JP4367350B2 - Heat pump water heater - Google Patents

Heat pump water heater Download PDF

Info

Publication number
JP4367350B2
JP4367350B2 JP2005028732A JP2005028732A JP4367350B2 JP 4367350 B2 JP4367350 B2 JP 4367350B2 JP 2005028732 A JP2005028732 A JP 2005028732A JP 2005028732 A JP2005028732 A JP 2005028732A JP 4367350 B2 JP4367350 B2 JP 4367350B2
Authority
JP
Japan
Prior art keywords
hot water
heat
water
storage tank
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005028732A
Other languages
Japanese (ja)
Other versions
JP2006214659A (en
Inventor
立群 毛
竹司 渡辺
昌宏 尾浜
誠一 安木
一彦 丸本
哲英 倉本
隆幸 高谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP2005028732A priority Critical patent/JP4367350B2/en
Publication of JP2006214659A publication Critical patent/JP2006214659A/en
Application granted granted Critical
Publication of JP4367350B2 publication Critical patent/JP4367350B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Heat-Pump Type And Storage Water Heaters (AREA)

Description

本発明は、ヒートポンプ給湯装置に関するものである。   The present invention relates to a heat pump water heater.

従来のヒートポンプ給湯装置として、図7に示すように、1は冷媒が循環してヒートポンプサイクル運転を行う冷媒回路、この冷媒回路1では、圧縮機2と冷媒対水熱交換器3と蒸発器4とを含んでいる。5は冷媒対水熱交換器3で加熱された高温の湯を貯留する貯湯タンク、6はこの貯湯タンク5の頭頂部に設けた出湯管、7は貯湯タンク5の頭頂部から湯を取り出す温水行路、8は温水行路7と連通し温水を貯湯タンク5に戻す温水復路、9は温水行路7と温水復路8との間に位置し温水を駆動する循環ポンプである。10は温水復路8と隣接するところに設けた中間出湯管である。   As a conventional heat pump hot water supply apparatus, as shown in FIG. 7, reference numeral 1 denotes a refrigerant circuit in which refrigerant circulates and performs a heat pump cycle operation. In this refrigerant circuit 1, a compressor 2, a refrigerant-to-water heat exchanger 3, and an evaporator 4 are used. Including. 5 is a hot water storage tank for storing hot water heated by the refrigerant-to-water heat exchanger 3, 6 is a hot water pipe provided at the top of the hot water storage tank 5, and 7 is hot water for extracting hot water from the top of the hot water storage tank 5. Reference numeral 8 denotes a hot water return path that communicates with the hot water path 7 and returns the hot water to the hot water storage tank 5, and 9 is a circulation pump that is located between the hot water path 7 and the hot water return path 8 and drives the hot water. Reference numeral 10 denotes an intermediate hot water pipe provided adjacent to the hot water return path 8.

11は放熱端末12を含む熱媒回路で、13はこの熱媒回路中の熱媒を駆動するポンプ、14は温水行路7からの湯と熱媒回路の熱媒とを熱交換を行う熱交換器である。   11 is a heat medium circuit including the heat radiating terminal 12, 13 is a pump for driving the heat medium in the heat medium circuit, and 14 is a heat exchange for exchanging heat between the hot water from the hot water path 7 and the heat medium of the heat medium circuit. It is a vessel.

そして、このように、貯湯タンク5の湯は循環ポンプ9によって、温水行路7から流れて熱交換器14にて熱媒と熱交換して温度低下し温水復路8から貯湯タンク5に戻される。一方、熱交換器14で貯湯タンク5の湯から熱を受けた熱媒は所定温度となり、熱媒回路11を介して放熱端末12へ供給され放熱し、ユーザーに例えば暖房機能を提供できるようになっていた。そして、給湯する時に、温水復路8から貯湯タンク5に戻される湯温に応じて、出湯管6或いは中間出湯管10を選択的に使用し、貯湯タンク5から湯を出湯していた(例えば特許文献1参照)。
特開2002−243274号公報
In this way, the hot water in the hot water storage tank 5 flows from the hot water passage 7 by the circulation pump 9, exchanges heat with the heat medium in the heat exchanger 14, decreases in temperature, and is returned from the hot water return passage 8 to the hot water storage tank 5. On the other hand, the heat medium that has received heat from the hot water in the hot water storage tank 5 by the heat exchanger 14 reaches a predetermined temperature, and is supplied to the heat radiating terminal 12 through the heat medium circuit 11 to dissipate heat so that, for example, a heating function can be provided to the user. It was. Then, when hot water is supplied, hot water is discharged from the hot water storage tank 5 by selectively using the hot water discharge pipe 6 or the intermediate hot water discharge pipe 10 according to the hot water temperature returned from the hot water return path 8 to the hot water storage tank 5 (for example, patents). Reference 1).
JP 2002-243274 A

しかしながら上記従来のヒートポンプ給湯装置では、温水復路から貯湯タンクに戻される温水は熱交換されて温度低下し、いわゆる中温水となる。従って、そのままにすると、貯湯タンク内の貯留熱量の低下による湯切れや冷媒対水熱交換器の入口温度上昇によるヒートポンプサイクル高圧上昇と効率低下が起きてしまう。   However, in the above-described conventional heat pump hot water supply apparatus, the hot water returned from the hot water return path to the hot water storage tank is subjected to heat exchange to lower the temperature, and becomes so-called medium hot water. Therefore, if it is left as it is, the hot pump runs out due to a decrease in the amount of stored heat in the hot water storage tank, and the heat pump cycle pressure increases due to a rise in the inlet temperature of the refrigerant-to-water heat exchanger and the efficiency decreases.

そこで、中間出湯管によってこの中温水を先行出湯してエネルギー効率の向上を図ることが考えられるが、長時間暖房運転の後にすぐユーザーから給湯の要請が発生する場合に備えて、湯切れしない貯留熱量を確保する必要があり、そのため貯湯タンクが大型化となる課題があった。また、特に温水復路に対応する貯湯タンク内部は低い温度であった時に、この中温水は貯湯タンク内に戻されると、混合して混合層は広がり、ヒートポンプサイクルによる貯湯タンクの混合層沸かし直しが強いられるため、この中温水を高温まで沸かす時に、ヒートポンプサイクル効率が大変悪くなるという課題もあった。   Therefore, it may be possible to improve the energy efficiency by using the intermediate hot water pipe to preheat this medium-temperature water, but in case the user requests hot water immediately after a long heating operation, the hot water storage will not run out. It was necessary to secure the amount of heat, and there was a problem that the hot water storage tank was enlarged. In particular, when the inside of the hot water tank corresponding to the hot water return path is at a low temperature, when this medium hot water is returned to the hot water tank, it is mixed and the mixed layer expands, and the hot water tank reheats the mixed layer by the heat pump cycle. For this reason, there is a problem that the heat pump cycle efficiency becomes very poor when boiling the medium temperature water to a high temperature.

そこで本発明は、上記従来の課題を解決するもので、湯切れやヒートポンプサイクル効率低下することなく、高性能のヒートポンプ給湯装置を提供する。   Therefore, the present invention solves the above-described conventional problems, and provides a high-performance heat pump hot water supply apparatus without running out of hot water or reducing heat pump cycle efficiency.

従来の課題を解決するために、本発明のヒートポンプ給湯装置は、貯湯タンクと、圧縮機と放熱器とを備える冷媒循環回路と、前記放熱器と熱交換関係にある水/冷媒熱交換器と、前記貯湯タンクの底部から取り出した水を前記水/冷媒熱交換器を介して加熱して前記貯湯タンクの上部へ戻す積層ポンプと、前記貯湯タンクの上部から取り出した湯水を放熱熱交換器を介して前記貯湯タンクの下部へ戻す温水ポンプと、前記貯湯タンクの下部から給水を行う給水管と、前記放熱熱交換器から流出する水を熱交換して前記貯湯タンクの下部へ流す第1の流水路と前記給水管から給水される水と熱交換して出湯する第2の流水路とから少なくとも構成される蓄熱手段と、前記貯湯タンクに貯えられた湯を出湯する出湯管を前記貯湯タンクの上部に設け、前記第2の流水路と前記出湯管とを接続する出湯バイパス管とを備え、前記蓄熱手段は、潜熱蓄熱剤を内包する蓄熱プレートと前記蓄熱プレートを積層して形成した流水路とから構成され、前記第1の流水路と前記第2の流水路と
をそれぞれ複数有するとともに、これらを交互に積層して構成したことを特徴とするものである。
In order to solve the conventional problems, a heat pump water heater of the present invention includes a hot water storage tank, a refrigerant circulation circuit including a compressor and a radiator, a water / refrigerant heat exchanger in heat exchange relation with the radiator. A stacking pump for heating the water taken out from the bottom of the hot water storage tank through the water / refrigerant heat exchanger and returning it to the upper part of the hot water storage tank; A hot water pump that returns to the lower part of the hot water storage tank, a water supply pipe that supplies water from the lower part of the hot water storage tank, and a first water that exchanges heat flowing out from the heat dissipation heat exchanger and flows to the lower part of the hot water storage tank Heat storage means comprising at least a second water flow path for heat exchange with the water supplied from the water supply pipe and water supplied from the water supply pipe, and a hot water discharge pipe for discharging hot water stored in the hot water storage tank. At the top of And a hot water bypass pipe connecting the second water flow path and the hot water pipe, and the heat storage means includes a heat storage plate containing a latent heat storage agent and a flow path formed by laminating the heat storage plate. Configured, the first flow channel and the second flow channel
And a plurality of these layers are alternately stacked .

これによって、蓄熱手段は、温水戻り管を介して吸熱手段から流出する40℃〜60℃の水と熱交換を行い、20℃〜30℃程度まで抑えることができるので、水/冷媒熱交換器の入口の水温を低く抑え、冷媒回路のCOP低下を防ぐことができる。また、取り込んだ熱と給水管からの低温水とを熱交換して出湯利用できる。   As a result, the heat storage means can exchange heat with water at 40 ° C. to 60 ° C. flowing out from the heat absorption means via the hot water return pipe, and can be suppressed to about 20 ° C. to 30 ° C., so that the water / refrigerant heat exchanger The water temperature at the inlet of the refrigerant can be kept low, and the COP drop of the refrigerant circuit can be prevented. Moreover, the heat taken in and the low temperature water from a water supply pipe can be heat-exchanged and used for hot water.

本発明によれば、湯切れやヒートポンプサイクル効率低下することなく、高性能のヒートポンプ給湯装置を提供することができる。   According to the present invention, it is possible to provide a high-performance heat pump hot water supply apparatus without running out of hot water or reducing heat pump cycle efficiency.

第1の発明は、貯湯タンクと、圧縮機と放熱器とを備える冷媒循環回路と、前記放熱器と熱交換関係にある水/冷媒熱交換器と、前記貯湯タンクの底部から取り出した水を前記水/冷媒熱交換器を介して加熱して前記貯湯タンクの上部へ戻す積層ポンプと、前記貯湯タンクの上部から取り出した湯水を放熱熱交換器を介して前記貯湯タンクの下部へ戻す温水ポンプと、前記貯湯タンクの下部から給水を行う給水管と、前記放熱熱交換器から流出する水を熱交換して前記貯湯タンクの下部へ流す第1の流水路と前記給水管から給水される水と熱交換して出湯する第2の流水路とから少なくとも構成される蓄熱手段と、前記貯湯タンクに貯えられた湯を出湯する出湯管を前記貯湯タンクの上部に設け、前記第2の流水路と前記出湯管とを接続する出湯バイパス管とを備え、前記蓄熱手段は、潜熱蓄熱剤を内包する蓄熱プレートと前記蓄熱プレートを積層して形成した流水路とから構成され、前記第1の流水路と前記第2の流水路とをそれぞれ複数有するとともに、これらを交互に積層して構成したことを特徴とするものである。 A first aspect of the present invention is a refrigerant circulation circuit including a hot water storage tank, a compressor and a radiator, a water / refrigerant heat exchanger in a heat exchange relationship with the radiator, and water taken from the bottom of the hot water storage tank. A stacking pump that heats and returns to the upper part of the hot water storage tank through the water / refrigerant heat exchanger, and a hot water pump that returns hot water taken out from the upper part of the hot water storage tank to the lower part of the hot water storage tank through a heat radiation heat exchanger And a water supply pipe for supplying water from the lower part of the hot water storage tank , a first flow channel for exchanging heat flowing out from the heat dissipation heat exchanger and flowing to the lower part of the hot water storage tank, and water supplied from the water supply pipe A heat storage means comprising at least a second flowing water passage for exchanging heat with the hot water, and a hot water discharge pipe for discharging the hot water stored in the hot water storage tank provided at an upper portion of the hot water storage tank, and the second flowing water passage And the hot water pipe A hot water bypass pipe, and the heat storage means includes a heat storage plate containing a latent heat storage agent and a flow channel formed by stacking the heat storage plates, and the first flow channel and the second flow channel. And a plurality of these layers are alternately stacked .

これによって、放熱熱交換器で熱媒と熱交換して温度が下がり、中温水例えば40℃〜60℃となった温水は、更に温度が下げられて比較的低い温度レベル例えば20℃〜30℃で貯蔵されることになる。このため、貯湯タンク内に中温水が存在しないため、温水戻り管から戻ってきた部分の温水を再度沸かし直す時に、ヒートポンプサイクルの水/冷媒熱交換器の入水温度は低くなっており、ヒートポンプサイクルの高効率運転を実現ことができる。このように、長時間暖房運転の後にすぐユーザーから給湯の要請はない場合でも、中温水を低温化とすることにより、高効率のヒートポンプ給湯装置を提供することができる。   As a result, the temperature is lowered by heat exchange with the heat medium in the heat radiating heat exchanger, and the warm water having a medium temperature water, for example, 40 ° C. to 60 ° C., is further lowered to a relatively low temperature level, for example 20 ° C. to 30 ° C. Will be stored. For this reason, since there is no medium-temperature water in the hot water storage tank, the water / refrigerant heat exchanger input temperature of the heat pump cycle is low when the portion of the warm water returned from the hot water return pipe is boiled again. High-efficiency operation can be realized. Thus, even when there is no request for hot water supply from the user immediately after the long-time heating operation, it is possible to provide a high-efficiency heat pump hot-water supply device by lowering the intermediate temperature water.

また、蓄熱手段で中温水の温度が下がった分に対応する熱量は、相応手段によって有効利用することにより、有効熱量を確保し湯切れのしないヒートポンプ給湯装置を提供することができる。 Further, by effectively using the amount of heat corresponding to the temperature of the intermediate temperature water lowered by the heat storage means, it is possible to provide a heat pump hot water supply device that secures an effective amount of heat and does not run out of hot water .

これによって、潜熱蓄熱剤は融点付近で潜熱吸熱するため、中温水は潜熱蓄熱剤と熱交換した後、温度低下して融点に対応する所定の比較的低い温度レベルとなり、貯湯タンク内に貯蔵されることになる。このように、温水戻り管から戻ってきた中温水が所有する熱量の一部は熱交換を通じ潜熱て蓄熱剤で貯蔵される、一方、この中温水の温度が低下することによって、温水戻り管から戻ってきた部分の温水を再度沸かし直す時に、ヒートポンプサイクルの水/冷媒熱交換器の入水温度は低くなっており、ヒートポンプサイクルの高効率運転を実現ことができる。また、蓄熱手段で貯蔵される熱量は出湯バイパス管を通じて、給水を予熱するように有効利用し、高効率とコンパクトを両立した高性能ヒートポンプ給湯装置を提供することができる。 As a result, since the latent heat storage agent absorbs latent heat near the melting point, the medium temperature water is subjected to heat exchange with the latent heat storage agent, and then the temperature drops to a predetermined relatively low temperature level corresponding to the melting point, and is stored in the hot water storage tank. Will be. In this way, a part of the amount of heat possessed by the intermediate warm water returned from the warm water return pipe is latently heat-stored through heat exchange and stored in the heat storage agent. When the heated water in the returned part is boiled again, the incoming temperature of the water / refrigerant heat exchanger of the heat pump cycle is low, and high efficiency operation of the heat pump cycle can be realized. In addition, the amount of heat stored in the heat storage means can be effectively used to preheat the water supply through the hot water bypass pipe, and a high-performance heat pump hot water supply device that achieves both high efficiency and compactness can be provided .

これによって、蓄熱プレートを積層する工程だけで第1、第2の流水路が形成され、複
雑な作業工程を廃し、製造時間も短縮される。
As a result, the first and second flow channels are formed only by the process of laminating the heat storage plates, and the complicated work process is eliminated and the manufacturing time is shortened .

第2の発明は、特に、第1のヒートポンプ給湯装置において、蓄熱手段は貯湯タンクと別設したものである。 In particular, according to the second invention, in the first heat pump hot water supply apparatus, the heat storage means is provided separately from the hot water storage tank.

これによって、蓄熱手段の容量を放熱端末などの能力や使用頻度に合わせて設定できるので、蓄熱量と温度レベルを最適値に設計でき、湯切れのしない高効率ヒートポンプ給湯装置を提供することができる。また、別設とすることで、ヒートポンプ給湯装置の設置性やメンテ性などをよくすることができ、より信頼性の高い高性能ヒートポンプ給湯装置を提供することができる。 As a result, the capacity of the heat storage means can be set according to the capacity and frequency of use of the heat radiating terminal, etc., so that the heat storage amount and the temperature level can be designed to optimum values, and a high-efficiency heat pump hot water supply device that does not run out of hot water can be provided. . Moreover, by installing separately, the installation property of a heat pump hot-water supply apparatus, maintainability, etc. can be improved, and a more reliable high-performance heat pump hot-water supply apparatus can be provided .

第3の発明は、特に、第1から第2のいずれか一つの発明のヒートポンプ給湯装置において、冷媒は二酸化炭素、圧力は臨界圧力以上としたことである。 In particular, the third invention is that in the heat pump hot water supply apparatus according to any one of the first to second inventions, the refrigerant is carbon dioxide, and the pressure is equal to or higher than the critical pressure.

本実施の形態によれば、臨界圧力以上とすることによって、冷媒の二酸化炭素は水により熱を奪われて温度低下しても凝縮することなく、水/冷媒熱交換器全域で冷媒と水とに温度差を形成しやすくなり、必要な高温度レベルまで水を効率的に加熱できるため、高温度レベルを必要とする放熱端末へ対応できるとともに、水/冷媒熱交換器の入水温度を低温化とすることで、ヒートポンプサイクルの高効率運転を実現でき、高効率のヒートポンプ給湯装置を提供することができる。   According to the present embodiment, by setting the pressure to be equal to or higher than the critical pressure, the refrigerant carbon dioxide in the entire water / refrigerant heat exchanger is not condensed even if the temperature is lowered due to heat deprived by water. It is easy to form a temperature difference in the water, and the water can be efficiently heated to the required high temperature level, so it can be used for heat dissipation terminals that require a high temperature level, and the water / refrigerant heat exchanger water temperature can be lowered. By doing so, high-efficiency operation of the heat pump cycle can be realized, and a high-efficiency heat pump water heater can be provided.

参考例1
図1は、本発明の参考例1におけるヒートポンプ給湯装置のシステム構成図、図2は同ヒートポンプ給湯装置の要部構成拡大図、図3は単位容積あたりの蓄熱量を示す蓄熱密度比較図である。
( Reference Example 1 )
FIG. 1 is a system configuration diagram of a heat pump water heater in Reference Example 1 of the present invention, FIG. 2 is an enlarged view of a main part configuration of the heat pump water heater, and FIG. 3 is a heat storage density comparison diagram showing a heat storage amount per unit volume. .

図1と図2において、冷媒循環回路20は圧縮機21と放熱器22と減圧手段23と吸熱器24からなる。そして、この冷媒循環回路20はヒートポンプサイクルを構成し、高圧側の冷媒圧力が臨界圧力以上となる例えば二酸化炭素のような冷媒を封入している。25は循環ポンプ、26は放熱器22を流れる冷媒と熱交換して高温となった湯を輸送する貯湯管、27は貯湯管26と連通する貯湯タンクで、下部から給水管28を通って低温水である水道水を給水し、上部の出湯管29から出湯する。30は貯湯タンク27の下部から循環ポンプ25によって送られてきた水が放熱器22で冷媒と熱交換する水/冷媒熱交換器であり、この水/冷媒熱交換器30で水は所定高温となり貯湯管26を経由し貯湯タンク27へ輸送される。31は給湯管29からの湯と給水管28からの給水を混合する混合弁であり、この混合弁31を通って所定の流量と温度の温水が給湯端末32へ送られる。   1 and 2, the refrigerant circulation circuit 20 includes a compressor 21, a radiator 22, a decompression unit 23, and a heat absorber 24. The refrigerant circulation circuit 20 constitutes a heat pump cycle, and encloses a refrigerant such as carbon dioxide whose refrigerant pressure on the high pressure side is equal to or higher than the critical pressure. Reference numeral 25 denotes a circulation pump, 26 denotes a hot water storage pipe for transporting hot water that has exchanged heat with the refrigerant flowing through the radiator 22, and 27 denotes a hot water storage tank that communicates with the hot water storage pipe 26. Tap water, which is water, is supplied and discharged from an outlet pipe 29 at the top. Reference numeral 30 denotes a water / refrigerant heat exchanger in which water sent from the lower part of the hot water storage tank 27 by the circulation pump 25 exchanges heat with the refrigerant in the radiator 22. In this water / refrigerant heat exchanger 30, the water reaches a predetermined high temperature. It is transported to the hot water storage tank 27 via the hot water storage pipe 26. A mixing valve 31 mixes hot water from the hot water supply pipe 29 and water supply from the water supply pipe 28, and hot water having a predetermined flow rate and temperature is sent to the hot water supply terminal 32 through the mixing valve 31.

33は貯湯タンク27の上部に設けた貯湯タンク27の内部と連通し高温の湯が流れる温水行き管であり、34はこの高温の湯が温度低下した後貯湯タンク27へ戻る温水戻り管であり、35はこの温水行き管33と温水戻り管34の間に設けた放熱熱交換器である。そして、貯湯タンク27と温水行き管33と放熱熱交換器35と温水戻り管34とが温水回路36を構成し、37はこの温水回路に設けた流量調節手段の電磁弁、38はこの温水回路に設けた温水ポンプである。そして、貯湯タンク27から高温の湯を温水行き管33経由で取出し、放熱熱交換器35へ送り、放熱熱交換器35で熱交換し温度低下した温水を温水戻り管34から貯湯タンク27へ戻すようになっている。39は放熱熱交換器35に備えて、放熱熱交換器35を流れる温水から吸熱するための風を送る吸熱手段の温風機である。   Reference numeral 33 denotes a hot water pipe which is connected to the hot water storage tank 27 provided in the upper part of the hot water storage tank 27 and through which high temperature hot water flows. Reference numeral 34 denotes a hot water return pipe which returns to the hot water storage tank 27 after the temperature of the hot water drops. , 35 is a heat radiation heat exchanger provided between the hot water going pipe 33 and the hot water return pipe 34. The hot water storage tank 27, the hot water going pipe 33, the radiating heat exchanger 35, and the hot water return pipe 34 constitute a hot water circuit 36, 37 is an electromagnetic valve of a flow rate adjusting means provided in the hot water circuit, and 38 is this hot water circuit. Is a hot water pump. Then, hot water is taken out from the hot water storage tank 27 via the hot water pipe 33 and sent to the heat radiating heat exchanger 35, and the hot water whose temperature is lowered by heat exchange in the radiating heat exchanger 35 is returned from the hot water return pipe 34 to the hot water storage tank 27. It is like that. Reference numeral 39 denotes a hot air cooler provided in the heat radiation heat exchanger 35 and serving as heat absorbing means for sending wind for absorbing heat from the hot water flowing through the heat radiation heat exchanger 35.

40は貯湯タンク27内に温水戻り管34に対応して設けた蓄熱手段である潜熱蓄熱部
である、この潜熱蓄熱部40には、例えば硫酸ナトリウム水和物のような潜熱蓄熱剤を内包する蓄熱プレート41と、これら蓄熱プレート41を積層して構成する水通路42とを含む。蓄熱プレート41に内包される潜熱蓄熱剤の融点は低く設定され、例えば年間平均水温付近に設定されている。43はこの潜熱蓄熱部40に対応して設けた出湯管29と連通する出湯バイパス管、44はこの出湯バイパス管43に設けた流量を調整するバイパス流量電磁弁である。
Reference numeral 40 denotes a latent heat storage section which is a heat storage means provided in the hot water storage tank 27 corresponding to the hot water return pipe 34. The latent heat storage section 40 contains a latent heat storage agent such as sodium sulfate hydrate. A heat storage plate 41 and a water passage 42 configured by stacking these heat storage plates 41 are included. The melting point of the latent heat storage agent contained in the heat storage plate 41 is set to be low, for example, set to around the annual average water temperature. 43 is a hot water bypass pipe communicating with the hot water pipe 29 provided corresponding to the latent heat storage section 40, and 44 is a bypass flow rate solenoid valve for adjusting the flow rate provided in the hot water bypass pipe 43.

図3の蓄熱密度比較図において、横軸は使用温度、縦軸は単位容積あたりの蓄熱量を表している。図中、それぞれ水と硫酸ナトリウム水和物の温度に対する蓄熱量をグラフで表示している。硫酸ナトリウム水和物の場合では、単位容積内に充填した硫酸ナトリウム水和物の比率(充填率)を74%とし、残りの26%を水として計算を行った。図中、用いた硫酸ナトリウム水和物の融点を32℃としているが、本実施例はその融点のものに限らない。   In the heat storage density comparison diagram of FIG. 3, the horizontal axis represents the operating temperature, and the vertical axis represents the heat storage amount per unit volume. In the figure, the amount of heat storage with respect to the temperature of water and sodium sulfate hydrate is displayed in a graph. In the case of sodium sulfate hydrate, the calculation was performed assuming that the ratio (filling rate) of sodium sulfate hydrate filled in a unit volume was 74% and the remaining 26% was water. In the figure, the melting point of the used sodium sulfate hydrate is 32 ° C., but this example is not limited to the melting point.

次に動作、作用について説明すると、温風機39が運転した場合、温水回路36において、流量調節手段である電磁弁37が所定の開度で開き、温水ポンプ38が貯湯タンク27から放熱熱交換器35へ高温例えば80℃〜90℃の湯を送るようになっている。そして、温風機39の駆動によって、風は放熱熱交換器35で温水ポンプ38から送ってきたこの高温の湯から吸熱し所定の温風温度となり、所定の場所へ送られ温風暖房を実現する。   Next, the operation and action will be described. When the hot air blower 39 is operated, in the hot water circuit 36, the electromagnetic valve 37 as the flow rate adjusting means opens at a predetermined opening, and the hot water pump 38 is radiated from the hot water storage tank 27 to the heat dissipation heat exchanger. High temperature, for example, 80 ° C. to 90 ° C. hot water is sent to 35. And by the drive of the warm air machine 39, wind absorbs heat from this hot water sent from the hot water pump 38 by the heat radiating heat exchanger 35 to become a predetermined hot air temperature, and is sent to a predetermined place to realize the hot air heating. .

一方、放熱熱交換器35で熱交換し例えば50〜60℃程度まで低下し、中温水となった温水は、温水戻り管34を経て、蓄熱手段である潜熱蓄熱部40へ戻される。この潜熱蓄熱部40では、この戻された中温水は水通路42を流れて、蓄熱プレート41に内包される潜熱蓄熱剤の硫酸ナトリウム水和物と熱交換するようになっている。そして、硫酸ナトリウム水和物が中温水から吸熱し、融点付近において潜熱を吸熱した。一方、この中温水は硫酸ナトリウム水和物へ放熱したことによって、さらに温度が低下し、年間平均水温に近い温度レベルよりやや高く例えば20℃〜30℃程度となる。   On the other hand, the hot water that has been heat-exchanged by the heat radiating heat exchanger 35 and lowered to, for example, about 50 to 60 ° C. and has become medium-temperature water is returned to the latent heat storage unit 40 that is a heat storage unit via the warm water return pipe 34. In the latent heat storage section 40, the returned medium-temperature water flows through the water passage 42 and exchanges heat with sodium sulfate hydrate, a latent heat storage agent contained in the heat storage plate 41. The sodium sulfate hydrate absorbed heat from the medium temperature water and absorbed latent heat near the melting point. On the other hand, the temperature of this medium temperature water is further reduced by releasing heat to sodium sulfate hydrate, and is slightly higher than the temperature level close to the average water temperature of the year, for example, about 20 ° C. to 30 ° C.

図3にも示すように、一定の蓄熱量例えば200kJ/Lを確保するために、水の場合は65℃までとする必要があるのに対して、硫酸ナトリウム水和物の場合は約32℃で実現できる。また、同温度レベルで比較した場合、温度帯によるが、硫酸ナトリウム水和物は水より倍ぐらいの蓄熱量を有している。このように、潜熱蓄熱剤を用いた場合、低い温度レベルで所定の熱量を貯蔵することができる。   As shown in FIG. 3, in order to secure a constant heat storage amount, for example, 200 kJ / L, water needs to be up to 65 ° C., whereas sodium sulfate hydrate is about 32 ° C. Can be realized. Further, when compared at the same temperature level, although depending on the temperature zone, sodium sulfate hydrate has a heat storage amount about twice that of water. Thus, when the latent heat storage agent is used, a predetermined amount of heat can be stored at a low temperature level.

また、給湯端末32からの出湯要請があった時に、バイパス流量電磁弁44が所定開度で開き、出湯バイパス管43は給水管28から通水されるようになる。このようにして、給水を潜熱蓄熱部40の水通路41を通過させることによって、潜熱蓄熱部40の潜熱蓄熱剤に貯蔵される中温水の一部の熱量を給水予熱するようにする。そして、潜熱蓄熱剤によって予熱された給水は、出湯管29からきた高温湯とまたは給水管28からきた給水とミキシングして、所望の給湯温度となり、給湯端末32へ供給される。   Further, when there is a hot water request from the hot water supply terminal 32, the bypass flow rate electromagnetic valve 44 opens at a predetermined opening, and the hot water bypass pipe 43 is allowed to pass through the water supply pipe 28. In this way, by passing the water supply through the water passage 41 of the latent heat storage unit 40, the amount of heat of a part of the medium-temperature water stored in the latent heat storage agent of the latent heat storage unit 40 is preheated. Then, the water supply preheated by the latent heat storage agent is mixed with the hot water supplied from the hot water outlet pipe 29 or the water supplied from the water supply pipe 28 to obtain a desired hot water supply temperature and supplied to the hot water supply terminal 32.

このように、温水戻り管34から戻ってきた中温水と熱交換を行う蓄熱プレート41を備える潜熱蓄熱部40を設けたことによって、温水戻り管34から戻ってきた中温水の温度さらに低下させることができるため、温水戻り管34から戻ってきた部分の温水を再度沸かし直す時に、ヒートポンプサイクルの水/冷媒熱交換器の入水温度は低くなっており、ヒートポンプサイクルの高効率運転を実現ことができる。特に、潜熱蓄熱部40は低い温度となった後、長時間暖房運転をした後にすぐユーザーから給湯の要請はなくても、潜熱吸熱の働きで中温水を低温化とすることができ、高効率のヒートポンプ給湯装置を提供することができる。   As described above, by providing the latent heat storage unit 40 including the heat storage plate 41 that exchanges heat with the intermediate warm water returned from the warm water return pipe 34, the temperature of the intermediate warm water returned from the warm water return pipe 34 is further reduced. Therefore, when the portion of the warm water that has returned from the warm water return pipe 34 is boiled again, the water / refrigerant heat exchanger water temperature of the heat pump cycle is low, and high efficiency operation of the heat pump cycle can be realized. . In particular, after the latent heat storage unit 40 has become a low temperature, even if there is no request for hot water supply immediately after heating operation for a long time, it is possible to lower the temperature of the intermediate temperature water by the action of latent heat absorption, and high efficiency. The heat pump hot water supply apparatus can be provided.

また、潜熱蓄熱部40で貯蔵される熱量は出湯バイパス管43を通じて、給水を予熱するように有効利用することによって、熱量を無駄なく利用できるので、湯切れすることなく、高効率とコンパクトを両立した高性能ヒートポンプ給湯装置を提供することができる。   In addition, the amount of heat stored in the latent heat storage unit 40 can be used without waste by effectively using the outlet water bypass pipe 43 so as to preheat the water supply, so both high efficiency and compactness can be achieved without running out of hot water. It is possible to provide a high performance heat pump water heater.

また、潜熱蓄熱剤の融点を年間平均水温付近に設定することによって、温水戻り管34から戻ってきた中温水は蓄熱プレート41と熱交換する際に、温度差を取りやすくなる。また、熱交換性能の向上を図ることによって、コンパクト軽量化の蓄熱部を実現できるとともに、中温水は年間平均水温付近まで温度低下できる。さらに、再度沸かし直す時に、ヒートポンプサイクルの水/冷媒熱交換器の入水温度は低く確保できるため、ヒートポンプサイクルの高効率運転を確実に実現ことができる。   In addition, by setting the melting point of the latent heat storage agent to around the annual average water temperature, it becomes easy to take a temperature difference when the intermediate warm water returned from the warm water return pipe 34 exchanges heat with the heat storage plate 41. In addition, by improving the heat exchange performance, it is possible to realize a compact and lightweight heat storage unit, and it is possible to lower the temperature of the medium-temperature water to around the annual average water temperature. Furthermore, when the water is re-boiled, the water / refrigerant heat exchanger water temperature of the heat pump cycle can be secured low, so that highly efficient operation of the heat pump cycle can be realized with certainty.

また、ヒートポンプサイクルの冷媒を二酸化炭素とすることによって、地球環境保全を実現するとともに、臨界圧力以上とすることによって、冷媒の二酸化炭素は水により熱を奪われて温度低下しても凝縮することなく、水/冷媒熱交換器全域で冷媒と水とに温度差を形成しやすくなり、必要な高温度レベルまで水を効率的に加熱できるため、高温度レベルを必要とする放熱端末へ対応できるとともに、水/冷媒熱交換器の入水温度を低温化とすることで、ヒートポンプサイクルの高効率運転を実現でき、高効率のヒートポンプ給湯装置を提供することができる。   In addition, by using carbon dioxide as the refrigerant in the heat pump cycle, it is possible to conserve the global environment, and by setting the pressure above the critical pressure, the carbon dioxide in the refrigerant will condense even if the temperature drops due to water being deprived of heat. In addition, it becomes easier to form a temperature difference between the refrigerant and water throughout the water / refrigerant heat exchanger, and the water can be efficiently heated to the required high temperature level, so it can be used for heat dissipation terminals that require high temperature levels. At the same time, by lowering the incoming water temperature of the water / refrigerant heat exchanger, a highly efficient operation of the heat pump cycle can be realized, and a highly efficient heat pump water heater can be provided.

参考例2
図4は本発明の参考例2におけるヒートポンプ給湯装置を示すシステム構成図である。
( Reference Example 2 )
FIG. 4 is a system configuration diagram showing a heat pump water heater in Reference Example 2 of the present invention.

参考例2において、参考例1と異なる点は、貯湯タンク27と別設して、温水戻り管34の管路に潜熱蓄熱部45を設けたことである。この潜熱蓄熱部45は内部に実施例1の潜熱蓄熱部40と同様な構成を有し、そして、それぞれ給水管28を介して給水元と、戻り管46を介して貯湯タンク27と、混合管47を介して混合弁31と連通している。 This reference example 2 is different from the reference example 1 in that a latent heat storage unit 45 is provided in the pipeline of the hot water return pipe 34 separately from the hot water storage tank 27. The latent heat storage unit 45 has the same configuration as that of the latent heat storage unit 40 of the first embodiment, and includes a water supply source via a water supply pipe 28, a hot water storage tank 27 via a return pipe 46, and a mixing pipe, respectively. 47 is in communication with the mixing valve 31.

なお、参考例1と同一符号のものは同一構造を有し、説明は省略する。 In addition, the thing of the same code | symbol as the reference example 1 has the same structure, and abbreviate | omits description.

次に動作、作用を説明すると、放熱熱交換器35で熱交換し温度例えば50〜60℃程度まで低下し、中温水となった温水は、温水戻り管34を経て、蓄熱手段である潜熱蓄熱部45へ戻される。この潜熱蓄熱部45では、この戻された中温水は水通路42を流れて、蓄熱プレート41に内包される潜熱蓄熱剤の硫酸ナトリウム水和物と熱交換するようになっている。そして、硫酸ナトリウム水和物が中温水から吸熱し、融点付近において特に潜熱を吸熱した。一方、この中温水は硫酸ナトリウム水和物へ放熱したことによって、さらに温度が低下し、年間平均水温に近い温度レベルよりやや高く例えば20℃〜30℃程度となってから、戻り管46を通じて貯湯タンク27へ戻される。そして、貯湯タンク27の水を再度沸かし直す時に、ヒートポンプサイクルの水/冷媒熱交換器の入水温度は低くなっており、ヒートポンプサイクルの高効率運転を実現ことができる。特に、潜熱蓄熱部45は低い温度となった後、長時間暖房運転をした後にすぐユーザーから給湯の要請はなくても、潜熱吸熱の働きで中温水を低温化とすることができ、高効率のヒートポンプ給湯装置を提供することができる。   Next, the operation and action will be described. The hot water that has been heat-exchanged by the heat-dissipating heat exchanger 35 and lowered to a temperature of, for example, about 50 to 60 ° C. Returned to section 45. In the latent heat storage unit 45, the returned medium-temperature water flows through the water passage 42 and exchanges heat with sodium sulfate hydrate, a latent heat storage agent contained in the heat storage plate 41. The sodium sulfate hydrate absorbed heat from the medium-temperature water and absorbed latent heat particularly near the melting point. On the other hand, the temperature of this medium temperature water is further reduced by releasing heat to sodium sulfate hydrate, and is slightly higher than the temperature level close to the average water temperature annually, for example, about 20 ° C. to 30 ° C. Returned to tank 27. When the water in the hot water storage tank 27 is boiled again, the incoming temperature of the water / refrigerant heat exchanger of the heat pump cycle is low, and high efficiency operation of the heat pump cycle can be realized. In particular, after the latent heat storage unit 45 has become a low temperature, even if there is no request for hot water supply immediately after heating operation for a long time, it is possible to lower the temperature of the intermediate warm water by the action of latent heat absorption, and high efficiency. The heat pump hot water supply apparatus can be provided.

また、給湯端末32からの出湯要請があった時に、給水は給水管28から潜熱蓄熱部45の水通路41を流れながら、潜熱蓄熱部45の潜熱蓄熱剤に貯蔵される中温水の一部の熱量を給水予熱するようになる。そして、潜熱蓄熱剤によって予熱された給水は、混合管47を経て、出湯管29からきた高温湯とミキシングして、所望の給湯温度となり、給湯端末32へ供給される。   In addition, when there is a hot water discharge request from the hot water supply terminal 32, a portion of the medium-temperature water stored in the latent heat storage agent of the latent heat storage unit 45 is supplied from the water supply pipe 28 through the water passage 41 of the latent heat storage unit 45. The amount of heat will be preheated. Then, the feed water preheated by the latent heat storage agent is mixed with the high-temperature hot water coming from the tapping pipe 29 through the mixing pipe 47, reaches a desired hot water supply temperature, and is supplied to the hot water supply terminal 32.

このように、潜熱蓄熱部45を貯湯タンク27と別設することによって、潜熱蓄熱部45の容量、大きさ、設置形態などを放熱端末などの能力や使用頻度に合わせて設定できるので、蓄熱量と温度レベルを最適値に設計でき、設計自由度の高い湯切れのしない高効率ヒートポンプ給湯装置を提供することができる。   In this way, by separately installing the latent heat storage unit 45 from the hot water storage tank 27, the capacity, size, installation mode, etc. of the latent heat storage unit 45 can be set in accordance with the ability and frequency of use of the heat radiating terminal. Therefore, it is possible to provide a high-efficiency heat pump hot water supply apparatus that can design the temperature level to an optimum value and does not run out of hot water with a high degree of design freedom.

また、別設とすることで、ヒートポンプ給湯装置の設置性やメンテ性などをよくすることができ、より信頼性の高い高性能ヒートポンプ給湯装置を提供することができる。
また、貯湯タンク27にバイパス出湯管43の出口を設ける必要がなくなり、貯湯タンク27の製作コストを削減することができる。
Moreover, by installing separately, the installation property of a heat pump hot-water supply apparatus, maintainability, etc. can be improved, and a more reliable high-performance heat pump hot-water supply apparatus can be provided.
Moreover, it is not necessary to provide the outlet of the bypass hot water discharge pipe 43 in the hot water storage tank 27, and the manufacturing cost of the hot water storage tank 27 can be reduced.

実施の形態1
図5は本発明の第1の実施形態におけるヒートポンプ給湯装置の要部構成図である。
( Embodiment 1 )
FIG. 5 is a configuration diagram of a main part of the heat pump water heater in the first embodiment of the present invention.

本実施形態において、参考例2と異なる点は、潜熱蓄熱部48を新設したことである。この潜熱蓄熱部48は、混合管47と連通する先行出湯流路50と、潜熱蓄熱剤を内包した蓄熱プレート49と、温水戻り管34と連通する戻り流路51とが交互に積層して構成されている。 In this embodiment, the difference from the reference example 2 is that a latent heat storage unit 48 is newly provided. The latent heat storage unit 48 is configured by alternately laminating a preceding hot water flow path 50 communicating with the mixing pipe 47, a heat storage plate 49 containing a latent heat storage agent, and a return flow path 51 communicating with the hot water return pipe 34. Has been.

なお、参考例2と同一符号のものは同一構造を有し、説明は省略する。 In addition, the thing of the same code | symbol as the reference example 2 has the same structure, and abbreviate | omits description.

次に動作、作用を説明すると、放熱熱交換器35で熱交換し温度例えば50〜60℃程度まで低下し、中温水となった温水は、温水戻り管34を経て、蓄熱手段である潜熱蓄熱部48へ戻される。蓄熱部48では、この戻された中温水は戻り流路51を流れて、蓄熱プレート49に内包される潜熱蓄熱剤の硫酸ナトリウム水和物と熱交換するようになっている。そして、硫酸ナトリウム水和物が中温水から吸熱し、特に融点付近において潜熱を吸熱した。一方、この中温水は硫酸ナトリウム水和物へ放熱したことによって、さらに温度が低下し、年間平均水温に近い温度レベルよりやや高く例えば20℃〜30℃程度となってから、戻り管46を通じて貯湯タンク27へ戻される。そして、貯湯タンク27の水を再度沸かし直す時に、ヒートポンプサイクルの水/冷媒熱交換器の入水温度は低くなっており、ヒートポンプサイクルの高効率運転を実現ことができる。特に、給湯端末32から給湯する時、必ず給水管28から潜熱蓄熱部48の先行出湯流路50を経て混合弁31へ給水若しくは予温水が流れるため、潜熱蓄熱部48の常時低い温度レベルを保つことができるため、暖房運転から来た中温水から潜熱吸熱に備えることができる。長時間暖房運転をした後にすぐユーザーから給湯の要請はなくても、潜熱吸熱の働きで中温水を低温化とすることができ、高効率のヒートポンプ給湯装置を提供することができる。   Next, the operation and action will be described. The hot water that has been heat-exchanged by the heat-dissipating heat exchanger 35 and lowered to a temperature of, for example, about 50 to 60 ° C. Returned to section 48. In the heat storage section 48, the returned medium-temperature water flows through the return flow path 51 and exchanges heat with sodium sulfate hydrate, a latent heat storage agent contained in the heat storage plate 49. The sodium sulfate hydrate absorbed heat from the medium-temperature water, and absorbed latent heat particularly near the melting point. On the other hand, the temperature of this medium temperature water is further reduced by releasing heat to sodium sulfate hydrate, and is slightly higher than the temperature level close to the average water temperature annually, for example, about 20 ° C. to 30 ° C. Returned to tank 27. When the water in the hot water storage tank 27 is boiled again, the incoming temperature of the water / refrigerant heat exchanger of the heat pump cycle is low, and high efficiency operation of the heat pump cycle can be realized. In particular, when hot water is supplied from the hot water supply terminal 32, water or pre-warm water always flows from the water supply pipe 28 to the mixing valve 31 through the preceding hot water flow path 50 of the latent heat storage section 48, so that the latent heat storage section 48 is always kept at a low temperature level. Therefore, it is possible to prepare for latent heat absorption from the medium-temperature water that comes from the heating operation. Even if there is no request for hot water supply from the user immediately after heating operation for a long time, the temperature of the intermediate hot water can be lowered by the action of latent heat absorption, and a highly efficient heat pump hot water supply apparatus can be provided.

また、このように、潜熱蓄熱部48の内部において、混合管47と連通する先行出湯流路50と温水戻り管34と連通する戻り流路51とをそれぞれ設けたことによって、中温水が温水戻り管34から戻り流路51を流れ貯湯タンクへ戻される回路と、給水管28から給水が先行出湯流路50を流れ混合管47へ流れる回路とは完全別回路となるので、それぞれの回路の流量などを個別に制御できるため、使用状況に応じた制御精度を高めることができる。特に、暖房運転と給水運動が同時に行われる場合、中温水と給水が別回路であるため、潜熱蓄熱部48内部で混合、干渉することがなく、適切な温度と流量でそれぞれの暖房運転と給湯運転に対応できるため、より使い勝手のよいヒートポンプ給湯装置を提供することができる。   In addition, in this way, by providing the preceding hot water flow channel 50 communicating with the mixing pipe 47 and the return flow channel 51 communicating with the hot water return pipe 34 inside the latent heat storage section 48, the intermediate hot water is returned to the hot water. Since the circuit that flows from the pipe 34 through the return flow path 51 and returns to the hot water storage tank and the circuit from which the water supply from the water supply pipe 28 flows through the preceding hot water flow path 50 and flows to the mixing pipe 47 are completely separate circuits, the flow rate of each circuit Etc. can be controlled individually, so that the control accuracy according to the use situation can be improved. In particular, when the heating operation and the water supply exercise are performed simultaneously, the medium-temperature water and the water supply are separate circuits, so that they do not mix and interfere with each other within the latent heat storage unit 48, and each heating operation and hot water supply at an appropriate temperature and flow rate. Since it can respond | correspond to a driving | operation, a heat pump hot-water supply apparatus with more user-friendliness can be provided.

参考例3
図6は本発明の参考例3におけるヒートポンプ給湯装置のシステム構成図である。
( Reference Example 3 )
FIG. 6 is a system configuration diagram of the heat pump water heater in Reference Example 3 of the present invention.

参考例3において、参考例1と異なる点は、温水回路36の温水行き管33と温水戻り管34の間に中間熱交換器52と、この中間熱交換器52に対応して、熱媒例えば水を駆動循環する暖房ポンプ53と放熱端末である温風機54とを備える熱媒回路55とを新設したことである。 This reference example 3 is different from the reference example 1 in that an intermediate heat exchanger 52 is provided between the hot water going pipe 33 and the hot water return pipe 34 of the hot water circuit 36, and the intermediate heat exchanger 52 corresponds to the intermediate heat exchanger 52. For example, a heating medium circuit 55 including a heating pump 53 that drives and circulates water and a warm air fan 54 that is a heat radiating terminal is newly provided.

なお、参考例1と同一符号のものは同一構造を有し、説明は省略する。 In addition, the thing of the same code | symbol as the reference example 1 has the same structure, and abbreviate | omits description.

次に動作、作用を説明すると、中間熱交換器52では、温水ポンプ38によって送られてきた高温の湯と暖房ポンプ53によって送られてきた熱媒の間に、熱交換が行われる。熱媒は高温の湯から吸熱し所定の温度となり、温風機54へ流れる。そして、この熱媒は温風機54で風と熱交換して温度低下し中間熱交換器52へ戻る。一方、温風機54で風が熱媒から熱を受けて所定温度の温風となり所定場所へ送られ温風暖房を実現する。   Next, the operation and action will be described. In the intermediate heat exchanger 52, heat exchange is performed between the hot water sent by the hot water pump 38 and the heat medium sent by the heating pump 53. The heat medium absorbs heat from the hot water, reaches a predetermined temperature, and flows to the hot air machine 54. Then, the heat medium exchanges heat with the wind in the warm air machine 54 to lower the temperature and return to the intermediate heat exchanger 52. On the other hand, in the warm air machine 54, the wind receives heat from the heat medium, becomes warm air at a predetermined temperature, and is sent to a predetermined location to realize warm air heating.

なお、上記各実施の形態において、蓄熱手段は蓄熱プレートにより構成される潜熱蓄熱部としたが、例えば蓄熱プレートの代わりに潜熱蓄熱材を詰め込んだ球体カプセル状のものにより構成される潜熱蓄熱部としてもよい。   In each of the above embodiments, the heat storage means is a latent heat storage unit configured by a heat storage plate. For example, as a latent heat storage unit configured by a spherical capsule packed with a latent heat storage material instead of the heat storage plate. Also good.

このように、中間熱交換器52を介して、貯湯タンク27の高温湯と熱媒回路55の熱媒とを熱交換を行うことによって、貯湯タンク27の高温湯の熱は間接的に温風機39へ伝わることになるので、高温の湯を温風機39端末のユーザーに近いところまで持っていく必要がないため、安全性の高いヒートポンプ給湯装置を提供することができる。   As described above, the heat of the hot water in the hot water storage tank 27 is indirectly heated by performing the heat exchange between the hot water in the hot water storage tank 27 and the heat medium in the heat medium circuit 55 through the intermediate heat exchanger 52. 39, it is not necessary to bring hot water to a location close to the user of the hot air blower 39 terminal, so that a highly safe heat pump hot water supply apparatus can be provided.

以上のように、本発明にかかるヒートポンプ給湯装置は、湯切れやヒートポンプサイクル効率低下することなく、高性能のヒートポンプ給湯装置を提供することができる。その他、幅広く熱交換、熱搬送などの用途にも適用できる。   As described above, the heat pump hot water supply apparatus according to the present invention can provide a high-performance heat pump hot water supply apparatus without running out of hot water or reducing heat pump cycle efficiency. In addition, it can be widely applied to applications such as heat exchange and heat transfer.

参考例1におけるヒートポンプ給湯装置のシステム構成図System configuration diagram of heat pump water heater in Reference Example 1 参考例1における同ヒートポンプ給湯装置の要部拡大図The principal part enlarged view of the heat pump hot-water supply apparatus in this reference example 1 参考例1における単位容積あたりの蓄熱量を示す蓄熱密度比較図Heat storage density comparison chart showing heat storage amount per unit volume in Reference Example 1 参考例2におけるヒートポンプ給湯装置システム構成図Heat pump hot water supply system configuration diagram in Reference Example 2 本発明の実施の形態1におけるヒートポンプ給湯装置システム構成図Heat pump hot water supply system configuration diagram in Embodiment 1 of the present invention 本発明の参考例3におけるヒートポンプ給湯装置の要部拡大図The principal part enlarged view of the heat pump hot-water supply apparatus in the reference example 3 of this invention 従来のヒートポンプ給湯装置の構成図Configuration diagram of conventional heat pump water heater

20 冷媒循環回路
21 圧縮機
22 放熱器
23 減圧手段
24 吸熱器
27 貯湯タンク
30 水/冷媒熱交換器
33 温水行き管
34 温水戻り管
35 放熱熱交換器
36 温水回路
38 温水ポンプ
39、54 温風機
40、45、48 潜熱蓄熱部
43 出湯バイパス管
DESCRIPTION OF SYMBOLS 20 Refrigerant circuit 21 Compressor 22 Radiator 23 Pressure reduction means 24 Heat absorber 27 Hot water storage tank 30 Water / refrigerant heat exchanger 33 Hot water going pipe 34 Hot water return pipe 35 Radiation heat exchanger 36 Hot water circuit 38 Hot water pump 39, 54 Hot air machine 40, 45, 48 Latent heat storage section 43 Hot water bypass pipe

Claims (3)

貯湯タンクと、圧縮機と放熱器とを備える冷媒循環回路と、前記放熱器と熱交換関係にある水/冷媒熱交換器と、前記貯湯タンクの底部から取り出した水を前記水/冷媒熱交換器を介して加熱して前記貯湯タンクの上部へ戻す積層ポンプと、前記貯湯タンクの上部から取り出した湯水を放熱熱交換器を介して前記貯湯タンクの下部へ戻す温水ポンプと、前記貯湯タンクの下部から給水を行う給水管と、前記放熱熱交換器から流出する水を熱交換して前記貯湯タンクの下部へ流す第1の流水路と前記給水管から給水される水と熱交換して出湯する第2の流水路とから少なくとも構成される蓄熱手段と、前記貯湯タンクに貯えられた湯を出湯する出湯管を前記貯湯タンクの上部に設け、前記第2の流水路と前記出湯管とを接続する出湯バイパス管とを備え、前記蓄熱手段は、潜熱蓄熱剤を内包する蓄熱プレートと前記蓄熱プレートを積層して形成した流水路とから構成され、前記第1の流水路と前記第2の流水路とをそれぞれ複数有するとともに、これらを交互に積層して構成したことを特徴とするヒートポンプ給湯装置。 A refrigerant circulation circuit comprising a hot water storage tank, a compressor and a radiator, a water / refrigerant heat exchanger in heat exchange relationship with the radiator, and water / refrigerant heat exchange of water taken from the bottom of the hot water storage tank A stacking pump that heats and returns to the upper part of the hot water storage tank through a heater; a hot water pump that returns hot water taken out from the upper part of the hot water storage tank to the lower part of the hot water storage tank through a heat dissipation heat exchanger ; A water supply pipe for supplying water from the lower part , a first flow channel for exchanging heat flowing out from the heat-dissipating heat exchanger and flowing to the lower part of the hot water storage tank, and water supplied from the water supply pipe for heat exchange A heat storage means comprising at least a second flowing water channel, and a hot water discharge pipe for discharging hot water stored in the hot water storage tank, provided at an upper portion of the hot water storage tank, and the second flowing water channel and the hot water discharging pipe are provided. Hot water bypass pipe to be connected The heat storage means includes a heat storage plate containing a latent heat storage agent and a flow channel formed by laminating the heat storage plates, and each of the first flow channel and the second flow channel is provided in plurality. A heat pump hot water supply apparatus characterized by having these layers alternately laminated . 蓄熱手段は貯湯タンクと別設する構成する請求項1に記載のヒートポンプ給湯装置。 The heat pump hot water supply apparatus according to claim 1 , wherein the heat storage means is provided separately from the hot water storage tank. 冷媒は二酸化炭素で、圧力は臨界圧力以上とする請求項1または2に記載のヒートポンプ給湯装置。 The heat pump water heater according to claim 1 or 2, wherein the refrigerant is carbon dioxide and the pressure is equal to or higher than a critical pressure.
JP2005028732A 2005-02-04 2005-02-04 Heat pump water heater Expired - Fee Related JP4367350B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005028732A JP4367350B2 (en) 2005-02-04 2005-02-04 Heat pump water heater

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005028732A JP4367350B2 (en) 2005-02-04 2005-02-04 Heat pump water heater

Publications (2)

Publication Number Publication Date
JP2006214659A JP2006214659A (en) 2006-08-17
JP4367350B2 true JP4367350B2 (en) 2009-11-18

Family

ID=36978038

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005028732A Expired - Fee Related JP4367350B2 (en) 2005-02-04 2005-02-04 Heat pump water heater

Country Status (1)

Country Link
JP (1) JP4367350B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102645024A (en) * 2012-04-28 2012-08-22 华南理工大学 Outer-disk micro channel type thermal storage water tank for heat pump water heater
CN103629658A (en) * 2013-11-07 2014-03-12 浙江红宇新材料有限公司 Hot water exchanger

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008070019A (en) * 2006-09-13 2008-03-27 Matsushita Electric Ind Co Ltd Heat storage type water heater
JP4830779B2 (en) * 2006-10-13 2011-12-07 パナソニック電工株式会社 Hot water system
JP2008224203A (en) * 2007-02-14 2008-09-25 Matsushita Electric Ind Co Ltd Water heater
JP6862961B2 (en) * 2017-03-17 2021-04-21 ダイキン工業株式会社 Water heating system

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102645024A (en) * 2012-04-28 2012-08-22 华南理工大学 Outer-disk micro channel type thermal storage water tank for heat pump water heater
CN102645024B (en) * 2012-04-28 2014-11-12 华南理工大学 Outer-disk micro channel type thermal storage water tank for heat pump water heater
CN103629658A (en) * 2013-11-07 2014-03-12 浙江红宇新材料有限公司 Hot water exchanger

Also Published As

Publication number Publication date
JP2006214659A (en) 2006-08-17

Similar Documents

Publication Publication Date Title
JP4599910B2 (en) Water heater
JP4367350B2 (en) Heat pump water heater
JP3719444B1 (en) Compression heat pump system and cogeneration system
WO2009142004A1 (en) Heating system
JP4026655B2 (en) Water heater
JP2005164237A (en) Multifunctional water heater
JP4339293B2 (en) Regenerative water heater
JP2005156156A (en) Multifunctional water heater
JP4628313B2 (en) Heat pump water heater
JP2006214658A (en) Heat pump hot-water supply device
JP2007155275A (en) Heat pump hot water feeder
JP4244533B2 (en) Multi-function water heater
JP2007278655A (en) Heat storage type hot water supplier
JP5032204B2 (en) Hot water storage heater
JP2005069608A (en) Hot water utilizing system
JP3772837B2 (en) Water heater
JP4033184B2 (en) Multi-function water heater
JP2005121331A (en) Hot water supply device
JP2005140393A (en) Hot water storage type water heater
JP2010169283A (en) Heat exchange system
JP2008045826A (en) Hot-water storage type hot water supply heater
CN217035686U (en) Fuel cell combined supply system
JP2008032282A (en) Storage type hot water supply device
JP2006132873A (en) Hot water supply apparatus
JP2010032112A (en) Hot water supply device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071217

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20080115

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090416

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090428

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090528

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090804

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090817

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120904

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130904

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees