JP4370342B2 - Processing equipment for underwater fines - Google Patents

Processing equipment for underwater fines Download PDF

Info

Publication number
JP4370342B2
JP4370342B2 JP2007093935A JP2007093935A JP4370342B2 JP 4370342 B2 JP4370342 B2 JP 4370342B2 JP 2007093935 A JP2007093935 A JP 2007093935A JP 2007093935 A JP2007093935 A JP 2007093935A JP 4370342 B2 JP4370342 B2 JP 4370342B2
Authority
JP
Japan
Prior art keywords
liquid
fine
acceleration member
acceleration
accelerating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2007093935A
Other languages
Japanese (ja)
Other versions
JP2008246441A (en
Inventor
和規 宮澤
憲和 浦里
靖 亀井
Original Assignee
大晃機械工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 大晃機械工業株式会社 filed Critical 大晃機械工業株式会社
Priority to JP2007093935A priority Critical patent/JP4370342B2/en
Publication of JP2008246441A publication Critical patent/JP2008246441A/en
Application granted granted Critical
Publication of JP4370342B2 publication Critical patent/JP4370342B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は水中微細物等の処理装置に関し、例えば船舶が安全航行するために海水をバラスト水として船舶に注入したり、船舶から注出するのに、海水中に含まれる植物性または動物性のプランクトンのような微生物の殺滅を行ったり、海水中に浮遊する微細な固形物を破細するのに最適に使用される。   The present invention relates to an apparatus for treating underwater fine matters, etc., for example, for injecting seawater into a ship as ballast water or for pouring out from a ship for safe navigation by a ship. It is optimally used for killing microorganisms such as plankton and for breaking up fine solids floating in seawater.

従来、例えば船舶が安全航行するのに海水をバラスト水として注入したり、船舶外に注出する時に、植物性または動物性のプランクトンやバクテリヤ等の微生物の殺滅を行うためのバラスト処理装置には、従来、遠心分離装置などの動力を利用した比較的大掛かりな装置があった。   Conventionally, for example, when a ship navigates safely, seawater is injected as ballast water, or poured out of the ship, a ballast treatment device for killing microorganisms such as plant or animal plankton and bacteria Conventionally, there has been a relatively large apparatus using power such as a centrifugal separator.

また、バラスト水中の微生物の通過を捕捉するための多数の通孔を洗浄しながら用いるフィルター等の除去手段を備えたバラスト処理装置もあった(例えば特許文献1参照。)。   There has also been a ballast treatment apparatus provided with a removing means such as a filter used while washing a large number of through holes for capturing the passage of microorganisms in the ballast water (see, for example, Patent Document 1).

また、バラスト水中に含まれる植物性または動物性のプランクトンやバクテリヤ等の微生物の殺滅を行うための他の方法として、バラスト水中で高電圧電極間にスパーク放電させる衝撃波発生部を備えることにより放電されるパルスパワー生成衝撃波によるバラスト水処理法があった(例えば特許文献2参照。)。
特開2005−349259号公報 特開2005−270754号公報
In addition, as another method for killing microorganisms such as plant or animal plankton and bacteria contained in ballast water, it is possible to discharge by providing a shock wave generating section for spark discharge between high voltage electrodes in ballast water. There has been a ballast water treatment method using generated pulse power shock waves (see, for example, Patent Document 2).
JP 2005-349259 A JP 2005-270754 A

しかしながら、遠心分離装置などの動力を利用した上記従来のバラスト処理装置は、大掛かりな装置であるので、製作、および建造には多大な労力、時間、資材が必要になり、工事期間も長くなり、建造費も膨大になって、不経済であった。   However, since the conventional ballast processing apparatus using power such as a centrifugal separator is a large-scale apparatus, a great deal of labor, time, and materials are required for production and construction, and the construction period becomes longer. The construction costs were huge and uneconomical.

しかも、バラスト水は、船舶の載荷荷重の30〜60%もあり、その注水量が大量であることから、処理装置が複雑な機構を採用すると、その大型化は避けられないので、小型船舶では設置するための広い船内スペースを採ることができなかった。そのため、上述のような遠心分離装置などの動力を利用した比較的大掛かりな装置を建造するのには不適切である。   Moreover, since ballast water is 30 to 60% of the loading load of the ship and the amount of water injection is large, if the processing device adopts a complicated mechanism, its enlargement is inevitable, so in small ships It was not possible to take a large space for installation. Therefore, it is unsuitable for constructing a relatively large apparatus using power such as the centrifugal separator as described above.

また、フィルター等の除去手段を備えた上記従来のバラスト処理装置は、フィルターの通孔(目)の大きさが微細なものであるので、フィルターの通孔が目詰まりするという懸念を払拭することができなかった。   Further, the above-mentioned conventional ballast processing apparatus provided with a removing means such as a filter eliminates the concern that the filter through-holes (eyes) are clogged, so that the filter through-holes are clogged. I could not.

そのうえ、遠心分離装置などの動力を利用した上記従来のバラスト処理装置、およびフィルター等の除去手段を備えた上記従来のバラスト処理装置は、いずれもポンプの圧力を高圧化する必要があり、既存のポンプ設備での使用が難しいという欠点があった。   In addition, both the conventional ballast processing device using power such as a centrifugal separator and the conventional ballast processing device including a removing means such as a filter need to increase the pressure of the pump. There was a drawback that it was difficult to use in pump equipment.

さらに、バラスト水中で高電圧電極間にスパーク放電させる衝撃波発生部を備えた上記従来のバラスト水処理法は、衝撃波発生部からスパーク放電させて一度電力を消費し尽くしてしまうと、再び衝撃波発生部のコンデンサに電力を充電するために多くの時間が必要になり、効率が悪いものであった。しかも、多大な消費電力や建造設備を必要とし、不経済であった。   Further, the conventional ballast water treatment method including a shock wave generating unit that performs a spark discharge between high-voltage electrodes in ballast water, once the spark wave is discharged from the shock wave generating unit and power is consumed once, the shock wave generating unit again. It took a lot of time to charge the capacitor with power, which was inefficient. In addition, it requires a large amount of power consumption and construction equipment, which is uneconomical.

本発明は上記従来の欠点を解決し、バラスト水等の海水に含まれる植物性または動物性のプランクトンのような微生物を殺滅したり、海水に浮遊する微細な固形物等を効率良く破砕したり、細分化することができ、装置自体は既存のポンプ設備や配管を変更することなくそのまま利用して施工性が良く、経済的であり、しかも装置の小型化を達成して小型の船舶でも容易に建造が行え、設置面積は小面積であり、施工が容易に行える水中微細物等の処理装置を提供することを目的とする。   The present invention solves the above-mentioned conventional drawbacks, kills microorganisms such as plant or animal plankton contained in seawater such as ballast water, or efficiently crushes fine solids floating in seawater. The equipment itself can be used as it is without changing the existing pump equipment and piping, and it is easy to work and economical. An object of the present invention is to provide a treatment apparatus for underwater fine objects that can be easily constructed, has a small installation area, and can be easily constructed.

本発明上記課題に鑑みなされ、請求項1に記載の発明は、液体を流す管路内の軸長方向の所望位置に設けられるとともに、外周面には該管路の内部断面積を次第に狭めることにより前記液体を高速流となす傾斜面を有した第1の加速部材と、該第1の加速部材の下流側には前記管路内に負圧を発生させる空隙部を半径方向に有する小径なくびれ部を介して前記第1の加速部材の後段に再び前記管路の内部断面積を狭める第2の加速部材を連設し、前記高速流が前記空隙部と前記第2の加速部材の終端の設置位置を通過するのに伴う負圧が発生することにより生ずるキャビテーションにより起こされる衝撃力により液体中の微生物、微細な固形物等の微細物を破砕もしくは細分化する等の処理を行うか、または、前記液体を混合処理することを特徴とする。   The present invention has been made in view of the above-mentioned problems, and the invention according to claim 1 is provided at a desired position in the axial direction in a conduit through which a liquid flows, and the inner cross-sectional area of the conduit is gradually narrowed on the outer peripheral surface. The first accelerating member having an inclined surface that makes the liquid into a high-speed flow, and a small-diameter having a gap in the radial direction that generates a negative pressure in the pipe line on the downstream side of the first accelerating member. A second accelerating member that narrows the inner cross-sectional area of the conduit again is connected to the rear stage of the first accelerating member via the constricted portion, and the high-speed flow is the end of the gap and the second accelerating member. Doing treatment such as crushing or subdividing micro-organisms in liquid, fine solids such as fine solids by impact force caused by cavitation caused by the generation of negative pressure accompanying passing through the installation position, Or mixing the liquid And butterflies.

また、本発明の請求項2に記載の発明は、請求項1において、前記第1の加速部材が円錐体であり、前記第2の加速部材が円柱体であることを特徴とする。   According to a second aspect of the present invention, in the first aspect, the first acceleration member is a conical body, and the second acceleration member is a cylindrical body.

また、本発明の請求項3に記載の発明は、請求項1または2において、前記第1の加速部材と、前記第2の加速部材とは前記くびれ部を介して一体に形成されるか、またはスペーサとしての前記くびれ部を介して個別の前記第1の加速部材と、前記第2の加速部材とが連設されることを特徴とした。   Further, according to a third aspect of the present invention, in the first or second aspect, the first acceleration member and the second acceleration member are integrally formed via the constricted portion. Alternatively, the individual first accelerating member and the second accelerating member are connected to each other through the constricted portion as a spacer.

また、本発明の請求項4に記載の発明は、請求項1−3の何れかにおいて、前記液体が、気体を液体に析出可能なようにあらかじめ気体を溶解させた被処理水として処理されることを特徴とする。   Moreover, the invention according to claim 4 of the present invention is any one of claims 1-3, wherein the liquid is treated as water to be treated in which gas is dissolved in advance so that the gas can be precipitated into the liquid. It is characterized by that.

また、本発明の請求項5に記載の発明は、請求項1−4の何れかにおいて、前記第1の加速部材が、円錐管に形成され、支流用液体に気体を溶解するか、または支流用液体に微細な気泡を析出させた状態で前記円錐管内に設けた支流水流入管を通じて前記円錐管の大径部の背部に位置する前記空隙部へ供給させることを特徴とする。   The invention according to claim 5 of the present invention is that, in any one of claims 1-4, the first accelerating member is formed in a conical tube and dissolves a gas in a tributary liquid or a tributary. In a state where fine bubbles are deposited in the working liquid, the air is supplied to the gap located at the back of the large-diameter portion of the conical tube through a branch water inflow tube provided in the conical tube.

また、本発明の請求項6に記載の発明は、請求項1−5の何れかにおいて、前記気体が、殺菌に有効なオゾンであることを特徴とする。   The invention described in claim 6 of the present invention is characterized in that in any one of claims 1-5, the gas is ozone effective for sterilization.

さらに、本発明の請求項7に記載の発明は、請求項1−6の何れかにおいて、前記第1の加速部材と前記第2の加速部材とにより構成される水中微細物等の処理装置の複数が、並列に、または直列に前記管路内に設けられたことを特徴とする。   Furthermore, the invention according to claim 7 of the present invention is the processing apparatus according to any one of claims 1 to 6, wherein the processing device for processing underwater fines and the like configured by the first acceleration member and the second acceleration member. A plurality are provided in the pipe line in parallel or in series.

本発明の請求項1に記載の発明によれば、液体を流す管路内の軸長方向の所望位置に設けられるとともに、外周面には該管路の内部断面積を次第に狭めることにより前記液体を高速流となす傾斜面を有した第1の加速部材と、該第1の加速部材の下流側には前記管路内に負圧を発生させる空隙部を半径方向に有する小径なくびれ部を介して前記第1の加速部材の後段に再び前記管路の内部断面積を狭める第2の加速部材を連設し、前記高速流が前記空隙部と前記第2の加速部材の終端の設置位置を通過するのに伴う負圧が発生することにより生ずるキャビテーションにより起こされる衝撃力により液体中の微生物、微細な固形物等の微細物を破砕もしくは細分化する等の処理を行うか、または、前記液体を混合処理することを特徴とするので、管路内に液体が流入されて来ると、第1の加速部材の斜面部により管路は内断面積が滑らかに狭められ、前記液体は高速流となって管路内を流れて行く。   According to the first aspect of the present invention, the liquid is provided at a desired position in the axial length direction in the pipe through which the liquid flows, and the inner cross-sectional area of the pipe is gradually narrowed on the outer peripheral surface. A first accelerating member having an inclined surface that makes a high-speed flow, and a small-diameter constricted portion having a gap in the radial direction that generates a negative pressure in the pipe line on the downstream side of the first accelerating member. A second accelerating member that narrows the internal cross-sectional area of the pipeline again after the first accelerating member, and the high-speed flow is installed at the end of the gap and the second accelerating member. Or processing such as crushing or subdividing fine substances such as microorganisms and fine solids in the liquid by impact force caused by cavitation caused by the generation of negative pressure associated with passing through, or Since it is characterized by mixing liquids When the liquid comes to flow in the conduit, the conduit by the inclined surface portion of the first acceleration member the inner cross-sectional area smoothly narrowed, the liquid flows to conduit becomes fast flow.

この液体の高速流は、前記第1の加速部材の大径部の設置個所で速度は最大になるが、この高速流のエジェクタ作用により前記第1の加速部材の下流側に小径なくびれ部により半径方向に設けられた空隙部内の液体は吸引されることにより空隙部内は負圧になる。そして、この負圧が発生されることにより高速の液体中に気体が溶解されていると、この気泡が瞬間的に析出する。また、前記負圧により飽和蒸気圧以下になると、液体が沸騰して水蒸気となり気泡を析出するようになる。これらの析出された気泡が、再び第1の加速部材により高速の液体に合流すると、即座に元の圧力に復帰するので、析出していた気泡は消滅する。このようなキャビテーションにより起こる衝撃力により液体中に含まれているプランクトンの微生物や液体中に浮遊している微細な固形物は破砕されたり、細分化される。その後、空隙部を介して第1の加速部材の後段に第1の加速部材の大径部と略同径に連設された第2の加速部材により管路は再び内部断面積が狭められて再び液体は高速流になり、第2の加速部材の終端を過ぎた個所で渦流を円周状に生ずる。この渦流により、渦の中心は周辺部より圧力が著しく低い圧力になり、負圧が発生する。このように、負圧が発生することにより生ずるキャビテーションにより起こされる衝撃力により、前述のようにくびれ部において発生された衝撃力により殺滅を免れた微生物は殺滅され、液体中に含まれる微細な固形物は破砕されたり、細分化される。   The high-speed flow of the liquid has the maximum speed at the location where the large-diameter portion of the first acceleration member is installed, but due to the ejector action of the high-speed flow, a small-diameter constriction portion is formed downstream of the first acceleration member. When the liquid in the gap provided in the radial direction is sucked, the pressure in the gap becomes negative. And when this negative pressure is generated and the gas is dissolved in the high-speed liquid, the bubbles are momentarily deposited. Further, when the pressure becomes equal to or lower than the saturated vapor pressure due to the negative pressure, the liquid boils to become water vapor, and bubbles are deposited. When these precipitated bubbles are again joined to the high-speed liquid by the first accelerating member, the original pressure immediately returns to the original pressure, so that the precipitated bubbles disappear. Plankton microorganisms contained in the liquid and fine solids floating in the liquid are crushed or subdivided by the impact force generated by such cavitation. Thereafter, the internal cross-sectional area of the pipe line is narrowed again by the second acceleration member connected to the large diameter portion of the first acceleration member at the rear stage of the first acceleration member via the gap portion. Again, the liquid becomes a high-speed flow, and a vortex flow is generated circumferentially at a location past the end of the second acceleration member. Due to this vortex, the pressure at the center of the vortex is significantly lower than that at the periphery, and negative pressure is generated. In this way, due to the impact force caused by cavitation caused by the generation of negative pressure, the microorganisms that have escaped the killing due to the impact force generated in the constricted portion as described above are killed, and the fine contained in the liquid Solids are crushed or subdivided.

このようにして、バラスト水等の海水に含まれる植物性または動物性のプランクトンのような微生物を殺滅したり、海水に浮遊する固形物等の微細物を効率良く破砕したり、細分化することができる。こうして、装置自体は既存のポンプ設備や配管を変更することなくそのまま利用して施工性が良く構築することができ、経済的である。しかも、装置の小型化を達成できるので、小型の船舶でも容易に建造が行え、設置面積は小面積であり、施工が容易に行える。   In this way, microorganisms such as plant or animal plankton contained in seawater such as ballast water are killed, and fine substances such as solids floating in seawater are efficiently crushed or subdivided. be able to. In this way, the apparatus itself can be used as it is without changing the existing pump equipment and piping, and can be constructed with good workability, which is economical. In addition, since the apparatus can be reduced in size, it can be easily constructed even with a small ship, and the installation area is small, so that construction can be easily performed.

また、本発明の請求項2に記載の発明によれば、前記第1の加速部材が円錐体であり、前記第2の加速部材が円柱体であることを特徴とするので、管路内に液体が流入されて来ると、円錐体よりなる第1の加速部材により前記液体は高速流となる。そして、第1の加速部材の最大径になる個所で管路は内部断面積が最も狭められる。   According to the invention described in claim 2 of the present invention, the first acceleration member is a cone, and the second acceleration member is a cylindrical body. When the liquid is introduced, the liquid becomes a high-speed flow by the first accelerating member made of a cone. And the internal cross-sectional area of a pipe line is the narrowest in the location used as the maximum diameter of a 1st acceleration member.

そして、第1の加速部材の下流側に小径なくびれ部により半径方向に設けられた空隙部には高速流のエジェクタ作用により前記第1の加速部材の下流側に小径なくびれ部により半径方向に設けられた空隙部内の液体は吸引されることにより負圧が発生されるので、高速の液体中に気体が溶解されていると、この気泡が瞬間的に析出する。また、前記負圧により飽和蒸気圧以下になると、液体が沸騰して水蒸気となって気泡が析出する等して起こされるキャビテーションによる衝撃により液体中に含まれているプランクトン等の微生物や液体中に浮遊している微細な固形物は破砕されたり、細分化される。その後、空隙部を介して第1の加速部材の後段に第1の加速部材の大径部と略同径に連設された円柱体よりなる第2の加速部材により管路は再び狭められて再び液体は高速流になり、第2の加速部材の終端を過ぎた個所で渦流を円周状に生ずる。この渦流により、渦の中心は周辺部より圧力が著しく低くなり、負圧が発生する。このように、負圧が発生して渦を生ずるキャビテーションにより起こされる衝撃力により、前述のようにくびれ部により殺滅を免れた微生物は殺滅され、液体中に含まれる微細な固形物は破砕されたり、細分化される。   A gap formed in the radial direction by the small-diameter constriction portion on the downstream side of the first acceleration member is radially formed by the small-diameter constriction portion on the downstream side of the first acceleration member by the ejector action of high-speed flow. Since the liquid in the provided gap is sucked, a negative pressure is generated. Therefore, when the gas is dissolved in the high-speed liquid, the bubbles are instantaneously deposited. In addition, when the negative pressure is below the saturated vapor pressure, the liquid is boiled to become water vapor, and bubbles are deposited. Floating fine solids are crushed or subdivided. After that, the pipe line is narrowed again by the second acceleration member made of a cylindrical body continuously provided with the same diameter as the large diameter portion of the first acceleration member downstream of the first acceleration member via the gap. Again, the liquid becomes a high-speed flow, and a vortex flow is generated circumferentially at a location past the end of the second acceleration member. Due to this vortex flow, the pressure at the center of the vortex is significantly lower than the peripheral portion, and negative pressure is generated. In this way, due to the impact force caused by cavitation that generates vortices due to the generation of negative pressure, the microorganisms that have escaped from being killed by the constriction as described above are killed, and the fine solids contained in the liquid are crushed. Or subdivided.

こうして、バラスト水等の海水に含まれる植物性または動物性のプランクトンのような微生物を殺滅したり、海水に浮遊する微細な固形物等の微細物を効率良く破砕したり、細分化することができる。こうして、装置自体は既存のポンプ設備や配管を変更することなくそのまま利用して施工性が良く構築することができ、経済的である。しかも、装置の小型化を達成できるので、小型の船舶でも容易に建造が行え、設置面積は小面積であり、施工が容易かつ迅速に行える。   In this way, microorganisms such as vegetal or animal plankton contained in seawater such as ballast water are killed, or fine solids such as fine solids floating in seawater are efficiently crushed or subdivided. Can do. In this way, the apparatus itself can be used as it is without changing the existing pump equipment and piping, and can be constructed with good workability, which is economical. In addition, since the apparatus can be reduced in size, it can be easily constructed even with a small ship, the installation area is small, and construction can be performed easily and quickly.

また、本発明の請求項3に記載の発明によれば、前記第1の加速部材と、前記第2の加速部材とは前記くびれ部を介して一体に形成されるか、またはスペーサとしての前記くびれ部を介して個別の前記第1の加速部材と、前記第2の前記加速部材とが連設されることを特徴としたので、管路内に液体が流入されて来ると、第1の加速部材の外周に設けた傾斜面により前記液体は高速流となる。そして、傾斜面が最大径になる個所で管路は最も狭められ、最大流速になる。   According to the invention described in claim 3 of the present invention, the first acceleration member and the second acceleration member are integrally formed via the constricted portion, or the spacer as the spacer. Since the individual first acceleration member and the second acceleration member are connected to each other through the constricted portion, when the liquid flows into the pipe, the first acceleration member The liquid becomes a high-speed flow by the inclined surface provided on the outer periphery of the acceleration member. And the pipe line is narrowed at the place where the inclined surface has the maximum diameter, and the maximum flow velocity is obtained.

そして、第1の加速部材の下流側に小径なくびれ部により半径方向に設けられた空隙部には高速流のエジェクタ作用により前記第1の加速部材の下流側に小径なくびれ部により半径方向に設けられた空隙部内の液体は吸引されて負圧が発生されるので、高速の液体中に気体が溶解されていると、この気泡が瞬間的に析出する。また、前記負圧により飽和蒸気圧以下になると、液体が沸騰して水蒸気となって気泡が析出する等して起こされるキャビテーションによる衝撃力により液体中に含まれているプランクトン等の微生物や液体中に浮遊している微細な固形物は破砕されたり、細分化される。その後、空隙部を介して第1の加速部材の後段にくびれ部を介して一体に形成されるか、またはスペーサとしての前記くびれ部を介して第1の加速部材の大径部と略同径に連設された円柱体よりなる第2の加速部材により管路は再び内部断面積が狭められて再び液体は高速流になる。そして、第2の加速部材の終端を過ぎた個所で渦流を円周状に生ずる。この渦流により、渦の中心は周辺部より圧力が著しく低い圧力になり、負圧が発生する。このように、負圧が発生して起こされるキャビテーションによる衝撃力により、前述のようにくびれ部における衝撃力により殺滅を免れた微生物は完全に殺滅されたり、液体中に含まれる微細な固形物は完全に破砕されたり、細分化される。   A gap formed in the radial direction by the small-diameter constriction portion on the downstream side of the first acceleration member is radially formed by the small-diameter constriction portion on the downstream side of the first acceleration member by the ejector action of high-speed flow. Since the liquid in the provided gap is sucked and a negative pressure is generated, when the gas is dissolved in the high-speed liquid, the bubbles are instantaneously deposited. In addition, when the negative pressure is below the saturated vapor pressure, the liquid is boiled to become water vapor and bubbles are deposited. Fine solids floating on the surface are crushed or subdivided. Thereafter, the first acceleration member is integrally formed via the constriction portion after the first acceleration member via the gap portion, or substantially the same diameter as the large diameter portion of the first acceleration member via the constriction portion as a spacer. The internal cross-sectional area of the pipe line is narrowed again by the second accelerating member made of a cylindrical body continuously provided to the liquid, and the liquid again becomes a high speed flow. Then, a vortex is generated circumferentially at a location past the end of the second acceleration member. Due to this vortex, the pressure at the center of the vortex is significantly lower than that at the periphery, and negative pressure is generated. In this way, due to the impact force caused by cavitation caused by the generation of negative pressure, the microorganisms that have been prevented from being killed by the impact force at the constriction as described above are completely killed or the fine solids contained in the liquid Objects are completely crushed or subdivided.

また、本発明の請求項4に記載の発明によれば、前記液体が、気体を液体に析出可能なようにあらかじめ気体を溶解させた被処理水として処理されることを特徴とするので、第1の加速部材の外周に設けた傾斜面により前記液体は高速流となって流れる。そして、第1の加速部材の下流側に小径なくびれ部により半径方向に設けられた空隙部に発生される負圧により液体中に含まれている気泡を析出し易くしたり、空隙内の圧力が飽和蒸気圧より低くなり、液体が蒸発したりすることで気泡を発生させ、キャビテーションによる衝撃力により液体中に含まれているプランクトン等の微生物や液体中に浮遊している微細な固形物は破砕されたり、細分化する。   According to the invention described in claim 4 of the present invention, the liquid is treated as water to be treated in which the gas is dissolved in advance so that the gas can be deposited in the liquid. The liquid flows as a high-speed flow due to the inclined surface provided on the outer periphery of one acceleration member. Then, it is easy to deposit bubbles contained in the liquid by the negative pressure generated in the gap provided in the radial direction by the small diameter constriction on the downstream side of the first acceleration member, or the pressure in the gap Is lower than the saturated vapor pressure, and bubbles are generated when the liquid evaporates. Microorganisms such as plankton contained in the liquid and fine solids floating in the liquid by the impact force due to cavitation are It is crushed or subdivided.

また、本発明の請求項5に記載の発明によれば、前記第1の加速部材が、円錐管に形成され、支流用液体に気体を溶解するか、または支流用液体に微細な気泡を析出させた状態で前記円錐管内に設けた支流水流入管を通じて前記円錐管の大径部の背部に位置する前記空隙部へ供給させることを特徴とするので、管路内に液体が流入されて来ると、第1の加速部材の外周に設けた傾斜面により前記液体は高速流となる。そして、第1の加速部材の大径部の設置個所で管路内の内断面は最も狭められ、液体は最大の高速流となる。一方、管路の上流側または下流側から分岐されて気体と混合された支流用液体は支流水流入管を通じて第1の加速部材の下流側に小径なくびれ部により半径方向に設けられた空隙部に合流され、主流の液体と混合される。   According to the invention described in claim 5 of the present invention, the first accelerating member is formed in the conical tube and dissolves gas in the tributary liquid or deposits fine bubbles in the tributary liquid. In this state, the liquid is supplied to the gap located at the back of the large-diameter portion of the conical tube through the branch water inflow tube provided in the conical tube. The liquid becomes a high-speed flow by the inclined surface provided on the outer periphery of the first acceleration member. And the inner cross section in a pipe line is narrowed most in the installation location of the large diameter part of a 1st acceleration member, and a liquid becomes the maximum high-speed flow. On the other hand, the tributary liquid branched from the upstream side or the downstream side of the pipe and mixed with the gas passes through the tributary water inflow pipe into the gap provided in the radial direction by the small diameter constriction on the downstream side of the first acceleration member. Merged and mixed with mainstream liquid.

この際、第1の加速部材の外周に設ける傾斜面により高速流となって管路内を流れる液体によるエジェクタ作用により支流水流入管から合流される支流用液体は、気体とともに空隙部の設置個所に吸引されて合流が速やかに行われる。このように、合流直前まで、低い圧力により析出していた微細気泡が、管路からの高い圧力により、合流するのと同時に瞬間的に溶解され、消滅するため、合流部において負圧が発生されることにより生ずるキャビテーションにより起こされる衝撃力により液体および支流用液体に含まれるプランクトン等の微生物や液体中に浮遊している微細な固形物は破砕されたり、細分化される。その後、空隙部を介して第1の加速部材の後段に連設された第2の加速部材により管路は再び内部断面積が狭められて再び液体および支流用液体は高速流になり、第2の加速部材の終端を過ぎた個所で渦流を円周状に生ずる。この渦流により、渦の中心は周辺部より圧力が著しく低い圧力になって負圧になるとともに液体および支流用液体内に溶解していた気体が前記渦流にある時にだけ析出する。このように、負圧が発生して起こされるキャビテーションによる衝撃力により、前述のようにくびれ部において殺滅を免れた微生物は殺滅され、液体中に含まれる微細な固形物は破砕されたり、細分化される。   At this time, the tributary liquid merged from the tributary water inflow pipe by the ejector action by the liquid flowing in the pipe line as a high-speed flow by the inclined surface provided on the outer periphery of the first acceleration member is placed together with the gas in the gap portion. It is sucked and merges quickly. In this way, until just before merging, the fine bubbles that have been deposited due to the low pressure are instantaneously dissolved and disappeared at the same time as they merge due to the high pressure from the pipeline, so a negative pressure is generated at the merging section. Microorganisms such as plankton contained in the liquid and the tributary liquid and fine solids floating in the liquid are crushed or subdivided by the impact force caused by cavitation generated by the cavitation. Thereafter, the internal cross-sectional area of the pipe line is narrowed again by the second acceleration member connected to the subsequent stage of the first acceleration member via the gap, and the liquid and the tributary liquid become high-speed flow again, and the second A vortex flow is generated circumferentially at a location past the end of the acceleration member. Due to this vortex, the pressure at the center of the vortex becomes significantly lower than that of the peripheral portion and becomes a negative pressure, and the gas dissolved in the liquid and the tributary liquid is deposited only when the vortex flows. In this way, due to the impact force caused by cavitation caused by the generation of negative pressure, the microorganisms that have escaped killing in the constricted part as described above are killed, and the fine solids contained in the liquid are crushed, Subdivided.

このようにして、バラスト水等の海水に含まれる植物性または動物性のプランクトン等の微生物を殺滅したり、また、海水に浮遊する微細な固形物等の微細物を効率良く破砕したり、細分化することができる。こうして、装置自体は既存のポンプ設備や配管を変更することなくそのまま利用して施工性が良く構築することができ、経済的である。しかも、装置は小型化を達成できるので、小型の船舶でも容易に建造が行え、設置面積は小面積であり、施工が容易に行える。   In this way, microorganisms such as plant or animal plankton contained in seawater such as ballast water are killed, or fine solids such as fine solids floating in seawater are efficiently crushed, Can be subdivided. In this way, the apparatus itself can be used as it is without changing the existing pump equipment and piping, and can be constructed with good workability, which is economical. In addition, since the apparatus can be reduced in size, it can be easily constructed even with a small ship, and the installation area is small, so that construction can be easily performed.

また、本発明の請求項6に記載の発明によれば、前記気体が、殺菌に有効なオゾンであることを特徴とするので、残留オゾンによる被処理水として大腸菌等の雑菌に対する殺菌を同時に行うことができる。   According to the invention described in claim 6 of the present invention, since the gas is ozone effective for sterilization, sterilization of bacteria such as Escherichia coli is simultaneously performed as water to be treated by residual ozone. be able to.

さらに、本発明の請求項7に記載の発明によれば、前記第1の加速部材と第2の加速部材とにより構成される水中微細物等の処理装置の複数が、並列に、または直列に前記管路内に設けられたことを特徴とするので、処理を行う液体の流量に合わせて複数台を同時に使用することにより処理効率を向上することができる。   Furthermore, according to the invention described in claim 7 of the present invention, a plurality of processing apparatuses such as underwater fine objects constituted by the first acceleration member and the second acceleration member are arranged in parallel or in series. Since it is provided in the pipe line, the processing efficiency can be improved by simultaneously using a plurality of units according to the flow rate of the liquid to be processed.

以下、図面に従って本発明の実施の形態の具体例を説明する。   Hereinafter, specific examples of embodiments of the present invention will be described with reference to the drawings.

[実施形態1]
図1は本発明の水中微細物等の処理装置の実施形態1を示す断面図である。
[Embodiment 1]
FIG. 1 is a cross-sectional view showing a first embodiment of a processing apparatus for underwater fines and the like of the present invention.

本実施形態の水中微細物等の処理装置は、液体2を流す管路1内の軸長方向Xの所望位置に設けられるとともに、外周面には該管路の内部断面積を次第に狭めることにより前記液体2を高速流となす傾斜面3aを有した第1の加速部材3と、該第1の加速部材3の下流側には前記管路1内に負圧を発生させる空隙部4を半径方向Rに有する小径なくびれ部5を介して前記第1の加速部材3の後段に再び前記管路1の内部断面積を狭める第2の加速部材6を連設し、前記高速流が前記空隙部4と前記第2の加速部材6の終端の設置位置を通過するのに伴う負圧により生ずる衝撃力により液体2中の微生物、微細な固形物等の微細物を破砕もしくは細分化する等の処理を行うか、または、前記液体2を混合処理することを特徴とする。   The treatment apparatus for underwater fines and the like of the present embodiment is provided at a desired position in the axial direction X in the pipeline 1 through which the liquid 2 flows, and the inner cross-sectional area of the pipeline is gradually narrowed on the outer peripheral surface. A first accelerating member 3 having an inclined surface 3a that makes the liquid 2 a high-speed flow, and a gap 4 that generates a negative pressure in the pipe line 1 is provided on the downstream side of the first accelerating member 3 with a radius. A second accelerating member 6 that narrows the internal cross-sectional area of the pipe line 1 again is connected to the rear stage of the first accelerating member 3 through a small diameter constricted portion 5 in the direction R so that the high-speed flow flows into the gap. Such as crushing or subdividing fine matter such as microorganisms and fine solids in the liquid 2 by the impact force generated by the negative pressure that passes through the installation position of the end of the portion 4 and the second acceleration member 6. Processing is performed, or the liquid 2 is mixed.

前記管路1は、本実施形態1では、図1に示すように、入口側管路1Aと、入口側管路1Aに前端が接続される中間管路1Bと、該中間管路1Bの後端に前端が接続される出口側管路1Cとにより構成される。入口側管路1Aと、中間管路1Bと、出口側管路1Cとの接続は、この実施例では対向して設けられたフランジをボルト・ナットにより緊結して接続される構成となっているが、入口側管路1Aと、中間管路1Bと、出口側管路1Cとの接続は図示するものに限ることなく、例えば図には示さないサドルを用いて接続するようにしてもよい。   In the first embodiment, as shown in FIG. 1, the pipe line 1 includes an inlet side pipe line 1A, an intermediate pipe line 1B whose front end is connected to the inlet side pipe line 1A, and a rear side of the intermediate pipe line 1B. It is comprised by the exit side pipe line 1C by which a front end is connected to an end. In this embodiment, the inlet side pipe line 1A, the intermediate pipe line 1B, and the outlet side pipe line 1C are connected to each other by connecting the flanges provided opposite to each other by bolts and nuts. However, the connection between the inlet side pipe line 1A, the intermediate pipe line 1B, and the outlet side pipe line 1C is not limited to that shown in the figure, and may be connected using, for example, a saddle not shown in the drawing.

この実施形態1では、図1に示すように前記第1の加速部材3が円錐体であり、第2の加速部材6が円柱体である。この第1の加速部材3と、第2の加速部材6とは前記中間管路1B内に取付材Tにより取付けられる。そして、この実施形態1では、この第1の加速部材3の大径部3bと、第2の加速部材6とは略同径に形成される。   In the first embodiment, as shown in FIG. 1, the first acceleration member 3 is a cone, and the second acceleration member 6 is a cylinder. The first accelerating member 3 and the second accelerating member 6 are attached to the intermediate pipe line 1B by an attachment material T. In the first embodiment, the large-diameter portion 3b of the first acceleration member 3 and the second acceleration member 6 are formed to have substantially the same diameter.

また、前記第1の加速部材3と、前記第2の加速部材6とは図には示さないが、前記くびれ部5を介して一体に形成されるか、または図1に示すようにスペーサ7としての前記くびれ部5を介して個別の前記第1の加速部材3と、前記第2の加速部材6とが連設される。この時、第1の加速部材3と、第2の加速部材6とは、スペーサ7を介してねじ止め、または接着剤を用いて接着されることにより組付けられる。   Further, although the first acceleration member 3 and the second acceleration member 6 are not shown in the drawing, they are integrally formed via the constricted portion 5 or spacers 7 as shown in FIG. The first acceleration member 3 and the second acceleration member 6 are connected to each other through the constricted portion 5. At this time, the 1st acceleration member 3 and the 2nd acceleration member 6 are assembled | attached by screwing through the spacer 7, or adhere | attaching using an adhesive agent.

また、前記液体2が、本実施形態では液体2に気体Gを析出可能なようにあらかじめ気体Gを液体2に溶解させた被処理水として処理されたものが用いられる。このように、あらかじめ気体Gを液体2に溶解させた被処理水として処理されるようにしたのは、第1の加速部材3の外周に設けた傾斜面3aにより管路1内を液体2は高速流となって流れ、そして、第1の加速部材3の下流側に小径なくびれ部5により半径方向Rに設けられた空隙部4内の液体2は高速流となって流れる前記液体2にエジェクタ作用により吸引されることにより空隙部4内に発生する負圧にて液体2中に含まれている気泡を析出し易くしたり、空隙部4内の圧力が飽和蒸気圧より低くなり、液体が蒸発したりすることで気泡を発生させる等するキャビテーションによる衝撃力により液体2中に含まれているプランクトンのような微生物を殺滅したり、液体2中に浮遊している微細な固形物を破砕したり、細分化するためである。また、この気体Gが、殺菌に有効なオゾンOであれば、残留オゾンによる被処理水としての液体2中に含まれる植物性のプランクトンのような微生物を殺滅したり、海水に浮遊する固形物等の微細物を細分化することができるほか、大腸菌などの雑菌に対する殺菌を同時に行うことができる。 In the present embodiment, the liquid 2 is treated as water to be treated in which the gas G is dissolved in the liquid 2 so that the gas G can be precipitated in the liquid 2. As described above, the liquid 2 is treated in the pipeline 1 by the inclined surface 3 a provided on the outer periphery of the first acceleration member 3 so as to be treated as the water to be treated in which the gas G is dissolved in the liquid 2 in advance. The liquid 2 in the gap 4 provided in the radial direction R by the narrow-diameter constricted part 5 on the downstream side of the first acceleration member 3 flows into the liquid 2 flowing as a high-speed flow. When sucked by the ejector action, bubbles contained in the liquid 2 are easily deposited due to the negative pressure generated in the gap portion 4, or the pressure in the gap portion 4 becomes lower than the saturated vapor pressure, and the liquid The microorganisms such as plankton contained in the liquid 2 are annihilated by the impact force of cavitation, such as generating bubbles by evaporating, or the fine solid matter floating in the liquid 2 To crush or subdivide That. Further, if the gas G is ozone O 3 effective for sterilization, microorganisms such as phytoplankton contained in the liquid 2 as water to be treated by residual ozone are killed or floated on seawater. In addition to subdividing fine substances such as solid substances, it is possible to simultaneously sterilize bacteria such as Escherichia coli.

P1は管路1内に、液体2を下流側に圧送するためのポンプであり、このポンプP1の種類、パワーは制限を受けるものではない。   P1 is a pump for pumping the liquid 2 downstream in the pipeline 1, and the type and power of the pump P1 are not limited.

本実施形態1の水中微生物処理装置は以上の構成からなり、船舶が安定に航行するためにバラスト水として海水を液体2として船舶内に注入したり、船舶から注出する際に、海水中に含まれる植物性または動物性のプランクトンのような微生物を殺滅したり、海水に浮遊する微細な固形物等の微細物を効率良く破砕したり、細分化するのには、ポンプP1を駆動させて処理すべき液体2を高い圧力、例えば液体2の流量条件を、管路1の管内径が70mm、流量40m/hとして、0.35MPaの高圧にて管路1の下流側に流すと、管路1内には外周面に該管路1の内部断面積を次第に狭めるような傾斜面3aを外周面に有した第1の加速部材3が設けられているので、液体2は管路1内を第1の加速部材3の傾斜面3aにより高速流に流れて行く。 The underwater microbial treatment apparatus of the first embodiment has the above-described configuration, and in order to stably navigate the ship, seawater is injected as liquid 2 into the ship as ballast water, or poured out from the ship. The pump P1 is driven to kill microorganisms such as phyto- or animal plankton contained therein, or to efficiently crush or subdivide fine matters such as fine solid matter floating in seawater. When the liquid 2 to be treated is flowed at a high pressure, for example, a flow rate condition of the liquid 2 with a pipe inner diameter of 70 mm and a flow rate of 40 m 3 / h at a high pressure of 0.35 MPa downstream of the pipe 1. In the pipe 1, the first acceleration member 3 having an inclined surface 3 a that gradually narrows the inner cross-sectional area of the pipe 1 on the outer peripheral surface is provided on the outer peripheral surface. 1 is flowed at high speed by the inclined surface 3a of the first acceleration member 3. Flows go.

そして、第1の加速部材3の大径部3aが設けられた個所において管路1内の内部断面積は最も狭められて、液体2は最大速度になり、高速流になって流れる。   And in the location where the large diameter part 3a of the 1st acceleration member 3 was provided, the internal cross-sectional area in the pipe line 1 is narrowed most, and the liquid 2 becomes the maximum speed and flows as a high-speed flow.

それから、第1の加速部材3の下流側の後段には、小径なくびれ部5を設けることにより半径方向Rに空隙部4が形成されているので、この空隙部4により負圧C1が発生され、その内圧は例えば−0.05MPaになるため、高速に流れる液体2中に含まれている気泡が瞬間的に析出したり、空隙部4内の圧力が部分的に飽和蒸気圧より低くなり、液体2が蒸発し、気泡が発生する時の衝撃を液体2に与えることになる。この衝撃力により液体2中に含まれている植物性または動物性のプランクトンのような微生物は殺滅されたり、液体2中に浮遊している微細な固形物は破砕されたり、細分化される。   Then, since the gap portion 4 is formed in the radial direction R by providing the narrow diameter constricted portion 5 downstream of the first accelerating member 3, the negative pressure C1 is generated by the gap portion 4. Since the internal pressure is, for example, −0.05 MPa, bubbles contained in the liquid 2 flowing at high speed are momentarily precipitated, or the pressure in the void 4 is partially lower than the saturated vapor pressure, The liquid 2 evaporates and an impact when bubbles are generated is given to the liquid 2. Microorganisms such as plant or animal plankton contained in the liquid 2 are killed by this impact force, and fine solids floating in the liquid 2 are crushed or subdivided. .

この際、あらかじめ気体Gを液体2に溶解させた液体2を被処理水として用いると、第1の加速部材3の後段に設けた小径なくびれ部5により半径方向Rに形成された空隙部4により発生される負圧C1は、例えば−0.05MPaになるので、液体2中に含まれている気泡は析出され易くなったり、空隙部4内の圧力が飽和蒸気圧より低くなり、液体2が蒸発し、沸騰することで気泡が発生されるため、その際、生ずる衝撃力により液体中2に含まれているプランクトンのような微生物を殺滅したり、液体2中に浮遊している微細な固形物を容易かつ確実に破砕されたり、細分化することができる。   At this time, when the liquid 2 in which the gas G is previously dissolved in the liquid 2 is used as the water to be treated, the gap portion 4 formed in the radial direction R by the small diameter constricted portion 5 provided at the subsequent stage of the first acceleration member 3. Since the negative pressure C1 generated by the pressure is, for example, −0.05 MPa, bubbles contained in the liquid 2 are likely to be precipitated, or the pressure in the gap 4 becomes lower than the saturated vapor pressure, and the liquid 2 Since bubbles are generated by evaporating and boiling, microbes such as plankton contained in the liquid 2 are killed by the impact force generated at that time, or fine particles floating in the liquid 2 Can be easily and reliably crushed or subdivided.

しかも、液体2中に含まれている気体GにオゾンOを用いれば、液体2中に含まれる植物性または動物性のプランクトンのような微生物や海水に浮遊する固形物等の微細物を殺滅したり、細分化することができるほか、大腸菌等の雑菌に対する殺菌を同時に行うことができる。 In addition, if ozone O 3 is used for the gas G contained in the liquid 2, microorganisms such as phyto- or animal plankton contained in the liquid 2 and fine substances such as solid matter floating in seawater are killed. In addition to being able to kill or subdivide, it is possible to simultaneously kill bacteria such as E. coli.

その後、空隙部4を介して第1の加速部材3の後段には、第1の加速部材3の大径部3aと略同径に第2の加速部材6が連設しているので、この第2の加速部材6により管路1は再び内断面積が狭められて再び液体2は高速流になって流れる。そして、第2の加速部材6の終端を過ぎた個所で渦流Wを円周状に生ずる。この渦流Wにより、渦の中心は周辺部より圧力が著しく低い圧力になり、負圧C2、例えば0.02MPaが発生する。このように、負圧C2により発生される渦流Wにより起こるキャビテ−ションの衝撃力により、前述のようにくびれ部5における負圧C1が発生されることで起こるキャビテ−ションの衝撃力により殺滅を免れた微生物は完全に殺滅されたり、液体2中に含まれる微細な固形物は完全に破砕されたり、細分化される。その後、液体2は例えば0.05MPaの内圧により管路1内を排出される。   After that, since the second acceleration member 6 is connected to the rear stage of the first acceleration member 3 through the gap portion 4 so as to have substantially the same diameter as the large diameter portion 3a of the first acceleration member 3, this The inner surface area of the pipe line 1 is narrowed again by the second acceleration member 6, and the liquid 2 flows again as a high-speed flow. Then, a vortex W is generated in a circumferential shape at a location past the end of the second acceleration member 6. Due to this vortex W, the pressure at the center of the vortex is significantly lower than that at the periphery, and a negative pressure C2, for example, 0.02 MPa is generated. As described above, the cavitation impact force generated by the vortex W generated by the negative pressure C2 kills the cavitation impact force generated by the negative pressure C1 generated in the constricted portion 5 as described above. Microorganisms that have escaped are completely killed, or fine solids contained in the liquid 2 are completely crushed or subdivided. Thereafter, the liquid 2 is discharged from the pipe 1 with an internal pressure of 0.05 MPa, for example.

このようにして、円錐体よりなる第1の加速部材3の後段に設けられたくびれ部5により半径方向Rに形成された空隙部4と、該くびれ部5を介して連設された円柱体よりなる第2の加速部材6とにより管路1内には2段階に負圧C1,C2を生ずるので、バラスト水等の海水に含まれる植物性または動物性のプランクトンを殺滅したり、海水に浮遊する微細な固形物等の微細物を効率良く破砕したり、細分化することができる。   In this way, the gap 4 formed in the radial direction R by the constricted portion 5 provided at the rear stage of the first acceleration member 3 made of a cone, and the cylindrical body connected continuously via the constricted portion 5. Since the negative pressure C1 and C2 are generated in the pipeline 1 in two stages by the second acceleration member 6 made of the above, the phytophyte or zooplankton contained in the seawater such as ballast water is killed, the seawater It is possible to efficiently pulverize or subdivide fine objects such as fine solids floating on the surface.

こうして、本実施形態1の水中微細物等の処理装置では、装置自体は既存のポンプP1設備や配管を大幅に変更することなく、管路1内の所望位置にそのまま利用して施工が行えるため、施工性が良く構築することができる。しかも、装置自体は既存の配管設備内に設けられるので、装置の小型化を達成でき、小型の船舶でも容易に建造が行え、設置面積は小面積であり、資材費も少なくて済み、廉価で経済的である。   Thus, in the processing apparatus for underwater fines and the like according to the first embodiment, the apparatus itself can be used as it is at a desired position in the pipeline 1 without greatly changing the existing pump P1 equipment and piping. It can be constructed with good workability. Moreover, since the equipment itself is installed in the existing piping equipment, the equipment can be downsized, can be easily built even on a small ship, the installation area is small, the material cost is low, and it is inexpensive. Economical.

また、前記第1の加速部材3と、前記第2の加速部材6とは図には示さないが、前記くびれ部5を介して一体に形成するようにすれば構造簡単であり、大量生産可能であり、安価に製作することができる。また、図示する実施形態1のように、前記第1の加速部材3と、前記第2の加速部材6とはスペーサ7としての前記くびれ部5を介して、例えばねじ止めしたり、接着剤を用いて接着することにより連設するようにすれば、個別の前記第1の加速部材3と、前記第2の加速部材6とを容易かつ確実に連設して製作することができる。   Further, although the first acceleration member 3 and the second acceleration member 6 are not shown in the drawing, if they are integrally formed via the constricted portion 5, the structure is simple and mass production is possible. It can be manufactured at low cost. Further, as in the first embodiment shown in the figure, the first acceleration member 3 and the second acceleration member 6 are screwed, for example, with an adhesive via the constricted portion 5 as a spacer 7. If the first acceleration member 3 and the second acceleration member 6 are connected to each other by being used and bonded, the first acceleration member 3 and the second acceleration member 6 can be easily and reliably connected to each other.

また、前記管路1は、本実施形態1では、図1に示すように、入口側管路1Aと、入口側管路1Aに前端が接続される中間管路1Bと、中間管路1Bの後端に前端が接続される出口側管路1Cとにより構成され、入口側管路1Aと、中間管路1Bと、出口側管路1Cとは、この実施例では対向して設けられたフランジをボルト・ナットにより緊結して接続される構成となっているので、ボルト・ナットの緊結を解くことにより、入口側管路1Aと、中間管路1Bと、出口側管路1Cとを容易に分離するようにすれば入口側管路1Aと、中間管路1Bと、出口側管路1C内部と、中間管路1B内に設置された第1の加速部材3および前記第2の加速部材6の清掃と、部品の交換を容易かつ迅速に行え、保守・点検に便利になる。また、少なくとも第1の加速部材3および前記第2の加速部材6が内部に設置された中間管路1Bを透明な合成樹脂管やガラス管で形成されるものを用いれば、管路1内において第1の加速部材3の背部に半径方向Rに設けられた空隙部4と、前記第2の加速部材6の背部とにおいて正常にキャビテーションが発生しているか否か、また、キャビテーション発生個所に目詰まりを生じて液体2の流れに支障を来しているか否かを容易に管路1の外部から確認することができ、保守・点検の一助とすることができる。   In the first embodiment, as shown in FIG. 1, the pipe line 1 includes an inlet side pipe line 1A, an intermediate pipe line 1B whose front end is connected to the inlet side pipe line 1A, and an intermediate pipe line 1B. It is comprised by the exit side pipe line 1C by which a front end is connected to a rear end, and the inlet side pipe line 1A, the intermediate pipe line 1B, and the outlet side pipe line 1C are the flanges provided facing each other in this embodiment. Are connected by bolts and nuts, so that the inlet side pipe line 1A, the intermediate pipe line 1B, and the outlet side pipe line 1C can be easily connected by releasing the bolts and nuts. If separated, the inlet side pipeline 1A, the intermediate pipeline 1B, the outlet side pipeline 1C, and the first acceleration member 3 and the second acceleration member 6 installed in the intermediate pipeline 1B. Cleaning and replacement of parts can be performed easily and quickly, making maintenance and inspection convenient. If the intermediate conduit 1B in which at least the first acceleration member 3 and the second acceleration member 6 are installed is formed of a transparent synthetic resin tube or a glass tube, Whether or not cavitation is normally generated in the gap 4 provided in the radial direction R on the back of the first acceleration member 3 and the back of the second acceleration member 6, It can be easily confirmed from the outside of the pipeline 1 whether clogging has occurred and the flow of the liquid 2 is hindered, which can assist in maintenance and inspection.

[実施形態2]
図2に示すものは本発明の実施形態2である。この実施形態2では、前記第1の加速部材3が、円錐管50に形成され、支流用液体2′に気体Gを溶解するか、または支流用液体2′に微細な気泡を析出させた状態で前記円錐管50内に設けた支流水流入管51を通じて前記円錐管50の大径部50aの背部に位置する前記空隙部4へ支流用液体2′を供給させることを特徴とするので、管路1内に主流としての液体2が流入されて来ると、第1の加速部材3の外周に設けた傾斜面3aにより管路1内の内部断面積は最も狭められ、前記液体2は高速流となって流れる。一方、管路1の上流側または下流側から分岐されて気体Gと混合された支流用液体2′は、支流水流入管51を通じて第1の加速部材3の下流側に小径なくびれ部により半径方向Rに設けられた空隙部4に合流され、主流として流路1内を流れる液体2と混合される。
[Embodiment 2]
FIG. 2 shows a second embodiment of the present invention. In the second embodiment, the first accelerating member 3 is formed in the conical tube 50, and the gas G is dissolved in the tributary liquid 2 'or fine bubbles are deposited in the tributary liquid 2'. Thus, the tributary liquid 2 ′ is supplied to the gap portion 4 located behind the large diameter portion 50 a of the conical tube 50 through the tributary water inflow tube 51 provided in the conical tube 50. When the liquid 2 as the main flow is introduced into the liquid 1, the inner cross-sectional area in the pipe line 1 is narrowed most by the inclined surface 3a provided on the outer periphery of the first acceleration member 3, and the liquid 2 It flows. On the other hand, the tributary liquid 2 ′ that is branched from the upstream side or the downstream side of the pipe 1 and mixed with the gas G passes through the tributary water inflow pipe 51 to the downstream side of the first acceleration member 3 in the radial direction by the small diameter constriction. It joins the gap 4 provided in R and is mixed with the liquid 2 flowing in the flow path 1 as the main flow.

そして、本実施形態1は、前記実施形態1と同様に第1の加速部材3の外周に設ける傾斜面3aにより高速流となって管路1内を流れる液体2によるエジェクタ作用により支流水流入管51から合流される支流用液体2′は気体Gとともに空隙部4の設置個所に吸引されて合流が速やかに行われる。このように、合流直前まで、低い圧力、例えば−0.05MPaにより析出していた微細気泡が、管路1に流れる高い圧力、例えば液体2の流量条件を管路1の管内径が70mm、流量40m/hである時に、0.35MPaの高圧の液体2と、合流するのと同時に瞬間的に溶解され、消滅するため、合流部において発生される負圧C1、例えば−0.05MPaの負圧により生ずるキャビテーションにより起こる衝撃力により液体2および支流用液体2′に含まれるプランクトンのような微生物を殺滅したり、液体2および支流用液体2′中に浮遊している微細な固形物は破砕されたり、細分化される。その後、空隙部4を介して第1の加速部材3の後段に第1の加速部材3の大径部3aと略同径に連設された第2の加速部材6により管路1内の内部断面積は再び狭められて内圧が高圧になるので、再び液体2および支流用液体2′は高速流になって管路1内を流れ、第2の加速部材6の終端を過ぎた個所で渦流Wを円周状に生ずる。この渦流Wにより、渦の中心は周辺部より圧力が著しく強い圧力になるとともに液体2および支流用液体2′内に溶解していた気体Gが前記渦流Wにある時にだけ析出するので、負圧C2、例えば0.02MPaが発生する。このように、負圧C2が発生する時に生ずる衝撃力により、前述のようにくびれ部5における衝撃力により殺滅を免れた微生物は完全に殺滅され、液体2および支流用液体2′中に含まれる微細な固形物は完全に破砕されたり、細分化される。 And this Embodiment 1 is a tributary water inflow pipe 51 by the ejector effect | action by the liquid 2 which becomes a high-speed flow by the inclined surface 3a provided in the outer periphery of the 1st acceleration member 3 similarly to the said Embodiment 1, and flows through the inside of the pipe line 1. FIG. The tributary liquid 2 ′ that is joined together is sucked together with the gas G to the place where the gap 4 is installed, and the joining is performed quickly. Thus, until just before merging, the high pressure at which the fine bubbles deposited at a low pressure, for example, −0.05 MPa, flow into the pipeline 1, for example, the flow rate condition of the liquid 2, the pipe inner diameter of the pipeline 1 is 70 mm, the flow rate is When it is 40 m 3 / h, the negative pressure C1 generated at the merging portion, for example, −0.05 MPa, is negative because it dissolves and disappears instantaneously at the same time as it merges with the high pressure liquid 2 of 0.35 MPa. Microorganisms such as plankton contained in the liquid 2 and the tributary liquid 2 ′ are killed by the impact force caused by the cavitation caused by the pressure, and the fine solid matter suspended in the liquid 2 and the tributary liquid 2 ′ Crushed or subdivided. Thereafter, the inside of the pipe line 1 is formed by the second acceleration member 6 connected to the large-diameter portion 3a of the first acceleration member 3 at the rear stage of the first acceleration member 3 through the gap portion 4 and substantially the same diameter. Since the cross-sectional area is narrowed again and the internal pressure becomes high, the liquid 2 and the tributary liquid 2 ′ flow again in the high-speed flow through the pipe 1, and the vortex flows at the place past the end of the second acceleration member 6. W is generated circumferentially. Because of the vortex W, the center of the vortex has a significantly higher pressure than the peripheral portion, and the gas G dissolved in the liquid 2 and the tributary liquid 2 ′ is deposited only when the vortex W is present. C2, for example, 0.02 MPa is generated. Thus, the impact force generated when the negative pressure C2 is generated completely kills the microorganisms that have been prevented from being killed by the impact force in the constricted portion 5, as described above, in the liquid 2 and the tributary liquid 2 '. The contained fine solid matter is completely crushed or subdivided.

このようにして、バラスト水等の海水に含まれる植物性または動物性のプランクトンのような微生物を殺滅したり、海水に浮遊する微細な固形物を効率良く破砕したり、細分化することができる。しかも、装置自体は既存のポンプP1,P2等の設備や配管を変更することなくそのまま利用して管路1内の所望位置に設置すれば施工が行え、施工性が良く構築することができ、経済的である。しかも、装置は小型化を達成できるので、小型の船舶でも容易に建造が行え、設置面積は小面積であり、施工が容易に行えるという利点があるほかは、本実施形態2は前記実施形態1と同様な構成、作用である。   In this way, microorganisms such as plant or animal plankton contained in seawater such as ballast water can be killed, and fine solids floating in seawater can be efficiently crushed or subdivided. it can. In addition, the device itself can be constructed if it is installed at a desired position in the pipeline 1 without changing the facilities and piping of the existing pumps P1, P2, etc., and the workability can be built well. Economical. Moreover, since the apparatus can be miniaturized, the second embodiment is the same as the first embodiment except that the apparatus can be easily constructed even on a small ship, the installation area is small, and the construction can be easily performed. This is the same configuration and action.

また、前記気体Gが、殺菌に有効なオゾンOを使用すれば、残留オゾンによる被処理水としての液体2中に含まれる植物性または動物性のプランクトンのような微生物を殺滅したり、海水に浮遊する微細な固形物等の微細物を効率良く破砕したり、細分化することができるほか、大腸菌等の雑菌に対する殺菌を同時に行うことができる。 Moreover, if the gas G uses ozone O 3 effective for sterilization, microorganisms such as phytophyte or zooplankton contained in the liquid 2 as the water to be treated by residual ozone are killed, In addition to being able to efficiently crush and subdivide fine matters such as fine solid matter floating in seawater, it is possible to simultaneously sterilize bacteria such as E. coli.

さらに、図には示さないが、前記第1の加速部材3と第2の加速部材6とにより構成される水中微細物等の処理装置の複数が、管路1・・・内に並列に、または直列に管路1内に設けられた構成にすれば、処理を行う液体2の流量に合わせて複数台を同時に使用することにより液体2中に含まれる植物性または動物性のプランクトンのような微生物を殺滅したり、海水に浮遊する微細な固形物等の微細物を効率良く破砕したり、細分化するという処理効率を向上することができる。   Further, although not shown in the figure, a plurality of processing devices such as submerged fines constituted by the first acceleration member 3 and the second acceleration member 6 are arranged in parallel in the pipeline 1. Or, if the configuration is provided in the pipeline 1 in series, a plurality of units are used at the same time in accordance with the flow rate of the liquid 2 to be treated, so that the plant 2 or the zooplankton contained in the liquid 2 It is possible to improve the processing efficiency of killing microorganisms, efficiently crushing or subdividing fine matters such as fine solid matter floating in seawater.

なお、上記実施形態1,2では、例えば船舶が安全航行するために船舶に注入したり、船舶から注出するバラスト水として、海水中に含まれる植物性または動物性のプランクトンのような微生物の殺滅を行ったり、海水中に浮遊する微細な固形物を破砕するのに使用される場合を代表的に説明したが、説明は例示であり、これに限らず、本発明は水中に浮遊する微細な固形物を破砕したり、細分化することにより水の浄化を行う水処理や、油に浮遊する微細な鉱物、鉱石等の微細な固形物を破砕したり、細分化するのに最適に使用される場合、粘性が高い液体2、例えば、油を均質に混合処理する装置として使用される場合、さらには、汚泥を減容化処理する場合も本発明の適用範囲である。   In the first and second embodiments, for example, as a ballast water that is injected into the ship for safe navigation or discharged from the ship, microorganisms such as plant or animal plankton contained in the seawater are used. Although the case where it was used for killing or crushing a fine solid substance floating in seawater has been described representatively, the description is not limited to this example, and the present invention floats in water. Ideal for crushing or subdividing fine solids such as water treatment, which purifies water by crushing or subdividing fine solids, and fine solids such as fine minerals and ores floating in oil When used, the present invention is also applicable to a case where the liquid 2 having high viscosity, for example, oil is used as an apparatus for homogeneously mixing, and further, when sludge is volume-reduced.

さらに、図示の上記実施形態1,2では、管路1内に取付けられる第1の加速部材3の大径部3bと、第2の加速部材6とは、略同径に形成されているけれども、必ずしもこれに限ることなく、第1の加速部材3の大径部3bと、第2の加速部材6とは何れか一方が、何れか他方に大径、または小径に形成される場合も本発明の適用範囲である。   Furthermore, in the illustrated first and second embodiments, the large-diameter portion 3b of the first acceleration member 3 and the second acceleration member 6 mounted in the pipe 1 are formed to have substantially the same diameter. However, the present invention is not limited to this, and the present invention may be applied to the case where one of the large-diameter portion 3b of the first acceleration member 3 and the second acceleration member 6 is formed with a large diameter or a small diameter on the other. This is the scope of the invention.

本発明は、バラスト水等の海水に含まれる植物性または動物性のプランクトンのような微生物を殺滅したり、海水に浮遊する微細な固形物等の微細物を効率良く破砕したり、細分化することができ、装置自体は既存のポンプ設備や配管を変更することなくそのまま利用して施工性が良く、経済的であり、しかも小型化を達成して小型の船舶でも容易に建造が行え、設置面積は小面積であり、施工が容易に行えるという用途・機能に適する。   The present invention kills microorganisms such as phytophyte or animal plankton contained in seawater such as ballast water, efficiently crushes fine objects such as fine solids floating in seawater, or subdivides The equipment itself can be used as it is without changing the existing pump equipment and piping, and it is easy to construct and economical. The installation area is small, making it suitable for applications and functions that allow easy installation.

図1は本発明の水中微細物等の処理装置の実施形態1を示す断面図である。FIG. 1 is a cross-sectional view showing a first embodiment of a processing apparatus for underwater fines and the like of the present invention. 図2は同じく本発明の水中微細物等の処理装置の実施形態2を示す断面図である。FIG. 2 is a cross-sectional view showing a second embodiment of the apparatus for treating underwater fines and the like of the present invention.

符号の説明Explanation of symbols

1 管路
2 液体
2′ 支流用液体
3 加速部材
3a 傾斜面
3b 大径部
4 空隙部
5 くびれ部
6 加速部材
7 スペーサ
50 円錐管
51 支流水流入管
C1 負圧
C2 負圧
G 気体
P1 ポンプ
P2 ポンプ
R 半径方向
X 軸長方向
DESCRIPTION OF SYMBOLS 1 Pipe line 2 Liquid 2 'Tributary liquid 3 Acceleration member 3a Inclined surface 3b Large diameter part 4 Cavity part 5 Constriction part 6 Acceleration member 7 Spacer 50 Conical pipe 51 Tributary water inflow pipe C1 Negative pressure C2 Negative pressure G Gas P1 Pump P2 Pump R Radial direction X Axis length direction

Claims (7)

液体を流す管路内の軸長方向の所望位置に設けられるとともに、外周面には該管路の内部断面積を次第に狭めることにより前記液体を高速流となす傾斜面を有した第1の加速部材と、該第1の加速部材の下流側には前記管路内に負圧を発生させる空隙部を半径方向に有する小径なくびれ部を介して前記第1の加速部材の後段に再び前記管路の内部断面積を狭める第2の加速部材を連設し、前記高速流が前記空隙部と前記第2の加速部材の終端の設置位置を通過するのに伴う負圧が発生することにより生ずるキャビテーションにより起こされる衝撃力により液体中の微生物、微細な固形物等の微細物を破砕もしくは細分化する等の処理を行うか、または、前記液体を混合処理することを特徴とする水中微細物等の処理装置。   A first acceleration having an inclined surface that is provided at a desired position in the axial direction of the pipe through which the liquid flows and on the outer circumferential surface thereof gradually narrows the internal cross-sectional area of the pipe to cause the liquid to flow at high speed. And the pipe downstream of the first accelerating member via a small-diameter constriction having a gap in the radial direction that generates a negative pressure in the pipe. A second accelerating member that narrows the internal cross-sectional area of the road is connected, and a negative pressure is generated as the high-speed flow passes through the gap and the installation position of the terminal end of the second accelerating member. Microscopic materials in water characterized by performing treatment such as crushing or subdividing fine matters such as microorganisms and fine solids in the liquid by impact force caused by cavitation, or mixing the liquid. Processing equipment. 前記第1の加速部材が円錐体であり、第2の加速部材が円柱体であることを特徴とする請求項1に記載の水中微細物等の処理装置。   The apparatus for treating fine underwater or the like according to claim 1, wherein the first acceleration member is a cone, and the second acceleration member is a cylindrical body. 前記第1の加速部材と、前記第2の加速部材とは前記くびれ部を介して一体に形成されるか、またはスペーサとしての前記くびれ部を介して個別の前記第1の加速部材と、前記第2の加速部材とが連設されることを特徴とした請求項1または2に記載の水中微細物等の処理装置。   The first accelerating member and the second accelerating member are integrally formed via the constricted portion, or the individual first accelerating members are separated via the constricted portion as a spacer, The apparatus for treating fine underwater or the like according to claim 1 or 2, wherein the second acceleration member is connected to the second acceleration member. 前記液体が、気体を液体に析出可能なようにあらかじめ気体を溶解させた被処理水として処理されることを特徴とする請求項1−3の何れかに記載の水中微細物等の処理装置。   The apparatus for treating fine matter in water according to any one of claims 1 to 3, wherein the liquid is treated as water to be treated in which a gas is dissolved in advance so that the gas can be precipitated into the liquid. 前記第1の加速部材が、円錐管に形成され、支流用液体に気体を溶解するか、または支流用液体に微細な気泡を析出させた状態で前記円錐管内に設けた支流水流入管を通じて前記円錐管の大径部の背部に位置する前記空隙部へ供給させることを特徴とする請求項1−4の何れかに記載の水中微細物等の処理装置。   The first accelerating member is formed in a conical tube and dissolves the gas in the tributary liquid or the conical water through the tributary water inflow tube provided in the conical tube with fine bubbles precipitated in the tributary liquid. The processing device for fine underwater materials or the like according to any one of claims 1 to 4, wherein the processing unit is supplied to the gap portion located at the back of the large-diameter portion of the pipe. 前記気体が、殺菌に有効なオゾンであることを特徴とする請求項1−5の何れかに記載の水中微細物等の処理装置。   The apparatus for treating fine matter in water according to claim 1, wherein the gas is ozone effective for sterilization. 前記第1の加速部材と前記第2の加速部材とにより構成される水中微細物等の処理装置の複数が、並列に、または直列に前記管路内に設けられたことを特徴とする請求項1−6の何れかに記載の水中微細物等の処理装置。   The plurality of treatment devices for fine underwater and the like constituted by the first acceleration member and the second acceleration member are provided in the pipe line in parallel or in series. The processing apparatus of the underwater fine substance etc. in any one of 1-6.
JP2007093935A 2007-03-30 2007-03-30 Processing equipment for underwater fines Expired - Fee Related JP4370342B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007093935A JP4370342B2 (en) 2007-03-30 2007-03-30 Processing equipment for underwater fines

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007093935A JP4370342B2 (en) 2007-03-30 2007-03-30 Processing equipment for underwater fines

Publications (2)

Publication Number Publication Date
JP2008246441A JP2008246441A (en) 2008-10-16
JP4370342B2 true JP4370342B2 (en) 2009-11-25

Family

ID=39972022

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007093935A Expired - Fee Related JP4370342B2 (en) 2007-03-30 2007-03-30 Processing equipment for underwater fines

Country Status (1)

Country Link
JP (1) JP4370342B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103232108A (en) * 2013-05-15 2013-08-07 陕西师范大学 Novel venturi tube type hydrodynamic cavitation water treatment device

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5551585B2 (en) * 2010-03-05 2014-07-16 国立大学法人東北大学 Ballast water treatment apparatus, ballast water detoxification treatment system using the apparatus, and method thereof
CN103224277B (en) * 2013-05-15 2014-03-12 陕西师范大学 Mobile sterilizing algae-removing oxygen-charging device for large-area polluted water area
CN103214109A (en) * 2013-05-15 2013-07-24 陕西师范大学 Landscape water area mobile type water-pumping aerated algae-removal water quality improving device
JP6967037B2 (en) * 2019-06-21 2021-11-17 東京都 Water treatment system and water treatment method
CN114289091B (en) * 2022-01-18 2023-03-28 四川沃文特生物技术有限公司 Buffer tank for refrigeration system of automatic analysis equipment

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103232108A (en) * 2013-05-15 2013-08-07 陕西师范大学 Novel venturi tube type hydrodynamic cavitation water treatment device
CN103232108B (en) * 2013-05-15 2014-03-05 陕西师范大学 Venturi tube type hydrodynamic cavitation water treatment device

Also Published As

Publication number Publication date
JP2008246441A (en) 2008-10-16

Similar Documents

Publication Publication Date Title
JP4370342B2 (en) Processing equipment for underwater fines
CN1234618C (en) Apparatus for killing and reducing microbe in liquid
JP4990101B2 (en) Microorganism crusher
US9243653B2 (en) Vortex generator with vortex chamber
WO2009116711A2 (en) Apparatus of generating microbubbles
JP2007069179A (en) Tornado type flocculation and precipitation apparatus
CZ303197B6 (en) Device for killing microorganisms in liquids
CN102863058A (en) Air-floatation water treatment system
US20060283805A1 (en) Advanced separator system
CN103721570A (en) Ultrasonic transducer type RO (Reverse Osmosis) scale prevention membrane shell
JP6092069B2 (en) Cleaning device and cleaning method for contaminated soil particles
JP5261368B2 (en) Activated sludge treatment equipment
JP2016150283A (en) Membrane treatment apparatus and method
JP2005131613A (en) Water treatment system and water treatment method
JP2007330894A (en) Activated sludge treatment apparatus
AU2013263017B2 (en) Dissolved air flotations system with energy recovery devices
JP4247106B2 (en) Turbid sewage purification equipment
CN206069619U (en) A kind of sewage water advanced treatment apparatus
RU2600353C2 (en) Method of treating water and aqueous solutions and installation for its implementation
JP2016215100A (en) Multistage microbial cell disruptor
KR100796362B1 (en) Super Ultrasonic projectile educes processing and Systemic Provision Complexities of Cavitation
EP4132886A1 (en) Apparatus and procedure for cavitation water purification
JP2001000890A (en) High efficiency gas dissolving device
JP4980975B2 (en) Water pollution biological treatment equipment
US9868654B2 (en) Fresh-water clarification system with accelerator

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090730

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090811

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090831

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120904

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130904

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees