JP4371333B2 - Phase plate production method, optical member, and liquid crystal display device - Google Patents

Phase plate production method, optical member, and liquid crystal display device Download PDF

Info

Publication number
JP4371333B2
JP4371333B2 JP25387499A JP25387499A JP4371333B2 JP 4371333 B2 JP4371333 B2 JP 4371333B2 JP 25387499 A JP25387499 A JP 25387499A JP 25387499 A JP25387499 A JP 25387499A JP 4371333 B2 JP4371333 B2 JP 4371333B2
Authority
JP
Japan
Prior art keywords
heat
film
liquid crystal
shrinkable film
display device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP25387499A
Other languages
Japanese (ja)
Other versions
JP2001075098A (en
Inventor
誠司 近藤
一喜 土本
伸一 佐々木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nitto Denko Corp
Original Assignee
Nitto Denko Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nitto Denko Corp filed Critical Nitto Denko Corp
Priority to JP25387499A priority Critical patent/JP4371333B2/en
Publication of JP2001075098A publication Critical patent/JP2001075098A/en
Application granted granted Critical
Publication of JP4371333B2 publication Critical patent/JP4371333B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Description

【0001】
【発明の技術分野】
本発明は、液晶表示装置の視野角やコントラストの改善に好適な位相差板を精度よく製造できる方法、及びその位相差板を用いた光学部材に関する。
【0002】
【従来の技術】
従来、液晶セルの複屈折による位相差を補償して液晶表示装置の視野角の拡大やコントラストの向上を達成しうる位相差板の製造方法として、熱可塑性フィルムに熱収縮性フィルムを接着して加熱によるその収縮力の作用下に延伸処理する方法が知られていた(特開平5−157911号公報)。かかる延伸処理後の熱収縮性フィルムは、得られた位相差板より剥離される。
【0003】
前記の方法によれば、積層して用いることが必要な一軸延伸フィルムの場合の生産性やコストでの不利や、二軸延伸ポリスチレンフィルム等の場合の耐熱性に乏しくて液晶表示装置の形成に不向きな点などを克服することができる。しかしながら従来の方法では、熱収縮性フィルムの収縮が先行して接着界面にズレや剥がれが発生し、熱可塑性フィルムに対する収縮力が不足して変形制御が難しく得られる位相差板の位相差精度に乏しい問題点があった。
【0004】
【発明の技術的課題】
本発明は、熱収縮性フィルムの収縮力を熱可塑性フィルムに効率よく伝達できて変形を容易に制御でき、位相差精度に優れる位相差板を得ることができる製造方法の開発を課題とする。
【0005】
【課題の解決手段】
本発明は、初期寸法を基準とした収縮開始温度をTi、熱可塑性フィルムのガラス転移温度をTgとしたとき、Tg−0≦Tiを満足する熱収縮性フィルムを無配向の熱可塑性フィルムの片面又は両面に接着し、加熱によるその熱収縮性フィルムの収縮力の作用下に前記熱可塑性フィルムを少なくとも縦横の一方向に延伸又は収縮させたのち当該熱収縮性フィルムを剥離することを特徴とする位相差板の製造方法を提供するものである。
【0006】
また本発明は、前記の製造方法による位相差板と偏光板との積層体からなることを特徴とする光学部材、及び前記の製造方法による位相差板又はそれと偏光板を液晶セルの少なくとも片側に有することを特徴とする液晶表示装置を提供するものである。
【0007】
【発明の効果】
本発明によれば、熱収縮性フィルムの収縮先行による接着界面でのズレや剥がれを抑制して、熱可塑性フィルムが変形しやすい温度で熱収縮性フィルムの収縮力を効率よく付与でき、液晶の複屈折を補償して視角による表示色やコントラストの変化等を防止するために要求される例えばnx<nzの特性、すなわちnz>nx>nyの屈折率特性を満足する良耐熱性の位相差板などもnx>nyの熱可塑性フィルムを用いて効率よく得ることができる。なお前記のnx、nyは面内の主屈折率、nzは厚さ方向の主屈折率を意味する(以下同じ)。
【0008】
前記の結果、熱収縮性フィルムの収縮力の作用下に熱可塑性フィルムの変形を容易に制御して位相差を高度に調節した位相差板を効率よく得ることができ、それを用いて液晶セルの複屈折による位相差を高度に補償した視野角やコントラストに優れる液晶表示装置を得ることができる。
【0009】
【発明の実施形態】
本発明による製造方法は、初期寸法を基準とした収縮開始温度をTi、熱可塑性フィルムのガラス転移温度をTgとしたとき、Tg−0≦Tiを満足する熱収縮性フィルムを無配向の熱可塑性フィルムの片面又は両面に接着し、加熱によるその熱収縮性フィルムの収縮力の作用下に前記熱可塑性フィルムを少なくとも縦横の一方向に延伸又は収縮させたのち当該熱収縮性フィルムを剥離して位相差板を得るものである。
【0010】
位相差板の母体となる熱可塑性フィルムとして、光透過性の適宜な熱可塑性樹脂からなる無配向のフィルム用いられる。就中、光透過率が75%以上、特に85%以上の透光性に優れるフィルムが好ましい。また耐熱性に優れる位相差板を得る点よりは、延伸方向の屈折率が高くなる正の複屈折特性を示すポリマーからなるものが好ましく用いられる。
【0011】
ちなみに前記した正の複屈折特性を示すポリマーの例としてはポリカーボネート、ポリビニルアルコール、セルロース系樹脂、ポリエチレンテレフタレートやポリエチレンナフタレートの如きポリエステル、ポリアリレート、ポリイミド、ノルボルネン系樹脂、ポリスルホン、ポリエーテルスルホン、ポリプロピレンの如きポリオレフィンなどがあげられる。
【0012】
熱可塑性フィルムは、例えば流延法等のキャスティング法や、押出法などの適宜な方式で形成したものであってよい。キャスティング法等の溶液製膜法が厚さムラや配向歪ムラ等の少ないフィルムを得る点などより好ましい。熱可塑性フィルムは、バッチ処理用の規定サイズにて用いることもできるし、連続製造を目的に長尺フィルムとして用いることもできる。
【0013】
熱可塑性フィルムの厚さは、目的とする位相差板の位相差特性などにより適宜に決定することができる。一般には5〜500μm、就中10〜400μm、特に20〜300μmの厚さとされる。位相差は、屈折率差(△n)と光路長(L)の積(△n×L)として求めることができる。
【0014】
熱可塑性フィルムの片面又は両面に接着する熱収縮性フィルムは、その加熱による収縮力を熱可塑性フィルムに伝達してその収縮力の作用下に熱可塑性フィルムを縦又は横の一方向又は両方向に延伸又は収縮させてその位相差特性、特に厚さ方向の屈折率を制御することなどを目的とし、本発明においては初期寸法を基準とした収縮開始温度をTi、熱可塑性フィルムのガラス転移温度をTgとしたとき、Tg−0≦Tiを満足する熱収縮性フィルムが用いられる。
【0015】
すなわち図1に例示した曲線の如く、熱収縮性フィルムの加熱収縮処理では通例、温度上昇による熱膨張で初期の寸法よりも長さを増したのち収縮を開始して寸法が初期よりも短くなる挙動を示す。その場合に、本発明にては膨張後の収縮でその寸法が初期と同じとなる温度を収縮開始温度Tiと定義し、そのTiと熱可塑性フィルムのTgが式:Tg−0≦Tiを満足する熱収縮性フィルムが用いられる。
【0016】
熱収縮性フィルムの収縮力の伝達による熱可塑性フィルムの効率的な変形性、ひいては位相差制御の高度化などの点より前記したTg−50≦Tiを満足する熱収縮性フィルムが用いられる。なお熱可塑性フィルムに均一な配向を付与する点よりは、熱収縮力がフィルム全面で可及的に均一で表面平滑性に優れる熱収縮性フィルムが好ましく用いられる。
【0017】
熱収縮性フィルムは、前記のTi条件を満足するものであればよく、従って例えばポリ塩化ビニルやポリエチレン、ポリプロピレンやポリエステル、ポリスチレンやポリアミドの如き熱可塑性樹脂からなるフィルムの一軸や二軸等による延伸フィルムなどの、加熱処理にて収縮性を示す適宜なものを用いることができ、特に限定はない。就中、位相差の制御性などの点より正の複屈折特性を示すポリマーからなるものが好ましく用いられる。熱収縮力は、熱可塑性樹脂の種類や延伸倍率等の延伸条件などにより相違させることができる。
【0018】
熱可塑性フィルムと熱収縮性フィルムの接着処理は、熱収縮性フィルムの加熱収縮力の伝達が可能な適宜な方式で行いうる。収縮処理後の容易な分離性などの点よりは粘着層を介した接着方式が好ましい。熱収縮性フィルムと熱可塑性フィルムの接着力は、適宜に決定しうるが一般には加熱収縮力の伝達性や収縮処理後の容易な分離性などの点より、常温でのT型剥離に基づいて45〜200gf/50mm、就中48〜190gf/50mm、特に50〜180gf/50mmが好ましい。
【0019】
なお前記の粘着層を形成する粘着剤については、特に限定はなく例えばアクリル系やシリコーン系、ポリエステル系やポリウレタン系、ポリエーテル系やゴム系などの適宜なものを用いることができる。就中、熱収縮性フィルムの加熱収縮処理で接着力が可及的に上昇しにくいものが好ましい。
【0020】
粘着層は、熱可塑性フィルムと熱収縮性フィルムの接着時にその一方又は両方の接着面に付設することもできるが、予め熱収縮性フィルムに付設した状態で用いることが形成された位相差板と熱収縮性フィルムの分離時における糊残りを防止して製造効率の向上等をはかる点より好ましい。すなわち粘着層を熱収縮性フィルムに随伴させた状態で分離して、形成された位相差板に粘着層が残存することを防止することが製造効率等の点より好ましい。
【0021】
熱収縮性フィルムへの粘着層の付設は、粘着剤を熱収縮性フィルムに塗工して乾燥処理する方式などにても行いうるが、その乾燥処理等による熱収縮性フィルムの収縮特性の変化を防止する点などよりは、セパレータ上に設けた粘着層を熱収縮性フィルムに移着する方式などが好ましい。
【0022】
なお前記のセパレータは、そのまま接着して熱収縮性フィルムを実用に供するまでの間、粘着層の汚染等を防止する保護カバーとして利用することもできる。粘着層を付設する熱収縮性フィルム面には、粘着層との密着力の向上を目的としたコロナ処理等の適宜な表面処理を施すことができる。
【0023】
熱収縮性フィルムは、上記したように目的とする収縮力等に応じて熱可塑性フィルムの片面又は両面に1枚又は2枚以上の適宜な数を接着しうるが、両面に接着する場合や片面に複層を接着する場合には、その表裏や上下における熱収縮性フィルムは、同じものであってもよいし、熱収縮率等の熱収縮特性が相違するものであってもよい。
【0024】
熱可塑性フィルムに接着した熱収縮性フィルムの収縮処理は、ロール延伸機やテンターや二軸延伸機等の適宜な延伸機を介して行うことができる。その処理温度は、熱可塑性フィルムのTg近傍、就中Tgの±20℃以内の温度範囲、特にTg以上で行うことが処理操作の制御性による位相差の高精度化などの点より好ましい。
【0025】
加熱による熱収縮性フィルムの収縮力の作用下に熱可塑性フィルムに与える処理は、延伸か収縮のいずれかであり、形成目的の位相差板に応じて適宜に決定してよい。また与える処理は、熱可塑性フィルムの縦横方向(長さ方向と幅方向)のいずれか一方であってもよいし、両方であってもよい。両方の方向に処理を与える場合、一方の方向には収縮処理を、他方の方向には延伸処理を与える組合せとすることもできる。前記した熱収縮性フィルムの収縮力の作用下に熱可塑性フィルムに与える処理は、2回又は3回以上の工程に分けて行うこともできる。
【0026】
本発明による方法は、厚さ方向の屈折率nzを制御して、フィルム面内の屈折率差(nx−ny)による位相差よりも、厚さ方向の屈折率が関係する方向の位相差が大きくなる位相差板の製造などに有利に用いうる。厚さ方向の屈折率の制御は通例、熱可塑性フィルムの縦横方向の少なくとも一方を収縮させる方式などにより行うことができる。特に液晶の複屈折による視角特性を補償する点よりはnz>nx>nyの屈折率特性を満足する位相差板が好ましく用いうる。
【0027】
上記により必要な処理を終えると、形成された位相差板より収縮処理後の熱収縮性フィルムが剥離されてそれらが分離される。得られた位相差板は、そのまま実用に共することもできるし、それにさらに延伸処理等を加えて位相差特性を調節したものとして実用に共することもできる。
【0028】
本発明による好ましい位相差板は、それに限定するものではないが、複屈折による位相差と配向軸のバラツキが可及的に小さく、就中そのフィルム面に垂直な(正面方向の)透過光における位相差のバラツキが10nm以下、特に5nm以下で、配向軸のバラツキが5度以下、特に3度以下に形成されたものである。
【0029】
本発明による位相差板は、その単層物や同種又は異種の積層物などとして液晶セルの視野角の拡大やコントラストの向上などを目的とした複屈折による位相差の補償などに好ましく用いうる。その実用に際しては、例えば位相差板の片面又は両面に粘着層を設けたものや、その粘着層を介して偏光板、又は等方性の透明な樹脂層やガラス層等からなる保護層を接着積層したものなどの適宜な形態の光学部材として適用することもできる。
【0030】
前記した偏光板等との積層は、液晶表示装置の製造過程で順次別個に積層する方式にても行いうるが、予め積層することにより、品質の安定性や積層作業性等に優れて液晶表示装置の製造効率を向上させうる利点などがある。なお接着には適宜な接着剤等を用いうる。就中、上記で例示したものなどの粘着層、特に耐熱性や光学特性などの点よりアクリル系のものが好ましく用いられる。
【0031】
接着層には、必要に応じて例えば天然物や合成物の樹脂類、ガラス繊維やガラスビーズ、金属粉やその他の無機粉末等からなる充填剤や顔料、着色剤や酸化防止剤などの適宜な添加剤を配合することもできる。また微粒子を含有させて光拡散性を示す接着層とすることもできる。
【0032】
位相差板と積層する偏光板としては、適宜なものを用いてよく、その例としてはポリビニルアルコール系フィルムや部分ホルマール化ポリビニルアルコール系フィルム、エチレン・酢酸ビニル共重合体系部分ケン化フィルムの如き親水性高分子フィルムにヨウ素及び/又は二色性染料を吸着させて延伸したもの、ポリビニルアルコールの脱水処理物やポリ塩化ビニルの脱塩酸処理物の如きポリエン配向フィルム等からなる偏光フィルムなどがあげられる。
【0033】
また偏光板は、前記した偏光フィルムの片側又は両側に透明保護層を有するものであってもよい。さらに偏光板は、反射層やハーフミラー等を有する反射型や半透過型のものなどであってもよい。反射型の偏光板は、視認側(表示側)からの入射光を反射させて表示するタイプの液晶表示装置などを形成するためのものであり、バックライト等の光源の内蔵を省略できて液晶表示装置の薄型化をはかりやすいなどの利点を有する。
【0034】
前記の透明保護層は、ポリマーの塗布層や保護フィルムの積層物などとして適宜に形成でき、その形成には透明性や機械的強度、熱安定性や水分遮蔽性等に優れるポリマーなどが好ましく用いられる。その例としてはポリエステル系樹脂やアセテート系樹脂、ポリエーテルサルホン系樹脂やポリカーボネート系樹脂、ポリアミド系樹脂やポリイミド系樹脂、ポリオレフィン系樹脂やアクリル系樹脂、あるいはアクリル系やウレタン系、アクリルウレタン系やエポキシ系やシリコーン系等の熱硬化型、ないし紫外線硬化型の樹脂などがあげられる。透明保護層は、微粒子の含有によりその表面が微細凹凸構造に形成されていてもよい。
【0035】
また反射型偏光板の形成は、必要に応じ透明樹脂層等を介して偏光板の片面に金属等からなる反射層を付設する方式などの適宜な方式で行うことができ、例えば必要に応じマット処理した保護フィルム等の透明樹脂層の片面に、アルミニウム等の反射性金属からなる箔や蒸着膜を付設したものや、前記透明樹脂層の微粒子含有による表面微細凹凸構造の上に蒸着方式やメッキ方式等の適宜な方式で金属反射層を付設したものなどがあげられる。半透過型偏光板は、前記の反射層をハーフミラー等の半透過型のものとすることにより得ることができる。
【0036】
なお位相差板と偏光板の積層に際して、それらの透過軸や進相軸等の光軸の配置角度については特に限定はなく、適宜に決定することができる。ちなみにSTN型の液晶セルに適用する場合には、45度等の斜め交叉角に配置する場合が多く、TN型の液晶セルに適用する場合には略平行又は略直交の交叉角に配置する場合が多い。
【0037】
位相差板は、その2枚以上を積層して用いうることを上記したが、これは補償効果の向上などを目的とし、その場合に本発明にては本発明によるものとそれ以外の位相差板との積層体とすることもできる。その位相差板としては、例えば上記の熱可塑性フィルムで例示したフィルムの一軸や二軸等による延伸処理物、ディスコティック系やネマチック系等の液晶配向板などの適宜なものを用いうる。
【0038】
上記した位相差板や偏光板、透明保護層や粘着層などの各層は、例えばサリチル酸エステル系化合物やベンゾフェノール系化合物、ベンゾトリアゾール系化合物やシアノアクリレート系化合物、ニッケル錯塩系化合物等の紫外線吸収剤で処理する方式などにより紫外線吸収能をもたせることもできる。
【0039】
本発明による位相差板は、例えば正面方向でのコントラストの低下を防止した斜視方向位相差の打消し補償や、正面方向と斜視方向の位相差の打消し補償等の、TN型やSTN型やπ型等の各種の液晶セルにおける複屈折による視角特性の補償などに好ましく用いうる。
【0040】
前記位相差板を用いての液晶表示装置の形成は、従来に準じて行いうる。すなわち液晶表示装置は一般に、液晶セルと光学補償用の位相差板、及び必要に応じての偏光板や照明システム等の構成部品を適宜に組立てて駆動回路を組込むことなどにより形成されるが、本発明においては本発明による位相差板を光学補償用のものに用いて、それを必要に応じ偏光板と共に液晶セルの少なくとも片側に設ける点を除いて特に限定はなく、従来に準じうる。
【0041】
従って液晶セルの片側又は両側に偏光板を配置した液晶表示装置や、照明システムにバックライトあるいは反射板や半透過型反射板を用いてなる透過型や反射型、あるいは反射・透過両用型などの適宜な液晶表示装置を形成することができる。偏光板を用いた液晶表示装置の場合、光学補償用の位相差板は液晶セルと偏光板、特に視認側の偏光板との間に配置することが補償効果の点などより好ましい。その配置に際しては、上記の光学部材としたものを用いることもできる。
【0042】
前記において液晶表示装置の形成部品は、積層一体化されていてもよいし、分離状態にあってもよい。また液晶表示装置の形成に際しては、例えば拡散板やアンチグレア層、反射防止膜、保護層や保護板などの適宜な光学素子を適宜に配置することができる。かかる素子は、位相差板と積層してなる上記した光学部材の形態にて液晶表示装置の形成に供することもできる。
【0043】
本発明による位相差板やそれを用いた光学部材は、視野角の拡大やコントラストの向上などの、液晶セルの複屈折による位相差の補償を目的にTN型やSTN型等の複屈折を示す液晶セルを用いたTFT型やMIM型等の種々の表示装置に好ましく用いうる。その場合、光学補償用の位相差板としては液晶セルの複屈折による位相差を広い視角範囲にわたり補償するものが好ましく用いられる。
【0044】
【実施例】
実施例1
ホスゲンとビスフェノールAの重縮合物からなる分子量約8万のポリカーボネートの二塩化メチレン20重量%溶液を、スチールドラム上に連続的に流延し、それを順次剥取って乾燥させ、厚さ60μmで位相差がほぼ0の長尺ポリカーボネートフィルムを得、そのTgが145℃のフィルムの両面にTiが115℃の熱収縮性フィルムをそれに付設したアクリル系粘着層を介し接着した後、延伸機を介し160℃で横方向5%の収縮処理を施して熱収縮性フィルムを粘着層と共に剥離し、位相差板を連続して得た。
【0045】
比較例
Tiが65℃の熱収縮性フィルムを用いたほかは実施例1に準じて位相差板を得た。
【0046】
前記において実施例1ではポリカーボネートフィルムを効率よく変形処理して目的とする位相差を有する位相差板を効率よく得ることができたが、比較例では加熱により熱収縮性フィルムの収縮が先行して接着面にズレと剥がれが発生し収縮力の伝達不足で目的とする位相差を付与することができなかった。またTN型液晶セルの両側に、実施例1で得た位相差板を介して偏光板を配置し、正面方向のコントラストと視角変化による表示特性を調べたところ、コントラストに優れて広い視角範囲で表示特性に変化はなく、視認性に優れる高表示品位の液晶表示装置であった。
【図面の簡単な説明】
【図1】収縮開始温度Tiの説明図
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a method for accurately producing a retardation plate suitable for improving the viewing angle and contrast of a liquid crystal display device, and an optical member using the retardation plate.
[0002]
[Prior art]
Conventionally, as a method of producing a retardation plate that can compensate for a retardation due to birefringence of a liquid crystal cell and achieve an increase in viewing angle and an improvement in contrast of a liquid crystal display device, a heat shrinkable film is bonded to a thermoplastic film. A method of stretching under the action of the contraction force by heating has been known (Japanese Patent Laid-Open No. 5-157911). The heat-shrinkable film after such stretching treatment is peeled off from the obtained retardation plate.
[0003]
According to the above method, the disadvantage in terms of productivity and cost in the case of a uniaxially stretched film that needs to be laminated and used, and the heat resistance in the case of a biaxially stretched polystyrene film, etc. are poor, and thus it is used for forming a liquid crystal display device. You can overcome unsuitable points. However, in the conventional method, the shrinkage of the heat-shrinkable film is preceded and the adhesive interface is displaced or peeled off, and the retardation force of the retardation plate is difficult to control deformation due to insufficient shrinkage force on the thermoplastic film. There were poor problems.
[0004]
[Technical Problem of the Invention]
An object of the present invention is to develop a production method capable of efficiently transmitting the shrinkage force of a heat-shrinkable film to a thermoplastic film, easily controlling deformation, and obtaining a phase difference plate having excellent phase difference accuracy.
[0005]
[Means for solving problems]
The present invention, the shrinkage starting temperature relative to the initial dimensions Ti, the thermoplastic film when the glass transition temperature was Tg, of non-oriented heat-shrinkable film satisfying the Tg- 5 0 ≦ Ti thermoplastic film It is bonded to one side or both sides, and the thermoplastic film is stretched or shrunk in at least one longitudinal or lateral direction under the action of the shrinkage force of the heat-shrinkable film by heating, and then the heat-shrinkable film is peeled off. A method of manufacturing a retardation plate is provided.
[0006]
Further, the present invention is an optical member comprising a laminate of a retardation plate and a polarizing plate by the above manufacturing method, and the retardation plate or the polarizing plate by the above manufacturing method and at least one side of the liquid crystal cell. It is an object of the present invention to provide a liquid crystal display device characterized by having the liquid crystal display device.
[0007]
【The invention's effect】
According to the present invention, the shrinkage and peeling at the adhesive interface due to the shrinkage of the heat-shrinkable film can be suppressed, and the shrinkage force of the heat-shrinkable film can be efficiently imparted at a temperature at which the thermoplastic film is easily deformed. A heat-resistant retardation plate satisfying, for example, nx <nz characteristics, that is, nz>nx> ny refractive index characteristics required to compensate for birefringence and prevent changes in display color and contrast depending on viewing angle. Etc. can be obtained efficiently using a thermoplastic film of nx> ny. The above-mentioned nx and ny mean the in-plane main refractive index, and nz means the main refractive index in the thickness direction (the same applies hereinafter).
[0008]
As a result, it is possible to efficiently obtain a retardation plate having a highly adjusted retardation by easily controlling the deformation of the thermoplastic film under the action of the shrinkage force of the heat-shrinkable film. A liquid crystal display device excellent in viewing angle and contrast in which the phase difference due to birefringence is highly compensated can be obtained.
[0009]
DETAILED DESCRIPTION OF THE INVENTION
Manufacturing process according to the invention, the shrinkage starting temperature relative to the initial dimensions Ti, when the glass transition temperature of the thermoplastic film was Tg, Tg- 5 0 shrinkable film satisfying the ≦ Ti unoriented heat Adhere to one or both sides of the plastic film, and after stretching or shrinking the thermoplastic film in at least one longitudinal or lateral direction under the action of the shrinkage force of the heat-shrinkable film by heating, the heat-shrinkable film is peeled off A phase difference plate is obtained.
[0010]
The thermoplastic film comprising a base of the retardation plate, a non-oriented film made of a light transmissive suitable thermoplastic resins are Ru is used. In particular, a film having a light transmittance of 75% or more, particularly 85% or more is preferable. Moreover, from the point which obtains the phase difference plate excellent in heat resistance, what consists of a polymer which shows the positive birefringence characteristic from which the refractive index of a extending | stretching direction becomes high is used preferably.
[0011]
Incidentally, examples of the polymer exhibiting positive birefringence described above include polycarbonate, polyvinyl alcohol, cellulose resin, polyester such as polyethylene terephthalate and polyethylene naphthalate, polyarylate, polyimide, norbornene resin, polysulfone, polyethersulfone, polypropylene. And the like.
[0012]
The thermoplastic film may be formed by an appropriate method such as a casting method such as a casting method or an extrusion method. A solution casting method such as a casting method is more preferable in that a film with less thickness unevenness, orientation strain unevenness and the like is obtained. The thermoplastic film can be used in a prescribed size for batch processing, or can be used as a long film for the purpose of continuous production.
[0013]
The thickness of the thermoplastic film can be appropriately determined depending on the retardation characteristics of the target retardation plate. In general, the thickness is 5 to 500 μm, especially 10 to 400 μm, especially 20 to 300 μm. Phase difference, Ru can be obtained as the product (△ n × L) refractive index difference (△ n) between the optical path length (L).
[0014]
A heat-shrinkable film that adheres to one or both sides of a thermoplastic film transmits the shrinkage force due to heating to the thermoplastic film and stretches the thermoplastic film in one or both directions in the vertical or horizontal direction under the action of the shrinkage force. Alternatively, it is intended to control the phase difference characteristics, particularly the refractive index in the thickness direction by shrinking, and in the present invention, the shrinkage start temperature based on the initial dimensions is Ti, and the glass transition temperature of the thermoplastic film is Tg. when the heat-shrinkable film satisfying the Tg- 5 0 ≦ Ti is used.
[0015]
That is, as shown in the curve illustrated in FIG. 1, in the heat-shrinking treatment of the heat-shrinkable film, the length is increased from the initial dimension due to the thermal expansion due to the temperature rise, and then the contraction starts and the dimension becomes shorter than the initial dimension. Shows behavior. In this case, in the present invention, the temperature at which the dimension becomes the same as the initial value after shrinkage after expansion is defined as the shrinkage start temperature Ti, and the Ti and the Tg of the thermoplastic film are expressed by the formula: Tg- 5 0 ≦ Ti A satisfactory heat shrinkable film is used.
[0016]
Efficient modification of the thermoplastic film by transmission of contractile force of a heat shrinkable film, Ru used heat-shrinkable film satisfying the Tg-50 ≦ Ti mentioned above from the viewpoint of turn sophistication of the phase difference controlling. Note that a heat-shrinkable film having a heat shrinkage force as uniform as possible over the entire surface of the film and excellent in surface smoothness is preferably used from the viewpoint of imparting a uniform orientation to the thermoplastic film.
[0017]
The heat-shrinkable film is not particularly limited as long as it satisfies the above-mentioned Ti condition. Therefore, the film is made of uniaxial or biaxial film made of a thermoplastic resin such as polyvinyl chloride, polyethylene, polypropylene, polyester, polystyrene or polyamide. An appropriate material such as a film that exhibits shrinkage by heat treatment can be used, and there is no particular limitation. In particular, those composed of a polymer exhibiting positive birefringence characteristics from the viewpoint of controllability of phase difference and the like are preferably used. The heat shrinkage force can be varied depending on the type of thermoplastic resin, stretching conditions such as the stretching ratio, and the like.
[0018]
The adhesion treatment between the thermoplastic film and the heat-shrinkable film can be performed by an appropriate method capable of transmitting the heat-shrink force of the heat-shrinkable film. An adhesive system through an adhesive layer is preferred from the viewpoint of easy separation after shrinkage treatment. The adhesive force between the heat-shrinkable film and the thermoplastic film can be determined as appropriate, but in general, based on the T-type peeling at room temperature, from the viewpoint of the transferability of heat-shrink force and easy separation after shrinkage treatment. 45 to 200 gf / 50 mm, especially 48 to 190 gf / 50 mm, especially 50 to 180 gf / 50 mm are preferable.
[0019]
The pressure-sensitive adhesive that forms the pressure-sensitive adhesive layer is not particularly limited, and for example, an appropriate material such as acrylic, silicone, polyester, polyurethane, polyether, or rubber can be used. In particular, those in which the adhesive force is hardly increased as much as possible by the heat shrinkage treatment of the heat shrinkable film are preferable.
[0020]
The pressure-sensitive adhesive layer can be attached to one or both of the adhesive surfaces when the thermoplastic film and the heat-shrinkable film are bonded, and a retardation plate formed to be used in a state attached to the heat-shrinkable film in advance. It is preferable from the viewpoint of preventing the adhesive residue at the time of separation of the heat-shrinkable film and improving the production efficiency. That is, it is preferable from the viewpoint of production efficiency and the like that the adhesive layer is separated in a state accompanied with the heat-shrinkable film to prevent the adhesive layer from remaining on the formed retardation plate.
[0021]
Attaching the adhesive layer to the heat-shrinkable film can be done by applying a pressure-sensitive adhesive to the heat-shrinkable film and drying it, but the shrinkage characteristics of the heat-shrinkable film change due to the drying process. A method of transferring the pressure-sensitive adhesive layer provided on the separator to the heat-shrinkable film is preferable from the viewpoint of preventing the above.
[0022]
The separator can also be used as a protective cover for preventing contamination of the adhesive layer and the like until it is adhered as it is and the heat-shrinkable film is put to practical use. The heat-shrinkable film surface to which the adhesive layer is attached can be subjected to an appropriate surface treatment such as corona treatment for the purpose of improving the adhesion with the adhesive layer.
[0023]
As described above, the heat-shrinkable film can adhere one or two or more appropriate numbers to one or both sides of the thermoplastic film depending on the desired shrinkage force, etc. When the multilayer is adhered to the top, the heat-shrinkable films on the front and back sides and the upper and lower sides thereof may be the same, or may have different heat-shrinkage characteristics such as a heat-shrinkage rate.
[0024]
Shrinkage treatment of the heat-shrinkable film adhered to the thermoplastic film can be performed via an appropriate stretching machine such as a roll stretching machine, a tenter, or a biaxial stretching machine. The processing temperature is preferably in the vicinity of Tg of the thermoplastic film, in particular, within a temperature range within ± 20 ° C. of Tg, in particular, Tg or more from the viewpoint of increasing the accuracy of the phase difference due to the controllability of the processing operation.
[0025]
The treatment given to the thermoplastic film under the action of the shrinkage force of the heat-shrinkable film by heating is either stretching or shrinking, and may be appropriately determined according to the retardation plate to be formed. Moreover, the process to give may be any one of the vertical and horizontal directions (length direction and width direction) of a thermoplastic film, and may be both. In the case where the treatment is given in both directions, a combination in which the shrinkage treatment is given in one direction and the stretching treatment is given in the other direction can be used. The treatment given to the thermoplastic film under the action of the shrinkage force of the heat-shrinkable film described above can be performed in two or more steps.
[0026]
In the method according to the present invention, the refractive index nz in the thickness direction is controlled so that the phase difference in the direction related to the refractive index in the thickness direction is larger than the phase difference due to the refractive index difference (nx−ny) in the film plane. It can be advantageously used for manufacturing a large retardation plate. In general, the refractive index in the thickness direction can be controlled by a method of shrinking at least one of the thermoplastic film in the longitudinal and transverse directions. In particular, a retardation plate satisfying the refractive index characteristic of nz>nx> ny can be preferably used from the viewpoint of compensating the viewing angle characteristic due to the birefringence of the liquid crystal.
[0027]
When the necessary treatment is completed as described above, the heat-shrinkable film after the shrinkage treatment is peeled off from the formed retardation plate and separated. The obtained retardation plate can be used practically as it is, or it can be used practically as a phase-adjustment characteristic is adjusted by adding a stretching process or the like.
[0028]
A preferred retardation plate according to the present invention is not limited thereto, but the retardation due to birefringence and the variation of the orientation axis are as small as possible. In particular, in transmitted light perpendicular to the film surface (in the front direction). The phase difference variation is 10 nm or less, particularly 5 nm or less, and the alignment axis variation is 5 degrees or less, particularly 3 degrees or less.
[0029]
The retardation plate according to the present invention can be preferably used as a single layer or the same kind or different kind of laminate for compensation of retardation due to birefringence for the purpose of increasing the viewing angle of a liquid crystal cell or improving contrast. In practical use, for example, an adhesive layer provided on one or both sides of a retardation plate, a polarizing plate, or a protective layer made of an isotropic transparent resin layer or glass layer is bonded via the adhesive layer. It can also be applied as an optical member of an appropriate form such as a laminated one.
[0030]
Lamination with the polarizing plate or the like can be performed by a method of laminating separately in the manufacturing process of the liquid crystal display device, but by laminating in advance, the liquid crystal display has excellent quality stability and laminating workability. There is an advantage that the manufacturing efficiency of the apparatus can be improved. An appropriate adhesive or the like can be used for bonding. In particular, an adhesive layer such as those exemplified above, particularly an acrylic layer is preferably used from the viewpoint of heat resistance and optical characteristics.
[0031]
For the adhesive layer, for example, natural or synthetic resins, glass fibers or glass beads, fillers or pigments made of metal powder or other inorganic powders, colorants, antioxidants, etc. Additives can also be blended. Moreover, it can also be set as the contact bonding layer which contains microparticles | fine-particles and shows light diffusibility.
[0032]
As the polarizing plate laminated with the retardation plate, an appropriate one may be used. Examples thereof include hydrophilic films such as polyvinyl alcohol films, partially formalized polyvinyl alcohol films, and ethylene / vinyl acetate copolymer partially saponified films. And polarizing films made of polyene-oriented films such as those obtained by adsorbing iodine and / or dichroic dyes on a conductive polymer film, polyvinyl alcohol dehydrated products, and polyvinyl chloride dehydrochlorinated products. .
[0033]
The polarizing plate may have a transparent protective layer on one side or both sides of the polarizing film. Further, the polarizing plate may be a reflective type or a transflective type having a reflective layer, a half mirror, or the like. The reflective polarizing plate is used to form a liquid crystal display device or the like that reflects incident light from the viewing side (display side) and displays a liquid crystal display that can omit the incorporation of a light source such as a backlight. It has an advantage that the display device can be easily thinned.
[0034]
The transparent protective layer can be appropriately formed as a polymer coating layer, a laminate of protective films, etc., and a polymer excellent in transparency, mechanical strength, thermal stability, moisture shielding properties, etc. is preferably used for the formation. It is done. Examples include polyester resins, acetate resins, polyether sulfone resins, polycarbonate resins, polyamide resins, polyimide resins, polyolefin resins, acrylic resins, acrylic resins, urethane resins, acrylic urethane resins, Examples thereof include thermosetting resins such as epoxy and silicone resins, and ultraviolet curable resins. The surface of the transparent protective layer may be formed in a fine concavo-convex structure by containing fine particles.
[0035]
In addition, the reflective polarizing plate can be formed by an appropriate method such as a method in which a reflective layer made of metal or the like is attached to one side of the polarizing plate via a transparent resin layer, if necessary. One surface of a transparent resin layer such as a treated protective film provided with a foil or a vapor deposition film made of a reflective metal such as aluminum, or the surface of the transparent resin layer containing fine particles, a vapor deposition method or plating Examples thereof include those provided with a metal reflection layer by an appropriate method such as a method. The transflective polarizing plate can be obtained by making the reflective layer a transflective type such as a half mirror.
[0036]
In addition, when laminating the retardation plate and the polarizing plate, the arrangement angle of the optical axes such as the transmission axis and the fast axis is not particularly limited and can be determined as appropriate. By the way, when applied to an STN type liquid crystal cell, it is often arranged at an oblique crossing angle such as 45 degrees, and when applied to a TN type liquid crystal cell, it is arranged at a substantially parallel or substantially orthogonal crossing angle. There are many.
[0037]
As described above, the retardation plate can be used by laminating two or more of them. This is for the purpose of improving the compensation effect, and in this case, in the present invention, the phase difference plate according to the present invention and other phase differences are used. It can also be set as a laminated body with a board. As the retardation plate, for example, an appropriate one such as a uniaxial or biaxial stretched film exemplified by the above thermoplastic film, a discotic or nematic liquid crystal alignment plate, or the like can be used.
[0038]
Each layer such as the above-mentioned retardation plate, polarizing plate, transparent protective layer, and adhesive layer is composed of, for example, an ultraviolet absorber such as a salicylic acid ester compound, a benzophenol compound, a benzotriazole compound, a cyanoacrylate compound, or a nickel complex salt compound. UV absorption ability can also be provided by a method of treating with.
[0039]
The phase difference plate according to the present invention is a TN type, STN type, etc., such as compensation for compensation of a perspective direction retardation that prevents a decrease in contrast in the front direction, compensation compensation for a phase difference between the front direction and the perspective direction. It can be preferably used for compensation of viewing angle characteristics due to birefringence in various liquid crystal cells such as π type.
[0040]
The liquid crystal display device using the retardation plate can be formed according to the conventional method. That is, a liquid crystal display device is generally formed by appropriately assembling components such as a liquid crystal cell, a retardation plate for optical compensation, and a polarizing plate and an illumination system as necessary, and incorporating a drive circuit. In the present invention, there is no particular limitation except that the retardation plate according to the present invention is used for optical compensation, and is provided on at least one side of the liquid crystal cell together with a polarizing plate, if necessary, and can be based on the conventional one.
[0041]
Therefore, a liquid crystal display device in which a polarizing plate is arranged on one or both sides of a liquid crystal cell, a transmission type or a reflection type using a backlight, a reflection plate or a semi-transmission type reflection plate in an illumination system, or a reflection / transmission type An appropriate liquid crystal display device can be formed. In the case of a liquid crystal display device using a polarizing plate, the retardation plate for optical compensation is preferably arranged between the liquid crystal cell and the polarizing plate, particularly the polarizing plate on the viewing side, from the viewpoint of the compensation effect. In the arrangement, the optical member described above can also be used.
[0042]
In the above description, the components for forming the liquid crystal display device may be laminated and integrated, or may be in a separated state. In forming the liquid crystal display device, appropriate optical elements such as a diffusion plate, an antiglare layer, an antireflection film, a protective layer and a protective plate can be appropriately disposed. Such an element can also be used for forming a liquid crystal display device in the form of the above-described optical member formed by laminating with a retardation plate.
[0043]
The retardation plate according to the present invention and the optical member using the retardation plate exhibit birefringence such as TN type and STN type for the purpose of compensating for the phase difference due to the birefringence of the liquid crystal cell, such as widening the viewing angle and improving the contrast. It can be preferably used for various display devices such as TFT type and MIM type using a liquid crystal cell. In that case, as the retardation plate for optical compensation, one that compensates for the phase difference due to the birefringence of the liquid crystal cell over a wide viewing angle range is preferably used.
[0044]
【Example】
Example 1
A 20% by weight solution of methylene dichloride in polycarbonate having a molecular weight of about 80,000 consisting of a polycondensate of phosgene and bisphenol A is continuously cast on a steel drum, which is peeled off and dried in order to obtain a thickness of 60 μm. A long polycarbonate film having a phase difference of approximately 0 is obtained, and a heat-shrinkable film having a Tg of 145 ° C. is bonded to both sides of the film having a Tg of 145 ° C. via an acrylic adhesive layer attached thereto. The heat-shrinkable film was peeled off together with the adhesive layer by applying a shrinkage treatment of 5% in the transverse direction at 160 ° C. to obtain a retardation plate continuously.
[0045]
Comparative Example A retardation film was obtained in the same manner as in Example 1 except that a heat-shrinkable film having a Ti of 65 ° C. was used.
[0046]
In the above, in Example 1, the polycarbonate film was efficiently deformed to obtain a retardation plate having the desired retardation, but in the comparative example, the heat-shrinkable film was first contracted by heating. Deviation and peeling occurred on the adhesive surface, and the desired phase difference could not be imparted due to insufficient transmission of contractile force. Further, polarizing plates were arranged on both sides of the TN type liquid crystal cell via the phase difference plate obtained in Example 1, and the display characteristics due to the contrast in the front direction and the change in viewing angle were examined. There was no change in display characteristics, and the liquid crystal display device was of high display quality with excellent visibility.
[Brief description of the drawings]
FIG. 1 is an explanatory diagram of a shrinkage start temperature Ti

Claims (4)

初期寸法を基準とした収縮開始温度をTi、熱可塑性フィルムのガラス転移温度をTgとしたとき、Tg−0≦Tiを満足する熱収縮性フィルムを無配向の熱可塑性フィルムの片面又は両面に接着し、加熱によるその熱収縮性フィルムの収縮力の作用下に前記熱可塑性フィルムを少なくとも縦横の一方向に延伸又は収縮させたのち当該熱収縮性フィルムを剥離することを特徴とする位相差板の製造方法。The initial size as a reference to the shrinkage starting temperature Ti, when the glass transition temperature of the thermoplastic film was Tg, Tg- 5 0 shrinkable film satisfying the ≦ Ti on one or both sides of the thermoplastic film of non-oriented A phase difference plate characterized in that the heat-shrinkable film is peeled off after being stretched or shrunk in at least one longitudinal or lateral direction under the action of the shrinkage force of the heat-shrinkable film by heating. Manufacturing method. 請求項1において、熱収縮性フィルム及び熱可塑性フィルムが正の複屈折特性を示すポリマーからなるものである製造方法。The manufacturing method according to claim 1, wherein the heat-shrinkable film and the thermoplastic film are made of a polymer exhibiting positive birefringence characteristics. 請求項1又は2に記載の製造方法による位相差板と偏光板との積層体からなることを特徴とする光学部材。An optical member comprising a laminate of a retardation plate and a polarizing plate produced by the production method according to claim 1. 請求項1又は2に記載の製造方法による位相差板又はそれと偏光板を液晶セルの少なくとも片側に有することを特徴とする液晶表示装置。A liquid crystal display device comprising a retardation plate or a polarizing plate produced by the manufacturing method according to claim 1 or 2 and a polarizing plate on at least one side of a liquid crystal cell.
JP25387499A 1999-09-08 1999-09-08 Phase plate production method, optical member, and liquid crystal display device Expired - Lifetime JP4371333B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25387499A JP4371333B2 (en) 1999-09-08 1999-09-08 Phase plate production method, optical member, and liquid crystal display device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25387499A JP4371333B2 (en) 1999-09-08 1999-09-08 Phase plate production method, optical member, and liquid crystal display device

Publications (2)

Publication Number Publication Date
JP2001075098A JP2001075098A (en) 2001-03-23
JP4371333B2 true JP4371333B2 (en) 2009-11-25

Family

ID=17257345

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25387499A Expired - Lifetime JP4371333B2 (en) 1999-09-08 1999-09-08 Phase plate production method, optical member, and liquid crystal display device

Country Status (1)

Country Link
JP (1) JP4371333B2 (en)

Also Published As

Publication number Publication date
JP2001075098A (en) 2001-03-23

Similar Documents

Publication Publication Date Title
US5245456A (en) Birefringent film with nx &gt;nz &gt;ny, process for producing the same, retardation film, elliptically polarizing plate, and liquid crystal display
US5472538A (en) Process for producing phase retarder film
JP2003121641A (en) Laminated optical retardation film, polarizing member and liquid crystal display device
JP2003121642A (en) Wide viewing angle polarizing plate and liquid crystal display device
JP4798679B2 (en) Manufacturing method of tilted retardation film, optical member, and liquid crystal display device
KR20160089898A (en) Polarizing plate, liquid crystal display device
JP2000190385A (en) Manufacture of optical film, optical film and liquid crystal display
JP2018077522A (en) Polarizing plate, image display unit, and liquid crystal display
JP4658383B2 (en) Manufacturing method of optical film, laminated polarizing plate using the same, and liquid crystal display device
JP2001147323A (en) Laminated phase difference plate, elliptically polarizing plate and liquid crystal display device
JPH04113301A (en) New optical sheet and liquid crystal display device using same sheet
JP4367868B2 (en) Retardation plate continuous manufacturing method, optical member, and liquid crystal display device
JP2001059907A (en) Phase difference sheet and production thereof
JP3609563B2 (en) Wide-field polarizing plate
JP4371333B2 (en) Phase plate production method, optical member, and liquid crystal display device
JP2001147325A (en) Method of producing phase difference plate, optical member and liquid crystal display device
JP3810969B2 (en) Optical compensation polarizing plate and manufacturing method of liquid crystal display device
JP2000056131A (en) Phase difference plate, laminated polarizing plate and liquid crystal display device
JPH09318815A (en) Production of optical film, laminated polarizing plate and liquid crystal display device
JP2006330650A (en) Phase difference film, polarizing plate with optical compensation, and manufacturing method thereof
JP2001013324A (en) Production of phase difference plate
JPH09318816A (en) Optical film, its production, laminated polarizing plate and liquid crystal display device
JP2000162436A (en) Manufacturing method for phase difference film, optical member, and liquid crystal display device
JP2001166134A (en) Phase difference plate, optically compensated polarizing plate and liquid crystal display device
JP2000329939A (en) Production of phase difference film, optical member and liquid crystal display device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051114

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080612

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080715

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080904

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20090204

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090826

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090828

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120911

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4371333

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120911

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150911

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term