JP2003133203A - Method of correcting defect of stencil mask - Google Patents

Method of correcting defect of stencil mask

Info

Publication number
JP2003133203A
JP2003133203A JP2001325230A JP2001325230A JP2003133203A JP 2003133203 A JP2003133203 A JP 2003133203A JP 2001325230 A JP2001325230 A JP 2001325230A JP 2001325230 A JP2001325230 A JP 2001325230A JP 2003133203 A JP2003133203 A JP 2003133203A
Authority
JP
Japan
Prior art keywords
stencil mask
defect
objective lens
mask
ion beam
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001325230A
Other languages
Japanese (ja)
Inventor
Osamu Takaoka
修 高岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Instruments Inc
Original Assignee
Seiko Instruments Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Instruments Inc filed Critical Seiko Instruments Inc
Priority to JP2001325230A priority Critical patent/JP2003133203A/en
Publication of JP2003133203A publication Critical patent/JP2003133203A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To remove a black defect on the side of a stencil mask and perform a black defect correction that prevents a white defect film from depositing from the side and a sag on the side thereof without slanting a stage. SOLUTION: The side of the stencil mask is selectively scanned by a grazing incidence ion beam or an electron beam 5 which is focused by a condenser lens 1 and deflected by a deflector 2a, which is above an objective lens 3, and forms a locking point 6 in the vicinity of the stencil mask by swinging back the objective lens 3. In the case of a black defect, the defect is removed by physical sputtering or gas assisted etching. In the case of a white defect, scattere containing carbon is formed on the mask for EPL by FIB-CVD or electron beam CVD from the side, and scattere containing platinum is formed on a mask for IPL, thus the defects being corrected. The above method is applied to a portion where the black defect is corrected by a vertical incidence ion beam (a portion that has a sag in a cross section), and the side is weighed according to the length and selectively scanned for the removal of the sag.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は電子線投影リソグラ
フィーやイオンビーム投影リソグラフィー用のステンシ
ルマスクの欠陥修正方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a stencil mask defect correction method for electron beam projection lithography and ion beam projection lithography.

【0002】[0002]

【従来の技術】現在KrFやArFエキシマレーザを用いた光
学式の投影露光装置がウェーハへのパターン転写に用い
られている。0.10μmルールまでは光学式の投影露光装
置で対応可能であるが、0.07μmルール以降では解像限
界に達するため、EB直描以外に電子線投影リソグラフィ
ー(Electron beam Projection Lithography、EPL)や低
エネルギー電子線投影リソグラフィー(Low Energy Elec
tron beam Projection Lithography、LEEPL)やイオンビ
ーム投影リソグラフィー(Ion beam Projection Lithogr
aphy、IPL)や軟X線縮小露光(Extreme Ultra Violet Lit
hography、EUVL)のような新しい転写方法が提案されて
いる。このうち、EPL、LEEPL、IPLではいずれも光学式
の投影露光装置で用いられているフォトマスク(遮光膜
0.1μm程度)ではなく0.5~4μmの厚さのステンシルマス
クが使用されている。ステンシルマスクにおいてもフォ
トマスク同様、マスクフォトマスクに欠陥が存在する
と、欠陥がウェーハに転写されて歩留まりを減少する原
因となるので、欠陥が存在する場合にはウェーハへ転写
する前に欠陥修正装置により欠陥修正処理を行わなけれ
ばならない。
2. Description of the Related Art At present, an optical projection exposure apparatus using a KrF or ArF excimer laser is used to transfer a pattern onto a wafer. Optical projection exposure equipment can be used up to the 0.10 μm rule, but since the resolution limit is reached after the 0.07 μm rule, electron beam projection lithography (Electron beam Projection Lithography, EPL) and low energy are used in addition to EB direct writing. Electron Beam Projection Lithography (Low Energy Elec
tron beam Projection Lithography (LEEPL) and ion beam projection lithography (Ion beam Projection Lithography)
aphy, IPL) and soft X-ray reduction exposure (Extreme Ultra Violet Lit
New transfer methods such as hography, EUVL) have been proposed. Of these, EPL, LEEPL, and IPL are all photomasks (light-shielding film) used in optical projection exposure equipment.
A stencil mask with a thickness of 0.5 to 4 μm is used instead of (about 0.1 μm). In the stencil mask as well as in the photo mask, if there is a defect in the mask photo mask, the defect will be transferred to the wafer and cause the yield to be reduced. Defect repair processing must be performed.

【0003】ステンシルマスクの欠陥修正に関しては、
IPL用とEPL用のそれぞれでイオンビームを用いた欠陥修
正方法が報告されている(EPL:J. Vac. Sci. Technol. B
18 3254(2000)、IPL: J. Vac. Sci. Technol. B17 3154
(1999))。いずれも白欠陥の修正に関しては、ステンシ
ルマスクの欠陥部位に図2のような橋かけする形でFIB-C
VDでEPL用マスクに対しては炭素含有膜を成長させて電
子線を散乱する散乱体を形成し、IPL用マスクに対して
は白金含有膜を成長させてイオンビームを散乱する散乱
体を形成することで修正している。黒欠陥に関しては、
イオンビームの物理的なスパッタで欠陥部位を選択的に
走査し除去することで行っている。
Regarding the defect correction of the stencil mask,
Defect repair methods using ion beams have been reported for both IPL and EPL (EPL: J. Vac. Sci. Technol. B
18 3254 (2000), IPL: J. Vac. Sci. Technol. B17 3154
(1999)). Regarding the correction of white defects, FIB-C was constructed by bridging the defect parts of the stencil mask as shown in Fig. 2.
With VD, a carbon-containing film is grown for an EPL mask to form a scatterer that scatters electron beams, and for an IPL mask, a platinum-containing film is grown to form a scatterer that scatters an ion beam. It is fixed by doing. Regarding black defects,
This is done by selectively scanning and removing the defective portion by physical sputtering of the ion beam.

【0004】しかしステンシルマスクの側面に図3(a)の
ような黒欠陥がある場合、従来の垂直入射したイオンビ
ームだとステンシルマスクの厚さに起因する焦点ボケと
ビームの開き角のため正確な欠陥の除去ができなかっ
た。黒欠陥のパターン欠陥の修正時にもビームの開き角
やビームプロファイルにより加工断面にだれが発生して
いた。このだれは欠陥の修正精度を低下する原因となっ
ていた。マスクを保持しているステージを傾ければ図3
(a)のような黒欠陥の正しい認識や修正、黒欠陥修正個
所の断面だれの補正が行えるが、傾斜可能なステージで
は平面二軸のステージほど高精度な位置決めを行うこと
ができない。また図4(a)のような白欠陥がある場合は、
欠陥部位に橋かけする形でしか欠陥修正することができ
なかった。マスクを保持しているステージを傾ければ白
欠陥の修正が行えるが、傾斜可能なステージでは平面二
軸のステージほど高精度な位置決めを行うことができな
い。橋かけ構造では、数μm厚のステンシルマスクに数
μm厚の膜を形成するため、欠陥の高精度の修正や修正
後の欠陥検査機でのチェックにおいて高さの違いに起因
する様々な問題が生じてしまう。マスクを保持している
ステージを傾ければ段差のない形で白欠陥の修正が行え
るが、上記同様傾斜可能なステージでは平面二軸のステ
ージほど高精度な位置決めを行うことができない。その
上、ステージを傾斜したときの干渉を避けるために原料
ガス供給系や二次電子(二次イオン)検出器を同時にマス
クの近くに配置することができなくなってしまう。原料
ガス供給系を遠ざけるとガス供給量を稼ぐためにガス圧
を高くしなければならず、二次電子(二次イオン)検出器
を遠ざけるとS/Nが低下し像質が低下してしまう。
However, when there is a black defect on the side surface of the stencil mask as shown in FIG. 3 (a), a conventional vertically incident ion beam is accurate due to defocusing due to the thickness of the stencil mask and the beam divergence angle. It was not possible to remove various defects. Even when the pattern defect of the black defect was corrected, the sagging occurred in the processed cross section due to the beam divergence angle and the beam profile. This caused the defect correction accuracy to decrease. If you tilt the stage holding the mask,
Although it is possible to correctly recognize and correct the black defect and correct the cross-section sag at the black defect correction point as shown in (a), it is not possible to perform the positioning with high accuracy in the tiltable stage as in the plane biaxial stage. If there is a white defect as shown in Fig. 4 (a),
The defect could be repaired only by bridging the defect site. Although the white defect can be corrected by tilting the stage holding the mask, the tiltable stage cannot perform positioning with a higher degree of accuracy than the planar biaxial stage. In the cross-linking structure, since a film with a thickness of several μm is formed on a stencil mask with a thickness of several μm, there are various problems due to the difference in height when correcting defects with high accuracy and after checking with a defect inspection machine. Will occur. Although the white defect can be corrected without any step by tilting the stage holding the mask, the tiltable stage cannot perform the positioning with high accuracy as in the case of the biaxial planar plane. In addition, the source gas supply system and the secondary electron (secondary ion) detector cannot be placed near the mask at the same time in order to avoid interference when the stage is tilted. When the raw material gas supply system is moved away, the gas pressure must be increased in order to increase the gas supply amount, and when the secondary electron (secondary ion) detector is moved away, the S / N decreases and the image quality deteriorates. .

【0005】[0005]

【発明が解決しようとする課題】本発明は、ステージを
傾斜させずに、ステンシルマスクの側面の黒欠陥除去と
側面からの白欠陥膜成長と側面のだれのない黒欠陥修正
を可能にしようとするものである。
SUMMARY OF THE INVENTION The present invention is intended to enable removal of black defects on the side surface of a stencil mask, growth of a white defect film from the side surface, and correction of a black defect on the side surface without sagging without tilting the stage. To do.

【0006】[0006]

【課題を解決するための手段】走査電子顕微鏡で深いホ
ールや突起の側面を観察するために、ビームロッキング
法を用いた方法が報告されている(例えばRev. Sci. Ins
trum. 67 1458(1996))。この手法をコンデンサレンズと
対物レンズの間に二段偏向系を有する走査イオン顕微鏡
に適応し、修正個所決めのステンシルマスクの側壁の観
察や物理スパッタによる黒欠陥除去と白欠陥修正用の原
料ガスもしくは黒欠陥修正用のアシストガスを流しなが
ら選択領域のみ走査することにより側壁の白欠陥や黒欠
陥の修正を行う。この手法をコンデンサレンズと対物レ
ンズの間に二段偏向系を有する走査電子顕微鏡に適応し
た場合には、修正個所決めのステンシルマスクの側壁の
観察と白欠陥修正用の原料ガスを流しながら選択領域の
み走査することにより側壁の白欠陥の修正を行う。
[Means for Solving the Problems] A method using a beam locking method for observing the side surface of a deep hole or a protrusion with a scanning electron microscope has been reported (for example, Rev. Sci. Ins.
trum. 67 1458 (1996)). This method is applied to a scanning ion microscope having a two-stage deflection system between a condenser lens and an objective lens, and observation of the side wall of a stencil mask where the correction is determined and removal of black defects by physical sputtering and correction of raw material gas for white defects or White defects and black defects on the sidewall are corrected by scanning only the selected area while flowing the assist gas for black defect correction. When this method is applied to a scanning electron microscope having a two-stage deflection system between a condenser lens and an objective lens, the side wall of a stencil mask where the correction is determined is observed and the source gas for the white defect correction is made to flow while the selected area is selected. The white defect on the side wall is corrected by scanning only.

【0007】側面のだれのない黒欠陥修正を実現するた
めに、垂直入射したイオンビームで黒欠陥を修正したス
テンシルマスクの断面にビームロッキング法を用いて深
さに応じて重みを付けて選択的に側面をイオンビームで
走査してだれの除去を行う。断面のだれの除去は物理ス
パッタもしくはアシストガスを流しながらのガスアシス
トエッチングにより行う。
In order to realize the black defect correction without side sagging, the cross section of the stencil mask in which the black defect is corrected by the vertically incident ion beam is selectively weighted according to the depth by using the beam locking method. Then, the side surface is scanned with an ion beam to remove anyone. The sag on the cross section is removed by physical sputtering or gas-assisted etching while flowing an assist gas.

【0008】[0008]

【作用】ビームロッキング法は図1のように二段偏向の
一段のみでビームを走査し、フォーカスはコンデンサレ
ンズで行う。対物レンズは試料近くに偏向支点(ロッキ
ングポイント)を設定するために用いられる。ビームロ
ッキング法では図1のようにフォーカスしたビームを斜
めに入射できるので、走査して信号を取りこめば、試料
を傾けなくてもステンシルマスクの側面の観察を行うこ
とができる。欠陥領域を特定し、欠陥領域のみ選択的に
イオンビームを走査すれば、側面の黒欠陥を除去するこ
とができる。材料に応じたアシストガスを用いてガスア
シストエッチングを行えば、増速効果により短時間で加
工することができる。白欠陥修正用の散乱体の原料ガス
を流しながらイオンビームもしくは電子ビームを欠陥領
域のみ選択的に走査すれば、側面からの白欠陥膜成長が
行える。ステージを傾斜しないため、高精度な位置決め
を行うことができ、ガス供給系や検出器もマスクの近く
に配置することができる。
[Function] In the beam locking method, the beam is scanned by only one stage of the two-stage deflection as shown in FIG. 1, and the focusing is performed by the condenser lens. The objective lens is used to set a deflection fulcrum (locking point) near the sample. In the beam locking method, the focused beam can be incident obliquely as shown in FIG. 1, so that the side surface of the stencil mask can be observed without inclining the sample by scanning and capturing signals. The black defect on the side surface can be removed by specifying the defective region and selectively scanning the defective region with the ion beam. If gas-assisted etching is performed using an assist gas according to the material, it is possible to process in a short time due to the speed-up effect. By selectively scanning only the defect region with the ion beam or the electron beam while flowing the raw material gas of the scatterer for correcting the white defect, the white defect film can be grown from the side surface. Since the stage is not tilted, highly accurate positioning can be performed, and the gas supply system and the detector can be arranged near the mask.

【0009】またビームロッキング法では側面のみ選択
的に走査することができるので、垂直入射のイオンビー
ムで黒欠陥を修正したときに起こる断面のだれも深さに
応じて走査回数に重みを付けて側面を走査すれば物理ス
パッタによりだれの部分を取り除くことが可能である。
材料に応じたアシストガスを用いることにより、化学的
な効果でエッチングを増速でき加工時間を短縮すること
ができる。
In the beam locking method, only the side surface can be selectively scanned. Therefore, the number of scans is weighted according to the depth of any cross section that occurs when a black defect is corrected by a vertically incident ion beam. By scanning the side surface, it is possible to remove any part by physical sputtering.
By using the assist gas according to the material, the etching can be accelerated by the chemical effect and the processing time can be shortened.

【0010】[0010]

【発明の実施の形態】以下に、イオンビーム欠陥修正装
置を用いた場合の本発明の一実施例について説明する。
欠陥を含むステンシルマスクを図5に示すようなイオン
ビーム欠陥修正装置の真空チャンバ内に導入し、XYステ
ージに搭載されたステンシルマスク4上の欠陥を、イオ
ン源11から放出され20~30kVに加速されたイオンビーム1
4を静電型のコンデンサレンズ12の電界により集束し、
二段偏向器の上側の偏向器2で偏向させ、静電型の対物
レンズ13の電界で振り戻してステンシルマスク4の側面
に入射し、二次イオン検出器もしくは二次電子検出器15
でマスク側面から発生した二次イオンまたは二次電子16
を走査に同期して取り込み、二次イオン像もしくは二次
電子像を表示する。この像から図3(a)や図4(a)に示すよ
うな側面の欠陥領域を認識する。走査範囲は対物レンズ
13のビームロッキングポイントの設定と上側偏向器2の
偏向量の組み合わせで決まる。
BEST MODE FOR CARRYING OUT THE INVENTION An embodiment of the present invention using an ion beam defect repairing apparatus will be described below.
A stencil mask containing defects is introduced into the vacuum chamber of the ion beam defect repair device as shown in Fig. 5, and the defects on the stencil mask 4 mounted on the XY stage are emitted from the ion source 11 and accelerated to 20 to 30 kV. Ion beam 1
4 is focused by the electric field of the electrostatic condenser lens 12,
It is deflected by the deflector 2 on the upper side of the two-stage deflector, is swung back by the electric field of the electrostatic objective lens 13 and is incident on the side surface of the stencil mask 4, and the secondary ion detector or the secondary electron detector 15
Secondary ion or secondary electron generated from the side of the mask at 16
Are captured in synchronization with scanning to display a secondary ion image or a secondary electron image. From this image, a defect region on the side surface as shown in FIG. 3 (a) or 4 (a) is recognized. Scanning range is objective lens
It is determined by the combination of the setting of 13 beam locking points and the deflection amount of the upper deflector 2.

【0011】図3(a)に示すような黒欠陥領域9に対して
は、欠陥領域のみ選択的にイオンビームを走査して図3
(b)に示すように側面の黒欠陥を物理スパッタにより除
去する。もちろんガス銃10をステンシルマスクに近づけ
ステンシルマスク材料に応じたアシストガスを流してガ
スアシストエッチングを行いその増速効果により短時間
で加工することもできる。図4(a)に示すような白欠陥領
域8に対しては、EPL(LEEPL)用のマスクの場合は炭素を
含有した原料ガス(例えばフェナントレン)を流しながら
イオンビームを欠陥領域のみ選択的に走査して側面から
図4(b)に示すような炭素含有膜の散乱体7の成長を行
う。IPL用のマスクの場合は白金を含有した原料ガス(例
えば(CH3)3(CH3C5H4)Pt)もしくはタングステンを含有し
た原料ガス(例えばW(CO)6)を流しながらイオンビームを
欠陥領域のみ選択的に走査して側面から図4(b)に示すよ
うな白金もしくはタングステン含有膜の散乱体7の成長
を行う。
For the black defect area 9 as shown in FIG. 3 (a), only the defect area is selectively scanned with an ion beam.
As shown in (b), the black defect on the side surface is removed by physical sputtering. Of course, the gas gun 10 may be brought close to the stencil mask to flow an assist gas according to the material of the stencil mask to perform gas-assisted etching, and it is possible to process in a short time due to the speed-up effect. For the white defect region 8 as shown in FIG. 4 (a), in the case of a mask for EPL (LEEPL), the ion beam is selectively supplied only to the defect region while flowing a carbon-containing source gas (for example, phenanthrene). The carbon-containing film scatterer 7 as shown in FIG. 4 (b) is grown from the side by scanning. Raw material gas when the mask containing platinum for IPL (e.g. (CH 3) 3 (CH 3 C 5 H 4) Pt) or raw material gas containing tungsten (e.g. W (CO) 6) is flowed while the ion beam Are selectively scanned only in the defect region to grow a scatterer 7 of a platinum- or tungsten-containing film as shown in FIG. 4 (b) from the side surface.

【0012】次に炭素含有ガスを導入できる走査型電子
顕微鏡を用いた場合の本発明の一実施例について説明す
る。イオンビーム欠陥修正装置同様、欠陥を含むステン
シルマスクを図6に示すような走査型電子顕微鏡の真空
チャンバ内に導入し、XYステージに搭載されたステンシ
ルマスク4上の欠陥を、電子源21から放出され15kV〜20k
Vに加速された電子ビーム24を電磁型のコンデンサレン
ズ22の磁場により集束し、二段偏向器の上側の偏向器2a
のみで偏向し、電磁型の対物レンズで振り戻してステン
シルマスク4の側面に入射し、二次電子検出器25で側面
から発生した二次電子26を走査に同期して取り込み、二
次電子像を表示する。ビームロッキング法では対物レン
ズの励磁条件が通常の観察時と異なるので、回転角を補
正して表示する。この像から図4(a)に示すような白欠陥
領域8を認識する。走査範囲は下側偏向器の振り幅と対
物レンズで決まる。白欠陥領域8に対して、ガス銃10を
近づけEPL(LEEPL)用のマスクの場合は炭素を含有した原
料ガスを流しながら電子ビーム24を欠陥領域のみ選択的
に走査して側面から図4(b)に示すような炭素含有膜の散
乱体7の成長を行う。IPL用のマスクの場合は白金を含有
した原料ガス(例えばC5H5Pt(CH3)3)もしくはタングステ
ンを含有した原料ガス(例えばW(CO)6)を流しながら電子
ビーム24を欠陥領域のみ選択的に走査して側面から図4
(b)に示すような白金もしくはタングステン含有膜の散
乱体7の成長を行う。
Next, an embodiment of the present invention using a scanning electron microscope capable of introducing a carbon-containing gas will be described. Similar to the ion beam defect repair device, a stencil mask containing defects is introduced into the vacuum chamber of the scanning electron microscope as shown in FIG. 6, and the defects on the stencil mask 4 mounted on the XY stage are emitted from the electron source 21. 15kV ~ 20k
The electron beam 24 accelerated to V is focused by the magnetic field of the electromagnetic condenser lens 22, and the upper deflector 2a of the two-stage deflector is deflected.
The secondary electron image is reflected by the electromagnetic objective lens, is incident on the side surface of the stencil mask 4, and is incident on the side surface of the stencil mask 4. Is displayed. In the beam locking method, the excitation condition of the objective lens is different from that in normal observation, so the rotation angle is corrected and displayed. From this image, a white defect area 8 as shown in FIG. 4 (a) is recognized. The scanning range is determined by the swing width of the lower deflector and the objective lens. In the case of a mask for EPL (LEEPL) by bringing the gas gun 10 close to the white defect region 8, the electron beam 24 is selectively scanned only in the defect region while flowing the raw material gas containing carbon, and FIG. The scatterer 7 of the carbon-containing film as shown in b) is grown. In the case of a mask for IPL, the electron beam 24 is applied to the defect area while flowing a source gas containing platinum (for example, C 5 H 5 Pt (CH 3 ) 3 ) or a source gas containing tungsten (for example, W (CO) 6 ). Only Selectively Scan from Side View 4
The platinum- or tungsten-containing film scatterer 7 as shown in (b) is grown.

【0013】次に通常の黒欠陥修正の仕上げ加工に本方
法を適応した場合について説明する。まず垂直入射した
イオンビームで断面のだれの影響を考慮した黒欠陥を修
正を行う(図7(a))。次にビームの開き角やビームプロフ
ァイルにより加工断面にだれ28が生じた個所を、ビーム
ロッキング法を用いて深さ方向とだれの関係(図8(a))を
側面位置と走査回数の関係(図8(b))に変換してステンシ
ルマスクの側面を選択的走査してだれの部分を除去する
ことにより断面にだれのない黒欠陥修正を行う(図7
(b))。
Next, a case where the present method is applied to a normal finishing process for correcting a black defect will be described. First, a black defect is repaired by taking into consideration the influence of cross-section sag with a vertically incident ion beam (Fig. 7 (a)). Next, using the beam rocking method, the relationship between the depth direction and the sag (Fig. Converted to Fig. 8 (b)) and selectively scan the side surface of the stencil mask to remove the portion of the stencil, thereby repairing the black defect with no sag in the cross section (Fig. 7).
(b)).

【0014】図1からもわかるように、ビームロッキン
グ法では対物レンズではなくコンデンサレンズで集束す
るのに加えて、ビームが対物レンズの中心を通らないた
めに収差により分解能が低下してしまうという問題があ
るが、対物レンズの中心を通らないことに起因する収差
は、IBMにより提案されたCurvilinear Variable AxisLe
ns(CVAL)のような収差補正技術を用いて最適化すれば、
分解能の低下を改善することができる。
As can be seen from FIG. 1, in the beam locking method, not only the objective lens is used for focusing but also the beam is not passed through the center of the objective lens, so that the resolution is lowered by the aberration. However, the aberration caused by not passing through the center of the objective lens is the Curvilinear Variable Axis Le proposed by IBM.
If you optimize using aberration correction technology like ns (CVAL),
The reduction in resolution can be improved.

【0015】[0015]

【発明の効果】以上説明したように、この発明によれ
ば、ステージを傾斜させずにステンシルマスクの側面の
黒欠陥除去と側面からの白欠陥膜修正を行うことができ
る。またこの発明を黒欠陥修正の仕上げ加工に用いれ
ば、側面のだれのない黒欠陥修正を行うことができる。
As described above, according to the present invention, the black defect on the side surface of the stencil mask can be removed and the white defect film can be repaired from the side surface without tilting the stage. Further, if the present invention is applied to the finish processing for black defect correction, it is possible to perform black defect correction without side sagging.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の特徴を最も良く示す概念図である。FIG. 1 is a conceptual diagram that best shows the features of the present invention.

【図2】従来の白欠陥修正方法を示す概略断面図であ
る。
FIG. 2 is a schematic cross-sectional view showing a conventional white defect correction method.

【図3】黒欠陥の修正方法を説明する概略断面図であ
る。
FIG. 3 is a schematic cross-sectional view illustrating a method of correcting a black defect.

【図4】白欠陥の修正方法を説明する概略断面図であ
る。
FIG. 4 is a schematic cross-sectional view illustrating a method of correcting a white defect.

【図5】本発明をイオンビーム欠陥修正装置に適応した
場合を説明するための概略図である。
FIG. 5 is a schematic diagram for explaining a case where the present invention is applied to an ion beam defect repairing device.

【図6】本発明を炭素含有ガスを導入できる走査型電子
顕微鏡に適応した場合を説明するための概略図である。
FIG. 6 is a schematic diagram for explaining a case where the present invention is applied to a scanning electron microscope capable of introducing a carbon-containing gas.

【図7】本発明を黒欠陥加工断面のだれの補正に適応し
た場合を説明する概略断面図である。
FIG. 7 is a schematic cross-sectional view illustrating a case where the present invention is applied to correction of sag of a black defect processing cross section.

【図8】深さ方向とだれの関係を側面位置と走査回数の
関係への変換を示す図である。
FIG. 8 is a diagram showing conversion of a relationship between a depth direction and a droop into a relationship between a side surface position and the number of scans.

【符号の説明】[Explanation of symbols]

1 コンデンサレンズ 2a 上段偏向器 2b 下段偏向器 3 対物レンズ 4 ステンシルマスク 5 イオンビームまたは電子ビーム 6 ロッキングポイント 7 炭素含有膜でできた散乱体 8 白欠陥領域 9 黒欠陥領域 10 ガス銃 11 イオン源 12 静電型コンデンサレンズ 13 静電型対物レンズ 14 イオンビーム 15 二次イオン検出器または二次電子検出器 16 二次イオンまたは二次電子 21 電子源 22 電磁型コンデンサレンズ 23 電磁型対物レンズ 24 電子ビーム 25 二次電子検出器 26 二次電子 27 垂直入射イオンビームで黒欠陥を修正した領域 28 垂直入射イオンビームで黒欠陥を修正したときの断
面のだれ
1 Condenser lens 2a Upper deflector 2b Lower deflector 3 Objective lens 4 Stencil mask 5 Ion beam or electron beam 6 Rocking point 7 Scatterer made of carbon-containing film 8 White defect region 9 Black defect region 10 Gas gun 11 Ion source 12 Electrostatic condenser lens 13 Electrostatic objective lens 14 Ion beam 15 Secondary ion detector or secondary electron detector 16 Secondary ion or secondary electron 21 Electron source 22 Electromagnetic condenser lens 23 Electromagnetic objective lens 24 Electron beam 25 Secondary electron detector 26 Secondary electron 27 Area where black defect is corrected by vertically incident ion beam 28 Dullness of cross section when black defect is corrected by vertically incident ion beam

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 イオンビームによる欠陥修正装置におい
て、対物レンズの上方にある偏向器により偏向し、対物
レンズの振り戻しによりステンシルマスク近傍に偏向支
点を形成する斜入射イオンビームを用いてステンシルマ
スクの側面の黒欠陥を物理的なスパッタリングで修正す
ることを特徴とするステンシルマスクの黒欠陥修正方
法。
1. A defect repairing apparatus using an ion beam, wherein a deflector located above an objective lens is used to deflect, and an obliquely incident ion beam is used to form a deflection fulcrum near the stencil mask by swinging back the objective lens. A black defect repair method for a stencil mask, which comprises repairing a black defect on a side surface by physical sputtering.
【請求項2】 請求項1記載の黒欠陥修正方法におい
て、対物レンズの上方にある偏向器により偏向し、対物
レンズの振り戻しによりステンシルマスク近傍に偏向支
点を形成する斜入射イオンビームを用いてステンシルマ
スクの側面の黒欠陥をガスアシストエッチングで修正す
ることを特徴とするステンシルマスクの黒欠陥修正方
法。
2. The method of correcting a black defect according to claim 1, wherein an obliquely incident ion beam is used, which is deflected by a deflector above an objective lens, and a deflection fulcrum is formed near a stencil mask by swinging back the objective lens. A method for repairing a black defect in a stencil mask, which comprises repairing a black defect on a side surface of the stencil mask by gas-assisted etching.
【請求項3】 請求項1記載の黒欠陥修正方法におい
て、垂直入射のビームによる黒欠陥修正時の断面のだれ
を、対物レンズの上方にある偏向器により偏向し、対物
レンズの振り戻しによりステンシルマスク近傍に偏向支
点を形成する斜入射イオンビームを用いてだれの形状に
応じて選択的に走査・除去して断面のだれのないステン
シルマスクの黒欠陥修正を行うことを特徴とするステン
シルマスクの黒欠陥修正方法。
3. The stencil according to claim 1, wherein a sag of a cross section when a black defect is repaired by a vertically incident beam is deflected by a deflector above the objective lens, and the objective lens is swung back. A stencil mask characterized by performing a black defect correction on a stencil mask with no cross-section sag by selectively scanning and removing according to the shape of the droop using an obliquely incident ion beam that forms a deflection fulcrum near the mask. How to fix black defects.
【請求項4】 イオンビームによる欠陥修正装置におい
て、対物レンズの上方にある偏向器により偏向し、対物
レンズの振り戻しによりステンシルマスク近傍に偏向支
点を形成する斜入射イオンビームを用いてステンシルマ
スクの白欠陥をFIB-CVD法で側面から成長させて修正す
ることを特徴とするステンシルマスクの白欠陥修正方
法。
4. An ion beam defect repairing apparatus, wherein a stencil mask is formed by using an oblique incidence ion beam that is deflected by a deflector above an objective lens and forms a deflection fulcrum near the stencil mask by swinging back the objective lens. A method for repairing white defects in a stencil mask, which comprises repairing white defects by growing them from the side by FIB-CVD.
【請求項5】 炭素含有ガスを導入できる走査型電子顕
微鏡において、対物レンズの上方にある偏向器により偏
向し、対物レンズの振り戻しによりステンシルマスク近
傍に偏向支点を形成する斜入射電子ビームを用いてステ
ンシルマスクの白欠陥を電子ビームCVD法で側面から成
長させて修正することを特徴とするステンシルマスクの
白欠陥修正方法。
5. A scanning electron microscope capable of introducing a carbon-containing gas, using an obliquely incident electron beam which is deflected by a deflector above an objective lens and forms a deflection fulcrum near a stencil mask by swinging back the objective lens. A stencil mask white defect repairing method characterized by growing a white defect of a stencil mask by laterally growing it by an electron beam CVD method.
JP2001325230A 2001-10-23 2001-10-23 Method of correcting defect of stencil mask Pending JP2003133203A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001325230A JP2003133203A (en) 2001-10-23 2001-10-23 Method of correcting defect of stencil mask

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001325230A JP2003133203A (en) 2001-10-23 2001-10-23 Method of correcting defect of stencil mask

Publications (1)

Publication Number Publication Date
JP2003133203A true JP2003133203A (en) 2003-05-09

Family

ID=19141831

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001325230A Pending JP2003133203A (en) 2001-10-23 2001-10-23 Method of correcting defect of stencil mask

Country Status (1)

Country Link
JP (1) JP2003133203A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007533089A (en) * 2004-04-15 2007-11-15 ナヴォテック・ゲーエムベーハー Apparatus and method for investigating or modifying a surface with a beam of charged particles
WO2013039891A1 (en) * 2011-09-12 2013-03-21 Fei Company Glancing angle mill
WO2022002931A1 (en) * 2020-06-30 2022-01-06 Carl Zeiss Smt Gmbh Method and apparatus for setting a side wall angle of a pattern element of a photolithographic mask

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007533089A (en) * 2004-04-15 2007-11-15 ナヴォテック・ゲーエムベーハー Apparatus and method for investigating or modifying a surface with a beam of charged particles
JP4812749B2 (en) * 2004-04-15 2011-11-09 ナヴォテック・ゲーエムベーハー Apparatus and method for investigating or modifying a surface with a beam of charged particles
JP2011253816A (en) * 2004-04-15 2011-12-15 Nawotec Gmbh Apparatus and method for inspecting or modifying surface with beam of charged particles
WO2013039891A1 (en) * 2011-09-12 2013-03-21 Fei Company Glancing angle mill
US9941096B2 (en) 2011-09-12 2018-04-10 Fei Company Glancing angle mill
WO2022002931A1 (en) * 2020-06-30 2022-01-06 Carl Zeiss Smt Gmbh Method and apparatus for setting a side wall angle of a pattern element of a photolithographic mask

Similar Documents

Publication Publication Date Title
US7662524B2 (en) Photolithography mask repair
US5591970A (en) Charged beam apparatus
US6838668B2 (en) System for imaging a cross-section of a substrate
JP2003195481A (en) Method and device for correcting photomask
JP2010073695A (en) Distortion compensation method in particle-optical device
JP2020129534A (en) Device and method for determining position of element on photolithographic mask
US6403971B1 (en) Beam-adjustment methods and apparatus for charged-particle-beam microlithography
TW202043913A (en) Apparatus and method for repairing a photolithographic mask
JP4219715B2 (en) Defect correction method for photomask
TWI816149B (en) Method and apparatus for setting at least one side wall angle of at least one pattern element of photolithographic mask, method and apparatus for examining at least one defect of photolithographic mask using at least one massive particle beam, and computer programs comprising instructions
US4924104A (en) Ion beam apparatus and method of modifying substrate
JP2003133203A (en) Method of correcting defect of stencil mask
US5180919A (en) Electron beam exposure system having the capability of checking the pattern of an electron mask used for shaping an electron beam
JP3706055B2 (en) Method for correcting white defect of mask for EUV lithography
JP2000010260A (en) Method for correcting black defect of mask correction apparatus
JP2004279461A (en) Secondary processing method for corrected part of photomask defect by charge particle mask defect correcting device
JP2005260057A (en) Method for correcting black defect of mask for euv lithography
JP4845452B2 (en) Sample observation method and charged particle beam apparatus
JP4308480B2 (en) Defect correction method for Levenson type phase shift mask
JP3706060B2 (en) Method for correcting black defect in mask for EUV lithography
JP4446826B2 (en) Defect correction method and apparatus for electron beam projection exposure membrane mask
US7060397B2 (en) EPL mask processing method and device thereof
JP3168032B2 (en) Electron beam exposure apparatus and method for inspecting drawing pattern
JP2006093579A (en) Mask inspecting apparatus and method, and electron-beam exposure system
Edinger et al. Application of electron-beam induced processes to mask repair

Legal Events

Date Code Title Description
RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20040304

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20040526

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040706

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060424

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060509

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060710

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20060905