JP4369787B2 - Photomask white defect correction method - Google Patents

Photomask white defect correction method Download PDF

Info

Publication number
JP4369787B2
JP4369787B2 JP2004105358A JP2004105358A JP4369787B2 JP 4369787 B2 JP4369787 B2 JP 4369787B2 JP 2004105358 A JP2004105358 A JP 2004105358A JP 2004105358 A JP2004105358 A JP 2004105358A JP 4369787 B2 JP4369787 B2 JP 4369787B2
Authority
JP
Japan
Prior art keywords
electron beam
product
acceleration voltage
current density
generation efficiency
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004105358A
Other languages
Japanese (ja)
Other versions
JP2005292342A (en
Inventor
純一 田代
安彦 杉山
良二 萩原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi High Tech Science Corp
Original Assignee
SII NanoTechnology Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SII NanoTechnology Inc filed Critical SII NanoTechnology Inc
Priority to JP2004105358A priority Critical patent/JP4369787B2/en
Publication of JP2005292342A publication Critical patent/JP2005292342A/en
Application granted granted Critical
Publication of JP4369787B2 publication Critical patent/JP4369787B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Preparing Plates And Mask In Photomechanical Process (AREA)

Description

本発明は半導体デバイスの製造に用いられるフォトマスクの白欠陥を修正する技術に関する。   The present invention relates to a technique for correcting white defects in a photomask used for manufacturing a semiconductor device.

フォトマスクは転写の原版となるものであり、マスクに欠陥が存在すると転写されるウェハの全てに欠陥が反映されてデバイスの性能を低下させてしまう。そのため、マスクには無欠陥性が強く求められ、マスクに欠陥がある場合にはその欠陥は修正されなければならない。従来からこの修正加工をマスクリペア技術と称して半導体製造分野では重要な位置を占めている。   The photomask serves as a transfer master, and if there is a defect in the mask, the defect is reflected in all of the transferred wafers and the performance of the device is degraded. Therefore, the mask is strongly required to be defect-free, and if the mask has a defect, the defect must be corrected. Conventionally, this correction processing is called a mask repair technique and occupies an important position in the semiconductor manufacturing field.

最近のマスクリペアの技術では最先端フォトマスクの微細欠陥はFIB加工で修正されるようになってきている。すなわち、黒欠陥はFIBのガスアシストエッチの手法を用いて除去され、白欠陥はカーボン系のFIB−CVDの手法で遮光膜を形成させることで修正されている。フォトマスクの欠陥修正は修正個所の光学特性や修正精度が重要であることは当然であるが、それだけではなくフォトマスク製造において異物やレジスト残りを除去するための洗浄工程は欠くことのできない工程であるので、洗浄してもマスク修正個所の光学特性が低下しないことが求められる。洗浄は酸やアルカリやオゾンを用いた化学的な洗浄や超音波などを用いた物理的な洗浄が行われている。一度修正したマスクは複数回の耐薬品性と耐摩耗性をもって洗浄プロセスに耐えなければならない。FIB−CVDによる遮光膜も金属系の遮光膜では薄い膜厚で遮光できるが、洗浄によってFIB−CVDで付けた膜が剥れてしまう。そのため、膜厚が厚くなっても洗浄で膜剥れが起きず膜減りの少ないカーボン系のFIB−CVD遮光膜として使用されているところである。   With recent mask repair technology, fine defects in the most advanced photomask are being corrected by FIB processing. That is, black defects are removed by using a FIB gas-assisted etching technique, and white defects are corrected by forming a light shielding film by using a carbon-based FIB-CVD technique. In photomask defect correction, it is natural that the optical characteristics and accuracy of correction are important, but not only that, but also a cleaning process for removing foreign matter and resist residue is indispensable in photomask manufacturing. Therefore, it is required that the optical characteristics of the mask correction portion do not deteriorate even after cleaning. Cleaning is performed by chemical cleaning using acid, alkali or ozone, or physical cleaning using ultrasonic waves. Once modified, the mask must withstand the cleaning process with multiple chemical and wear resistances. The light shielding film by FIB-CVD can be shielded with a thin film thickness by using a metal-based light shielding film, but the film attached by FIB-CVD is peeled off by cleaning. Therefore, even when the film thickness is increased, the film is not peeled off by cleaning, and is used as a carbon-based FIB-CVD light shielding film with little film loss.

リソグラフィは設計ルールの微細化の進展に伴い、露光装置のレンズの高NA化と露光波長の短波長化で対応してきた。現在は波長248nmのKrFエキシマレーザーを用いた露光装置がデバイス製造で使用され、研究開発レベルでは波長193nmのKrFエキシマレーザーを用いた露光装置が使用されるようになってきている。更に波長の短い波長157nmのF2エキシマレーザーを用いた露光装置の開発も進められている。露光波長が短波長化するにつれて、欠陥認識等のため走査型イオン顕微鏡(SIM)で顕微鏡画像を取得する時や、FIB欠陥修正時に照射されるプライマリービームのイオン源であるガリウムの注入による透過率の低下が問題となってきている。そのような中で、F2エキシマレーザーを用いた露光装置に対して、FIB−CVDに換えて、透過率の低下が起こらない電子ビームを用いたCVDによる欠陥修正方法も検討され始めている(特許文献1,特許文献2参照)。電子ビームはFIBよりも小さなビーム径を実現できるので、F2エキシマレーザーを用いて露光するような世代の微細なパターンヘの適応能力も持ち合わせている。
特開2004−12806号公報「レベンソン型位相シフトマスクの欠陥修正方法」 平成16年1月15日公開 特開2001−185479号公報「リソグラフィ用マスク基板およびその製造方法」 平成13年7月6日公開 E.W.McDaniel, Collision phenomena in ionized gases, John Wiley & Sons Inc.,1964
Lithography has been supported by increasing the NA of the exposure apparatus lens and shortening the exposure wavelength as the design rule becomes finer. At present, an exposure apparatus using a KrF excimer laser having a wavelength of 248 nm is used for device manufacture, and an exposure apparatus using a KrF excimer laser having a wavelength of 193 nm is being used at the research and development level. Furthermore, development of an exposure apparatus using an F2 excimer laser having a short wavelength of 157 nm is also in progress. As the exposure wavelength is shortened, transmittance is obtained by injecting gallium, which is an ion source of the primary beam that is irradiated when scanning microscope (SIM) is used for defect recognition and when FIB defect correction is performed. The decline is becoming a problem. Under such circumstances, instead of FIB-CVD, a defect correction method by CVD using an electron beam that does not cause a decrease in transmittance is being studied for an exposure apparatus using an F2 excimer laser (Patent Literature). 1, Patent Document 2). Since the electron beam can realize a beam diameter smaller than that of the FIB, it has an adaptability to a generation of fine patterns that are exposed using an F2 excimer laser.
Japanese Laid-Open Patent Publication No. 2004-12806 “Defect Correction Method for Levenson Type Phase Shift Mask” Published on January 15, 2004 Japanese Laid-Open Patent Publication No. 2001-185479 “Lithography Mask Substrate and Method of Manufacturing the Same” Released on July 6, 2001 EWMcDaniel, Collision phenomena in ionized gases, John Wiley & Sons Inc., 1964

電子ビームによる白欠陥修正で形成された遮光膜についても後の洗浄工程で膜剥れが起きたり、膜減りの少ないCVD膜を形成する必要があるが、FIB−CVDに比べ歴史の浅い電子ビームCVDでは堅固なデポジションを形成させることが困難であるという問題点があった。   Regarding the light-shielding film formed by correcting the white defect by the electron beam, it is necessary to form a CVD film in which the film is peeled off in the subsequent cleaning process or the film thickness is small, but the electron beam has a shorter history than the FIB-CVD. CVD has a problem that it is difficult to form a firm deposition.

この発明は上記問題点を解決し、フォトマスクの白欠陥修正において、洗浄工程で耐薬品性をもち、膜剥れが起きず膜減りの少ない、実用に耐えられる遮光膜を電子ビームCVDによって形成する技術を提供することを課題とする。   This invention solves the above-mentioned problems, and forms a light-shielding film that can withstand practical use, has chemical resistance in the cleaning process, does not cause film peeling, and can withstand practical use in correcting white defects in photomasks. It is an object to provide a technique for performing the above.

本発明のフォトマスクの白欠陥修正方法は、原料ガスとしてフェナントレンを用いて、欠陥部分に照射する電子ビームの加速電圧を1kVとしたとき、照射点にビームが滞在する時間と電流密度の積が、40〜10000(μsec・pA/μm)の範囲となるように設定して電子ビームCVDを行うようにし、前記加速電圧が1kV以外の時は該加速電圧における加速電圧1kVの時に対する二次電子発生効率の比を求めその比の値分の1倍にして前記設定範囲の上下限値を変えて範囲を設定した。また、原料ガスであるフェナントレンの供給はリザーバでの加熱温度を40℃以上にして行うようにした。 In the photomask white defect correction method of the present invention, when phenanthrene is used as the source gas and the acceleration voltage of the electron beam irradiated to the defective portion is 1 kV, the product of the time during which the beam stays at the irradiation point and the current density is , The electron beam CVD is performed so as to be in the range of 40 to 10,000 (μsec · pA / μm 2 ), and when the acceleration voltage is other than 1 kV, the secondary voltage with respect to the acceleration voltage at the acceleration voltage of 1 kV is obtained. The ratio of the electron generation efficiency was obtained, and the range was set by changing the upper and lower limit values of the setting range to one time the value of the ratio. The supply of phenanthrene, which is a raw material gas, was performed at a heating temperature in the reservoir of 40 ° C. or higher.

本発明のフォトマスクの白欠陥修正方法は、原料ガスとしてナフタレンを用いて、欠陥部分に照射する電子ビームの加速電圧を1kVとしたとき、照射点にビームが滞在する時間と電流密度の積が、20〜10000(μsec・pA/μm)の範囲となるように設定して電子ビームCVDを行うようにし、前記加速電圧が1kV以外の時は該加速電圧における加速電圧1kVの時に対する二次電子発生効率の比を求めその比の値分の1倍にして前記設定範囲の上下限値を変えて範囲を設定した。また、原料ガスであるナフタレンの供給はリザーバでの加熱温度が10℃以上にして行うようにした。 In the photomask white defect correcting method of the present invention, when naphthalene is used as a source gas and the acceleration voltage of the electron beam irradiated to the defective portion is 1 kV, the product of the time during which the beam stays at the irradiation point and the current density is , The electron beam CVD is performed so as to be in the range of 20 to 10,000 (μsec · pA / μm 2 ), and when the acceleration voltage is other than 1 kV, the secondary voltage with respect to the acceleration voltage at the acceleration voltage of 1 kV is obtained. The ratio of the electron generation efficiency was obtained, and the range was set by changing the upper and lower limit values of the setting range to one time the value of the ratio. The supply of naphthalene, which is a raw material gas, was performed at a heating temperature in the reservoir of 10 ° C. or higher.

原料ガスとしてフェナントレンを用いた本発明のフォトマスクの白欠陥修正方法は、欠陥部分に照射する加速電圧1kVの電子ビームの照射点にビームが滞在する時間と該電子ビームの電流密度の積が、40〜10000(μsec・pA/μm)で電子ビームCVDを行うようにし、原料ガスであるフェナントレンの供給はリザーバでの加熱温度を40℃以上にして行うようにしたことにより、洗浄による膜減りや膜の剥れのない加工が実現できた。 In the photomask white defect correction method of the present invention using phenanthrene as a source gas, the product of the time during which the beam stays at the irradiation point of the electron beam with an acceleration voltage of 1 kV irradiated to the defective portion and the current density of the electron beam is Electron beam CVD is performed at 40 to 10,000 (μsec · pA / μm 2 ), and the supply of phenanthrene, which is a raw material gas, is performed at a heating temperature of 40 ° C. or higher in the reservoir. And processing without peeling of film was realized.

原料ガスとしてナフタレンを用いて本発明のフォトマスクの白欠陥修正方法は、欠陥部分に照射する加速電圧1kVの電子ビームの照射点にビームが滞在する時間と電流密度の積が、20〜100 00(μsec・pA/μm)で電子ビームCVDを行うようにし、原料ガスとしてナフタレンをリザーバでの加熱温度が10℃以上であるようにしたことにより、洗浄による膜減りや膜の剥れのない加工が実現できた。 In the photomask white defect correcting method of the present invention using naphthalene as the source gas, the product of the time during which the beam stays at the irradiation point of the electron beam with an acceleration voltage of 1 kV and the current density is 20 to 00 00 By performing electron beam CVD at (μsec · pA / μm 2 ) and using naphthalene as the source gas so that the heating temperature in the reservoir is 10 ° C. or higher, there is no film loss or film peeling due to cleaning. Processing was realized.

また上記の方法において電子ビームの加速電圧を1kV以外の加速電圧に設定する場合、加速電圧に対する試料からの二次電子発生効率を1kVの場合の二次電子発生効率と比較して、電子ビームの照射点にビームが滞在する時間と電流密度の積の範囲を調整することで洗浄による膜減りや膜の剥れのない加工が実現できた。   When the acceleration voltage of the electron beam is set to an acceleration voltage other than 1 kV in the above method, the secondary electron generation efficiency from the sample with respect to the acceleration voltage is compared with the secondary electron generation efficiency in the case of 1 kV. By adjusting the range of the product of the beam staying time at the irradiation point and the current density, it was possible to realize processing without film loss or film peeling by cleaning.

本発明のフォトマスクの白欠陥修正方法は、図1に示すように透明なガラス基板4bに遮光性の材料でパターン4aが形成されたフォトマスクの白欠陥部分4cをガスノズル2から原料ガス3を噴射させながら電子ビーム1を加工部分に照射するCVDによって修正加工を施すもので、その後の洗浄工程において剥離や膜減りの起こらない堅固な電子ビームCVDを実現するための研究において生まれたものである。試行錯誤の中から欠陥部分4cに照射する電子ビーム1の加工条件において、電子ビーム1が照射点に滞在する時間(Dwell Time)と、電子ビーム1のビーム電流密度の積がある閾値よりも大きな条件で成膜することで、洗浄の前後で膜厚が殆ど変化しないカーボン系のFIB−CVD遮光膜と類似した遮光膜を形成することができるとの知見を得た。図2の(a)に従来のFIB−CVDで作製したカーボン膜と、(b)に電子ビームCVDで作製したカーボン膜(本発明の条件を満たしていない成膜条件で作製した膜)と、(c)に電子ビームCVDで作製したカーボン膜(本発明の条件で作製した膜)について、強度を縦軸にとったラマンシフト波数が600から2300cm−1の範囲のラマンスペクトルを示す。この(b)(c)における加工条件は下記の表1に示したとおりである。グラフで強度については数値表示していないがここで重要なことはラマンスペクトルの形であるので、任意の単位としている。 In the photomask white defect correcting method of the present invention, as shown in FIG. 1, a white defect portion 4c of a photomask in which a pattern 4a is formed of a light-shielding material on a transparent glass substrate 4b is transferred from a gas nozzle 2 to a source gas 3. This is a modification process by CVD that irradiates the processed part with the electron beam 1 while being jetted, and was born in a research to realize a solid electron beam CVD that does not cause peeling or film loss in the subsequent cleaning process. . In the processing conditions of the electron beam 1 that irradiates the defect portion 4c from trial and error, the product of the time during which the electron beam 1 stays at the irradiation point (Dwell Time) and the beam current density of the electron beam 1 is greater than a certain threshold value. It was found that by forming a film under conditions, a light shielding film similar to a carbon-based FIB-CVD light shielding film in which the film thickness hardly changes before and after cleaning can be formed. FIG. 2 (a) shows a carbon film produced by conventional FIB-CVD, and FIG. 2 (b) shows a carbon film produced by electron beam CVD (film produced under film formation conditions that do not satisfy the conditions of the present invention). (c) shows a Raman spectrum having a Raman shift wave number in the range of 600 to 2300 cm −1 with the intensity on the vertical axis for a carbon film produced by electron beam CVD (film produced under the conditions of the present invention). The processing conditions in (b) and (c) are as shown in Table 1 below. The intensity is not numerically displayed in the graph, but what is important here is the shape of the Raman spectrum, and is therefore an arbitrary unit.

Figure 0004369787
(a)のスペクトルに比べ、(b)のスペクトルにはバックグラウンドに高波数側に上昇するピークがあるのがわかる。これは膜中に水素が含まれている場合に見られるものであり、この条件で作製した膜は洗浄により大きく膜減りした。それに対して(c)のスペクトルは(b)に比べて、(a)に近い形状となっており、この条件の膜は洗浄してもほとんど膜減りは見られなかった。また、この電子ビームCVD遮光膜は波長193nmや157nmの電子ビームに対して遮光膜として十分な遮光率を持っている。また、電子ビームCVDを用いれば、微細な遮光膜を所望の位置に形成できるので、微細な欠陥にも対応でき、高精度な白欠陥修正を行える。
Figure 0004369787
Compared with the spectrum of (a), it can be seen that the spectrum of (b) has a peak rising in the background on the high wavenumber side. This is seen when hydrogen is contained in the film, and the film produced under these conditions was greatly reduced by washing. On the other hand, the spectrum of (c) has a shape closer to that of (a) than that of (b), and the film under these conditions showed almost no film loss even after washing. Further, this electron beam CVD light shielding film has a sufficient light shielding rate as a light shielding film for an electron beam having a wavelength of 193 nm or 157 nm. Further, if electron beam CVD is used, a fine light-shielding film can be formed at a desired position, so that it can cope with fine defects and can correct white defects with high accuracy.

原料ガスにフェナントレンのような芳香族炭化水素を用い、荷電粒子を照射して水素を昇華させ、炭素を試料表面に付着させるCVDにおいて、堅固な膜を形成させるということは炭素原子が密に結合した膜を成長させることを意味する。水素の昇華が十分でなく残留すると、膜中に含まれる炭素原子の密度が小さくなり、脆い膜となる。電子ビームCVDにおいて水素を完全に昇華させるためには十分な荷電粒子の照射が必要と解される。   In CVD where aromatic hydrocarbons such as phenanthrene are used as the source gas, charged particles are irradiated to sublimate hydrogen, and carbon is deposited on the sample surface, a firm film is formed. Means to grow a grown film. If hydrogen sublimation is not sufficient and remains, the density of carbon atoms contained in the film decreases, resulting in a brittle film. It is understood that sufficient charged particle irradiation is necessary to completely sublimate hydrogen in electron beam CVD.

これまでの実験結果から、洗浄耐性のある膜というのは「デポジション生成量が0.003(μm/nC)以下という条件で生成された膜」であるということが分かった。ここでnCはナノクーロンであり、ここでいうデポジション生成量とは照射した荷電量単位当たりに対して生成された生成物の体積を示している。この条件の意味するところは照射した荷電粒子(この場合電子)量に対するデポジション生成量が少ない方、すなわち炭素が密に結合した方がより洗浄に耐えるデポ膜になるということである。この膜を作る方法は、「試料表面に供給した原料ガスに対して、多量の電子ビームを照射し成膜する」ということになる。この方法で成膜する加工条件は、以下の通りである。 From the experimental results so far, it was found that the film having cleaning resistance is “a film formed under the condition that the deposition generation amount is 0.003 (μm 3 / nC) or less”. Here, nC is nanocoulomb, and the amount of deposition generated here indicates the volume of the product generated per unit of charge amount irradiated. This means that the deposition amount with respect to the amount of charged particles (in this case, electrons) irradiated, that is, the one where carbon is tightly bonded becomes a deposition film that can withstand cleaning more. The method of forming this film is “film formation by irradiating a large amount of electron beams to the source gas supplied to the sample surface”. The processing conditions for forming a film by this method are as follows.

ドーズ量(μC/m)=Dwell Time(μSec)×Current Density(pA/μm)
が閾値以上の条件であることということになる。ただし、この閾値はガス供給条件によって変化する点に注意しなければならない。図3にドーズ量:Dwell Time×Current Density(μSec・pA/μm)に対するデポジション生成量(Deposition Yield:μm/nC)のデータをグラフに示す。ここでの原料ガスはフェナントレンを用いているが、ガスリザーバの温度を三段階に設定しガス濃度を変えている。図3のグラフ中太線で示した0.003μm/nCの値が実験的に得られた耐洗浄性の可否のデポジション生成量の閾値であるが、40℃でフェナントレンを噴射させた状態ではドーズ量が40μSec・pA/μm以上で耐性有りのデポ膜が形成されることが示されている。また、60℃でフェナントレンを噴射させた状態ではドーズ量が80μSec・pA/μm以上で、75℃でフェナントレンを噴射させた状態ではドーズ量が150μSec・pA/μm以上で耐性有りのデポ膜が形成されることが見て取れる。すなわち、原料ガスが濃い状態で供給されているときはそのガスを完全に分解して水素を昇華させるためにはそれだけ多くの電子ビームを照射する必要があることを示している。
Dose amount (μC / m 2 ) = Dwell Time (μSec) × Current Density (pA / μm 2 )
Is a condition equal to or greater than the threshold. However, it should be noted that this threshold varies depending on the gas supply conditions. FIG. 3 is a graph showing data of the deposition amount (Deposition Yield: μm 3 / nC) with respect to the dose amount: Dwell Time × Current Density (μSec · pA / μm 2 ). The source gas used here is phenanthrene, but the gas concentration is changed by setting the temperature of the gas reservoir in three stages. The value of 0.003 μm 3 / nC indicated by the thick line in the graph of FIG. 3 is the experimentally obtained threshold value for the amount of deposition generated to determine whether or not cleaning is possible, but in the state in which phenanthrene is injected at 40 ° C. It is shown that a resistant deposition film is formed when the amount is 40 μSec · pA / μm 2 or more. In addition, when the phenanthrene is injected at 60 ° C, the dosage is 80 µSec · pA / µm 2 or more, and when the phenanthrene is injected at 75 ° C, the dosage is 150 µSec · pA / µm 2 or more. It can be seen that is formed. That is, when the source gas is supplied in a rich state, it is necessary to irradiate so many electron beams in order to completely decompose the gas and sublimate hydrogen.

原料ガスはリザーバの温度によって噴射されるガス濃度が異なることを述べたが、温度と蒸気圧との関係を図4のグラフに示す。このグラフは原料ガスとしてフェナントレンとナフタレンを用いたデータである。フェナントレン、ナフタレンは、ガス種によって値は異なるが、温度を上げると蒸気圧が上がり蒸発し易くなるという傾向において一致している。すなわちリザーバの温度を上げるとガス供給量(供給速度)が増加することが分かる。実際の作業においてガス供給量はリザーバの設定温度で制御することになるため、このガス種に対応した温度−蒸気圧特性は準備情報として蓄積しておくことが必要である。   Although it has been stated that the concentration of the injected gas differs depending on the temperature of the reservoir, the relationship between temperature and vapor pressure is shown in the graph of FIG. This graph is data using phenanthrene and naphthalene as source gases. Although phenanthrene and naphthalene have different values depending on the gas type, they agree with each other in the tendency that when the temperature is increased, the vapor pressure is increased and the vaporization is facilitated. That is, it can be seen that the gas supply amount (supply speed) increases as the temperature of the reservoir increases. In actual work, the gas supply amount is controlled by the set temperature of the reservoir. Therefore, the temperature-vapor pressure characteristic corresponding to this gas type must be accumulated as preparation information.

効果的に耐洗浄性の高いデポ膜を形成するためには単にデポジション生成量が小さければよいということにはならないので、その周辺問題について説明する。1つの問題としては供給ガス量が少なすぎる場合がある。   In order to effectively form a deposition film with high cleaning resistance, it is not necessary that the amount of deposition generated is small, so the peripheral problem will be described. One problem is that the amount of gas supplied is too small.

リフレッシュタイム(加工領域内をビーム走査している時に同一ビーム照射点にビームが戻ってくるまでの時間)が短すぎる場合、試料表面へのガス供給が不十分になり、原料ガスの無いところヘドーズを供給することになる。これは所謂空撃ちの状態であり、つまり、成膜に寄与しないドーズ供給となって、上記の加工条件では定義できなくなる。そこで、リフレッシュタイムの下限値を定義する必要がある。ただし、この下限値は、ガス種やガス導入系(ノズル径、ノズル先端と試料表面との距離)によって変化することに留意しなければならない。因みに、ノズル先端(先端径0.5mmφ)と試料欠陥部分との距離が330μm、原料ガスがフェナントレンまたはナフタレンの場合、リフレッシュタイムは5msec以上とする必要がある。ただし、試料表面へのガス供給量はガスノズルと試料欠陥部分との距離の3乗に比例して小さくなっていく。すなわち、距離が大きくなればその分リフレッシユタイムの下限値は大きくなっていく。   If the refresh time (time until the beam returns to the same beam irradiation point when scanning the processing area) is too short, the gas supply to the sample surface becomes insufficient, and there is no head gas in the absence of source gas. Will be supplied. This is a so-called air shot state, that is, a dose supply that does not contribute to film formation, and cannot be defined under the above processing conditions. Therefore, it is necessary to define a lower limit value of the refresh time. However, it should be noted that this lower limit value varies depending on the gas type and the gas introduction system (nozzle diameter, distance between the nozzle tip and the sample surface). Incidentally, when the distance between the nozzle tip (tip diameter 0.5 mmφ) and the sample defect portion is 330 μm and the source gas is phenanthrene or naphthalene, the refresh time needs to be 5 msec or more. However, the amount of gas supplied to the sample surface decreases in proportion to the cube of the distance between the gas nozzle and the sample defect portion. That is, as the distance increases, the lower limit of the refresh time increases accordingly.

もう一つの問題として照射するドーズ量が供給されたガスの量に比べて多すぎる場合もある。この場合、先の問題同様に原料ガスの無いところヘドーズを供給する空撃ちになり、成膜に寄与しないドーズが生じる。やはり上記の加工条件では定義できなくなる。そこで、この観点からもドーズ量の上限値を定義する必要がある。ただし、この上限値は、ガス供給条件によって変化することに留意しなければならない。図5はフェナントレンリザーバ温度を75℃に設定し、Dwell timeを2μsecとした条件下でCurrent DensityとDeposition Yieldの関係をグラフで示したものである。Current Densityを大きくすると供給ガスに対して照射ドーズ量が多くなり、Deposition Yieldは小さくなる。そして、この傾向からあるCurrent Densityに達するとDeposition Yieldは飽和することが推定できる。この値よりもCurrent Densityを増加させることは、原料ガスのないところにドーズを供給することになって意味をなさない。すなわちこのときのドーズ量(図5では10000μSec・pA/μm)が加工条件の上限値となる。 Another problem is that the dose to be irradiated may be too much compared to the amount of gas supplied. In this case, as in the previous problem, when there is no source gas, it is an empty shot to supply a dose, and a dose that does not contribute to film formation occurs. Again, it cannot be defined under the above processing conditions. Therefore, it is necessary to define the upper limit value of the dose amount from this viewpoint. However, it should be noted that this upper limit value varies depending on gas supply conditions. FIG. 5 is a graph showing the relationship between Current Density and Deposition Yield under the condition that the phenanthrene reservoir temperature is set to 75 ° C. and the Dwell time is 2 μsec. Increasing the Current Density increases the irradiation dose with respect to the supplied gas and decreases the Deposition Yield. From this tendency, it can be estimated that Deposition Yield saturates when it reaches a certain Current Density. Increasing the Current Density beyond this value does not make sense because the dose is supplied to a place where there is no source gas. That is, the dose amount at this time (10000 μSec · pA / μm 2 in FIG. 5) is the upper limit of the processing conditions.

原料ガス供給条件によって上限値がこの値より大きくなることはあるが、現実的なスループットや電子照射によるチャージアップの問題を考えるとフェナントレン、ナフタレンの場合の上限値をこれまでの実験の結果から、本発明では10000μSec・pA/μmとするものである。 Although the upper limit may be greater than this value depending on the raw material gas supply conditions, considering the actual throughput and charge-up problems due to electron irradiation, the upper limit in the case of phenanthrene and naphthalene is determined from the results of previous experiments. In the present invention, it is 10000 μSec · pA / μm 2 .

上記の条件を抑えれば、フェナントレン、ナフタレンを使った白欠陥修正の実用的な条件をカバーできると考えられるが、「ビーム径」と照射ピクセルサイズとの関係で本発明の条件を形式的に満たすことが所期の目的を満たさない場合が生じるのでその点についてふれておく。照射する電子ビームの径がシステム上で設定するビーム照射ピクセルサイズよりも大きい場合、該当ピクセルへのビーム照射は隣にあるピクセルにも電子を照射することになるため、両側のピクセルの照射時にも電子照射を受け実効的なDwell timeは大きくなってしまう。このことを勘案し、適正なドーズ量を得るためには左右と上下の隣接ピクセル照射時の影響分を差し引いて実効的なDwell timeを決める方法、また、ビーム照射ピクセルを間引いて走査する間引き走査を行うことで、ビーム径がビーム照射ピクセルサイズよりも大きい場合でも実効的なDwell timeを制御することができる。   If the above conditions are suppressed, it is considered that practical conditions for white defect correction using phenanthrene and naphthalene can be covered. However, the conditions of the present invention are formally related to the relationship between the “beam diameter” and the irradiation pixel size. Since satisfying may not meet the intended purpose, we will touch on that point. If the diameter of the irradiated electron beam is larger than the beam irradiation pixel size set on the system, the beam irradiation to the corresponding pixel will also irradiate the adjacent pixels, so even when the pixels on both sides are irradiated. Effective Dwell time is increased by electron irradiation. Taking this into consideration, in order to obtain an appropriate dose amount, a method for determining an effective dwell time by subtracting the influence at the time of adjacent pixel irradiation on the left and right and upper and lower sides, and thinning scanning for thinning and scanning the beam irradiation pixels By performing the above, it is possible to control the effective dwell time even when the beam diameter is larger than the beam irradiation pixel size.

ところで、電子ビームCVDによる薄膜形成プロセスでは、試料に入射する電子によって発生する二次電子が薄膜形成に影響を与えていることが一般に考えられている。(非特許文献1参照)試料で発生する二次電子の効率は、試料の材質や入射する加速電圧によって変化する。図6は非特許文献1にFIG.13-3-2として記載された「電子ビームを照射した時の入射電子加速電圧と二次電子イールドの関係」を示すグラフである。図6は照射電子ビームの加速電圧に対する二次電子発生効率である。加速電圧1kV以下にピークがあり、加速電圧を大きくしていくと二次電子イールドは小さくなる。図6中のδmax、Ep+、Ep0、Ep−は電子ビームの被照射材料によってことなる。二次電子は膜形成プロセス、つまり原料ガスから水素を昇華させ、炭素原子の密な結合を形成することに寄与していることが考えられる。したがって、電子ビームの加速電圧を1kV以外で使用する場合、洗浄による膜減りや膜の剥れのない加工をするための加工条件は二次電子発生効率を考慮して電子ビームの照射点にビームが滞在する時間と電流密度の積の範囲をシフトさせる。たとえば、二次電子の発生効率が加速電圧1kVの時にくらべて半分程度になる加速電圧2kVで加工を行う場合、電子ビームの照射点にビームが滞在する時間と電流密度の積の範囲を80〜20000(μsec・pA/μm)にシフトさせて加工を行う。 By the way, in the thin film formation process by electron beam CVD, it is generally considered that secondary electrons generated by electrons incident on the sample affect the thin film formation. (Refer nonpatent literature 1) The efficiency of the secondary electron which generate | occur | produces in a sample changes with the material of a sample, and the incident acceleration voltage. FIG. 6 is a graph showing “Relationship between incident electron acceleration voltage and secondary electron yield when irradiated with an electron beam” described in FIG. 13-3-2 in Non-Patent Document 1. FIG. 6 shows the secondary electron generation efficiency with respect to the acceleration voltage of the irradiation electron beam. There is a peak at an acceleration voltage of 1 kV or less, and the secondary electron yield decreases as the acceleration voltage increases. Δmax, E p + , E p0 , and E p− in FIG. 6 are different depending on the material to be irradiated with the electron beam. It is considered that secondary electrons contribute to the film formation process, that is, to sublimate hydrogen from the source gas to form a close bond of carbon atoms. Therefore, when the acceleration voltage of the electron beam is used at a voltage other than 1 kV, the processing conditions for processing without film loss or film peeling due to cleaning are set at the irradiation point of the electron beam in consideration of secondary electron generation efficiency. Shifts the range of product of time spent and current density. For example, when processing is performed at an acceleration voltage of 2 kV, where the generation efficiency of secondary electrons is about half that when the acceleration voltage is 1 kV, the range of the product of the time during which the beam stays at the irradiation point of the electron beam and the current density ranges from 80 to Processing is performed by shifting to 20000 (μsec · pA / μm 2 ).

本実施例は原料ガスとして、フェナントレンをガスリザーバ中で40℃以上に加熱して、図1に示したようなフォトマスク白欠陥部分に供給しながら電子ビームを照射する加工条件において、電子ビームの加速電圧は1kV、電子ビームが照射点に滞在する時間(Dwell time)と、電子ビームのビーム電流密度の積が44μsec・pA/μm以上、かつビームが加工エリア内で同一点に戻るまでの時間(Refresh time)が、36msec以上に設定して欠陥部分に成膜を行った。このときの試料室真空度7.7×10−5Pa、ガスノズル先端と試料欠陥部分との距離は330μmであった。この条件で作製した試料は、通常の洗浄化学プロセスで複数回洗浄を行ってもほとんど膜減りが起こらないことが確認できた。 In this embodiment, phenanthrene is heated as a source gas to 40 ° C. or higher in a gas reservoir, and the electron beam is accelerated under processing conditions in which the electron beam is irradiated while being supplied to the photomask white defect portion as shown in FIG. The voltage is 1 kV, the time that the electron beam stays at the irradiation point (Dwell time), the product of the beam current density of the electron beam is 44 μsec · pA / μm 2 or more, and the time until the beam returns to the same point in the processing area (Refresh time) was set to 36 msec or more, and a film was formed on the defective portion. At this time, the degree of vacuum in the sample chamber was 7.7 × 10 −5 Pa, and the distance between the gas nozzle tip and the sample defect portion was 330 μm. It was confirmed that the sample produced under this condition hardly loses its film even if it was washed several times by a normal cleaning chemical process.

電子ビームが照射点に滞在する時間(Dwell time)と電子ビームのビーム電流密度の積が40μsec・pA/μm以上、かつ、原料ガスの供給量を制御するためにビームが加工エリア内で同一点に戻るまでの時間(Refresh time)を5msec以上に設定すると、洗浄耐性の強い膜を得ることが出きる。 The product of the electron beam staying time (Dwell time) and the beam current density of the electron beam is 40 μsec · pA / μm 2 or more, and the beam is the same in the processing area to control the supply amount of the source gas. If the time to return to one point (Refresh time) is set to 5 msec or more, a film having a strong cleaning resistance can be obtained.

Dwell timeと電流密度の積、Refresh timeの閾値は、ガスリザーバの温度、ガス種、ガス流量、被加工物質の材料、表面状態に応じて調整する。   The product of the dwell time and current density, and the refresh time threshold are adjusted according to the temperature of the gas reservoir, the gas type, the gas flow rate, the material of the workpiece, and the surface condition.

ナフタレンの場合は、ガスリザーバ温度10℃以上で、電子ビームの滞在時間と電流密度の積の閾値は20μsec・pA/μm、かつRefresh timeの閾値は5msecである。 In the case of naphthalene, the gas reservoir temperature is 10 ° C. or higher, the threshold of the product of the electron beam residence time and the current density is 20 μsec · pA / μm 2 , and the refresh time threshold is 5 msec.

電子ビームCVDによってフォトマスク白欠陥の修正加工を施す本発明の形態を示す図である。It is a figure which shows the form of this invention which corrects a photomask white defect by electron beam CVD. 従来のFIB−CVDと、本発明の条件を満たした電子ビームCVDと、条件を満たしていないCVDによる膜強度を比較したラマンスペクトルである。It is the Raman spectrum which compared film | membrane intensity | strength by conventional FIB-CVD, electron beam CVD which satisfy | filled the conditions of this invention, and CVD which does not satisfy | fill the conditions. ドーズ量とデポジション生成量との関係を示すグラフである。It is a graph which shows the relationship between a dose amount and a deposition production amount. フェナントレンとナフタレンの温度と蒸気圧との関係を示すグラフである。It is a graph which shows the relationship between the temperature of phenanthrene and naphthalene, and vapor pressure. 電流密度とデポジション生成量との関係を示す図である。It is a figure which shows the relationship between a current density and the amount of deposition production. 電子ビームを照射した時の入射電子加速電圧と二次電子イールドの関係を示すグラフである。It is a graph which shows the relationship between an incident electron acceleration voltage at the time of irradiating an electron beam, and a secondary electron yield.

符号の説明Explanation of symbols

1 電子ビーム 2 ガスノズル
3 原料ガス 4 フォトマスク
4a 遮光パターン 4b 透明領域
4c 白欠陥部
1 electron beam 2 gas nozzle 3 source gas 4 photomask
4a Shading pattern 4b Transparent area
4c White defect

Claims (4)

原料ガスとしてフェナントレンを用いる電子ビームCVDを用いたフォトマスクの白欠陥修正方法であって、
前記フェナントレンの供給はリザーバでの加熱温度を40℃以上にして行い
前記電子ビームの加速電圧が1kVの場合には、電子ビームが照射点に滞在する時間と電流密度の積40〜10000(μsec・pA/μm2)の範囲し、
前記加速電圧が1kV以外のときは、前記1kV以外の加速電圧における二次電子発生効率と前記加速電圧1kVにおける二次電子発生効率の比を求め、前記電子ビームが照射点に滞在する時間と電流密度の積の前記範囲の上下限値にそれぞれ前記比の逆数をかけた前記積の範囲で加工を行うことを特徴とするフォトマスクの白欠陥修正方法。
A photomask white defect correction method using electron beam CVD using phenanthrene as a source gas,
The phenanthrene is supplied at a heating temperature in the reservoir of 40 ° C or higher ,
When the acceleration voltage of the electron beam is 1 kV, the product of the time during which the electron beam stays at the irradiation point and the current density is in the range of 40 to 10,000 (μsec · pA / μm2),
Wherein when the acceleration voltage is other than 1kV, obtains the ratio of the secondary electron generation efficiency in the accelerating voltage 1kV and the secondary electron generation efficiency in the accelerating voltage other than the 1kV, time of the electron beam to stay on irradiation point A method for correcting a white defect in a photomask , wherein processing is performed in the product range obtained by multiplying the upper and lower limit values of the product of current density by the reciprocal of the ratio.
原料ガスとしてナフタレンを用いる電子ビームCVDを用いたフォトマスクの白欠陥修正方法であって、A photomask white defect correction method using electron beam CVD using naphthalene as a source gas,
前記ナフタレンの供給はリザーバでの加熱温度を10℃以上にして行い、The supply of the naphthalene is performed by setting the heating temperature in the reservoir to 10 ° C or higher,
前記電子ビームの加速電圧が1kVの場合には、電子ビームが照射点に滞在する時間と電流密度の積を20〜10000(μsec・pA/μm2)の範囲とし、When the acceleration voltage of the electron beam is 1 kV, the product of the time during which the electron beam stays at the irradiation point and the current density is in the range of 20 to 10,000 (μsec · pA / μm2),
前記加速電圧が1kV以外のときは、前記1kV以外の加速電圧における二次電子発生効率と前記加速電圧1kVにおける二次電子発生効率との比を求め、前記電子ビームが照射点に滞在する時間と電流密度の積の前記範囲の上下限値にそれぞれ前記比の逆数をかけた前記積の範囲で加工を行うことを特徴とするフォトマスクの白欠陥修正方法。When the acceleration voltage is other than 1 kV, the ratio of the secondary electron generation efficiency at an acceleration voltage other than 1 kV and the secondary electron generation efficiency at the acceleration voltage of 1 kV is obtained, and the time during which the electron beam stays at the irradiation point; A method for correcting a white defect in a photomask, wherein processing is performed in the product range obtained by multiplying the upper and lower limit values of the product of current density by the reciprocal of the ratio.
前記電子ビームの径が目的とする照射ピクセルサイズより大きい場合、前記電子ビームの照射点にビームが滞在する時間と電流密度の積の値を、前記目的とする照射ピクセルに隣接するピクセルへの照射時の影響を勘案して調整する請求項1から2のいずれかに記載のフォトマスクの白欠陥修正方法。When the diameter of the electron beam is larger than the target irradiation pixel size, the product of the time during which the beam stays at the irradiation point of the electron beam and the current density is irradiated to the pixel adjacent to the target irradiation pixel. 3. The method for correcting a white defect in a photomask according to claim 1, wherein adjustment is performed in consideration of the influence of time. 原料ガスとしてフェナントレンを用いる電子ビームCVDを用いたフォトマスクの白欠陥修正方法であって、
前記フェナントレンの供給はリザーバでの加熱温度を40℃以上にして行い
前記電子ビームの加速電圧が1kVの場合には、電子ビームが照射点に滞在する時間と電流密度の積を40〜10000(μsec・pA/μm2)の範囲とし、
前記加速電圧が1kV以外の場合には、
前記加速電圧が1kVの時の二次電子発生効率よりも二次電子発生効率が大きい場合は、二次電子発生効率が大きい分だけ前記電子ビームが照射点に滞在する時間と電流密度の積の設定する前記範囲を値が小さくなる方向にシフトさせ、
前記加速電圧が1kVの時の二次電子発生効率よりも二次電子発生効率が小さい場合は、二次電子発生効率が小さい分だけ前記電子ビームが照射点に滞在する時間と電流密度の積の設定する前記範囲を値が大きくなる方向にシフトさせた前記積の範囲で加工を行うことを特徴とするフォトマスクの白欠陥修正方法。
A photomask white defect correction method using electron beam CVD using phenanthrene as a source gas,
The phenanthrene is supplied at a heating temperature in the reservoir of 40 ° C or higher ,
When the acceleration voltage of the electron beam is 1 kV, the product of the time during which the electron beam stays at the irradiation point and the current density is in the range of 40 to 10,000 (μsec · pA / μm2),
When the acceleration voltage is other than 1 kV,
If the secondary electron generation efficiency is higher than the secondary electron generation efficiency when the acceleration voltage is 1 kV, the product of the time over which the electron beam stays at the irradiation point and the current density is increased by the amount of secondary electron generation efficiency. Shift the range to be set in the direction of decreasing the value,
If the secondary electron generation efficiency is smaller than the secondary electron generation efficiency when the acceleration voltage is 1 kV, the product of the product of the time during which the electron beam stays at the irradiation point and the current density by the amount of the secondary electron generation efficiency. A method for correcting a white defect in a photomask, characterized in that processing is performed in the product range obtained by shifting the set range in a direction in which the value increases.
JP2004105358A 2004-03-31 2004-03-31 Photomask white defect correction method Expired - Fee Related JP4369787B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004105358A JP4369787B2 (en) 2004-03-31 2004-03-31 Photomask white defect correction method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004105358A JP4369787B2 (en) 2004-03-31 2004-03-31 Photomask white defect correction method

Publications (2)

Publication Number Publication Date
JP2005292342A JP2005292342A (en) 2005-10-20
JP4369787B2 true JP4369787B2 (en) 2009-11-25

Family

ID=35325354

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004105358A Expired - Fee Related JP4369787B2 (en) 2004-03-31 2004-03-31 Photomask white defect correction method

Country Status (1)

Country Link
JP (1) JP4369787B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4923723B2 (en) * 2006-05-17 2012-04-25 凸版印刷株式会社 Thin film processing method using focused ion beam
WO2009123167A1 (en) * 2008-03-31 2009-10-08 Hoya株式会社 Photomask blank and method for manufacturing the same
JP5740895B2 (en) * 2010-10-01 2015-07-01 凸版印刷株式会社 EUV mask white defect correction method
JP7110044B2 (en) 2018-09-14 2022-08-01 キオクシア株式会社 Repair pattern generation apparatus, pattern defect repair system, repair pattern generation method, and semiconductor device manufacturing method
KR20230053114A (en) * 2021-10-14 2023-04-21 (주)마이크로이미지 Manufacturing mehtod for photomask that is easy to repair pattern defects and the photomask prepared therefrom

Also Published As

Publication number Publication date
JP2005292342A (en) 2005-10-20

Similar Documents

Publication Publication Date Title
JP4728553B2 (en) Method and apparatus for modifying a lithographic mask using a charged particle beam system
KR101683959B1 (en) Method and apparatus for protecting a substrate during a processing by means of a particle beam
KR101077980B1 (en) Photolithography mask repair
US6753538B2 (en) Electron beam processing
EP1710327B1 (en) Method of beam-induced selective etching of a material from a quartz substrate
US20040259367A1 (en) Etching of chromium layers on photomasks utilizing high density plasma and low frequency RF bias
JP6054034B2 (en) Electron beam induced etching of gallium contaminated layers.
JP4369787B2 (en) Photomask white defect correction method
JP2005189492A (en) Defect correction method for phase shift mask
JP4219715B2 (en) Defect correction method for photomask
EP0320292B1 (en) A process for forming a pattern
JP2009086428A (en) Method and apparatus for photomask defect correction using charged particle beam
JP2004279461A (en) Secondary processing method for corrected part of photomask defect by charge particle mask defect correcting device
JP2004287321A (en) Method for correcting defect in photomask
JP2005260057A (en) Method for correcting black defect of mask for euv lithography
JP2004309605A (en) Method of correcting defect in photomask
JP6311385B2 (en) Photomask manufacturing method
US9383641B2 (en) Method of repairing defect and method of manufacturing semiconductor device
JP2002214760A (en) Method for correcting black defect of mask
JP3908516B2 (en) Photomask defect repair device using ion beam
JP2004309604A (en) Method of correcting defect in photomask
JP4313694B2 (en) Binary mask halftone defect correction method
JP5673329B2 (en) Silicon oxide processing method
JP2000231186A (en) Method for correcting scattering stencil type reticle
JP2006123150A (en) Nano-structure making control method using electron beam-inductive vapor deposition method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061215

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071119

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090512

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090710

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090825

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090828

R150 Certificate of patent or registration of utility model

Ref document number: 4369787

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120904

Year of fee payment: 3

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20091105

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20091112

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20091118

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120904

Year of fee payment: 3

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: R3D03

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130904

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130904

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130904

Year of fee payment: 4

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130904

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130904

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130904

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees