JP4370647B2 - SIMOX substrate and manufacturing method thereof - Google Patents

SIMOX substrate and manufacturing method thereof Download PDF

Info

Publication number
JP4370647B2
JP4370647B2 JP28764399A JP28764399A JP4370647B2 JP 4370647 B2 JP4370647 B2 JP 4370647B2 JP 28764399 A JP28764399 A JP 28764399A JP 28764399 A JP28764399 A JP 28764399A JP 4370647 B2 JP4370647 B2 JP 4370647B2
Authority
JP
Japan
Prior art keywords
substrate
oxygen
heat treatment
ions
simox
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP28764399A
Other languages
Japanese (ja)
Other versions
JP2001110739A (en
Inventor
尚志 足立
秀樹 西畑
幸夫 小松
正和 佐野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumco Corp
Original Assignee
Sumco Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumco Corp filed Critical Sumco Corp
Priority to JP28764399A priority Critical patent/JP4370647B2/en
Publication of JP2001110739A publication Critical patent/JP2001110739A/en
Application granted granted Critical
Publication of JP4370647B2 publication Critical patent/JP4370647B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Element Separation (AREA)

Description

【発明の属する技術分野】
本発明は、SIMOX基板及びその製造方法に係り、特に低エネルギー条件かつ低ドーズ条件で酸素イオンを注入して形成する、高品質なSIMOX基板及びその製造方法に関する。
【従来の技術】
従来、二枚の半導体基板の間に酸化膜(SiO)を介在させて貼り合わせた後、活性側となる半導体基板を薄膜化して形成する、SOI(Silicon on Insulator) 基板が知られている。SOI基板は、高耐圧性及び高速性等の効果を有する半導体デバイス用の基板として用いられている。
【0001】
SOI基板の一つにSIMOX基板がある。SIMOX(separation by implanted oxygen)基板とは、シリコン基板中に酸素の高濃度イオンを注入して、シリコン基板中に酸化膜(SiO)を形成したSOI基板である。
【0002】
SIMOX基板の製造方法は、通常、単結晶シリコン基板を500℃乃至600℃に加熱し、加熱した状態で高濃度の酸素原子イオン又は酸素分子イオンを前記単結晶シリコン基板に注入して、所定深さの高濃度酸素イオン注入層を形成する。その後、前記シリコン基板は、1100℃以上1400℃以下の微量酸素含有不活性ガス雰囲気下で、数時間熱処理を行い、前記酸素イオン注入層を埋め込み酸化膜(以下、埋め込み酸化膜を「BOX」という。)とし、表面にシリコン単結晶の活性層を有するSIMOX基板とする。SIMOX基板は、二枚のシリコン基板の貼り合わされたSOI基板と比較して、表面の研磨加工を必要とせず、表面の活性層領域の膜厚均一性に優れ、かつ、SOI基板のように二枚の半導体を貼り合わせて形成する必要がないという利点を有する。
【0003】
また、特開平7−263538号公報のSIMOX基板の製造方法においては、前記熱処理を施した後、更に酸素含有率を高くしたガス雰囲気下で、再度熱処理を施し、BOXを厚膜化する方法や、BOX内のピンホールを低減させる方法(以下「ITOX処理」という。)が開示されている。
【0004】
更に前記公報においては、酸素イオン注入後に熱処理を行い、予め埋め込み酸化膜を形成したSIMOX基板に、酸素イオン注入量により計算される理論的膜厚となる熱処理を行った後、前記基板を高温酸素雰囲気中で酸化処理を施し、表面シリコン層の結晶欠陥を発生させず、また、埋め込み酸化膜に発生するピンホールを閉塞している。また、高温酸化処理の前後に犠牲酸化処理を行い、表面活性層を所望の厚さまで薄膜化している。
【0005】
【発明が解決しようとする課題】
従来において、SIMOX基板は、高エネルギー条件、かつ、高ドーズ条件によってイオンを注入してSIMOX基板を製造していた。例えば、酸素原子イオンをシリコン単結晶基板に注入する際には、注入エネルギーとして、180〜200KeV必要であり、ドーズ量は、1.0×1018/cm 2〜2.0×1018/cm 2必要である。
【0006】
前記高ドーズ条件を必要とする製造方法では、SIMOX基板の活性層に高密度の貫通転位や積層欠陥を誘発するという問題がある。
【0007】
そこで、生産性の点を考慮し、SIMOX基板の製造方法において、イオン注入の条件として、高エネルギー条件かつ低ドーズ条件が、現在のSIMOX基板の製造の主流となっている。
【0008】
酸素イオンを低ドーズ条件で注入する場合、酸素ドーズ量が低いため、BOXの信頼性を向上するためには、前述したように、酸素イオン注入量により計算される理論的膜厚となる熱処理を行うITOX処理を実施する必要がある。
【0009】
また、低エネルギー条件かつ低ドーズ条件で製造し、活性層をより薄膜化したSIMOX基板も要求されている。例えば、低エネルギー条件かつ低ドーズ条件として、酸素原子イオンの注入エネルギーは、30KeV程度、かつ、ドーズ量は、2×1017cm−2〜4×1017cm−2の条件でSIMOX基板の製造が行われる場合もある。
【0010】
しかし、前述のような低エネルギー条件、かつ、低ドーズ条件でSIMOX基板を製造した場合は、基板の活性層が薄膜化されるため、理論的膜厚となっている埋め込み酸化膜の上に、更に酸化膜を形成し、埋め込み酸化膜を厚膜化するITOX処理を行うことができず、BOXの信頼性に疑問が残るという問題がある。
【0011】
そこで、本発明は前記問題点に鑑みて、低エネルギー条件、かつ、低ドーズ条件でSIMOX基板を製造し、従来品よりも高品質である活性層及びBOXを備えたSIMOX基板、及びBOXの膜厚制御も可能とするSIMOX基板の製造方法を提供することを目的とする。
【0012】
【課題を解決するための手段】
本願第1請求項に記載した発明は、シリコン半導体のSIMOX基板の製造方法において、シリコン半導体基板表面に酸素イオンを注入する工程と、単結晶として残った表面にシリコンエピタキシャル成長を行う工程と、その後、1100℃以上1400℃以下の酸化雰囲気下で高温熱処理を行う工程を備えたSIMOX基板の製造方法である。
【0013】
イオン注入時のシリコン半導体基板の最表面は、注入したイオンのイオン加速エネルギーが高いため、単結晶構造を有する。このため基板表面に単結晶成長層となる良好なエピタキシャル成長を行うことが可能となり、所望の厚さのエピタキシャル層を形成し、埋め込み酸化膜(BOX)形成後は、所望の膜厚の活性層となる。その後、半導体基板に注入されたイオンは、酸化性雰囲気下の高温熱処理工程において、基板中に埋め込み酸化膜(BOX)を形成し、SIMOX基板となる。注入イオンにより形成する埋め込み酸化膜(BOX)は、エピタキシャル成長により形成されたエピタキシャル層下の活性層側領域である、貫通転位や積層欠陥の存在するシリコンを消費して所望の厚さに制御できる。このため、イオン注入を低エネルギー条件かつ低ドーズ条件としてSIMOX基板を製造した場合であっても、所望の厚さの活性層及び埋め込み酸化膜を備え、欠陥の少ない高品質なSIMOX基板を提供することが可能となる。
【0014】
本願第2請求項に記載した発明は、前記請求項1記載の前記高温熱処理を行う工程において、酸化性雰囲気中の酸素分圧が0.05%以上であるSIMOX基板の製造方法である。
【0015】
酸素分圧0.05%以上の酸化雰囲気下で、1100℃以上1400℃以下の温度範囲で熱処理を行うと、シリコン半導体基板表面の熱酸化膜が成長し、同時に、前記基板内部にも雰囲気中の酸素が前記基板へ内方拡散され、基板内部の埋め込み酸化膜(BOX)も成長する。また、1100℃以上の熱処理では、熱処理初期に高酸素分圧下だと、活性層側に欠陥を誘発しやすくなる。また、酸素分圧が低すぎるとBOX成長が起こらないので下限として0.05%とした。
【0016】
本願第3請求項に記載した発明は、前記請求項1記載の前記高温熱処理工程において、埋め込み酸化膜を形成する際に、内部酸化によって、高温熱処理工程前に形成したエピタキシャル層下の領域を埋め込み酸化膜として消費し、活性層と、埋め込み酸化膜と、支持基板の三層構造を備えたSIMOX基板となす製造方法である。
【0017】
注入された酸素イオンによる内部酸化によって形成する埋め込み酸化膜は、シリコン半導体基板において、あらかじめ形成したエピタキシャル膜下の活性層側領域の消費を意味するため、基板は最終的に活性層、埋め込み酸化膜(BOX)、支持基板の三層構造となる。埋め込み酸化膜は、貫通転位や積層欠陥の存在する活性層側のシリコンを埋め込み酸化膜として消費して成長し、膜厚が制御されるため、貫通転位や積層欠陥の存在しない信頼性の高い三層構造のSIMOX基板となすことができる。
【0018】
本願第4請求項に記載した発明は、前記請求項1乃至3いずれか記載の前記酸素イオンを注入する工程において、ソース源として、酸素原子イオン又は酸素分子イオンを用いている。
【0019】
本願第5請求項に記載した発明は、前記請求項1乃至4いずれか記載の前記酸素イオンを注入する工程において、酸素原子イオンをソース源とする場合は、注入エネルギーを40KeV以下で注入し、酸素分子イオンをソース源とする場合は、注入エネルギーを80KeV以下で注入する。
【0020】
酸素原子イオンの注入エネルギーを40KeV、酸素分子イオンの注入エネルギーを80KeVの低エネルギー条件であっても、エピタキシャル膜下の活性層側領域を効率良く消費して、埋め込み酸化膜(BOX)の膜厚を所望の厚さとすることが可能となる。
【0021】
本願第6請求項に記載した発明は、前記請求項3乃至5の発明において、前記酸素イオンを注入する工程後、前記エピタキシャル成長処理工程前に、1050℃以上の水素ガス雰囲気で1秒以上の熱処理する工程を設けたSIMOX基板の製造方法である。
【0022】
エピタキシャル成長を行う工程の前処理として、1050℃以上の高温で短時間、水素ガスのみの雰囲気下で熱処理を行うと、半導体基板の欠陥密度の低減が可能となり、高品質なSIMOX基板の製造が可能となる。
【0023】
本願第7請求項に記載した発明は、シリコン半導体のSIMOX基板において、
SIMOX基板は、酸素イオンを注入する手段と、エピタキシャル成長手段と、1100℃以上1400℃以下の酸化雰囲気下の高温熱処理手段によって、活性層と、エピタキシャル成長手段によって形成されたエピタキシャル層下の領域を酸化膜として消費した埋め込み酸化膜層と、支持基板の三層構造となる。
【0024】
本願のSIMOX基板は、所望の厚さのエピタキシャル層を形成し、エピタキシャル層下の貫通転位や積層欠陥の存在する活性領域側のシリコンを消費して埋め込み酸化膜を形成し、埋め込み酸化膜も所望の厚さとすることができるため、低エネルギー条件、かつ低ドーズ条件であっても、信頼性の高い、高品質なSIMOX基板を提供することが可能となる。
【0025】
【発明の実施の形態】
以下、本発明の具体例を図面に基づいて詳細に説明する。
【0026】
8”φ、ボロンドープ、初期酸素濃度1.4×1017cm−3[old ASTM]のシリコン単結晶基板に、2.4×1017cm−2の酸素分子イオンを注入エネルギー40KeVで注入したサンプルAと、同様に2.4×1017cm−2の酸素分子イオンを注入エネルギー80KeVで注入したサンプルBを準備した。
【0027】
なお、内部酸化を促進させるため、ベースとなるシリコン単結晶基板は、高酸素濃度の酸素を含有するシリコン基板を用いることが望ましい。
【0028】
図1(2)に示すようにシリコン単結晶基板1に、各注入エネルギー条件で、前記所定のドーズ量の酸素イオンを注入する。
【0029】
サンプルA及びサンプルBをそれぞれ複数枚用意し、各サンプルA及びサンプルBをエピタキシャル成長炉に導入した後、前処理として、水素ガス雰囲気下で1秒から5分間、950℃、1000℃、1050℃、1100℃、及び1150℃の各温度で熱処理を施した。
【0030】
次に、1050℃で、各サンプルの基板表面に約0.2μmの厚さのエピタキシャル成長膜を形成したサンプルAe、サンプルBeを製造した。
【0031】
図1(3)は、サンプルである酸素イオン注入後のシリコン単結晶基板1に、エピタキシャル成長膜eを形成した模式図である。
【0032】
ここで、各サンプルAe、サンプルBeについて,スポットライト下にて、基板表面の観察を行った。
【0033】
前記観察の結果、エピタキシャル成長膜を形成したサンプルAe及びBeのうち、1050℃以上の温度で前処理を行ったサンプルについては、サンプルAe及びサンプルBeとも、ヘイズ及びパーティクルの低減が確認できた。
【0034】
従って、エピタキシャル処理前に水素ガス雰囲気下において施す熱処理は、1050℃以上で行うことが望ましい。
【0035】
次に、前記エピタキシャル成長膜を形成した各サンプルAe及びサンプルBeを拡散炉にて、酸素分圧0.05%の酸化雰囲気下で、1350℃、4時間の熱処理を施し,サンプルAeo、及びサンプルBeoを製造した。
【0036】
図1(4)は、エピタキシャル成長膜eを形成した基板1に、前記酸素分圧0.05%の酸化雰囲気下で、1350℃、4時間の熱処理を施し、基板1に、エピタキシャル成長膜e、埋め込み酸化膜(BOX)o及びエピタキシャル成長膜eとBOXoとの間の活性層側シリコンsの四層構造からなるSIMOX基板2を示す図である。
【0037】
酸素分圧0.05%以上の酸化性雰囲気下で、1100℃以上1400℃以下の温度範囲で熱処理を行うと、シリコン半導体基板表面に熱酸化膜が成長するとともに、基板1内部に雰囲気中の酸素が内方拡散し、基板内部の埋め込み酸化膜BOXoが成長する。BOXoは、エピタキシャル成長膜e下の領域の貫通転位や、積層欠陥の存在するシリコンsを消費して成長する。
従って、図1(5)に示すように、最終的には、エピタキシャル層(活性層)e、BOXo、支持基板1の三層構造となるSIMOX基板3を形成し、貫通転位や積層欠陥の存在しない信頼性の高い三層構造のSIMOX基板となすことができる。
【0038】
前記サンプルAeo及びサンプルBeoを劈開し、電子顕微鏡にて、各サンプルAeo、及びサンプルBeoのSOI構造の観察を行った。
【0039】
その結果、いずれのサンプルについても活性層、BOX及び支持基板からなる三層構造であるSOI構造が確認された。
【0040】
サンプルAeoについては、活性層の厚みが約0.22μmであり、BOX膜厚は、約30nmであった。
【0041】
サンプルBeoについては、活性層の厚みが約0.26μmであり、BOX膜厚は、約40nmであることが確認できた。
【0042】
次に、比較例として、エピタキシャル成長処理をしないサンプルAについて、拡散炉にて酸素分圧0.05%のガス雰囲気で、1350℃、4時間の熱処理を施したサンプルAoを製造した。その後、前記サンプルAoを劈開して、電子顕微鏡にて、SOI構造の観察を行った。この結果、エピタキシャル成長処理を施さずに、酸素分圧0.05%の酸化雰囲気で、1350℃、4時間の熱処理を施したサンプルAoの活性層の厚さは、約20nmであり、BOX膜厚は、約30nmであることが確認できた。
【0043】
従って、前述した結果から、低エネルギー条件、かつ低ドーズ条件で、イオン注入した場合であっても、エピタキシャル処理した後、所定の酸素分圧下において所定の熱処理を施すことにより、所望の膜厚を備えた活性層及びBOXを備え、欠陥の少ない信頼性の高いSIMOX基板を得ることができた。
【0044】
次に、シリコン単結晶基板を加速エネルギー40KeVで酸素イオン分子2.4×1017cm−2で注入したサンプルAを酸素分圧20%にて、1350℃で4時間熱処理を施したサンプルAo'を形成した。同様にサンプルAについて、水素ガス雰囲気下で各温度の熱処理を施した後、1050℃の温度で、約0.2μmの厚みのエピタキシャル成長膜を形成し、更に、酸素分圧20%にて、1350℃の4時間の熱処理を施したサンプルAeo'を形成した。
【0045】
サンプルAo'とサンプルAeo'を劈開し、電子顕微鏡にて、各サンプルのSOI構造の観察を行った。
【0046】
サンプルAo'については、熱処理工程中、酸素分圧が0.05%から20%に増加したため、表面酸化によって、サンプルAo'の活性層は、完全に消滅していた。
【0047】
一方、エピタキシャル成長膜を形成した後、熱処理を行ったサンプルAeo'については、活性層が約0.18μm、BOX膜厚さが約40nmとなっていることが確認できた。
【0048】
以上のことから、酸化雰囲気で熱処理する前にエピタキシャル成長を行う処理を施すことにより、活性層を消滅させることなく、所望の膜厚の活性層、BOX、支持基板の三層構造を備えたSIMOX基板を製造することが可能となる。
【0049】
また、エピタキシャル成長処理を行った後、酸素分圧0.05%以上の酸化雰囲気下で熱処理を行うことにより、薄膜化した活性層、所望のBOX膜厚となるSIMOX基板を得ることが確認できた。
【0050】
次に、8”φ、ボロンドープ、初期酸素濃度1.4×1017cm−3[old ASTM]のシリコン単結晶基板に、2.4×1017cm−2の酸素分子イオンを注入エネルギー40KeVで注入したサンプルAをエピタキシャル成長炉に導入した後、前処理として、水素ガス雰囲気中に塩酸ガスを微量導入し、基板表面をわずかにエッチング・オフさせたサンプルAoffを形成した。
【0051】
次に、前記サンプルAoffに1050℃で、基板表面に約0.2μmの厚さのエピタキシャル成長膜を形成したサンプルAoffeを製造した。
【0052】
その後、 前記エピタキシャル成長膜を形成したサンプルAoffeを拡散炉にて、酸素分圧0.05%のガス雰囲気下で、1350℃、4時間の熱処理を施し,サンプルAoffeoを製造した。
【0053】
その後、サンプルAoffeoを劈開し、電子顕微鏡にてSOI構造の観察を行ったところ、SOI構造は確認できるものの、本例のサンプルAoffeoと、水素ガスのみの雰囲気中で、同温度にて前処理を施した前記サンプルAeoの欠陥密度を比較すると、サンプルAeoに存在する欠陥密度の方が明らかに少なく、水素ガス雰囲気中のみの前処理を施すことにより、欠陥密度の少ないSIMOX基板の製造が可能となることが確認できた。
【0054】
次に、8”φ、ボロンドープ、初期酸素濃度1.4×1017cm−3[old ASTM]のシリコン単結晶基板に、2.4×1017cm−2の酸素分子イオンを注入エネルギー40KeVで注入したサンプルAに、水素雰囲気下で、1秒から5分間、1050℃以上の温度で熱処理を施し、基板表面に約0.2μmの厚さのエピタキシャル成長膜を形成したサンプルAeを、拡散炉にて、酸素分圧100%の雰囲気下で、1350℃、6時間の熱処理を施し、サンプルAeo''を製造した。
【0055】
その後、サンプルAeo''を劈開し、電子顕微鏡にてSOI構造の観察を行ったところ、サンプルAeo''について、SOI構造が確認された。
【0056】
このサンプルAeo''は、BOXの成長により、活性層側のシリコン単結晶領域が消費されており、消費したシリコン単結晶領域には、貫通転位や積層欠陥等の欠陥部位が存在する活性層側領域のシリコンを消費して、所望の厚さのBOXとなっており、所望の厚さを備えた活性層、BOX、及びシリコン基板の三層構造を備えたSIMOX基板が得られた。
【0057】
従って、低エネルギー条件、かつ低ドーズ条件にて、イオン注入した後、エピタキシャル成長処理を行い、1050℃以上、酸素分圧0.05%以上の酸化雰囲気において、熱処理を施すと、所望の膜厚の活性層、所望の厚さのBOX及びシリコン基板の三層構造を備えたSIMOX基板を得ることができる。
【0058】
【発明の効果】
以上説明したように、本発明は、シリコン半導体のSIMOX基板の製造方法において、シリコン半導体基板表面に酸素イオンを注入する工程と、単結晶として残った表面にシリコンエピタキシャル成長を行う工程と、その後、1100℃以上1400℃以下の酸化雰囲気下で高温熱処理を行う工程を備えたSIMOX基板の製造方法である。
【0059】
前記高温熱処理工程は、酸化雰囲気中の酸素分圧が0.05%以上となる条件にて行う。また、酸素イオンを注入する工程において、ソース源となる酸素イオンは、酸素原子イオンまたは酸素分子イオンを用い、酸素原子イオンをソース源として用いる場合は、注入エネルギー40KeV以下で注入し、酸素分子イオンをソース源として用いる場合は、注入エネルギー80KeV以下で注入する。
【0060】
更に、酸素イオンを注入する工程後、前記エピタキシャル成長処理工程前に、1050℃以上の水素ガス雰囲気で1秒以上の熱処理する工程を備えている。
【0061】
イオン注入時のシリコン半導体基板の最表面は、注入したイオンのイオン加速エネルギーが高く、単結晶構造を有し、基板表面に単結晶層となる良好なエピタキシャル成長を行うことが可能となり、所望の厚さのエピタキシャル層が形成される。
【0062】
前記高温熱処理を行う工程において、酸素分圧が0.05%以上の酸化雰囲気下で、1100℃以上1400℃以下の温度範囲で熱処理を行うと、シリコン半導体基板表面の熱酸化膜が成長し、同時に、前記基板内部にも、雰囲気中の酸素が前記基板へ内方拡散され、基板内部の埋め込み酸化膜(BOX)も成長する。
【0063】
埋め込み酸化膜の成長は、シリコン半導体基板において、あらかじめ形成したエピタキシャル膜下の活性層側領域の消費を意味するため、基板は、最終的に活性層、埋め込み酸化膜(BOX)、支持基板の三層構造となり、貫通転位や積層欠陥の存在する活性層側のシリコンを埋め込み酸化膜として消費する。
【0064】
酸素原子イオンの注入エネルギーを40KeV、酸素分子イオンの注入エネルギーを80KeVの低エネルギー条件、かつ低ドーズ条件であっても、エピタキシャル膜下の活性層側領域を効率良く消費して、埋め込み酸化膜(BOX)の膜厚を所望の厚さとすることが可能となる。
【0065】
また、エピタキシャル成長を行う工程の前処理として、1050℃以上の高温で短時間、水素ガスのみの雰囲気下で熱処理を行うと、半導体基板の欠陥密度の低減が可能となり、高品質なSIMOX基板の製造が可能となる。
【0066】
以上のように、本願のSIMOX基板及びその製造方法によれば、低エネルギー、かつ低ドーズ条件において、所望の厚みの活性層であるエピタキシャル層、所望の厚みのBOX、支持基板の三層構造を形成し、貫通転位や,積層欠陥の存在しない信頼性の高い、高品質なSIMOX基板を提供できる。
【図面の簡単な説明】
【図1】 本発明の具体例に係り、SIMOX基板の各製造工程を示す工程図である。
【符号の説明】
1 シリコン半導体基板
2 四層構造のSIMOX基板
3 三層構造のSIMOX基板
e エピタキシャル成長膜
s 活性層側領域のシリコン
o BOX
BACKGROUND OF THE INVENTION
The present invention relates to a SIMOX substrate and a manufacturing method thereof, and more particularly to a high-quality SIMOX substrate formed by implanting oxygen ions under a low energy condition and a low dose condition, and a manufacturing method thereof.
[Prior art]
2. Description of the Related Art Conventionally, an SOI (Silicon on Insulator) substrate is known in which an oxide film (SiO 2 ) is bonded between two semiconductor substrates and then the semiconductor substrate on the active side is thinned to form. . The SOI substrate is used as a substrate for a semiconductor device having effects such as high pressure resistance and high speed.
[0001]
One of the SOI substrates is a SIMOX substrate. A SIMOX (separation by implanted oxygen) substrate is an SOI substrate in which high concentration ions of oxygen are implanted into a silicon substrate to form an oxide film (SiO 2 ) in the silicon substrate.
[0002]
The SIMOX substrate manufacturing method usually involves heating a single crystal silicon substrate to 500 ° C. to 600 ° C., and injecting high concentration oxygen atom ions or oxygen molecular ions into the single crystal silicon substrate in a heated state, A high concentration oxygen ion implantation layer is formed. Thereafter, the silicon substrate is subjected to heat treatment for several hours in a trace oxygen-containing inert gas atmosphere of 1100 ° C. or higher and 1400 ° C. or lower to bury the oxygen ion implanted layer (hereinafter referred to as “BOX”). And a SIMOX substrate having a silicon single crystal active layer on the surface. The SIMOX substrate does not require polishing of the surface compared to an SOI substrate in which two silicon substrates are bonded together, has excellent film thickness uniformity in the active layer region on the surface, and is not like the SOI substrate. There is an advantage that it is not necessary to form a single semiconductor by bonding.
[0003]
In addition, in the method for manufacturing a SIMOX substrate disclosed in Japanese Patent Application Laid-Open No. 7-263538, after the heat treatment, a heat treatment is performed again in a gas atmosphere having a higher oxygen content to increase the thickness of the BOX. , A method for reducing pinholes in the BOX (hereinafter referred to as “ITOX treatment”) is disclosed.
[0004]
Further, in the above publication, after heat treatment is performed after oxygen ion implantation, a SIMOX substrate on which a buried oxide film has been formed in advance is subjected to heat treatment to obtain a theoretical film thickness calculated by the amount of oxygen ion implantation, and then the substrate is heated to high temperature oxygen. Oxidation treatment is performed in the atmosphere to prevent crystal defects in the surface silicon layer and to block pinholes generated in the buried oxide film. Further, sacrificial oxidation treatment is performed before and after the high temperature oxidation treatment, and the surface active layer is thinned to a desired thickness.
[0005]
[Problems to be solved by the invention]
Conventionally, SIMOX substrates have been manufactured by implanting ions under high energy conditions and high dose conditions. For example, when injecting an oxygen atom ions into a silicon single crystal substrate, as the implantation energy is required 180~200KeV, dose, 1.0 × 10 18 / cm - 2 ~2.0 × 10 18 / cm - 2 is required.
[0006]
In the manufacturing method requiring the high dose condition, there is a problem that threading dislocations and stacking faults are induced in the active layer of the SIMOX substrate.
[0007]
Therefore, in consideration of productivity, in the method of manufacturing a SIMOX substrate, a high energy condition and a low dose condition are the mainstream of current SIMOX substrate manufacturing as ion implantation conditions.
[0008]
When oxygen ions are implanted under low dose conditions, since the oxygen dose is low, in order to improve the reliability of the BOX, as described above, a heat treatment with a theoretical film thickness calculated by the oxygen ion implantation amount is performed. It is necessary to perform the ITOX process to be performed.
[0009]
There is also a demand for a SIMOX substrate manufactured under low energy conditions and low dose conditions and having a thinner active layer. For example, as a low energy condition and a low dose condition, a SIMOX substrate is manufactured under the conditions that the implantation energy of oxygen atom ions is about 30 KeV and the dose amount is 2 × 10 17 cm −2 to 4 × 10 17 cm −2. May be performed.
[0010]
However, when the SIMOX substrate is manufactured under the low energy condition and the low dose condition as described above, since the active layer of the substrate is thinned, on the buried oxide film having a theoretical thickness, Furthermore, there is a problem that the ITOX process for forming an oxide film and increasing the thickness of the buried oxide film cannot be performed, and the reliability of the BOX remains questionable.
[0011]
Therefore, in view of the above problems, the present invention manufactures a SIMOX substrate under a low energy condition and a low dose condition, and has an active layer and a BOX having a higher quality than conventional products, and a BOX film. It is an object of the present invention to provide a method for manufacturing a SIMOX substrate capable of controlling thickness.
[0012]
[Means for Solving the Problems]
According to the first aspect of the present invention, in the method for manufacturing a SIMOX substrate of a silicon semiconductor, a step of implanting oxygen ions into the surface of the silicon semiconductor substrate, a step of performing silicon epitaxial growth on the surface remaining as a single crystal, This is a method for manufacturing a SIMOX substrate, which includes a step of performing high-temperature heat treatment in an oxidizing atmosphere of 1100 ° C. or higher and 1400 ° C. or lower.
[0013]
The outermost surface of the silicon semiconductor substrate at the time of ion implantation has a single crystal structure because the ion acceleration energy of the implanted ions is high. For this reason, it becomes possible to perform good epitaxial growth to be a single crystal growth layer on the substrate surface, and after forming an epitaxial layer with a desired thickness and forming a buried oxide film (BOX), an active layer with a desired thickness is formed. Become. Thereafter, ions implanted into the semiconductor substrate form a buried oxide film (BOX) in the substrate in a high-temperature heat treatment step in an oxidizing atmosphere, and become a SIMOX substrate. The buried oxide film (BOX) formed by the implanted ions can be controlled to a desired thickness by consuming silicon having threading dislocations and stacking faults, which is an active layer side region below the epitaxial layer formed by epitaxial growth. Therefore, even when a SIMOX substrate is manufactured under conditions of low energy and low dose of ion implantation, a high-quality SIMOX substrate having an active layer and a buried oxide film having a desired thickness and having few defects is provided. It becomes possible.
[0014]
The invention described in claim 2 of the present application is a method for manufacturing a SIMOX substrate in which the oxygen partial pressure in the oxidizing atmosphere is 0.05% or more in the step of performing the high-temperature heat treatment described in claim 1.
[0015]
When heat treatment is performed in the temperature range of 1100 ° C. to 1400 ° C. in an oxidizing atmosphere having an oxygen partial pressure of 0.05% or more, a thermal oxide film on the surface of the silicon semiconductor substrate grows, and at the same time, the substrate is also in the atmosphere Oxygen is diffused inward into the substrate, and a buried oxide film (BOX) inside the substrate also grows. Further, in the heat treatment at 1100 ° C. or higher, defects are likely to be induced on the active layer side under a high oxygen partial pressure in the initial stage of the heat treatment. Further, if the oxygen partial pressure is too low, BOX growth does not occur, so the lower limit was made 0.05%.
[0016]
According to the third aspect of the present invention, in the high temperature heat treatment step according to the first aspect, when forming the buried oxide film, the region under the epitaxial layer formed before the high temperature heat treatment step is buried by internal oxidation. This is a manufacturing method for forming a SIMOX substrate that is consumed as an oxide film and has a three-layer structure of an active layer, a buried oxide film, and a support substrate.
[0017]
The buried oxide film formed by the internal oxidation by the implanted oxygen ions means the consumption of the active layer side region under the previously formed epitaxial film in the silicon semiconductor substrate, so that the substrate is finally the active layer, the buried oxide film. (BOX), a three-layer structure of the support substrate. The buried oxide film grows by consuming silicon on the active layer side where threading dislocations and stacking faults exist as a buried oxide film, and the film thickness is controlled. A SIMOX substrate having a layer structure can be obtained.
[0018]
The invention described in claim 4 of the present application uses oxygen atom ions or oxygen molecular ions as a source source in the step of implanting oxygen ions according to any one of claims 1 to 3.
[0019]
In the fifth aspect of the present invention, in the step of implanting oxygen ions according to any one of the first to fourth aspects, when oxygen atom ions are used as a source source, the implantation energy is implanted at 40 KeV or less, When oxygen molecular ions are used as a source source, the implantation energy is implanted at 80 KeV or less.
[0020]
Even under low energy conditions of oxygen atom ion implantation energy of 40 KeV and oxygen molecular ion implantation energy of 80 KeV, the active layer side region under the epitaxial film is efficiently consumed, and the thickness of the buried oxide film (BOX) is increased. Can be set to a desired thickness.
[0021]
The invention described in claim 6 of the present application is the heat treatment for 1 second or more in a hydrogen gas atmosphere at 1050 ° C. or more after the step of implanting oxygen ions and before the epitaxial growth treatment step in the inventions of claims 3 to 5. This is a method for manufacturing a SIMOX substrate provided with a step of
[0022]
As a pretreatment for the epitaxial growth process, if the heat treatment is performed at a high temperature of 1050 ° C. or higher for a short time in an atmosphere containing only hydrogen gas, the defect density of the semiconductor substrate can be reduced, and a high-quality SIMOX substrate can be manufactured. It becomes.
[0023]
The invention described in claim 7 of the present application is a silicon semiconductor SIMOX substrate.
The SIMOX substrate includes an active layer and a region under the epitaxial layer formed by the epitaxial growth means by means of means for implanting oxygen ions, epitaxial growth means, and high-temperature heat treatment means in an oxidizing atmosphere of 1100 ° C. to 1400 ° C. As a result, the buried oxide film layer and the supporting substrate are consumed.
[0024]
The SIMOX substrate of the present application forms an epitaxial layer of a desired thickness, consumes silicon on the active region side where threading dislocations and stacking faults exist under the epitaxial layer, forms a buried oxide film, and a buried oxide film is also desired Therefore, it is possible to provide a highly reliable and high-quality SIMOX substrate even under low energy conditions and low dose conditions.
[0025]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, specific examples of the present invention will be described in detail with reference to the drawings.
[0026]
Sample obtained by implanting oxygen molecular ions of 2.4 × 10 17 cm −2 at an implantation energy of 40 KeV into a silicon single crystal substrate having 8 ″ φ, boron dope, and initial oxygen concentration of 1.4 × 10 17 cm −3 [old ASTM]. Similarly to A, Sample B was prepared by implanting oxygen molecular ions of 2.4 × 10 17 cm −2 at an implantation energy of 80 KeV.
[0027]
In order to promote internal oxidation, it is desirable to use a silicon substrate containing oxygen with a high oxygen concentration as the base silicon single crystal substrate.
[0028]
As shown in FIG. 1B, the predetermined dose of oxygen ions is implanted into the silicon single crystal substrate 1 under each implantation energy condition.
[0029]
A plurality of samples A and B are prepared, and after introducing each sample A and sample B into the epitaxial growth furnace, pretreatment is performed at 950 ° C., 1000 ° C., 1050 ° C. for 1 second to 5 minutes in a hydrogen gas atmosphere. Heat treatment was performed at temperatures of 1100 ° C. and 1150 ° C.
[0030]
Next, at 1050 ° C., Sample Ae and Sample Be in which an epitaxially grown film having a thickness of about 0.2 μm was formed on the substrate surface of each sample were manufactured.
[0031]
FIG. 1C is a schematic view in which an epitaxially grown film e is formed on a silicon single crystal substrate 1 after oxygen ion implantation as a sample.
[0032]
Here, for each sample Ae and sample Be, the substrate surface was observed under a spotlight.
[0033]
As a result of the observation, in the samples Ae and Be on which the epitaxially grown film was formed, the samples pretreated at a temperature of 1050 ° C. or higher were confirmed to have reduced haze and particles in both the sample Ae and the sample Be.
[0034]
Therefore, it is desirable to perform the heat treatment performed in the hydrogen gas atmosphere before the epitaxial treatment at 1050 ° C. or higher.
[0035]
Next, each sample Ae and sample Be on which the epitaxially grown film is formed are subjected to a heat treatment at 1350 ° C. for 4 hours in an oxidation atmosphere with an oxygen partial pressure of 0.05% in a diffusion furnace, and sample Aeo and sample Beo Manufactured.
[0036]
In FIG. 1 (4), the substrate 1 on which the epitaxially grown film e is formed is subjected to a heat treatment at 1350 ° C. for 4 hours in an oxidizing atmosphere with an oxygen partial pressure of 0.05%. It is a figure which shows the SIMOX substrate 2 which consists of a four-layer structure of the active layer side silicon | silicone s between the oxide film (BOX) o and the epitaxial growth film | membrane e, and BOXo.
[0037]
When heat treatment is performed at a temperature range of 1100 ° C. to 1400 ° C. in an oxidizing atmosphere having an oxygen partial pressure of 0.05% or more, a thermal oxide film grows on the surface of the silicon semiconductor substrate, and the atmosphere in the atmosphere inside the substrate 1 is increased. Oxygen diffuses inward, and a buried oxide film BOXo inside the substrate grows. BOXo grows by consuming threading dislocations in the region under the epitaxial growth film e and silicon s in which stacking faults exist.
Accordingly, as shown in FIG. 1 (5), finally, a SIMOX substrate 3 having a three-layer structure of the epitaxial layer (active layer) e, BOXo, and the support substrate 1 is formed, and threading dislocations and stacking faults are present. It is possible to provide a highly reliable three-layer SIMOX substrate.
[0038]
The sample Aeo and sample Beo were cleaved, and the SOI structure of each sample Aeo and sample Beo was observed with an electron microscope.
[0039]
As a result, an SOI structure that is a three-layer structure including an active layer, a BOX, and a support substrate was confirmed for each sample.
[0040]
For sample Aeo, the thickness of the active layer was about 0.22 μm and the BOX film thickness was about 30 nm.
[0041]
Regarding sample Beo, it was confirmed that the thickness of the active layer was about 0.26 μm and the BOX film thickness was about 40 nm.
[0042]
Next, as a comparative example, sample Ao, which was subjected to heat treatment at 1350 ° C. for 4 hours in a gas atmosphere having an oxygen partial pressure of 0.05% in a diffusion furnace, was manufactured for sample A that was not epitaxially grown. Thereafter, the sample Ao was cleaved, and the SOI structure was observed with an electron microscope. As a result, the thickness of the active layer of sample Ao that was heat-treated at 1350 ° C. for 4 hours in an oxidizing atmosphere having an oxygen partial pressure of 0.05% without performing epitaxial growth treatment was about 20 nm, and the BOX film thickness was Was confirmed to be about 30 nm.
[0043]
Therefore, from the above-described results, even when ion implantation is performed under low energy conditions and low dose conditions, a desired film thickness can be obtained by performing a predetermined heat treatment under a predetermined oxygen partial pressure after epitaxial processing. It was possible to obtain a highly reliable SIMOX substrate having the active layer and BOX provided, and having few defects.
[0044]
Next, a sample Ao ′ obtained by performing heat treatment at 1350 ° C. for 4 hours on a sample A in which a silicon single crystal substrate was implanted at an acceleration energy of 40 KeV and oxygen ion molecules 2.4 × 10 17 cm −2 at an oxygen partial pressure of 20%. Formed. Similarly, Sample A was subjected to heat treatment at various temperatures in a hydrogen gas atmosphere, and then an epitaxially grown film having a thickness of about 0.2 μm was formed at a temperature of 1050 ° C., and further 1350 at an oxygen partial pressure of 20%. A sample Aeo ′ was formed after heat treatment at 4 ° C. for 4 hours.
[0045]
Sample Ao ′ and sample Aeo ′ were cleaved, and the SOI structure of each sample was observed with an electron microscope.
[0046]
For sample Ao ′, the oxygen partial pressure increased from 0.05% to 20% during the heat treatment step, so that the active layer of sample Ao ′ completely disappeared due to surface oxidation.
[0047]
On the other hand, it was confirmed that the sample Aeo ′ subjected to heat treatment after the epitaxial growth film was formed had an active layer of about 0.18 μm and a BOX film thickness of about 40 nm.
[0048]
From the above, a SIMOX substrate having a three-layer structure of an active layer, a BOX, and a support substrate having a desired film thickness without extinguishing the active layer by performing a process of performing epitaxial growth before heat treatment in an oxidizing atmosphere. Can be manufactured.
[0049]
It was also confirmed that after the epitaxial growth treatment, heat treatment was performed in an oxidizing atmosphere with an oxygen partial pressure of 0.05% or more to obtain a thinned active layer and a SIMOX substrate having a desired BOX film thickness. .
[0050]
Next, 2.4 × 10 17 cm −2 of oxygen molecular ions are implanted into a silicon single crystal substrate having 8 ″ φ, boron doping, and an initial oxygen concentration of 1.4 × 10 17 cm −3 [old ASTM] at an implantation energy of 40 KeV. After introducing the injected sample A into the epitaxial growth furnace, as a pretreatment, a small amount of hydrochloric acid gas was introduced into a hydrogen gas atmosphere to form a sample Aoff in which the substrate surface was slightly etched off.
[0051]
Next, a sample Aoffe was manufactured by forming an epitaxially grown film having a thickness of about 0.2 μm on the substrate surface at 1050 ° C. on the sample Aoff.
[0052]
Thereafter, the sample Aoffe on which the epitaxially grown film was formed was subjected to a heat treatment at 1350 ° C. for 4 hours in a diffusion furnace in a gas atmosphere having an oxygen partial pressure of 0.05% to produce a sample Aoffeo.
[0053]
Thereafter, the sample Aoffeo was cleaved and the SOI structure was observed with an electron microscope. Although the SOI structure could be confirmed, pretreatment was performed at the same temperature in the atmosphere of the sample Aoffeo and hydrogen gas alone. Comparing the defect density of the sample Aeo applied, the defect density existing in the sample Aeo is clearly smaller, and by performing the pretreatment only in the hydrogen gas atmosphere, it is possible to manufacture a SIMOX substrate with a low defect density. It was confirmed that
[0054]
Next, 2.4 × 10 17 cm −2 of oxygen molecular ions are implanted into a silicon single crystal substrate having 8 ″ φ, boron doping, and an initial oxygen concentration of 1.4 × 10 17 cm −3 [old ASTM] at an implantation energy of 40 KeV. Sample Ae in which an implanted sample A was heat-treated at a temperature of 1050 ° C. or higher for 1 second to 5 minutes in a hydrogen atmosphere to form an epitaxially grown film having a thickness of about 0.2 μm on the substrate surface was placed in a diffusion furnace. Then, a heat treatment was performed at 1350 ° C. for 6 hours in an atmosphere with an oxygen partial pressure of 100% to produce a sample Aeo ″.
[0055]
Thereafter, the sample Aeo ″ was cleaved and the SOI structure was observed with an electron microscope. As a result, the SOI structure was confirmed for the sample Aeo ″.
[0056]
In this sample Aeo '', the silicon single crystal region on the active layer side is consumed due to the growth of BOX, and in the consumed silicon single crystal region, there are defect sites such as threading dislocations and stacking faults. The region of silicon was consumed to form a BOX having a desired thickness, and a SIMOX substrate having a three-layer structure of an active layer having a desired thickness, a BOX, and a silicon substrate was obtained.
[0057]
Therefore, after ion implantation under low energy conditions and low dose conditions, an epitaxial growth process is performed, and a heat treatment is performed in an oxidizing atmosphere at 1050 ° C. or higher and an oxygen partial pressure of 0.05% or higher. A SIMOX substrate having a three-layer structure of an active layer, a BOX having a desired thickness, and a silicon substrate can be obtained.
[0058]
【The invention's effect】
As described above, the present invention relates to a method of manufacturing a SIMOX substrate of a silicon semiconductor, a step of implanting oxygen ions on the surface of the silicon semiconductor substrate, a step of epitaxially growing silicon on the surface remaining as a single crystal, and then 1100 This is a method for manufacturing a SIMOX substrate, which includes a step of performing a high-temperature heat treatment in an oxidizing atmosphere of not lower than 1 ° C and not higher than 1400 ° C.
[0059]
The high temperature heat treatment step is performed under the condition that the oxygen partial pressure in the oxidizing atmosphere is 0.05% or more. In addition, in the step of implanting oxygen ions, oxygen ions serving as a source source are oxygen atom ions or oxygen molecular ions. When oxygen atom ions are used as a source source, oxygen ions are implanted at an implantation energy of 40 KeV or less. Is used at a source energy of 80 KeV or less.
[0060]
Further, after the step of implanting oxygen ions, it is provided with a step of performing a heat treatment for 1 second or longer in a hydrogen gas atmosphere at 1050 ° C. or higher before the epitaxial growth processing step.
[0061]
The outermost surface of the silicon semiconductor substrate at the time of ion implantation has high ion acceleration energy of the implanted ions, has a single crystal structure, and can perform good epitaxial growth to be a single crystal layer on the surface of the substrate. An epitaxial layer is formed.
[0062]
In the step of performing the high-temperature heat treatment, if heat treatment is performed in a temperature range of 1100 ° C. or higher and 1400 ° C. or lower in an oxidizing atmosphere with an oxygen partial pressure of 0.05% or higher, a thermal oxide film on the surface of the silicon semiconductor substrate grows, At the same time, oxygen in the atmosphere is diffused inward into the substrate, and a buried oxide film (BOX) inside the substrate also grows.
[0063]
Since the growth of the buried oxide film means the consumption of the active layer side region under the epitaxial film formed in advance in the silicon semiconductor substrate, the substrate finally consists of the active layer, the buried oxide film (BOX), and the support substrate. It has a layer structure, and silicon on the active layer side where threading dislocations and stacking faults are present is consumed as a buried oxide film.
[0064]
Even if the implantation energy of oxygen atomic ions is 40 KeV, the implantation energy of oxygen molecular ions is 80 KeV, and the low dose condition, the active layer side region under the epitaxial film is efficiently consumed, and the buried oxide film ( BOX) can be set to a desired thickness.
[0065]
In addition, if the heat treatment is performed in a hydrogen gas-only atmosphere at a high temperature of 1050 ° C. or higher for a short time as a pretreatment for the epitaxial growth process, it becomes possible to reduce the defect density of the semiconductor substrate and manufacture a high-quality SIMOX substrate. Is possible.
[0066]
As described above, according to the SIMOX substrate and the manufacturing method thereof of the present application, a three-layer structure of an active layer having a desired thickness, a BOX having a desired thickness, a BOX having a desired thickness, and a support substrate can be obtained under low energy and low dose conditions. It is possible to provide a high-quality SIMOX substrate with high reliability that is free from threading dislocations and stacking faults.
[Brief description of the drawings]
FIG. 1 is a process chart showing each manufacturing process of a SIMOX substrate according to a specific example of the present invention.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Silicon semiconductor substrate 2 Four-layer structure SIMOX substrate 3 Three-layer structure SIMOX substrate e Epitaxial growth film s Silicon o BOX in active layer side region

Claims (5)

シリコン半導体のSIMOX基板の製造方法において、シリコン半導体基板表面に酸素イオンを注入する工程と、単結晶として残った基板表面にエピタキシャル成長を行う工程とその後、1100℃以上1400℃以下の酸化雰囲気下で高温熱処理を行う工程を備え、前記高温熱処理工程において埋め込み酸化膜を形成する際に、内部酸化によって、高温熱処理工程前に形成したエピタキシャル層下の前記単結晶として残った基板表面のシリコンを全て酸化膜として消費し、活性層と、埋め込み酸化膜と、支持基板の三層構造を備えたSIMOX基板となすことを特徴とするSIMOX基板の製造方法。In a method for manufacturing a SIMOX substrate of a silicon semiconductor, a step of implanting oxygen ions on the surface of the silicon semiconductor substrate, a step of performing epitaxial growth on the surface of the substrate remaining as a single crystal, and then a high temperature in an oxidizing atmosphere of 1100 ° C. or higher and 1400 ° C. or lower When the buried oxide film is formed in the high temperature heat treatment step, all silicon on the substrate surface remaining as the single crystal under the epitaxial layer formed before the high temperature heat treatment step is formed by internal oxidation when the buried oxide film is formed in the high temperature heat treatment step. And producing a SIMOX substrate having a three-layer structure of an active layer, a buried oxide film, and a support substrate . 前記1100℃以上1400℃以下の酸化雰囲気で高温熱処理を行う工程において、酸化雰囲気中の酸素分圧が0.05%以上であることを特徴とする前記請求項1記載のSIMOX基板の製造方法。2. The method of manufacturing a SIMOX substrate according to claim 1, wherein the oxygen partial pressure in the oxidizing atmosphere is 0.05% or more in the step of performing the high temperature heat treatment in the oxidizing atmosphere of 1100 ° C. or more and 1400 ° C. or less. 前記酸素イオンを注入する工程において、ソース源として、酸素原子イオン又は酸素分子イオンを用いることを特徴とする前記請求項1又は2に記載のSIMOX基板の製造方法。 3. The method of manufacturing a SIMOX substrate according to claim 1, wherein oxygen atom ions or oxygen molecular ions are used as a source source in the step of implanting oxygen ions. 前記酸素イオンを注入する工程において、酸素原子イオンをソース源とする場合は、注入エネルギーを40KeV以下で注入し、酸素分子イオンをソース源とする場合は、注入エネルギーを80KeV以下で注入することを特徴とする前記請求項1乃至3いずれか記載のSIMOX基板の製造方法。In the step of implanting oxygen ions, when oxygen atom ions are used as a source source, implantation energy is implanted at 40 KeV or less, and when oxygen molecule ions are used as a source source, implantation energy is implanted at 80 KeV or less. The method of manufacturing a SIMOX substrate according to any one of claims 1 to 3, wherein 前記酸素イオンを注入する工程後、前記エピタキシャル成長処理工程前に、1050℃以上の水素ガス雰囲気で1秒以上の熱処理する工程を設けたことを特徴とする前記請求項乃至いずれか記載のSIMOX基板の製造方法。After the step of implanting the oxygen ions, the prior epitaxial growth process, of claims 1 to 4, wherein any one, characterized in that a step of heat treatment of at least one second in a hydrogen gas atmosphere over 1050 ° C. SIMOX A method for manufacturing a substrate.
JP28764399A 1999-10-08 1999-10-08 SIMOX substrate and manufacturing method thereof Expired - Fee Related JP4370647B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28764399A JP4370647B2 (en) 1999-10-08 1999-10-08 SIMOX substrate and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28764399A JP4370647B2 (en) 1999-10-08 1999-10-08 SIMOX substrate and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2001110739A JP2001110739A (en) 2001-04-20
JP4370647B2 true JP4370647B2 (en) 2009-11-25

Family

ID=17719888

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28764399A Expired - Fee Related JP4370647B2 (en) 1999-10-08 1999-10-08 SIMOX substrate and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP4370647B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100342492C (en) * 2003-03-14 2007-10-10 中国科学院上海微系统与信息技术研究所 Preparation for silicon material on thick film insulative layers
US7045432B2 (en) * 2004-02-04 2006-05-16 Freescale Semiconductor, Inc. Method for forming a semiconductor device with local semiconductor-on-insulator (SOI)
JP5487565B2 (en) * 2008-06-19 2014-05-07 株式会社Sumco Epitaxial wafer and method for manufacturing the same

Also Published As

Publication number Publication date
JP2001110739A (en) 2001-04-20

Similar Documents

Publication Publication Date Title
JP4928932B2 (en) Method of manufacturing composite material wafer and method of recycling used donor substrate
CN100418194C (en) Method for manufacturing soi wafer and soi wafer
JP4820801B2 (en) Manufacturing method of bonded wafer
JP4826475B2 (en) Manufacturing method of semiconductor wafer
JPH07263538A (en) Soi substrate and manufacture thereof
KR100890792B1 (en) Thermal treatment for bonding interface stabilization
JP4817342B2 (en) Manufacturing method of SOI type wafer
JP3204855B2 (en) Semiconductor substrate manufacturing method
JP2007208023A (en) Manufacturing method of simox wafer
JP5113182B2 (en) Improved method for transfer of thin layers formed in substrates with defect clusters
JP4370647B2 (en) SIMOX substrate and manufacturing method thereof
JPH10223551A (en) Method for manufacturing soi substrate
JPS63198334A (en) Manufacture of semiconductor silicon wafer
JP2000031079A (en) Production of soi substrate
JP2002231651A (en) Simox substrate and its manufacturing method
JP2001085649A (en) Soi wafer and fabrication method thereof
US20040187769A1 (en) Method of producing SOI wafer
CN117790402A (en) Silicon wafer on double-buried-oxide insulator and preparation method thereof
JP4531339B2 (en) Manufacturing method of semiconductor substrate
JPH1197377A (en) Manufacture of soi substrate
JP2008244261A (en) Manufacturing method of soi substrate
JPH1140512A (en) Manufacture of semiconductor substrate
JP3996732B2 (en) SIMOX substrate and manufacturing method thereof
JPH02102520A (en) Vapor epitaxial deposition
KR20050013398A (en) A Producing Method For Silicon Single Crystal Wafer and Silicon On Insulator Wafer

Legal Events

Date Code Title Description
RD05 Notification of revocation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7425

Effective date: 20040806

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050127

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081006

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081028

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20081112

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081219

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090811

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090824

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120911

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120911

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130911

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees