JP4371946B2 - Semiconductor device and substrate connection structure thereof - Google Patents

Semiconductor device and substrate connection structure thereof Download PDF

Info

Publication number
JP4371946B2
JP4371946B2 JP2004236065A JP2004236065A JP4371946B2 JP 4371946 B2 JP4371946 B2 JP 4371946B2 JP 2004236065 A JP2004236065 A JP 2004236065A JP 2004236065 A JP2004236065 A JP 2004236065A JP 4371946 B2 JP4371946 B2 JP 4371946B2
Authority
JP
Japan
Prior art keywords
substrate
heat
semiconductor device
solder bumps
solder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2004236065A
Other languages
Japanese (ja)
Other versions
JP2004320058A (en
Inventor
誠司 安藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Lapis Semiconductor Co Ltd
Original Assignee
Oki Semiconductor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oki Semiconductor Co Ltd filed Critical Oki Semiconductor Co Ltd
Priority to JP2004236065A priority Critical patent/JP4371946B2/en
Publication of JP2004320058A publication Critical patent/JP2004320058A/en
Application granted granted Critical
Publication of JP4371946B2 publication Critical patent/JP4371946B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched

Abstract

<P>PROBLEM TO BE SOLVED: To provide a semiconductor device that can improve heat radiation efficiency more than a conventional one by a method using solder bumps for heat radiation, and also to provide a sustrate connecting structure of such a semiconductor device. <P>SOLUTION: A semiconductor device 10 comprising: a package 11 containing a semiconductor element (chip); a large number of solder bumps 13 for heat radiation connected to the substrate connection surface 11a of the package 11; and solder bumps 14 for wire bonding. Here, the solder bumps 13 for heat radiation are formed with a shorter pitch than solder bumps 14 for wire bonding. An arranging pitch of the solder bumps 13 for heat radiation is set so as to form solder bridges between adjacent solder bumps, thereby forming an integral junction layer 30 during a heat treatment for bonding to the substrate. <P>COPYRIGHT: (C)2005,JPO&amp;NCIPI

Description

この発明は、半導体素子を保持するパッケージの基板接続面に、複数の配線接続用半田バンプと複数の放熱用半田バンプとが形成された半導体装置、およびこの半導体装置と基板とを組み合わせて構成される半導体装置の基板接続構造に関する。   The present invention includes a semiconductor device in which a plurality of wiring connection solder bumps and a plurality of heat dissipation solder bumps are formed on a substrate connection surface of a package holding a semiconductor element, and a combination of the semiconductor device and the substrate. The present invention relates to a substrate connection structure of a semiconductor device.

図10(a),(b)は、半田バンプを備える従来の半導体装置を示し、(a)は側面図、(
b)は底面図である。半導体装置1は、図示せぬ半導体素子(チップ)を内部に保持するパ
ッケージ2と、このパッケージ2の基板接続面2aに接続された多数の放熱用半田バンプ3、および基板接続用半田バンプ4とを備えている。
10 (a) and 10 (b) show a conventional semiconductor device having solder bumps, (a) is a side view,
b) is a bottom view. The semiconductor device 1 includes a package 2 that holds a semiconductor element (chip) (not shown) therein, a large number of heat dissipation solder bumps 3 connected to the substrate connection surface 2a of the package 2, and a substrate connection solder bump 4 It has.

放熱用半田バンプ3は、基板接続面2aの中央領域に配置され、配線接続用半田バンプ4は、中央領域を囲む周囲領域に配置されている。なお、配線接続用半田バンプ4は、内蔵する半導体素子の電極に接続されて配置されており、半導体素子の回路を外部回路に接続する接点としての機能を有している。   The heat dissipating solder bumps 3 are disposed in the central region of the substrate connection surface 2a, and the wiring connecting solder bumps 4 are disposed in a peripheral region surrounding the central region. Note that the solder bumps 4 for wiring connection are disposed so as to be connected to the electrodes of the built-in semiconductor element, and have a function as a contact point for connecting the circuit of the semiconductor element to an external circuit.

半導体装置1は、基板上に搭載されて熱処理(リフロー)工程を経ることにより、図11に示すように基板5に接続される。基板5には、放熱用半田バンプ3に対応する位置に放熱用パッド6が設けられ、配線接続用バンプ4に対応する位置に配線接続用パッド7が設けられている。半導体装置1は、熱処理工程で各半田バンプを溶融させて各パッドに接合させることにより、基板5に固定される。   The semiconductor device 1 is connected to the substrate 5 as shown in FIG. 11 by being mounted on the substrate and undergoing a heat treatment (reflow) step. The substrate 5 is provided with a heat dissipation pad 6 at a position corresponding to the heat dissipation solder bump 3 and a wiring connection pad 7 at a position corresponding to the wiring connection bump 4. The semiconductor device 1 is fixed to the substrate 5 by melting each solder bump and bonding it to each pad in a heat treatment process.

配線接続用半田バンプ4は、接続用端子としてそれぞれ独立して対応する配線接続用パッド7に接続される必要があり、そのため、熱処理により隣接するバンプ間で半田ブリッジが生じないように所定のピッチで配置されている。また、放熱用半田バンプ3も、図10に示すように配線接続用半田バンプ4と同一のピッチで形成されている。   The wiring connection solder bumps 4 need to be independently connected to the corresponding wiring connection pads 7 as connection terminals. Therefore, a predetermined pitch is set so that a solder bridge does not occur between adjacent bumps by heat treatment. Is arranged in. Further, the heat dissipation solder bumps 3 are also formed at the same pitch as the wiring connection solder bumps 4 as shown in FIG.

上記の構成によれば、パッケージ内の半導体素子で発生した熱が、放熱用半田バンプ3により形成される熱伝導部を介して基板5側に伝達され、拡散、放熱される。   According to said structure, the heat | fever generate | occur | produced with the semiconductor element in a package is transmitted to the board | substrate 5 side via the heat conductive part formed of the solder bump 3 for thermal radiation, and is spread | diffused and thermally radiated.

しかしながら、上述した従来の半導体装置1を用いた基板接続構造では、熱伝導部が配線接続用半田バンプと同じピッチで形成されるため、熱伝導部の断面積が比較的小さく、放熱効率が悪いという問題がある。   However, in the substrate connection structure using the conventional semiconductor device 1 described above, since the heat conduction part is formed at the same pitch as the solder bump for wiring connection, the cross-sectional area of the heat conduction part is relatively small and the heat dissipation efficiency is poor. There is a problem.

この発明は、上述した従来技術の問題点に鑑みてなされたものであり、放熱用半田バンプを用いる方式で放熱効率を従来より向上させることができる半導体装置の基板接続構造を提供することを課題(目的)とする。


The present invention has been made in view of the problems of the prior art described above, to provide a connection structure of a circuit board semiconductors devices that Ru can improve the heat dissipation efficiency than conventionally scheme using radiating solder bumps Is an issue (purpose).


この発明にかかる半導体装置は、上記の目的を達成させるため、基板と、これに接合された半導体装置とを含み、放熱用の熱伝導部が、これらの間であって、半導体素子を保持するパッケージの基板接続面に形成された半導体装置の基板接続構造において、前記熱伝導部は、当該熱伝導部の領域内を埋める一体の接合層であり、前記半導体素子は、前記パッケージの前記基板接続面側に露出して配置され、前記熱伝導部は、前記半導体素子に直接形成されていることを特徴とする。


In order to achieve the above object, a semiconductor device according to the present invention includes a substrate and a semiconductor device bonded to the substrate, and a heat conducting part for heat dissipation is between them and holds the semiconductor element. In the substrate connection structure of the semiconductor device formed on the substrate connection surface of the package, the heat conducting portion is an integral bonding layer filling the region of the heat conducting portion, and the semiconductor element is the substrate connecting portion of the package. It is arranged to be exposed on the surface side, and the heat conducting part is formed directly on the semiconductor element .


上記の構成によれば、熱伝導部が一体の接合層を形成するため、従来のように個々の放熱用半田バンプにより形成される熱伝導部が独立して基板に接合される場合と比較して、放熱に利用される熱伝導部の有効面積の比率が高くなり、放熱効率を向上させることができる。


According to the above arrangement, since the heat conduction portion is formed an integral bonding layer, as compared with the case where the heat-conducting portion which is formed by conventional solder bump for individual heat dissipation, as will be joined independently to the substrate Thus, the ratio of the effective area of the heat conduction part used for heat dissipation is increased, and the heat dissipation efficiency can be improved.


また、熱伝導部を接続面の中央領域に配置することが望ましい。半導体素子は通常パッケージの中央に配置されるため、上記の配置により、半導体素子で発生した熱を一体の接合層を介して効率よく基板側に放熱することができる。


Also, placement to Rukoto in the central region of the heat-conducting portion connecting surface is preferred. Since the semiconductor element is usually arranged at the center of the package, the heat generated in the semiconductor element can be efficiently radiated to the substrate side through the integrated bonding layer by the above arrangement.


さらに、パッケージの基板接続面側に、半導体素子からの熱を伝達する熱伝導率の高い放熱板を設け、熱伝導部をこの放熱板上に形成してもよい。この場合、放熱板に、半導体素子に直接接触する中継部を形成すれば、より放熱効率を向上させることができる。中継部は、半導体素子の放熱板側の面にほぼ全面的に接するよう配置された場合に、最大の放熱効率を得ることができる。


Further, a heat radiating plate having high thermal conductivity for transferring heat from the semiconductor element may be provided on the substrate connection surface side of the package, and the heat conducting portion may be formed on the heat radiating plate. In this case, the heat radiation efficiency can be further improved by forming a relay portion in direct contact with the semiconductor element on the heat radiating plate. When the relay portion is disposed so as to be substantially in contact with the surface of the semiconductor element on the side of the heat dissipation plate, the maximum heat dissipation efficiency can be obtained.


前記基板には、前記熱伝導部に接合される位置に複数の放熱用パッドを設けるようにしてもよい。The substrate may be provided with a plurality of heat radiation pads at positions where the heat conduction part is joined.
前記基板には、前記熱伝導部と接合される領域に、この領域をカバーする連続した平面を有する、放熱用パッドを形成するようにすることもできる。In the substrate, a heat radiation pad having a continuous flat surface covering the region may be formed in a region bonded to the heat conducting unit.


以上説明したように、本発明によれば、熱伝導部が一体の接合層であるため、従来のように個々の放熱用半田バンプが独立して基板に接合される場合と比較して、放熱に利用される有効面積の比率が高くなり、放熱効率を向上させることができる。 As described above, according to the present invention, since the heat-conducting portion is integral bonding layer, as compared with the case where the conventional solder bump for individual heat dissipation, as is joined independently to the substrate, heat radiation The ratio of the effective area utilized for the heat increases, and the heat radiation efficiency can be improved.

以下、この発明にかかる半導体装置の基板接続構造の実施形態を説明する。図1(a),(b)は、第1の実施形態にかかる半導体装置10を示し、(a)は側面図、(b)は底面図で
ある。半導体装置10は、図示せぬ半導体素子(チップ)を内部に保持するパッケージ(封
止体に相当)11と、このパッケージ11の基板接続面11aに接続された多数の放熱用
半田バンプ(第1の突起電極に相当)13、および配線接続用半田バンプ(第2の突起電極
に相当)14とを備えている。
Embodiments of a substrate connection structure for a semiconductor device according to the present invention will be described below. 1A and 1B show a semiconductor device 10 according to the first embodiment, where FIG. 1A is a side view and FIG. 1B is a bottom view. The semiconductor device 10 includes a package (corresponding to a sealing body) 11 that holds a semiconductor element (chip) (not shown) inside, and a large number of heat-dissipation solder bumps (first ones) connected to the substrate connection surface 11a of the package 11. And a solder bump for wiring connection (corresponding to a second protruding electrode) 14.

放熱用半田バンプ13は、基板接続面11aの中央領域にまとめて配置され、配線接続用半田バンプ14は、中央領域を囲む周囲領域に配置されている。なお、配線接続用半田バンプ14は、内蔵する半導体素子の電極に接続されて配置されており、半導体素子の回路を外部回路に接続する接点としての機能を有している。   The heat dissipating solder bumps 13 are collectively arranged in the central region of the substrate connection surface 11a, and the wiring connecting solder bumps 14 are disposed in a peripheral region surrounding the central region. Note that the solder bumps 14 for wiring connection are disposed so as to be connected to the electrodes of the built-in semiconductor element, and have a function as a contact for connecting the circuit of the semiconductor element to an external circuit.

半導体装置10は、基板上に搭載されて熱処理(リフロー)工程を経ることにより、図2(a)に示すように基板20に接続される。基板20には、放熱用半田バンプ13に対応する位置に放熱用パッド21が設けられ、配線接続用バンプ14に対応する位置に配線接続用パッド22が設けられている。半導体装置10は、熱処理工程で各半田バンプを溶融させて各パッドに接合させることにより、基板20に固定される。   The semiconductor device 10 is connected to the substrate 20 as shown in FIG. 2A by being mounted on the substrate and undergoing a heat treatment (reflow) step. The substrate 20 is provided with a heat dissipation pad 21 at a position corresponding to the heat dissipation solder bump 13, and a wiring connection pad 22 at a position corresponding to the wiring connection bump 14. The semiconductor device 10 is fixed to the substrate 20 by melting each solder bump and bonding it to each pad in a heat treatment process.

配線接続用半田バンプ14は、接続用端子としてそれぞれ独立して対応する配線接続用パッド22に接続される必要があり、そのため、熱処理により隣接するバンプ間で半田ブリッジが生じないように所定のピッチで配置されている。一方、放熱用半田バンプ13は、図1に示すように配線接続用半田バンプ14より狭いピッチで形成されている。放熱用半田バンプ13の配置ピッチは、基板20への接合のための熱処理の際に、隣接する半田バンプ間に半田ブリッジが形成され、全ての放熱用半田バンプ13が図2(a)に示すような一体の接合層30を形成するように設定されている。なお、第1の実施形態では、図2(b)に示されるように、放熱用の接合層30が互いに独立して形成された放熱用パッド21上に接続されている。具体的には、例えば各半田バンプの径が0.76mmである場合、放熱用半田バンプ13の配置ピッチは1.00mm、配線接続用半田バンプ14の配置ピッチは1.27mm程度に設定するとよい。   The wiring connection solder bumps 14 need to be connected to the corresponding wiring connection pads 22 independently as connection terminals. Therefore, the solder bumps 14 have a predetermined pitch so that a solder bridge does not occur between adjacent bumps by heat treatment. Is arranged in. On the other hand, the heat dissipation solder bumps 13 are formed at a narrower pitch than the wiring connection solder bumps 14 as shown in FIG. The arrangement pitch of the heat dissipation solder bumps 13 is such that a solder bridge is formed between adjacent solder bumps during heat treatment for bonding to the substrate 20, and all the heat dissipation solder bumps 13 are shown in FIG. Such an integral bonding layer 30 is set to be formed. In the first embodiment, as shown in FIG. 2B, the heat dissipation bonding layer 30 is connected to the heat dissipation pad 21 formed independently of each other. Specifically, for example, when the diameter of each solder bump is 0.76 mm, the arrangement pitch of the heat dissipating solder bumps 13 may be set to about 1.00 mm, and the arrangement pitch of the wiring connection solder bumps 14 may be set to about 1.27 mm. .

上記の構成によれば、実使用時に半導体装置1内の半導体素子で発生した熱は、接合層30を介して基板20側に伝達され、基板20で拡散して放熱される。このとき、半導体装置10から基板20側への熱伝導部が、一体の接合層30により構成されるため、従来のように個々の放熱用半田バンプが独立して基板に接合される場合と比較して、放熱に利用される有効面積の比率が高く、放熱効率を向上させることができる。   According to the above configuration, the heat generated in the semiconductor element in the semiconductor device 1 during actual use is transmitted to the substrate 20 side through the bonding layer 30 and diffused and radiated by the substrate 20. At this time, since the heat conducting portion from the semiconductor device 10 to the substrate 20 side is constituted by the integral bonding layer 30, it is compared with the case where individual heat dissipation solder bumps are independently bonded to the substrate as in the prior art. And the ratio of the effective area utilized for heat dissipation is high, and heat dissipation efficiency can be improved.

なお、隣接する放熱用半田バンプどうしを接合し易くするためには、上記の構造において、放熱用パッドの有効面積の当該領域の全面積に対する比率を、配線接続用パッドの有効面積の当該領域の全面積に対する比率より高く設定すればよい。例えば、図3に示すように基板20側にソルダーレジスト層40を形成して各パッドに対応する位置に開口41,42を形成する場合、配線接続用パッド22に対応する開口42を図3(a)に示すように所定の径d1で形成し、放熱用パッド21に対応する開口41を図3(b)に示すように
より大きい径d2で形成する。
In order to make it easy to join adjacent heat-radiating solder bumps, in the above structure, the ratio of the effective area of the heat-dissipating pad to the total area of the area is set to the ratio of the effective area of the wiring connection pad to the relevant area. What is necessary is just to set higher than the ratio with respect to the total area. For example, when the solder resist layer 40 is formed on the substrate 20 side as shown in FIG. 3 and the openings 41 and 42 are formed at positions corresponding to the pads, the openings 42 corresponding to the wiring connection pads 22 are formed as shown in FIG. As shown in FIG. 3 (a), the opening 41 corresponding to the heat dissipating pad 21 is formed with a larger diameter d2 as shown in FIG. 3 (b).

配線接続用パッド22用の開口42の径、すなわち有効面積比率は、前述のように熱処理により配線接続用半田バンプ14に半田ブリッジが形成されないように決定される。これに対して放熱用パッド21については、その有効面積比率を高くすることにより、積極的に半田ブリッジが形成されるようにしている。このように開口41の径を比較的大きくすることにより、放熱用半田バンプ13の径も大きくすることができ、接合時に半田ブリッジが形成されやすくなる。   The diameter of the opening 42 for the wiring connection pad 22, that is, the effective area ratio is determined so that a solder bridge is not formed on the wiring connection solder bump 14 as described above. On the other hand, with respect to the heat radiation pad 21, a solder bridge is positively formed by increasing the effective area ratio. Thus, by making the diameter of the opening 41 relatively large, the diameter of the solder bump 13 for heat dissipation can be increased, and a solder bridge is easily formed at the time of joining.

図4は、第2の実施形態にかかる半導体装置の基板接合構造を示し、(a)は接合状態で
の側面図、(b)は基板の平面図、(c)は(a)内の破線で囲まれた部分の拡大図である。この例では、半導体装置10側の構成は第1の実施形態と同一であり、基板20の放熱用半田バンプ(接合層30)が接合される領域に、この領域をカバーする連続した平面が放熱用パッド23として形成されている。
4A and 4B show a substrate bonding structure of a semiconductor device according to the second embodiment, in which FIG. 4A is a side view in a bonded state, FIG. 4B is a plan view of the substrate, and FIG. 4C is a broken line in FIG. It is an enlarged view of the part enclosed by. In this example, the configuration on the semiconductor device 10 side is the same as that of the first embodiment, and a continuous plane covering this region is dissipated in the region where the heat dissipating solder bump (bonding layer 30) of the substrate 20 is bonded. It is formed as a pad 23 for use.

上記の構成によれば、接合時には溶融して一体とされた接合層30が、放熱用パッド23に全面的に接合される。したがって、接合層30と基板20との間の熱伝導効率を第1の実施形態より高くすることができ、パッケージ内の半導体素子で発生した熱をより効率よく基板20側に伝達させて発散させることができる。   According to the above configuration, the bonding layer 30 which is melted and integrated at the time of bonding is bonded to the heat dissipation pad 23 entirely. Therefore, the heat conduction efficiency between the bonding layer 30 and the substrate 20 can be made higher than that of the first embodiment, and the heat generated in the semiconductor element in the package is more efficiently transmitted to the substrate 20 side to dissipate. be able to.

図5は、第3の実施形態にかかる半導体装置50を示す断面図である。この例では、パッケージ51の基板接続面51a側に、半導体素子52からの熱を伝達する熱伝導率の高い放熱板53が設けられ、放熱用半田バンプ54をこの放熱板53上に形成している。なお、配線接続用半田バンプ55は、第1の実施形態と同様、周囲領域に形成されている。ワイヤ56は、半導体素子52の電極と、配線接続用バンプ14が設けられるパッケージ51側の電極との間を電気的に接続している。また、放熱用判断バンプ54のピッチが配線接続用半田バンプのピッチより狭い点も第1の実施形態と同様である。   FIG. 5 is a cross-sectional view showing a semiconductor device 50 according to the third embodiment. In this example, a heat radiating plate 53 having high thermal conductivity for transferring heat from the semiconductor element 52 is provided on the substrate connection surface 51 a side of the package 51, and heat radiating solder bumps 54 are formed on the heat radiating plate 53. Yes. Note that the solder bumps 55 for wiring connection are formed in the peripheral region as in the first embodiment. The wire 56 electrically connects the electrode of the semiconductor element 52 and the electrode on the package 51 side where the wiring connection bumps 14 are provided. Further, the point that the pitch of the heat dissipation judgment bumps 54 is narrower than the pitch of the wiring connection solder bumps is the same as that of the first embodiment.

第3の実施形態によれば、半導体素子51で発生した熱は放熱板53を介して効率よく放熱用半田バンプ54に伝達される。したがって、半導体装置50を熱処理工程を経て基板に接続し、一体の接合層を形成することにより、第1の実施形態よりも高い放熱効率を得ることができる。   According to the third embodiment, the heat generated in the semiconductor element 51 is efficiently transmitted to the heat dissipation solder bumps 54 via the heat dissipation plate 53. Therefore, by connecting the semiconductor device 50 to the substrate through a heat treatment step and forming an integral bonding layer, it is possible to obtain a higher heat dissipation efficiency than in the first embodiment.

図6は、図5に示した第3の実施形態の変形例を示した断面図である。この例では、第3の実施形態の構成に加え、放熱板53に半導体素子51に直接接触する中継部として凸部53aが複数形成されている。この構成によれば、半導体素子51で発生した熱は凸部53aを介して、図5の例より効率よく放熱板53に伝導する。したがって、基板に接続して接合層を形成することにより、第3の実施形態より高い放熱効率を得ることができる。   FIG. 6 is a cross-sectional view showing a modification of the third embodiment shown in FIG. In this example, in addition to the configuration of the third embodiment, a plurality of convex portions 53 a are formed on the heat dissipation plate 53 as relay portions that directly contact the semiconductor element 51. According to this configuration, the heat generated in the semiconductor element 51 is conducted to the heat radiating plate 53 more efficiently than the example of FIG. Therefore, by connecting to the substrate and forming the bonding layer, higher heat dissipation efficiency than that of the third embodiment can be obtained.

図7は、図5に示した第3の実施形態の他の変形例を示す断面図である。この例では、第3の実施形態の構成に加え、放熱板53に半導体素子51に直接全面的に接触する中継部として平面部53bが形成されている。この構成によれば、図6の例よりさらに放熱板53への熱伝導率を高めることができる。したがって、基板に接続して接合層を形成することにより、図6の構成より高い放熱効率を得ることができる。   FIG. 7 is a cross-sectional view showing another modification of the third embodiment shown in FIG. In this example, in addition to the configuration of the third embodiment, a flat portion 53 b is formed on the heat dissipation plate 53 as a relay portion that directly contacts the semiconductor element 51 entirely. According to this configuration, the thermal conductivity to the heat radiating plate 53 can be further increased than in the example of FIG. Therefore, by connecting to the substrate and forming the bonding layer, it is possible to obtain higher heat dissipation efficiency than the configuration of FIG.

なお、図7の例のように半導体素子51と放熱板53との間に平面部53bを形成せずに、半導体素子51を直接放熱板53上に直接、またはダイスボンド材を介して接合することもできる。この場合、ダイパッドを放熱板53に兼用することもできる。   Note that, as in the example of FIG. 7, the semiconductor element 51 is bonded directly on the heat dissipation plate 53 or via a die bond material without forming the flat portion 53 b between the semiconductor element 51 and the heat dissipation plate 53. You can also. In this case, the die pad can also be used as the heat sink 53.

図8は、この発明の第4の実施形態にかかる半導体装置60を示す断面図である。この例では、半導体素子61がパッケージ62の基板接続面62a側に露出したキャビティダウン構造の半導体装置60を対象としている。放熱用半田バンプ63は、半導体素子61上に直接形成されている。なお、配線接続用半田バンプ64は、第1の実施形態と同様、周囲領域に形成されている。また、放熱用判断バンプ63のピッチが配線接続用半田バンプ64のピッチより狭い点も第1の実施形態と同様である。   FIG. 8 is a sectional view showing a semiconductor device 60 according to the fourth embodiment of the present invention. In this example, the semiconductor device 61 having a cavity-down structure in which the semiconductor element 61 is exposed on the substrate connection surface 62a side of the package 62 is targeted. The heat dissipation solder bump 63 is formed directly on the semiconductor element 61. Note that the solder bumps 64 for wiring connection are formed in the peripheral region as in the first embodiment. Further, the point that the pitch of the heat dissipation judgment bumps 63 is narrower than the pitch of the wiring connection solder bumps 64 is the same as in the first embodiment.

第4の実施形態によれば、半導体素子61で発生した熱は直接放熱用半田バンプ63に伝達されるため、半導体装置60を熱処理工程を経て基板に接続し、一体の接合層を形成することにより、第1の実施形態よりも高い放熱効率を得ることができる。   According to the fourth embodiment, since the heat generated in the semiconductor element 61 is directly transmitted to the heat dissipation solder bump 63, the semiconductor device 60 is connected to the substrate through a heat treatment step to form an integral bonding layer. Thus, higher heat dissipation efficiency than that of the first embodiment can be obtained.

図9は、図8に示した第4の実施形態の変形例を示す側面図であり、半導体素子61が配置された部分を拡大して示している。この例では、半導体素子61の表面を含むパッケージ62の基板接続面62aに、複数の開口を有するソルダーレジスト層65が形成されている。ソルダーレジスト層65の中央領域には、放熱用半田バンプ63を形成するための開口66が複数形成されている。   FIG. 9 is a side view showing a modification of the fourth embodiment shown in FIG. 8, and shows an enlarged portion where the semiconductor element 61 is arranged. In this example, a solder resist layer 65 having a plurality of openings is formed on the substrate connection surface 62 a of the package 62 including the surface of the semiconductor element 61. In the central region of the solder resist layer 65, a plurality of openings 66 for forming the heat dissipation solder bumps 63 are formed.

図9のようにソルダーレジスト層65を設けることにより、放熱用半田バンプ63を形成する際に、放熱用半田バンプ63を容易に設計値通りの正確な位置に形成することができる。放熱用半田バンプ63は、基板への接合時に半田ブリッジを形成するよう狭いピッチで形成されるため、半導体装置への搭載時にその形成位置がずれると、隣接する半田バンプが互いに結合する可能性がある。そして、基板への接合前に半田バンプが結合すると、結合した部分は単独の半田バンプより高さが低くなり、基板への接続時に基板に接触しない可能性がある。上述のようにソルダーレジスト層65に形成された開口66を基準に放熱用半田バンプを形成すれば、位置ずれによる半田バンプの不用意な結合を防ぎ、半田バンプの高さを揃えて基板へ接合を確実にすることができる。   By providing the solder resist layer 65 as shown in FIG. 9, when forming the heat dissipation solder bump 63, the heat dissipation solder bump 63 can be easily formed at an accurate position as designed. Since the heat dissipating solder bumps 63 are formed at a narrow pitch so as to form a solder bridge at the time of bonding to the substrate, there is a possibility that adjacent solder bumps may be coupled to each other if their formation positions are shifted when mounted on a semiconductor device. is there. When the solder bumps are bonded before bonding to the substrate, the bonded portion is lower in height than a single solder bump and may not contact the substrate when connected to the substrate. If the solder bumps for heat dissipation are formed on the basis of the openings 66 formed in the solder resist layer 65 as described above, inadvertent bonding of the solder bumps due to misalignment can be prevented, and the height of the solder bumps can be aligned and bonded to the substrate. Can be ensured.

第1の実施形態にかかる半導体装置を示し、(a)は側面図、(b)は底面図。The semiconductor device concerning 1st Embodiment is shown, (a) is a side view, (b) is a bottom view. 図1の半導体装置の基板への接続構造を示し、(a)は側面図、(b)は(a)内の破線で囲まれた部分の拡大図。FIGS. 2A and 2B are side views and FIG. 2B are enlarged views of a portion surrounded by a broken line in FIG. 第1の実施形態の基板にソルダーレジスト層を設けた構造を示し、(a)は配線接続用パッドを示す断面図、(b)は放熱用パッドを示す断面図。1 shows a structure in which a solder resist layer is provided on a substrate according to a first embodiment, (a) is a sectional view showing wiring connection pads, and (b) is a sectional view showing heat radiation pads. 第2の実施形態にかかる半導体装置の基板接合構造を示し、(a)は接合状態での側面図、(b)は基板の平面図、(c)は(a)内の破線で囲まれた部分の拡大図。The board | substrate joining structure of the semiconductor device concerning 2nd Embodiment is shown, (a) is a side view in a joining state, (b) is a top view of a board | substrate, (c) was enclosed with the broken line in (a). The enlarged view of a part. 第3の実施形態にかかる半導体装置を示す断面図。Sectional drawing which shows the semiconductor device concerning 3rd Embodiment. 図5に示した第3の実施形態の変形例を示した断面図。Sectional drawing which showed the modification of 3rd Embodiment shown in FIG. 図5に示した第3の実施形態の他の変形例を示した断面図。Sectional drawing which showed the other modification of 3rd Embodiment shown in FIG. 第4の実施形態にかかる半導体装置を示す断面図。Sectional drawing which shows the semiconductor device concerning 4th Embodiment. 図8に示した第4の実施形態の変形例を示す側面図。The side view which shows the modification of 4th Embodiment shown in FIG. 半田バンプを備える従来の半導体装置を示し、(a)は側面図、(b)は底面図。The conventional semiconductor device provided with a solder bump is shown, (a) is a side view, (b) is a bottom view. 図10の半導体装置の基板への接続構造を示す側面図。FIG. 11 is a side view showing a connection structure of the semiconductor device of FIG. 10 to a substrate.

符号の説明Explanation of symbols

10 半導体装置
11 パッケージ
13 放熱用半田バンプ
14 配線接続用半田バンプ
20 基板
21 放熱用パッド
22 配線接続用パッド
30 接合層
DESCRIPTION OF SYMBOLS 10 Semiconductor device 11 Package 13 Solder bump for heat radiation 14 Solder bump for wiring connection 20 Substrate 21 Heat radiation pad 22 Pad for wiring connection 30 Bonding layer

Claims (3)

基板と、これに接合された半導体装置とを含み、放熱用の熱伝導部が、これらの間であって、半導体素子を保持するパッケージの基板接続面に形成された半導体装置の基板接続構造において、
前記熱伝導部は、当該熱伝導部の領域内を埋める一体の接合層であって、隣接する半田バンプ間に形成される半田ブリッジにより複数の半田バンプが一体となることで形成される接合層であり、
前記半導体素子は、前記パッケージの前記基板接続面側に露出して配置され、
前記熱伝導部は、前記半導体素子に直接形成されていることを特徴とする
半導体装置の基板接続構造。
In a substrate connection structure of a semiconductor device, including a substrate and a semiconductor device bonded to the substrate, wherein a heat conduction portion for heat dissipation is formed between the substrates and the substrate connection surface of the package holding the semiconductor element. ,
The heat conducting portion is an integral bonding layer that fills the region of the heat conducting portion, and is formed by integrating a plurality of solder bumps by a solder bridge formed between adjacent solder bumps. And
The semiconductor element is exposed and arranged on the substrate connection surface side of the package,
The substrate connection structure of a semiconductor device, wherein the heat conducting portion is formed directly on the semiconductor element.
前記基板には、前記熱伝導部に接合される位置に複数の放熱用パッドが設けられていることを特徴とする
請求項1に記載の半導体装置の基板接続構造。
2. The substrate connection structure for a semiconductor device according to claim 1, wherein the substrate is provided with a plurality of heat-dissipating pads at positions joined to the heat conducting portion.
前記基板には、前記熱伝導部と接合される領域に、この領域をカバーする連続した平面を有する、放熱用パッドが、形成されていることを特徴とする
請求項1に記載の半導体装置の基板接続構造。
2. The semiconductor device according to claim 1, wherein a heat radiating pad having a continuous flat surface covering the region is formed in a region bonded to the heat conducting unit on the substrate. Board connection structure.
JP2004236065A 2004-08-13 2004-08-13 Semiconductor device and substrate connection structure thereof Expired - Lifetime JP4371946B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004236065A JP4371946B2 (en) 2004-08-13 2004-08-13 Semiconductor device and substrate connection structure thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004236065A JP4371946B2 (en) 2004-08-13 2004-08-13 Semiconductor device and substrate connection structure thereof

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP23212698A Division JP3602968B2 (en) 1998-08-18 1998-08-18 Semiconductor device and substrate connection structure thereof

Publications (2)

Publication Number Publication Date
JP2004320058A JP2004320058A (en) 2004-11-11
JP4371946B2 true JP4371946B2 (en) 2009-11-25

Family

ID=33475902

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004236065A Expired - Lifetime JP4371946B2 (en) 2004-08-13 2004-08-13 Semiconductor device and substrate connection structure thereof

Country Status (1)

Country Link
JP (1) JP4371946B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6462926B2 (en) * 2018-03-05 2019-01-30 東芝メモリ株式会社 Storage device and electronic device

Also Published As

Publication number Publication date
JP2004320058A (en) 2004-11-11

Similar Documents

Publication Publication Date Title
TWI294694B (en) Led wafer-level chip scale packaging
TWI529878B (en) Hybrid thermal interface material for ic packages with integrated heat spreader
JP4688526B2 (en) Semiconductor device and manufacturing method thereof
JP5188120B2 (en) Semiconductor device
KR100698526B1 (en) Substrate having heat spreading layer and semiconductor package using the same
JP3602968B2 (en) Semiconductor device and substrate connection structure thereof
JP4493121B2 (en) Semiconductor device and semiconductor chip packaging method
JP2010283349A (en) Integrated circuit package including thermally and electrically conductive package lid
JP2008060172A (en) Semiconductor device
JP2019071412A (en) Chip package
TW201041097A (en) Multi-die package with improved heat dissipation
TWI269414B (en) Package substrate with improved structure for thermal dissipation and electronic device using the same
TWI286832B (en) Thermal enhance semiconductor package
TW578282B (en) Thermal- enhance MCM package
JP2008085002A (en) Semiconductor device and its manufacturing method
KR102359904B1 (en) Semiconductor package
JP2007059486A (en) Semiconductor device and substrate for manufacturing semiconductor device
JP2007281043A (en) Semiconductor device
KR20030045950A (en) Multi chip package comprising heat sinks
JP4371946B2 (en) Semiconductor device and substrate connection structure thereof
JPH09326450A (en) Semiconductor device and its manufacture
JP4225243B2 (en) Semiconductor device and substrate connection structure
JP2007036035A (en) Semiconductor device
JP2000106410A (en) Semiconductor device
JPH0846086A (en) Mounting structure of bare chip and heat sink

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040813

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070601

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070626

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070815

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080812

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081008

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20081218

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090818

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090901

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120911

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130911

Year of fee payment: 4

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term