JP4370477B2 - Sail-wheel wind turbine (Sail-WheelWindTurbine) - Google Patents

Sail-wheel wind turbine (Sail-WheelWindTurbine) Download PDF

Info

Publication number
JP4370477B2
JP4370477B2 JP2005349933A JP2005349933A JP4370477B2 JP 4370477 B2 JP4370477 B2 JP 4370477B2 JP 2005349933 A JP2005349933 A JP 2005349933A JP 2005349933 A JP2005349933 A JP 2005349933A JP 4370477 B2 JP4370477 B2 JP 4370477B2
Authority
JP
Japan
Prior art keywords
sail
wind turbine
hub
turbine
wind
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005349933A
Other languages
Japanese (ja)
Other versions
JP2007127113A (en
JP2007127113A5 (en
Inventor
志恒 姜
Original Assignee
志恒 姜
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 志恒 姜 filed Critical 志恒 姜
Priority to JP2005349933A priority Critical patent/JP4370477B2/en
Publication of JP2007127113A publication Critical patent/JP2007127113A/en
Publication of JP2007127113A5 publication Critical patent/JP2007127113A5/ja
Application granted granted Critical
Publication of JP4370477B2 publication Critical patent/JP4370477B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/72Wind turbines with rotation axis in wind direction

Landscapes

  • Wind Motors (AREA)

Description

本発明は風力発電装置において風力タービンの構成方法に関するものである。The present invention relates to a method for configuring a wind turbine in a wind turbine generator.

背景技術及び発明が解決しょうとする課題Background art and problems to be solved by the invention

従来の風力タービンは、回転軸から放射線状に羽根を取り付けている。それは羽根によって風力からの回転エネルギーを回転軸に伝わることで発電機を駆動するものである。その場合、羽根にかかわるのは風の流れる方向に折れようとする力と、羽根から回転軸に伝える回転力である。それぞれの力はいずれも撓む力であり、それを耐えるには、より強い材質と構造上のより大きな断面積が求められている。特に前者の場合、設置する場所の自然環境を調査した数値に基づいて、一定の安全係数をかけて設計し、強風からの破壊を防止する必要がある。また、図2に示したような羽根の受風面を旋回調節するのも強風対策として有効の手段である。しかし、風がこれらの想定条件をはるかに超えた時があるので、設置した風車が壊れたとの報道は時々見られる。Conventional wind turbines have blades attached radially from the rotating shaft. It drives the generator by transmitting rotational energy from wind power to the rotating shaft by means of blades. In that case, the blades are involved in the force that tends to break in the direction of the wind and the rotational force transmitted from the blades to the rotating shaft. Each force is a bending force, and to withstand it, a stronger material and a larger sectional area on the structure are required. In particular, in the former case, it is necessary to design with a certain safety factor based on the numerical value obtained by investigating the natural environment of the place where it is installed to prevent destruction from strong winds. Further, turning the blade wind receiving surface as shown in FIG. 2 is effective as a measure against strong winds. However, there are occasional reports that the windmills that have been installed have been broken, as the wind has far exceeded these assumptions.

強風からの破壊を避けるために、羽根の強度は風力発電装置を設計するに重要な課題となっている。より安全性を求めるために、設計した羽根は大きな重みを持つようになってしまう。In order to avoid destruction from strong winds, the strength of the blades is an important issue in designing wind power generators. In order to demand more safety, the designed blades have a large weight.

このようの重たい羽根を装着したタービンが回転する場合、回転軸の指向が保たれるようの力、即ちジャイロ効果が発生し、回転面の変化は妨げられるような現象が発生する。特に羽根の枚数は多ければ、多い程、このような効果は強くなる。風力エネルギーを利用するにおいて、できるだけタービンの回転面を正面から風に追従するのは好まれるが、従来の技術ではどうしてもこのような無理が存在している。When a turbine equipped with such heavy blades rotates, a force that maintains the orientation of the rotating shaft, that is, a gyro effect occurs, and a phenomenon occurs in which the change of the rotating surface is hindered. In particular, the larger the number of blades, the stronger the effect. In using wind energy, it is preferred to follow the wind from the front of the turbine as much as possible from the front. However, the conventional technology inevitably has such an impossibility.

課題を解決するための手段Means for solving the problem

本発明はなるべく軽い構成方法で、且つタービンの羽根を支持するに十分な強度を与えるような発想から、様々な方式を考案し、最終的に自転車の車輪の構造からヒントが得られた上でできたものである。自転車の車輪は極めてシンプルな構成で、しかも大きな重量且つ様々の走行条件に耐えられるように製造されている。特に競技用の自転車に関して言えば、徹底に軽量化したにもかかわらず、強度に信頼性があると認められている。生活用自転車は26と28インチの物が多く、スポーク(Spoke)の数は36本のものが主流である。スポークは4本で一組となって、リム(Rim、ホイルのフレーム)とハブ(Hub、ベアリングの支持部分)を拘束するように働く。各組の4本のスポークは左右2本ずつで、それぞれ走行方向の前後向きで交差し、半径方向と一定の角度を持つ。このようの構成で、リムを円形に保つだけではなく、リムとハブの位置関係(回転方向にずれないこと)を完全に拘束する。The present invention is based on the lightest possible construction method and the idea of giving sufficient strength to support the blades of the turbine. Various methods have been devised, and finally hints have been obtained from the structure of the bicycle wheel. It was made. Bicycle wheels have a very simple construction and are manufactured to withstand heavy weight and various driving conditions. Especially when it comes to competitive bicycles, it has been recognized as reliable in strength despite its weight reduction. Many bicycles for daily use are 26 and 28 inches, and the number of spokes is 36. The four spokes work as a set to restrain the rim (Rim, the frame of the foil) and the hub (Hub, the bearing support). The four spokes in each group are two on the left and right, intersecting in the front-rear direction in the running direction, and having a certain angle with the radial direction. With such a configuration, not only the rim is kept circular, but also the positional relationship between the rim and the hub (that does not shift in the rotational direction) is completely restrained.

図3に示したように、一組のスポークにある左側のLBと右側のRBは、空間上一定の角度関係になっていて、これらのスポークの間を渡るようにいろいろな位置を線で結ぶと、それぞれの連結線は一つの曲面になっていることは分かる。これと同じように、LAとRAのスポークにも同じ傾向の曲面ができる。これらの曲面はリボンをねじったようになっていて、風に当たるとスポークを順時計回すようの力が発生する。 As shown in FIG. 3 , the left LB and the right RB in a pair of spokes have a fixed angular relationship in space, and various positions are connected by lines so as to cross between these spokes. And it can be seen that each connecting line is a curved surface. In the same way, curved surfaces with the same tendency can be formed in the spokes of LA and RA. These curved surfaces are like twisted ribbons, and when they hit the wind, a force is generated to turn the spokes clockwise.

自転車車輪のリムに相当するタービンのフレームはなるべく軽くて丈夫のものを使う。アルミ合金のパイプを円環状に加工したものは理想である。また、スポークに相当するワイヤーは温度変化に伴い膨張率の小さいものが好ましい。ワイヤーの張力を調整するには、調整専用のジョイントを用いて、ロックできる構造にする。羽根の役目として、薄い布状のもの(帆)を使い、2本のワイヤーに張るように取り付ける。ワイヤーの交差する位置があるので、帆の片方(底辺)がこの交差位置に固定する。このようの固定方法で、帆がワイヤーに沿って伸び縮めることは可能となる。フレームに各帆の頂辺を引き伸ばせるように、滑車とワイヤーを装着すれば、羽根の受風面積の調節はできる。The frame of the turbine corresponding to the rim of the bicycle wheel should be as light and strong as possible. An aluminum alloy pipe processed into an annular shape is ideal. Further, it is preferable that the wire corresponding to the spoke has a small expansion coefficient as the temperature changes. In order to adjust the tension of the wire, use a joint dedicated for adjustment, and make it a structure that can be locked. Use a thin cloth (sail) as a blade, and attach it to two wires. Since there is a crossing position of the wire, one side (bottom side) of the sail is fixed at this crossing position. With such a fixing method, the sail can be expanded and contracted along the wire. The wind receiving area of the blades can be adjusted by attaching pulleys and wires so that the top of each sail can be stretched to the frame.

ここで説明した帆の昇降機構は大きい規模の装置にのみ必要である。帆の材料を弱いものにすれば、強風を受けた際、帆自体が犠牲になって破けることにより、装置全体の破壊から免れ、保守性が保たれる。強風が去ったあと、破けた帆を取り替えれば、装置の機能が簡単に回復できる。簡易的な装置を作ることにより、より多くの人に風エネルギーを手軽に使ってもらえるようになる。The sail lifting mechanism described here is only necessary for large scale devices. If the material of the sail is weak, the sail itself will be sacrificed and torn when subjected to strong winds, thereby avoiding the destruction of the entire device and maintaining maintainability. If the broken sail is replaced after the strong wind leaves, the function of the device can be easily restored. By making a simple device, more people can easily use wind energy.

タービンにかかる力はワイヤーを伸ばす力と、フレームを円心方向に引き戻す力である。この円環にかかる円心方向への引き戻す力は、円の構造によって最終的に圧縮力に転換され、固形材料にとって耐え易い力である。また、ワイヤーにかかる伸ばし力は所謂テンションであり、金属材料にとって撓む力より桁違いの耐える能力になる。つまり、ごく細い材料でもタービンの安定性を保てる。従来の風車の長い羽根を片持つ構造と比べると、この帆・輪の構造は軽くて強い構造である。The force applied to the turbine is a force that stretches the wire and a force that pulls the frame back in the center direction. The force pulling back in the direction of the center of the circle is finally converted into a compressive force by the structure of the circle, and is a force that is easily tolerated by the solid material. In addition, the stretching force applied to the wire is a so-called tension, and the metal material has an ability to withstand orders of magnitude more than the bending force. In other words, even very thin materials can maintain turbine stability. Compared to the conventional structure with long blades of a windmill, this sail / ring structure is light and strong.

タービンの重量は従来のものと比べると、はるかに軽いので、羽根を多数装着しても僅かな重量増しにしかならず、回転慣性モーメントが少ない。この装置に、より多い羽根を使って、微弱風エネルギーの利用は可能である。同じ大きさのタービンで、従来のものの数倍の駆動力が得られることで、より多くの出力を得ることになる。また、同じ出力の装置を設置するのならば、従来のタービンの半分以下大きさで実現できる。設置場所と装置の製造コストの面においてメリットがある。Since the weight of the turbine is much lighter than that of the conventional turbine, even if a large number of blades are mounted, the weight is only slightly increased and the rotational moment of inertia is small. With this device, it is possible to use weak wind energy by using more blades. With a turbine of the same size, a driving force several times that of the conventional one can be obtained, so that more output can be obtained. If a device with the same output is installed, it can be realized with a size less than half that of a conventional turbine. There are advantages in terms of installation location and device manufacturing costs.

タービンの構成 1 タービンのフレーム(円環) 2 ワイヤー 3 羽根(帆) 4 回転軸Turbine configuration 1 Turbine frame (ring) 2 Wire 3 Blade (sail) 4 Rotating shaft 従来技術の羽根受風面調節Conventional blade adjustment of wind receiving surface スポークの空間関係 LA 左側スポークA LB 左側スポークB RA 右側スポークA RB 右側スポークBSpoke Spatial Relation LA Left Spoke A LB Left Spoke B RA Right Spoke A RB Right Spoke B

Claims (2)

風力タービンの軸部に固定されたハブの周囲に円環状のフレームを配置し、前記円環状のフレームの内周面の周方向等間隔位置から、前記ハブの両端部に向かってワイヤーを左右交互に、且つ、前記左右一対のワイヤーを前記ハブの軸垂直方向で前後交互に、引き、固定することで風力タービンの骨組み構造を構成し、前記構造におけるワイヤー間の立体関係を利用して、前記ハブの一端側に固定されたワイヤーと、ハブの他端側に固定されたワイヤーとの間、すなわち、各前記左右一対のワイヤーの間に帆を張ることによって風力タービンの羽根を構成し、ワイヤーの延伸方向のみに発生する拘束力(引っ張る力)と、前記円環状フレームそのものが形成するアーチ構造において発生する前記拘束力に対する反力と、によってタービンの安定性を保つことを特徴とする風力タービン。An annular frame is arranged around the hub fixed to the shaft portion of the wind turbine, and the wires are alternately left and right from the circumferentially equidistant position of the inner peripheral surface of the annular frame toward both ends of the hub. In addition, the frame structure of the wind turbine is configured by pulling and fixing the pair of left and right wires in front and back alternately in the axial vertical direction of the hub, and using the three-dimensional relationship between the wires in the structure, The blades of the wind turbine are constructed by extending a sail between the wire fixed to one end of the hub and the wire fixed to the other end of the hub, that is, between the pair of left and right wires. Of the turbine by the restraining force (pulling force) generated only in the extending direction of the turbine and the reaction force against the restraining force generated in the arch structure formed by the annular frame itself. Wind turbine, characterized in that to keep the sex. 前記ワイヤーに沿って行われる前記帆の昇降即ち前記羽根の伸縮によって風の強さに適応する請求項1に記載の風力タービン。The wind turbine according to claim 1, wherein the wind turbine adapts to the strength of wind by raising and lowering the sail performed along the wire, that is, expansion and contraction of the blades.
JP2005349933A 2005-11-05 2005-11-05 Sail-wheel wind turbine (Sail-WheelWindTurbine) Expired - Fee Related JP4370477B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005349933A JP4370477B2 (en) 2005-11-05 2005-11-05 Sail-wheel wind turbine (Sail-WheelWindTurbine)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005349933A JP4370477B2 (en) 2005-11-05 2005-11-05 Sail-wheel wind turbine (Sail-WheelWindTurbine)

Publications (3)

Publication Number Publication Date
JP2007127113A JP2007127113A (en) 2007-05-24
JP2007127113A5 JP2007127113A5 (en) 2008-07-10
JP4370477B2 true JP4370477B2 (en) 2009-11-25

Family

ID=38149946

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005349933A Expired - Fee Related JP4370477B2 (en) 2005-11-05 2005-11-05 Sail-wheel wind turbine (Sail-WheelWindTurbine)

Country Status (1)

Country Link
JP (1) JP4370477B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104314747A (en) * 2014-10-15 2015-01-28 苏德华 Double-ring and multiple-blade wind power generation device

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2475020A (en) * 2008-08-22 2011-05-04 Natural Power Concepts Inc Rimmed turbine
JP5325860B2 (en) * 2010-09-27 2013-10-23 吉資 長場 Windmill
KR101056932B1 (en) 2010-10-28 2011-08-12 전정호 The rotor blade for a wind power generator
WO2015063761A1 (en) * 2013-10-31 2015-05-07 Winflex Ltd Impeller structure for a wind turbine
CN104481820B (en) * 2014-12-10 2018-03-09 苏德华 A kind of blading with rotary extension structure

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104314747A (en) * 2014-10-15 2015-01-28 苏德华 Double-ring and multiple-blade wind power generation device

Also Published As

Publication number Publication date
JP2007127113A (en) 2007-05-24

Similar Documents

Publication Publication Date Title
JP4370477B2 (en) Sail-wheel wind turbine (Sail-WheelWindTurbine)
EP1994279B1 (en) Wind turbine
EP2087205B1 (en) Turbine blade assembly
US8465256B2 (en) Wind turbine rotor
CA2685189C (en) Modified darrieus vertical axis turbine
US5203672A (en) Wind turbine with stationary vertical support tower and airflow-directing shell
US7985052B2 (en) Curved blade for wind turbines
US4364709A (en) Wind power converter
EP2474735B1 (en) Mounting arrangement for pitch gear
US9382897B2 (en) Wind turbine with a centrifugal force driven adjustable pitch angle and cables retaining blades in a hub
US20120328443A1 (en) Systems and methods for assembling a wind turbine with a pitch assembly
NO800696L (en) WIND TURBINE ROTOR.
JP2012154267A (en) Phase changing method for blade bearing and phase changing tool
CA2979321C (en) Horizontal axis troposkein tensioned blade fluid turbine
CA2778901A1 (en) Lift-type vertical axis turbine
WO2021216133A1 (en) Wind turbine with base-mounted generator
US8430636B2 (en) Wind turbine rotor assembly
EP2761167B1 (en) Wind turbine rotor with improved hub system
JP4541282B2 (en) Wind power generator
KR20100120569A (en) Wind power generating apparatus
JP5325860B2 (en) Windmill
JP2011047291A (en) Wind turbine blade
RU2380567C2 (en) Rotor-type windmill
EP2532882A1 (en) System and methods for assembling a wind turbine with a pitch assembly
RU2563949C1 (en) Rotor-type windmill

Legal Events

Date Code Title Description
A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20071214

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071214

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071214

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080122

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080409

A072 Dismissal of procedure

Free format text: JAPANESE INTERMEDIATE CODE: A073

Effective date: 20080527

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20080604

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080610

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080806

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081028

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081225

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090317

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090512

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090512

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090804

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090818

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120911

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130911

Year of fee payment: 4

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R370 Written measure of declining of transfer procedure

Free format text: JAPANESE INTERMEDIATE CODE: R370

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees