JP4219715B2 - Defect correction method for photomask - Google Patents

Defect correction method for photomask Download PDF

Info

Publication number
JP4219715B2
JP4219715B2 JP2003084632A JP2003084632A JP4219715B2 JP 4219715 B2 JP4219715 B2 JP 4219715B2 JP 2003084632 A JP2003084632 A JP 2003084632A JP 2003084632 A JP2003084632 A JP 2003084632A JP 4219715 B2 JP4219715 B2 JP 4219715B2
Authority
JP
Japan
Prior art keywords
defect
electron beam
photomask
correction
objective lens
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003084632A
Other languages
Japanese (ja)
Other versions
JP2004294613A (en
Inventor
修 高岡
喜弘 小山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi High Tech Science Corp
Original Assignee
SII NanoTechnology Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SII NanoTechnology Inc filed Critical SII NanoTechnology Inc
Priority to JP2003084632A priority Critical patent/JP4219715B2/en
Publication of JP2004294613A publication Critical patent/JP2004294613A/en
Application granted granted Critical
Publication of JP4219715B2 publication Critical patent/JP4219715B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は電子ビーム加工装置を用いたフォトマスクの欠陥の高品位な修正方法に関するものである。
【0002】
【従来の技術】
Si半導体集積回路の微細化はめざましく、それに伴って転写に用いるフォトマスクまたはレチクル上のパターン寸法も微細になってきている。縮小投影露光装置はこの要請に対して高NA化と短波長化で対応してきた。微細化の前倒しが求められる現在では、縮小投影露光装置はそのままで、解像力と焦点深度を向上させるために、超解像技術の一種である位相シフトマスクも用いられるようになってきている。フォトマスクまたはレチクル上に欠陥が存在すると、欠陥がウェーハに転写されて歩留まりを減少する原因となるので、ウェーハにマスクパターンを転写する前に欠陥検査装置によりフォトマスクまたはレチクルの欠陥の有無や存在場所が調べられ、欠陥が存在する場合にはウェーハへ転写する前に欠陥修正装置により欠陥修正処理が行われている。上記のような技術的な趨勢により、フォトマスクまたはレチクルの欠陥修正にも小さな欠陥への対応が求められている。液体金属Gaイオン源を用いた集束イオンビーム装置は、その微細な加工寸法によりレーザーを用いた欠陥修正装置に代わりマスク修正装置の主流となってきている。上記のイオンビームを用いた欠陥修正装置では、白欠陥修正時には表面に吸着した原料ガスを細く絞ったイオンビームが当たった所だけ分解させて薄膜を形成し(FIB-CVD)、また黒欠陥修正時には集束したイオンビームによるスパッタリング効果またはアシストガス存在下で細く絞ったイオンビームが当たった所だけエッチングする効果を利用して、高い加工精度を実現している。(特許文献1参照)。
【0003】
【特許文献1】
特開平03−015068号公報(第2−3頁)
【非特許文献1】
木村浩二、安部和男、石葉幸生、鶴我靖子、鈴木等、高地伸夫、小池紘民、山崎裕一郎著 第63回学術講演会応用物理学会講演予稿集 P6 13(2002秋)
【非特許文献2】
K.T.Kohlmann-von Platen and H.Bruenger著 J. Vac. Sci. Technol. B14 4262 p4262-4266 (1995)
【発明が解決しようとする課題】
将来における縮小投影露光装置の露光波長の短波長化の更なる進展に伴い、集束イオンビームのGaのガラス基板への注入による透過率の低下が今まで以上に問題にされるようになってきた。
【0004】
また最近では、ガラス基板を掘り込んだタイプのレベンソンマスクが解像度向上のために導入され始めている。レベンソンマスクのガラス掘り込み領域の欠陥もイオンビームを用いた欠陥修正装置で修正することが求められている。
【0005】
欠陥修正個所にはビームの開き角に起因するエッジのだれが存在し、光学顕微鏡を応用した転写シミュレーションで欠陥修正個所の最適化を行っても、実際の転写で線幅が異なってしまったり、欠陥修正個所のフォーカス特性を悪くさせたりしていた。そのためには、バイナリマスクや位相シフトマスクの白欠陥修正個所、黒欠陥修正個所ともに正常なパターン並みの垂直な断面を持つ欠陥修正が必要である。ガラス掘り込み型のレベンソンマスクに対しても側壁効果により0/180°部でCD値の差がでないように欠陥修正個所も正常なパターン並みの垂直な断面を持つ欠陥修正が必要である。
【0006】
ステージを僅かに傾斜して欠陥修正を行えば、垂直な断面が得られることが知られているが、ステージに傾斜機能を持たせるとどうしてもステージの位置精度が低下しまうという問題があった。
本願発明は上記問題点を解決し、マスク欠陥を修正した後も、透過率を低下させず、また、ステージを傾斜させずに垂直な断面を持つ黒欠陥修正や白欠陥修正を実現することを目的とする。
【0007】
【課題を解決するための手段】
上記課題を解決するために、本願発明においては、試料に対して電子ビームを傾斜させると共に、前記傾斜した電子ビームに対して所望の角度に対物レンズのレンズ面を傾け、前記対物レンズにより集束され、かつ、傾斜した電子ビームを走査照射することにより修正部側面が垂直な側面を持つ修正を行うことを特徴とする。
また、上記フォトマスク欠陥修正方法において、前記垂直な側面を持つ修正の前に、試料に垂直な電子ビームを用いて粗加工を行うことを特徴とする。
【0008】
【発明の実施の形態】
電子ビームを用いたマスク欠陥修正装置に、図1に示すようなソレノイド2を内蔵した対物レンズ1を使用して、二段偏向系で所望の傾斜角になるように調整された電子ビームを入射したのち、ソレノイドコイル2でレンズ面を所望の傾斜角に傾けた状態で高分解能の斜め入射の電子ビームを得る技術(非特許文献1)を用いれば、ステージを傾斜させることなくステージを傾斜させたのと同等の効果が実現できる。レベンソンマスクのガラスのエッチングや、バイナリマスクの黒欠陥のCrのエッチングや、位相シフトマスクの黒欠陥のMoSiのエッチングには、フッ化キセノンを流しながら前記の傾斜させた電子ビームで欠陥領域のみ選択的に走査して欠陥の修正を行う。バイナリマスクや位相シフトマスクの白欠陥の修正時には、フェナントレンやピレンやナフタレンといった炭素含有遮光膜原料を流しながら、傾斜させた電子ビームで欠陥領域のみ選択的に走査して欠陥の修正を行う。
【0009】
また、水を流しながら電子ビームを照射することにより、レジスト等の有機物が除去できることが知られているので(例えば非特許文献2)、フェナントレンやピレンやナフタレンといった炭素含有遮光膜原料でガラス面にはみ出した遮光膜を形成しておき、この遮光膜側面を、水を流しながら、傾斜させた電子ビームで側面のエッチングを行い、垂直な側面に仕上げることでも白欠陥を修正できる。上記欠陥修正方法において、垂直な電子ビームを用いて粗加工を行い、引き続いてソレノイドコイルを働かせてビームを傾斜させて仕上げ加工を行って垂直なガラス断面を形成して欠陥を修正することもできる。
【0010】
上記の方法を用いれば、ビーム径を低下させずに加工できるので、修正精度を低下することもない。垂直な加工断面が得られるので、転写シミュレーションと実際の転写で線幅の一致の良い、欠陥修正個所のフォーカス特性の良い欠陥修正を実現できる。
【0011】
【実施例】
以下に、本発明を用いた実施例について説明する。
欠陥を含むフォトマスク(バイナリマスク、位相シフトマスク、レベンソンマスク)18を図3に示すような遮蔽膜原料ガスもしくはエッチング用のアシストガスを導入できる機構を備えた電子ビーム装置の真空チャンバ内に導入し、欠陥検査装置で検出された欠陥位置にXYステージ19を移動する。まず電子銃13から放出され数100V〜数kVまで加速され、コンデンサレンズ14で所望の開き角やプローブ電流になるように調整した電子ビームを、二段偏向系15で所望の傾斜角(<3°)になるように対物レンズ1への入射角を調整する。斜め入射した電子ビームをソレノイドコイル2でレンズ面を所望の傾斜角に傾けた対物レンズ1で集束し、フォトマスク18に走査照射したときに発生した二次電子17を走査に同期して二次電子検出器16で取りこみ、その二次電子像からマスクパターン5やガラス領域6と区別された白欠陥もしくは黒欠陥もしくはレベンソンマスクの欠陥の領域を認識する。
【0012】
バイナリマスクや位相シフトマスクの黒欠陥垂直側面加工の場合には、図2(a)に示すようにフォトマスク近傍に配置したガス銃8からフッ化キセノンを流しながら、傾斜させた電子ビーム4で認識した欠陥領域10のみ選択的に走査してCrもしくはMoSiの黒欠陥の修正を行う。
【0013】
バイナリマスクや位相シフトマスクの白欠陥垂直側面加工時には、図2(b)に示すようにフェナントレンやピレンやナフタレンといった炭素含有遮光膜原料をフォトマスク近傍に配置したガス銃9から流しながら、傾斜させた電子ビーム4で認識した欠陥領域11のみ選択的に走査して白欠陥の修正を行う。
【0014】
レベンソンマスクの垂直側面加工の場合にも、図2(c)に示すようにフォトマスク近傍に配置したガス銃8からフッ化キセノンを流しながら、傾斜させた電子ビーム4で認識した欠陥領域13のみ選択的に走査して欠陥の修正を行う。
【0015】
本発明を用いて他の実施例として、フェナントレンやピレンやナフタレンといった炭素含有遮光膜原料をフォトマスク近傍に配置したガス銃8から導入し、ガラス面にはみ出した遮光膜20を形成しておき(図4a)、この遮光膜側面をフォトマスク近傍に配置したガス銃22から水を流しながら、傾斜させた電子ビーム4で側面21のエッチングを行い、垂直な側面に仕上げることでも白欠陥を修正できる(図4b)。
【0016】
本発明を用いて他の実施例として、垂直な電子ビーム3を用いてフォトマスク近傍に配置したガス銃から適当なガスを流しながら粗加工を行い、欠陥を大まかに除去23(白欠陥の場合は膜付け)する(図5(a))。引き続いて粗加工で残った部分24(白欠陥の場合足らない部分)を認識し、ソレノイドコイルを働かせ傾斜させた電子ビーム4でフォトマスク近傍に配置したガス銃から適当なガスを流しながら仕上げ加工を行って(図5(b))、垂直な黒欠陥修正断面や白欠陥修正断面やガラス断面を形成することもできる。
【0017】
【発明の効果】
以上説明したように本発明によれば、電子ビームを用いたマスク欠陥修正装置に対物レンズ内にソレノイドを内蔵したレンズの傾斜技術を用いれば、ステージを傾斜させることなく垂直な断面を持つ加工を実現でき、転写シミュレーションと実際の転写で線幅の一致の良い、欠陥修正個所のフォーカス特性の良い欠陥修正を実現できる。
【図面の簡単な説明】
【図1】本発明の特徴を最もよく表す概略図である。
【図2】本発明の実施例を示す図である。(a)は黒欠陥修正に用いた場合、(b)は白欠陥修正に用いた場合、(c)はレベンソンマスクの欠陥修正に用いた場合である。
【図3】実施例を説明するためのソレノイドコイルを内臓した電子ビームマスク欠陥修正装置の概略図である。
【図4】白欠陥修正個所にエッチングを行って垂直断面を得る場合の説明図である。
【図5】垂直な電子ビームで粗加工を行い、傾斜した電子ビームで垂直断面仕上げ加工を行う場合の説明図である。
【符号の説明】
1…電磁型対物レンズ
2…ソレノイドコイル
3…垂直入射電子ビーム
4…傾斜した電子ビーム
5…マスクパターン
6…ガラス基板
7…欠陥修正個所
8…エッチング用ガス銃
9…遮光膜デポジション用ガス銃
10…黒欠陥修正個所
11…白欠陥修正個所
12…レベンソンマスクのガラス掘り込み部分の欠陥修正個所
13…電子銃
14…コンデンサレンズ
15…二段偏向系
16…二次電子検出器
17…二次電子
18…フォトマスク
19…XYステージ
20…ガラス部分にはみ出してつけた白欠陥修正遮光膜
21…白欠陥修正遮光膜のトリミング部分
22…炭素含有遮光膜エッチング用のエッチング
23…粗加工で取り除いた部分
24…粗加工で残った部分
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a high-quality correction method for a photomask defect using an electron beam processing apparatus.
[0002]
[Prior art]
The miniaturization of Si semiconductor integrated circuits is remarkable, and accordingly, the pattern dimensions on a photomask or reticle used for transfer are also becoming finer. Reduced projection exposure apparatuses have responded to this demand with higher NA and shorter wavelengths. At the present time when advancement of miniaturization is required, a phase shift mask, which is a kind of super-resolution technique, has been used in order to improve resolution and depth of focus while maintaining a reduced projection exposure apparatus. If there is a defect on the photomask or reticle, the defect will be transferred to the wafer and cause a reduction in yield. Therefore, the defect inspection system will check if there is a defect on the photomask or reticle before transferring the mask pattern to the wafer. The location is examined, and if a defect exists, a defect correction process is performed by a defect correction device before transferring the defect onto the wafer. Due to the technical trend as described above, it is required to cope with small defects in the defect correction of the photomask or reticle. Focused ion beam devices using a liquid metal Ga ion source have become the mainstream of mask correction devices instead of defect correction devices using lasers due to their fine processing dimensions. In the defect repair system using the above ion beam, at the time of white defect repair, a thin film is formed by decomposing only the ion beam narrowly focused on the source gas adsorbed on the surface (FIB-CVD), and black defect repair In some cases, high processing accuracy is realized by utilizing the sputtering effect by the focused ion beam or the effect of etching only the portion where the narrowly focused ion beam hits in the presence of the assist gas. (See Patent Document 1).
[0003]
[Patent Document 1]
Japanese Unexamined Patent Publication No. 03-015068 (page 2-3)
[Non-Patent Document 1]
By Koji Kimura, Kazuo Abe, Yukio Ishiba, Atsuko Tsuruga, Suzuki, etc., Nobuo Takachi, Masami Koike, Yuichiro Yamazaki
[Non-Patent Document 2]
KTKohlmann-von Platen and H. Bruenger J. Vac. Sci. Technol. B14 4262 p4262-4266 (1995)
[Problems to be solved by the invention]
With further progress in shortening the exposure wavelength of the reduction projection exposure apparatus in the future, the decrease in transmittance due to the injection of the focused ion beam into the glass substrate has become more problematic than ever. .
[0004]
Recently, a Levenson mask in which a glass substrate is dug has been introduced to improve resolution. It is required to correct defects in the glass engraved region of the Levenson mask with a defect correcting apparatus using an ion beam.
[0005]
There is an edge of the edge due to the opening angle of the beam at the defect correction location, and even if the defect correction location is optimized by transfer simulation using an optical microscope, the line width may differ in the actual transfer, The focus characteristic of the defect correction part was made worse. For this purpose, it is necessary to correct a defect having a vertical cross section of a normal pattern at both a white defect correction portion and a black defect correction portion of a binary mask or a phase shift mask. It is necessary to correct a defect with a vertical section similar to a normal pattern so that there is no difference in the CD value at 0/180 ° due to the side wall effect even for a glass-digged Levenson mask.
[0006]
It is known that if the stage is slightly tilted to correct the defect, a vertical cross section can be obtained. However, if the stage has a tilt function, there is a problem that the position accuracy of the stage is inevitably lowered.
The present invention solves the above problems and realizes black defect correction and white defect correction with a vertical cross section without reducing the transmittance and tilting the stage even after correcting the mask defect. Objective.
[0007]
[Means for Solving the Problems]
In order to solve the above problems, in the present invention, the electron beam is tilted with respect to the sample, and the lens surface of the objective lens is tilted at a desired angle with respect to the tilted electron beam and is focused by the objective lens. Further, the correction has a side surface in which the correction unit side surface is vertical by scanning and irradiating an inclined electron beam.
In the photomask defect correcting method, rough processing is performed using an electron beam perpendicular to the sample before the correction with the vertical side surface.
[0008]
DETAILED DESCRIPTION OF THE INVENTION
Using an objective lens 1 with a built-in solenoid 2 as shown in Fig. 1, an electron beam adjusted to have a desired tilt angle is incident on a mask defect repair system using an electron beam. After that, if a technique (non-patent document 1) for obtaining a high-resolution obliquely incident electron beam with the solenoid coil 2 tilting the lens surface to a desired tilt angle is used, the stage is tilted without tilting the stage. An effect equivalent to that of can be realized. For the Levenson mask glass etching, binary mask black defect Cr etching, and phase shift mask black defect MoSi etching, select only the defect region with the above-mentioned tilted electron beam while flowing xenon fluoride. Scanning to correct defects. When correcting a white defect in a binary mask or a phase shift mask, the defect is corrected by selectively scanning only a defect region with an inclined electron beam while flowing a carbon-containing light-shielding film material such as phenanthrene, pyrene, or naphthalene.
[0009]
In addition, it is known that organic substances such as resist can be removed by irradiating an electron beam while flowing water (for example, Non-Patent Document 2). Therefore, a glass-containing light-shielding film material such as phenanthrene, pyrene or naphthalene is applied to the glass surface. A white defect can also be corrected by forming a protruding light shielding film, etching the side surface of the light shielding film side surface with an inclined electron beam while flowing water, and finishing it to a vertical side surface. In the defect correction method, rough machining can be performed using a vertical electron beam, and subsequently the solenoid coil can be operated to tilt the beam and finish processing to form a vertical glass cross section to correct the defect. .
[0010]
If the above method is used, processing can be performed without reducing the beam diameter, so that the correction accuracy is not reduced. Since a vertical processing cross section can be obtained, it is possible to realize defect correction with a good focus characteristic at a defect correction portion with good line width matching between transfer simulation and actual transfer.
[0011]
【Example】
Examples using the present invention will be described below.
A photomask (binary mask, phase shift mask, Levenson mask) 18 including defects is introduced into a vacuum chamber of an electron beam apparatus having a mechanism capable of introducing a shielding film source gas or an etching assist gas as shown in FIG. Then, the XY stage 19 is moved to the defect position detected by the defect inspection apparatus. First, an electron beam emitted from the electron gun 13 and accelerated to several hundreds V to several kV and adjusted to have a desired opening angle and probe current by the condenser lens 14 is converted into a desired tilt angle (<3 Adjust the angle of incidence on the objective lens 1 so that The obliquely incident electron beam is focused by the solenoid coil 2 with the objective lens 1 whose lens surface is tilted to a desired tilt angle, and the secondary electrons 17 generated when the photomask 18 is scanned and irradiated are synchronized with the scanning to be secondary. A white defect, a black defect, or a Levenson mask defect area, which is captured by the electron detector 16 and distinguished from the mask pattern 5 and the glass area 6 from the secondary electron image, is recognized.
[0012]
In the case of black defect vertical side surface processing of a binary mask or a phase shift mask, as shown in FIG. 2 (a), an electron beam 4 tilted while flowing xenon fluoride from a gas gun 8 arranged in the vicinity of the photomask. Only the recognized defect area 10 is selectively scanned to correct the black defect of Cr or MoSi.
[0013]
When processing the white defect vertical side surface of the binary mask or phase shift mask, as shown in Fig. 2 (b), a carbon-containing light-shielding film material such as phenanthrene, pyrene or naphthalene is tilted while flowing from the gas gun 9 arranged in the vicinity of the photomask. Only the defect area 11 recognized by the electron beam 4 is selectively scanned to correct the white defect.
[0014]
Even in the case of vertical side surface processing of the Levenson mask, only the defect region 13 recognized by the tilted electron beam 4 while flowing xenon fluoride from the gas gun 8 arranged in the vicinity of the photomask as shown in FIG. The defect is corrected by selectively scanning.
[0015]
As another example using the present invention, a carbon-containing light-shielding film material such as phenanthrene, pyrene, or naphthalene is introduced from a gas gun 8 disposed in the vicinity of a photomask to form a light-shielding film 20 that protrudes from the glass surface ( 4a), white defects can also be corrected by etching the side surface 21 with a tilted electron beam 4 and finishing it to a vertical side surface while flowing water from a gas gun 22 in which the light shielding film side surface is arranged in the vicinity of the photomask. (Figure 4b).
[0016]
As another embodiment using the present invention, rough processing is performed while flowing an appropriate gas from a gas gun arranged in the vicinity of a photomask using a vertical electron beam 3 to roughly remove defects 23 (in the case of white defects) (Fig. 5 (a)). Subsequently, the remaining part 24 (the part that is not enough in the case of a white defect) is recognized by roughing, and finishing is performed while flowing an appropriate gas from a gas gun placed in the vicinity of the photomask with an electron beam 4 tilted by operating a solenoid coil. (FIG. 5 (b)), a vertical black defect correction cross section, a white defect correction cross section, and a glass cross section can be formed.
[0017]
【The invention's effect】
As described above, according to the present invention, a mask defect correcting apparatus using an electron beam can be processed with a vertical cross section without tilting the stage by using a lens tilting technique in which a solenoid is incorporated in the objective lens. It is possible to realize defect correction with good focus characteristics at a defect correction portion with good line width matching between transfer simulation and actual transfer.
[Brief description of the drawings]
FIG. 1 is a schematic diagram best representing the features of the present invention.
FIG. 2 is a diagram showing an embodiment of the present invention. (a) is used for black defect correction, (b) is used for white defect correction, and (c) is used for Levenson mask defect correction.
FIG. 3 is a schematic view of an electron beam mask defect correcting device incorporating a solenoid coil for explaining an embodiment.
FIG. 4 is an explanatory diagram in the case where a vertical section is obtained by etching a white defect correction portion.
FIG. 5 is an explanatory diagram when rough machining is performed with a vertical electron beam and vertical cross-section finishing is performed with an inclined electron beam.
[Explanation of symbols]
1 ... Electromagnetic objective lens
2 ... solenoid coil
3 ... Normally incident electron beam
4 ... Inclined electron beam
5 ... Mask pattern
6 ... Glass substrate
7 ... Defect correction points
8 ... Gas gun for etching
9 ... Gas gun for shielding film deposition
10 ... black defect correction point
11 ... white defect correction point
12 ... Defect correction point of the glass digging part of the Levenson mask
13 ... electron gun
14… Condenser lens
15 ... Two-stage deflection system
16 ... Secondary electron detector
17 ... Secondary electrons
18… Photomask
19… XY stage
20 ... White defect-correcting light-shielding film that protrudes from the glass
21… Trimming part of white defect correction shading film
22 ... Etching for etching carbon-containing light shielding film
23… Part removed by rough machining
24… Parts left by roughing

Claims (6)

円錐状の電子ビーム集束面が欠陥を含むフォトマスク面と垂直になるように電子ビーム加工装置の対物レンズを傾斜させ、電子ビームを走査照射して欠陥修正することにより修正部側面が垂直な側面を持つ修正を行うことを特徴とするフォトマスク欠陥修正方法。 The side surface of the correction portion is vertical by tilting the objective lens of the electron beam processing apparatus so that the conical electron beam focusing surface is perpendicular to the photomask surface including the defect, and scanning the electron beam to correct the defect. A method for correcting a photomask defect, comprising performing correction with 前記修正が、黒欠陥部をエッチングすることであることを特徴とする請求項1記載のフォトマスク欠陥修正方法。The modification, photomask defect correction method according to claim 1, wherein a is to etch the black defect. 前記修正がレベンソンマスクのガラス掘り込み領域の修正であることを特徴とする請求項1記載のフォトマスクの欠陥修正方法。  2. The photomask defect correcting method according to claim 1, wherein the correction is correction of a glass engraved region of the Levenson mask. 電子ビームを用いて白欠陥修正遮光膜を形成した後、円錐状の電子ビーム集束面がフォトマスク面と垂直になるように対物レンズのレンズ面を傾け、前記対物レンズにより集束され、かつ、傾斜した電子ビームを前記遮光膜側面に走査照射することにより修正部側面が垂直な側面を持つ修正を行うことを特徴とする請求項2または3に記載のフォトマスクの欠陥修正方法。After forming a white defect-correcting light-shielding film using an electron beam, the lens surface of the objective lens is tilted so that the conical electron beam focusing surface is perpendicular to the photomask surface , and is focused by the objective lens. 4. The method for correcting a defect in a photomask according to claim 2 or 3, wherein the correction part side surface is corrected by scanning and irradiating the side surface of the light shielding film with the electron beam. 請求項1からのいずれかに記載のフォトマスク欠陥修正方法において、前記垂直な側面を持つ修正の前に、試料に垂直な電子ビームを用いて粗加工を行うことを特徴とするフォトマスクの欠陥修正方法。A photomask defect correction method according to any one of claims 1 to 3, prior to the modification with the vertical sides, of the photomask and performing roughing with vertical electron beam to a sample Defect correction method. 電子ビームを用いたマスク欠陥修正装置を用いたフォトマスクの欠陥修正方法において、欠陥を含むフォトマスクに対して電子ビームを所望の傾斜角(<3°)となるように2段偏向系で電子ビームを傾斜させて対物レンズへの入射角を調整すると共に、該傾斜させた電子ビームをソレノイドを内蔵した対物レンズの該ソレノイドコイルを働かせて円錐状の電子ビーム集束面が垂直な修正部側面と平行になるように対物レンズ面を傾けることを特徴とする請求項1乃至5いずれかに記載のフォトマスクの欠陥修正方法。In a photomask defect repairing method using a mask defect repairing apparatus using an electron beam, the electron beam is irradiated with a two-stage deflection system so that the electron beam is at a desired tilt angle (<3 °) with respect to the photomask including the defect. The angle of incidence on the objective lens is adjusted by tilting the beam, and the tilted electron beam is actuated by the solenoid coil of the objective lens having a built-in solenoid so that the conical electron beam focusing surface is perpendicular to the side of the correction unit 6. The method for correcting a defect in a photomask according to claim 1, wherein the objective lens surface is inclined so as to be parallel.
JP2003084632A 2003-03-26 2003-03-26 Defect correction method for photomask Expired - Fee Related JP4219715B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003084632A JP4219715B2 (en) 2003-03-26 2003-03-26 Defect correction method for photomask

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003084632A JP4219715B2 (en) 2003-03-26 2003-03-26 Defect correction method for photomask

Publications (2)

Publication Number Publication Date
JP2004294613A JP2004294613A (en) 2004-10-21
JP4219715B2 true JP4219715B2 (en) 2009-02-04

Family

ID=33399761

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003084632A Expired - Fee Related JP4219715B2 (en) 2003-03-26 2003-03-26 Defect correction method for photomask

Country Status (1)

Country Link
JP (1) JP4219715B2 (en)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060147814A1 (en) * 2005-01-03 2006-07-06 Ted Liang Methods for repairing an alternating phase-shift mask
CN1892418B (en) * 2005-07-01 2010-06-09 联华电子股份有限公司 Method for verifying phase-shift angle of phase-shift photomask, photoengraving technology and phase-shift photomask
JP5048455B2 (en) * 2006-11-29 2012-10-17 エスアイアイ・ナノテクノロジー株式会社 Photomask defect correction apparatus and method
JP2008157673A (en) * 2006-12-21 2008-07-10 Sii Nanotechnology Inc Method for forming grasping surface of sample grasping member
KR100873154B1 (en) * 2008-01-30 2008-12-10 한국표준과학연구원 Apparatus and method for repairing photo mask
JP6020026B2 (en) * 2012-10-18 2016-11-02 大日本印刷株式会社 Method for correcting defect in template for nanoimprint lithography, and method for manufacturing template for nanoimprint lithography
JP6138454B2 (en) * 2012-10-29 2017-05-31 株式会社日立ハイテクノロジーズ Charged particle beam equipment
JP2014216365A (en) * 2013-04-23 2014-11-17 大日本印刷株式会社 Method for manufacturing nanoimprint lithography mask
JP6467862B2 (en) * 2014-10-22 2019-02-13 大日本印刷株式会社 Method for correcting mask for nanoimprint lithography and method for manufacturing mask for nanoimprint lithography
DE102019201468A1 (en) * 2019-02-05 2020-08-06 Carl Zeiss Smt Gmbh Device and method for repairing a photolithographic mask
DE102020208185A1 (en) * 2020-06-30 2021-12-30 Carl Zeiss Smt Gmbh Method and device for setting a side wall angle of a pattern element of a photolithographic mask

Also Published As

Publication number Publication date
JP2004294613A (en) 2004-10-21

Similar Documents

Publication Publication Date Title
US7662524B2 (en) Photolithography mask repair
JP4728553B2 (en) Method and apparatus for modifying a lithographic mask using a charged particle beam system
US6753538B2 (en) Electron beam processing
US5799104A (en) Mask defect repair system and method
JP4219715B2 (en) Defect correction method for photomask
JP2006032814A (en) Exposure method, method of adjusting pattern dimension, and method of obtaining defocusing amount
JP4550801B2 (en) Electron beam processing to repair the mask
US6030731A (en) Method for removing the carbon halo caused by FIB clear defect repair of a photomask
JP2004279461A (en) Secondary processing method for corrected part of photomask defect by charge particle mask defect correcting device
JP2000010260A (en) Method for correcting black defect of mask correction apparatus
JP2005260057A (en) Method for correcting black defect of mask for euv lithography
JP4426730B2 (en) Mask black defect correction method
JP3706055B2 (en) Method for correcting white defect of mask for EUV lithography
JP2004287321A (en) Method for correcting defect in photomask
JP2004309605A (en) Method of correcting defect in photomask
JP3706060B2 (en) Method for correcting black defect in mask for EUV lithography
JP4318839B2 (en) Defect correction device for phase shift mask
JP3908516B2 (en) Photomask defect repair device using ion beam
JP2004279539A (en) Secondary processing method for corrected part of photomask defect by charge particle mask defect correcting device
Lee Mask Repair
JP2003133203A (en) Method of correcting defect of stencil mask
JPH11109605A (en) Method for correcting exposure mask
Stewart et al. Issues in the repair of x-ray masks
Nakagawa et al. Recent Progress On Etching Technology With Fib In Photomask Repair

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051004

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080722

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080919

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20081111

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20081112

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111121

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4219715

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20091108

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111121

Year of fee payment: 3

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: R3D03

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111121

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121121

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121121

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131121

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131121

Year of fee payment: 5

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131121

Year of fee payment: 5

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131121

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131121

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees