度測定装置の変形例における、散乱吸収体での光入射位置及び光検出位置の位置関係を示す図である。
【図9】濃度測定装置の変形例における光照射端からの光照射タイミングとアナログ信号セレクタによる切替タイミングとの関係を示す図である。
【図10】第1実施形態による濃度測定装置の他の変形例として、光入射位置及び光検出位置の配置例を説明するための図である。
【図11】本発明による濃度測定装置の第2実施形態の構成を示すブロック図である。
【図12】第2実施形態における光照射端及び光検出端の配置例を示す図である
【符号の説明】
1、2…濃度測定装置、3…本体部、4a〜4d…チャンネル、5a〜5i…配線、6、6a…検出プローブ、7…アダプタ、8、8a…照射プローブ、9、18…光コネクタ、11、13,15、17…コネクタ、19、20…プラグ、21a、21b…SRS用プローブ、23a、23b…フォトダイオード、27…増幅器、31…操作スイッチ、32…CPU、33…表示手段、33a…画面、34…データ出力手段、35…変換回路、36…サンプルホールド回路、37…増幅器、38a、38b…ドライバ、39a、39b…レーザダイオード、40…データバス、41、42…配線、50…ホルダ、51…シート、52…ソケット、53…バンド、54、54a、54b…散乱吸収体、71…アナログ信号セレクタ、72a、72b…フォトダイオードモジュール、73b〜73e…出力端子、231a、231b、232a、232b…受光部、331…遷移表示部、332…状態表示部、332a…色相表示部、D11〜D24、D111〜D242…光検出端、E1、E2、E11〜E22…光照射端、F1〜F4、F11〜F24、F31〜F44…光ファイバ、I11〜I24…入力端子、M11〜M24…表示部分、P11〜P24…フォトダイオード、W11〜W24…配線。

Claims (4)

  1. 散乱吸収体内での被測定成分の濃度情報を非侵襲的に測定する濃度測定装置において、
    前記散乱吸収体内部を伝搬した所定波長の光を所定の光検出位置から出射する複数の光出射手段を各々含む第1及び第2の光出射手段群と、
    前記第1及び第2の光出射手段群のそれぞれに対応し、前記散乱吸収体に対して互いに異なる所定の光入射位置のそれぞれから前記所定波長の光を交互に入射する第1及び第2の光入射手段と、
    前記第1及び第2の光出射手段群の各光出射手段に光学的に結合されており、各光出射手段を介して出射された前記所定波長の光の強度に基づいて複数の光検出信号を生成する信号生成手段と、
    前記信号生成手段からの前記複数の光検出信号を入力する複数のチャンネル、及び前記複数の光検出信号に基づいて前記被測定成分の濃度情報を演算する演算手段を有する本体部と、
    前記第1の光出射手段群に対応する複数の入力端子、及び前記第2の光出射手段群に対応する複数の入力端子と、前記複数のチャンネルのそれぞれと電気的に接続された複数の出力端子とを有し、前記複数のチャンネルとの対応関係を前記第1及び第2の光出射手段群のうちいずれかに切り替える切替手段と、
    前記切替手段に前記対応関係の切り替えを指示するための指示手段と
    を備え、
    前記切替手段は、前記第1の光入射手段から前記所定波長の光を入射しているときには前記複数のチャンネルとの対応関係を前記第1の光出射手段群に切り替え、前記第2の光入射手段から前記所定波長の光が入射しているときには前記複数のチャンネルとの対応関係を前記第2の光出射手段群に切り替え、
    前記第1及び第2の光出射手段群及び前記切替手段と前記本体部とが互いに脱着可能であることを特徴とする濃度測定装置。
  2. 前記第1の光入射手段及び前記第1の光出射手段群、または前記第2の光入射手段及び前記第2の光出射手段群を所定の位置関係に保持するホルダをさらに備えることを特徴とする請求項に記載の濃度測定装置。
  3. 前記第1及び第2の光出射手段群のそれぞれを構成する前記光出射手段の数と、前記切替手段が有する前記複数の出力端子の数とが互いに同数であることを特徴とする請求項に記載の濃度測定装置。
  4. 前記演算手段により演算された濃度情報を表示する表示手段をさらに備え、
    前記表示手段は、前記第1及び第2の光出射手段群のそれぞれに対応する各光検出位置における濃度変化を同時に表示することを特徴とする請求項1〜のいずれか一項に記載の濃度測定装置。
JP2003051778A 2003-02-27 2003-02-27 濃度測定装置 Expired - Fee Related JP4373687B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003051778A JP4373687B2 (ja) 2003-02-27 2003-02-27 濃度測定装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003051778A JP4373687B2 (ja) 2003-02-27 2003-02-27 濃度測定装置

Publications (2)

Publication Number Publication Date
JP2004255075A JP2004255075A (ja) 2004-09-16
JP4373687B2 true JP4373687B2 (ja) 2009-11-25

Family

ID=33116839

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003051778A Expired - Fee Related JP4373687B2 (ja) 2003-02-27 2003-02-27 濃度測定装置

Country Status (1)

Country Link
JP (1) JP4373687B2 (ja)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5234183B2 (ja) * 2009-07-13 2013-07-10 株式会社島津製作所 ホルダ及びこれを用いた光生体測定装置
US10082458B2 (en) 2014-09-01 2018-09-25 Shimadzu Corporation Optical measurement device with light blocking element
JP7178614B2 (ja) * 2017-06-23 2022-11-28 パナソニックIpマネジメント株式会社 情報処理方法、情報処理装置、および情報処理システム
WO2018235466A1 (ja) * 2017-06-23 2018-12-27 パナソニックIpマネジメント株式会社 情報処理方法、情報処理装置、および情報処理システム

Also Published As

Publication number Publication date
JP2004255075A (ja) 2004-09-16

Similar Documents

Publication Publication Date Title
US11062442B2 (en) Vascular information acquisition device, endoscope system, and vascular information acquisition method
CN101272735B (zh) 用于光学成像系统的光学探针
US9279763B2 (en) Apparatus and method for measuring an analyte such as bilirubin, using light
JP2014000301A (ja) 光源装置及び内視鏡システム
EP2476373B1 (en) Endoscope system and processor apparatus thereof
JP2007532188A (ja) 空間的に均等のマルチカラーソースを用いたフォトプレチスモグラフィ
WO2015166843A1 (ja) 内視鏡装置
WO2013035694A1 (ja) 内視鏡システム及びプロセッサ装置並びに画像表示方法
EP1327418A1 (en) Organism optical measurement instrument
US20120310062A1 (en) Photon density wave based determination of physiological blood parameters
JPH04106748U (ja) 光生体計測装置
JP4373687B2 (ja) 濃度測定装置
US6567165B1 (en) Concentration measuring method and apparatus for absorption component in scattering medium
EP1380253B1 (en) Optical system for measuring metabolism in a body
WO2019161336A1 (en) System and method for an optical blood flow measurement
EP2502567A1 (en) Organism light measuring device and method for displaying information relating to necessity/unnecessity of replacement of light-emitting part
JP2008180579A (ja) 光ファイバ素線計数装置
CN209745445U (zh) 电缆状态评估系统
US8712492B2 (en) Photon density wave based determination of physiological blood parameters
JP3682809B2 (ja) 生体計測装置
JP4025601B2 (ja) う蝕歯診断方法および装置
US20110237910A1 (en) Stabilized multi-wavelength laser system for non-invasive spectrophotometric monitoring
JP2015150186A5 (ja)
JP5597019B2 (ja) 生体光計測装置および生体光計測方法
KR20190029207A (ko) 혈류 측정 장치

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050920

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080930

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081201

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090421

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090716

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20090727

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090901

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090904

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120911

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120911

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130911

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees