JP2006214658A - Heat pump hot-water supply device - Google Patents

Heat pump hot-water supply device Download PDF

Info

Publication number
JP2006214658A
JP2006214658A JP2005028731A JP2005028731A JP2006214658A JP 2006214658 A JP2006214658 A JP 2006214658A JP 2005028731 A JP2005028731 A JP 2005028731A JP 2005028731 A JP2005028731 A JP 2005028731A JP 2006214658 A JP2006214658 A JP 2006214658A
Authority
JP
Japan
Prior art keywords
hot water
water
heat
storage tank
refrigerant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005028731A
Other languages
Japanese (ja)
Inventor
Tatsumura Mo
立群 毛
Takeji Watanabe
竹司 渡辺
Masahiro Ohama
昌宏 尾浜
Seiichi Yasuki
誠一 安木
Kazuhiko Marumoto
一彦 丸本
Tetsuei Kuramoto
哲英 倉本
Takayuki Takatani
隆幸 高谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2005028731A priority Critical patent/JP2006214658A/en
Publication of JP2006214658A publication Critical patent/JP2006214658A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a heat pump hot-water supply device capable of providing a high performance by a simple structure at low cost without lowering the COP of a refrigerant circuit. <P>SOLUTION: This heat pump hot-water supply device comprises a refrigerant circulation circuit 20 having a compressor 21, a radiator 22, a pressure reducing means 23, and a heat sink 24, a water/refrigerant heat exchanger 30 having the radiator 22 and a water flow passage for heat exchange, a hot water storage tank 27 stored hot water heated by the water/refrigerant heat exchanger 30, a laminated pump 25 taking out water from the bottom part of the hot water storage tank 27 and returning the water to the upper part of the hot water storage tank 27 after the water is heated by the water/refrigerant heat exchanger 30, and a latent heat storage part 33 suppressing the rise of the temperature of the water at the bottom part of the hot water storage tank 27. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、ヒートポンプ給湯装置に関するものである。   The present invention relates to a heat pump water heater.

従来のヒートポンプ給湯装置の第一の例として、図6に示すように、1は冷媒が循環してヒートポンプサイクル運転を行う冷媒回路、2は冷媒回路1の冷媒と水との間で熱交換を行う水/冷媒熱交換器、3はこの水/冷媒熱交換器で高温加熱された湯を貯留する貯湯タンクである。貯湯タンク3の底部から取水して水/冷媒熱交換器で高温沸き上げした後、貯湯タンク3へ貯留し、必要に応じて、貯湯タンク3から出湯するようなヒートポンプ給湯装置が知られている(例えば、特許文献1参照)。   As a first example of a conventional heat pump hot water supply apparatus, as shown in FIG. 6, 1 is a refrigerant circuit in which the refrigerant circulates and performs a heat pump cycle operation, and 2 is heat exchange between the refrigerant of the refrigerant circuit 1 and water. A water / refrigerant heat exchanger 3 is a hot water storage tank for storing hot water heated at a high temperature in the water / refrigerant heat exchanger. A heat pump hot water supply apparatus is known in which water is taken from the bottom of the hot water storage tank 3 and heated to a high temperature with a water / refrigerant heat exchanger, then stored in the hot water storage tank 3 and discharged from the hot water storage tank 3 as necessary. (For example, refer to Patent Document 1).

また、第二の例として、図7に示すように、11は冷媒が循環してヒートポンプサイクル運転を行う冷媒回路、12は蓄熱手段、13は熱媒体例えば水が循環する熱媒体回路、14は冷媒回路11の冷媒と熱媒体回路13の熱媒体との間で熱交換を行う熱源側熱交換器である。蓄熱手段12は、高温側蓄熱材15と、該高温側蓄熱材15よりも融点が低い潜熱蓄熱材からなる低温側蓄熱材16とを備え、熱媒体回路13は、熱媒体を高温側蓄熱材15に放熱させた後に低温蓄熱材16に放熱させて熱源側熱交換器14に流入させるように流すことによって、蓄熱時において、冷媒回路のCOPが低下するのを防止できるヒートポンプ給湯装置が知られている(例えば、特許文献2参照)。
特開2001−82803号公報 特開2003−232563号公報
As a second example, as shown in FIG. 7, 11 is a refrigerant circuit that circulates refrigerant and performs heat pump cycle operation, 12 is a heat storage means, 13 is a heat medium circuit in which a heat medium such as water circulates, and 14 is The heat source side heat exchanger performs heat exchange between the refrigerant in the refrigerant circuit 11 and the heat medium in the heat medium circuit 13. The heat storage means 12 includes a high temperature side heat storage material 15 and a low temperature side heat storage material 16 made of a latent heat storage material having a melting point lower than that of the high temperature side heat storage material 15, and the heat medium circuit 13 converts the heat medium into a high temperature side heat storage material. A heat pump hot water supply apparatus is known that can prevent the COP of the refrigerant circuit from being lowered during heat storage by causing the low-temperature heat storage material 16 to dissipate heat after flowing to 15 and flowing into the heat source side heat exchanger 14. (For example, refer to Patent Document 2).
JP 2001-82803 A JP 2003-232563 A

しかしながら上記従来の第一の例のヒートポンプ給湯装置では、貯湯タンク3内の水を高温の湯までに沸き上げする際、貯湯タンク3の頭頂部から降りてくる高温の湯と貯湯タンク3内の未沸き上げの水との界面に存在する比較的温度の高い混合層は形成される。この混合層の水を水/冷媒熱交換器へ導いて沸き上げを行う際に、混合層の水温が高いため、ヒートポンプサイクルの加熱能力が低下し、ヒートポンプサイクルの成績係数(COP)が悪くなるという課題があった。   However, in the heat pump water heater of the first conventional example, when the water in the hot water storage tank 3 is boiled up to high temperature hot water, the hot water coming down from the top of the hot water storage tank 3 and the hot water storage tank 3 A relatively high temperature mixed layer is formed that exists at the interface with the unboiled water. When the water in the mixed layer is led to the water / refrigerant heat exchanger and heated, the water temperature of the mixed layer is high, so that the heat capacity of the heat pump cycle is lowered and the coefficient of performance (COP) of the heat pump cycle is deteriorated. There was a problem.

また、第二の例のヒートポンプ給湯装置では、必要とする全ての熱量を高温側蓄熱材15と低温側蓄熱材16に貯蔵することによって、高温側蓄熱材用熱交換器と低温側蓄熱材用熱交換器とがそれぞれ必要不可欠となるため、給湯装置の構成が複雑となるという課題があった。また、異なる融点の持つ高温側蓄熱材15と低温側蓄熱材16もそれぞれ必要となり、これらを給湯装置に組み込むことになるため、給湯装置は重くなり、製造、搬送、設置各過程において、蓄熱材の扱いは難しく、コストが高くなるという課題もあった。   Moreover, in the heat pump hot water supply apparatus of the second example, by storing all the required heat amounts in the high temperature side heat storage material 15 and the low temperature side heat storage material 16, the heat exchanger for the high temperature side heat storage material and the low temperature side heat storage material are used. Since each of the heat exchangers is indispensable, there is a problem that the configuration of the hot water supply apparatus becomes complicated. Moreover, since the high temperature side heat storage material 15 and the low temperature side heat storage material 16 which have different melting | fusing points are each required and these are integrated in a hot water supply apparatus, a hot water supply apparatus becomes heavy and in each process of manufacture, conveyance, and installation, a heat storage material. It was difficult to handle and there was a problem of high cost.

そこで本発明は、上記従来の課題を解決するもので、冷媒回路のCOP低下がなく、簡単な構成で低コストの高性能ヒートポンプ給湯装置を提供する。   Therefore, the present invention solves the above-described conventional problems, and provides a high-performance heat pump hot water supply device that has a simple configuration and is low in cost without causing a COP drop in the refrigerant circuit.

従来の課題を解決するために、本発明のヒートポンプ給湯装置は、貯湯タンク底部の水を熱交換して水/冷媒熱交換器へ流す第1の流水路と給水管から給水される水と熱交換して出湯する第2の流水路とから少なくとも構成される蓄熱手段を備えるものである。   In order to solve the conventional problems, the heat pump hot water supply apparatus of the present invention is configured such that the water and heat supplied from the first water flow path and the water supply pipe that exchanges heat at the bottom of the hot water storage tank and flows the water to the water / refrigerant heat exchanger. The heat storage means comprises at least a second flowing water channel for exchanging and discharging hot water.

これによって、蓄熱手段は、貯湯タンク内の水を高温の湯までに沸き上げする際、貯湯タンクの頭頂部から降りてくる比較的温度の高い例えば30℃〜60℃の混合層と熱交換を行い、20℃〜30℃程度まで抑えることができるので、水/冷媒熱交換器の入口の水温を低く抑え、冷媒回路のCOP低下を防ぐことができる。また、取り込んだ熱と給水管からの低温水とを熱交換して出湯利用できる。   As a result, when the water storage means boils the water in the hot water storage tank to hot water, it exchanges heat with a relatively high temperature mixed layer of, for example, 30 ° C. to 60 ° C. that descends from the top of the hot water storage tank. Since the temperature can be reduced to about 20 ° C. to 30 ° C., the water temperature at the inlet of the water / refrigerant heat exchanger can be kept low, and the COP reduction of the refrigerant circuit can be prevented. Moreover, the heat taken in and the low temperature water from a water supply pipe can be heat-exchanged and used for hot water.

本発明によれば、冷媒回路のCOPの低下はなく、簡単な構成で低コストの高性能ヒートポンプ給湯装置を提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, there is no fall of COP of a refrigerant circuit, and it can provide a low-cost high-performance heat pump hot-water supply apparatus with a simple configuration.

第1の発明は、貯湯タンクと、圧縮機と放熱器とを備える冷媒循環回路と、放熱器と熱交換関係にある水/冷媒熱交換器と、貯湯タンクの底部から取り出した水を水/冷媒熱交換器を介して加熱して貯湯タンクの上部へ戻す積層ポンプと、貯湯タンクの下部から給水を行う給水管と、貯湯タンク底部の水を熱交換して水/冷媒熱交換器へ流す第1の流水路と給水管から給水される水と熱交換して出湯する第2の流水路とから少なくとも構成される蓄熱手段とを備えたものである。   The first aspect of the invention relates to a refrigerant circulation circuit including a hot water storage tank, a compressor and a radiator, a water / refrigerant heat exchanger in heat exchange relation with the radiator, and water taken out from the bottom of the hot water tank to the water / A stack pump that heats and returns to the upper part of the hot water tank through the refrigerant heat exchanger, a water supply pipe that supplies water from the lower part of the hot water tank, and heats the water at the bottom of the hot water tank to flow to the water / refrigerant heat exchanger The heat storage means comprises at least a first flowing water channel and a second flowing water channel that exchanges heat with water supplied from a water supply pipe and discharges hot water.

これによって、貯湯タンクの底部から取水して水/冷媒熱交換器で高温まで加熱し貯湯タンクの頭頂部へ戻し、貯湯タンク内の水を高温の湯までに沸き上げする際、貯湯タンクの頭頂部から降りてくる高温の湯と未沸き上げの水との界面に存在する比較的温度の高い例えば30℃〜60℃の混合層は、貯湯タンクの底部に降りてきた時に、貯湯タンク底部から取水される水の温度上昇を抑え例えば20℃〜30℃程度まで抑えることができるため、水/冷媒熱交換器の入口の水温を低く抑え、冷媒回路のCOP低下を防ぐことができる。また、取り込んだ熱と給水管からの低温水とを熱交換して出湯利用できる。   As a result, water is taken from the bottom of the hot water tank, heated to a high temperature with a water / refrigerant heat exchanger, returned to the top of the hot water tank, and when the water in the hot water tank is boiled to hot water, When a mixed layer having a relatively high temperature, for example, 30 ° C. to 60 ° C., present at the interface between hot water coming from the top and unboiled water comes down to the bottom of the hot water storage tank, Since the temperature rise of the water taken in can be suppressed to, for example, about 20 ° C. to 30 ° C., the water temperature at the inlet of the water / refrigerant heat exchanger can be suppressed low, and the COP reduction in the refrigerant circuit can be prevented. Moreover, the heat taken in and the low temperature water from a water supply pipe can be heat-exchanged and used for hot water.

このように、貯湯タンク底部の水の温度上昇を抑える蓄熱手段を設けるだけで、コストを抑えて簡単な構成で高性能のヒートポンプ給湯装置が提供できる。   In this way, a high-performance heat pump hot water supply apparatus can be provided with a simple configuration at a reduced cost simply by providing heat storage means for suppressing the temperature rise of the water at the bottom of the hot water storage tank.

第2の発明は、特に、第1の発明のヒートポンプ給湯装置において、貯湯タンクに貯えられた湯を出湯する出湯管を貯湯タンクの上部に設けるとともに、第2の流水路と出湯管を接続する出湯バイパス管を備えるものである。   In particular, the second invention is the heat pump water heater of the first invention, wherein a hot water discharge pipe for discharging hot water stored in the hot water storage tank is provided at an upper portion of the hot water storage tank, and the second flowing water passage and the hot water discharge pipe are connected. A hot water bypass pipe is provided.

これによって、蓄熱手段で貯蔵される熱量は出湯バイパス管を通じて、給水を予熱するように有効利用し、高効率とコンパクトを両立した高性能ヒートポンプ給湯装置を提供することができる。   As a result, the amount of heat stored in the heat storage means can be effectively used to preheat the water supply through the hot water bypass pipe, and a high-performance heat pump hot water supply apparatus that achieves both high efficiency and compactness can be provided.

第3の発明は、特に、第2の発明のヒートポンプ給湯装置において、蓄熱手段は潜熱蓄熱材である平面の蓄熱プレートを積層に重ねることによって第1の流水路と第2の流水路とを形成するものである。   The third invention is the heat pump water heater of the second invention, in particular, in which the heat storage means forms a first flow channel and a second flow channel by stacking a flat heat storage plate as a latent heat storage material in a stack. To do.

これによって、蓄熱プレートを積層する工程だけで第1、第2の流水路が形成され、複雑な作業工程を廃し、製造時間も短縮される。   As a result, the first and second flow channels are formed only by the process of laminating the heat storage plates, the complicated work process is eliminated, and the manufacturing time is shortened.

第4の発明は、特に、第3の発明のヒートポンプ給湯装置において、潜熱蓄熱剤の融点を年間平均水温付近に設定したものである。   In the fourth aspect of the invention, in particular, in the heat pump hot water supply apparatus of the third aspect of the invention, the melting point of the latent heat storage agent is set near the annual average water temperature.

これによって、潜熱蓄熱剤の融点を年間平均水温付近に設定することによって、混合層の温水は潜熱蓄熱剤と熱交換する際に、温度差を取りやすくなり、熱交換性能の向上を図れるとともに、混合層の温水は年間平均水温付近まで温度低下でき、ヒートポンプサイクルの水/冷媒熱交換器の入水温度は低く確保できるため、ヒートポンプサイクルの高効率運転を実現することができる。   As a result, by setting the melting point of the latent heat storage agent near the annual average water temperature, the hot water in the mixed layer can easily take a temperature difference when exchanging heat with the latent heat storage agent, and the heat exchange performance can be improved. The temperature of the hot water in the mixed layer can be lowered to near the average water temperature annually, and the water / refrigerant heat exchanger water temperature in the heat pump cycle can be kept low, so that high efficiency operation of the heat pump cycle can be realized.

第5の発明は、特に、第1から第4の発明のヒートポンプ給湯装置において、蓄熱手段は貯湯タンクと別設したものである。   According to a fifth aspect of the invention, in particular, in the heat pump hot water supply apparatus according to the first to fourth aspects of the invention, the heat storage means is provided separately from the hot water storage tank.

本実施の形態によれば、蓄熱手段を貯湯タンクと別設することによって、蓄熱手段の容量、形状などを貯湯タンク能力やメイン使用パタンなどに合わせて設定できるので、蓄熱量と温度レベルを最適値に設計でき、設計自由度の高い高効率ヒートポンプ給湯装置を提供することができる。また、別設とすることで、ヒートポンプ給湯装置の設置性やメンテ性などをよくすることができ、より信頼性の高い高性能ヒートポンプ給湯装置を提供することができる。   According to the present embodiment, by setting the heat storage means separately from the hot water storage tank, the capacity, shape, etc. of the heat storage means can be set according to the hot water storage tank capacity, main use pattern, etc., so the heat storage amount and temperature level are optimal. It is possible to provide a high-efficiency heat pump hot water supply device that can be designed to a value and has a high degree of design freedom. Moreover, by installing separately, the installation property of a heat pump hot-water supply apparatus, maintainability, etc. can be improved, and a more reliable high-performance heat pump hot-water supply apparatus can be provided.

第6の発明は、特に、第1から第4の発明のヒートポンプ給湯装置において、蓄熱手段は貯湯タンクの底部に設置したものである。これによって、蓄熱手段の設置場所を節約でき、設置場所が限られた場合であっても本発明の効果を得ることができる。   In a sixth aspect of the invention, in particular, in the heat pump hot water supply apparatus of the first to fourth aspects of the invention, the heat storage means is installed at the bottom of the hot water storage tank. Thereby, the installation place of the heat storage means can be saved, and the effect of the present invention can be obtained even when the installation place is limited.

第7の発明は、特に、第1から第6のいずれか一つの発明のヒートポンプ給湯装置において、冷媒は二酸化炭素、圧力は臨界圧力以上としたことである。   The seventh aspect of the invention is that, in particular, in the heat pump water heater of any one of the first to sixth aspects, the refrigerant is carbon dioxide and the pressure is equal to or higher than the critical pressure.

本実施の形態によれば、臨界圧力以上とすることによって、冷媒の二酸化炭素は水により熱を奪われて温度低下しても凝縮することなく、水/冷媒熱交換器全域で冷媒と水とに温度差を形成しやすくなり、必要な高温度レベルまで水を効率的に加熱貯蔵できる。水/冷媒熱交換器の入水温度を低温化とすることで、ヒートポンプサイクルの高効率運転を実現でき、高効率のヒートポンプ給湯装置を提供することができる。   According to the present embodiment, by setting the pressure to be equal to or higher than the critical pressure, the refrigerant carbon dioxide in the entire water / refrigerant heat exchanger is not condensed even if the temperature is lowered due to heat deprived by water. It is easy to form a temperature difference, and water can be efficiently heated and stored up to the required high temperature level. By reducing the incoming water temperature of the water / refrigerant heat exchanger, a highly efficient operation of the heat pump cycle can be realized, and a highly efficient heat pump water heater can be provided.

(実施の形態1)
図1は、本発明の第1の実施形態におけるヒートポンプ給湯装置のシステム構成図、図2は同ヒートポンプ給湯装置の要部構成拡大図、図3は沸き上げを行う際の水/冷媒熱交換器の入水温度と沸き上げ温度変化及びCOP変化の時系列グラフ、図4は単位容積あたりの蓄熱量を示す蓄熱密度比較図である。
(Embodiment 1)
FIG. 1 is a system configuration diagram of a heat pump hot water supply apparatus according to the first embodiment of the present invention, FIG. 2 is an enlarged view of a main part configuration of the heat pump hot water supply apparatus, and FIG. 3 is a water / refrigerant heat exchanger for boiling. 4 is a heat storage density comparison diagram showing the amount of heat storage per unit volume.

図1と図2において、冷媒循環回路20は圧縮機21と放熱器22と減圧手段23と吸熱器24からなる。そして、この冷媒循環回路20はヒートポンプサイクルを構成し、高圧側の冷媒圧力が臨界圧力以上となる例えば二酸化炭素にような冷媒を封入している。25は積層ポンプ、26は放熱器22を流れる冷媒と熱交換して高温となった湯を輸送する貯湯管、27は貯湯管26と連通する貯湯タンクで、下部から給水管28を通って低温水である水道水を給水し、上部の出湯管29から出湯する。30は貯湯タンク27の底部から積層ポンプ25によって送られてきた水が放熱器22で冷媒と熱交換する水/冷媒熱交換器であり、そして、この水/冷媒熱交換器30で水は所定高温となり貯湯管26を経由し貯湯タンク27の頭頂部へ輸送される。31は給湯管29からの湯と給水管28からの給水を混合する混合弁であり、この混合弁31を通って所定の流量と温度の温水が給湯端末32へ送られる。   1 and 2, the refrigerant circulation circuit 20 includes a compressor 21, a radiator 22, a decompression unit 23, and a heat absorber 24. The refrigerant circulation circuit 20 constitutes a heat pump cycle and encloses a refrigerant such as carbon dioxide in which the high-pressure side refrigerant pressure is equal to or higher than the critical pressure. 25 is a laminated pump, 26 is a hot water storage pipe that transports hot water that has been exchanged with the refrigerant flowing through the radiator 22, and 27 is a hot water storage tank that communicates with the hot water storage pipe 26. Tap water, which is water, is supplied and discharged from an outlet pipe 29 at the top. Reference numeral 30 denotes a water / refrigerant heat exchanger in which water sent from the bottom of the hot water storage tank 27 by the stacking pump 25 exchanges heat with the refrigerant in the radiator 22, and in the water / refrigerant heat exchanger 30, water is predetermined. It becomes hot and is transported to the top of the hot water storage tank 27 via the hot water storage pipe 26. A mixing valve 31 mixes hot water from the hot water supply pipe 29 and water supply from the water supply pipe 28, and hot water having a predetermined flow rate and temperature is sent to the hot water supply terminal 32 through the mixing valve 31.

33は貯湯タンク27内の底部に設けた蓄熱手段である潜熱蓄熱部で、この潜熱蓄熱部33には、例えば硫酸ナトリウム水和物のような潜熱蓄熱剤を内包する蓄熱プレート34と、これら蓄熱プレート34を積層して構成する流水路35とを含む。蓄熱プレート34に内包される潜熱蓄熱剤の融点は低く設定され、例えば年間平均水温付近に設定されている。36はこの潜熱蓄熱部33に対応して設けた出湯管29と連通する出湯バイパス管、37はこの出湯バイパス管36に設けた流量を調整するバイパス流量電磁弁である。   Reference numeral 33 denotes a latent heat storage section which is a heat storage means provided at the bottom of the hot water storage tank 27. The latent heat storage section 33 includes a heat storage plate 34 containing a latent heat storage agent such as sodium sulfate hydrate, and these heat storage plates. And a flow channel 35 formed by laminating the plates 34. The melting point of the latent heat storage agent contained in the heat storage plate 34 is set low, and is set, for example, around the annual average water temperature. 36 is a hot water bypass pipe communicating with the hot water pipe 29 provided corresponding to the latent heat storage section 33, and 37 is a bypass flow rate electromagnetic valve for adjusting the flow rate provided in the hot water bypass pipe 36.

図3において、横軸は沸き上げ運転経過時間、左縦軸は入水と沸き上げ温度、右縦軸はヒートポンプサイクル成績係数(COP)を表す。図中、ケースAは潜熱蓄熱部を有しない場合、ケースBは潜熱蓄熱部を用いた場合をそれぞれ示している。   In FIG. 3, the horizontal axis represents the boiling operation elapsed time, the left vertical axis represents the incoming water and the boiling temperature, and the right vertical axis represents the heat pump cycle coefficient of performance (COP). In the figure, case A does not have a latent heat storage part, and case B shows a case where a latent heat storage part is used.

図4の蓄熱密度比較図において、横軸は使用温度、縦軸は単位容積あたりの蓄熱量を表している。図中、それぞれ水と硫酸ナトリウム水和物の温度に対する蓄熱量をグラフで表示している。硫酸ナトリウム水和物の場合では、単位容積内に充填した硫酸ナトリウム水和物の比率(充填率)を74%とし、残りの26%を水として計算を行った。図中、一例として硫酸ナトリウム水和物の融点を32℃としているが、本実施例はその融点のものに限らない。   In the heat storage density comparison diagram of FIG. 4, the horizontal axis represents the operating temperature, and the vertical axis represents the heat storage amount per unit volume. In the figure, the amount of heat storage with respect to the temperature of water and sodium sulfate hydrate is displayed in a graph. In the case of sodium sulfate hydrate, the calculation was performed assuming that the ratio (filling rate) of sodium sulfate hydrate filled in a unit volume was 74% and the remaining 26% was water. In the figure, as an example, the melting point of sodium sulfate hydrate is 32 ° C., but this example is not limited to that melting point.

次に動作、作用について説明すると、積層ポンプ25の運転により、貯湯タンク27の底部から低温水、例えば17℃を導出し、水/冷媒熱交換器30に導かれる。一方、ヒートポンプサイクルにおいては、圧縮機21から吐出される高温高圧の冷媒ガスは放熱器22へ流入し、貯湯タンク27から流れてきた冷水を加熱する。そして、この水/冷媒熱交換器30で加熱され例えば80℃まで沸き上げした温水は、貯湯管26から貯湯タンク27の頭頂部に戻され貯留される。いわゆる積層沸き上げを行う。放熱器22で冷却された冷媒は減圧手段23で減圧されて吸熱器24に流入し、ここで大気熱、太陽熱、地中熱など自然エネルギーを吸熱して蒸発ガス化し、圧縮機21に戻る。   Next, the operation and action will be described. Low temperature water, for example, 17 ° C. is led out from the bottom of the hot water storage tank 27 by the operation of the laminated pump 25 and led to the water / refrigerant heat exchanger 30. On the other hand, in the heat pump cycle, the high-temperature and high-pressure refrigerant gas discharged from the compressor 21 flows into the radiator 22 and heats the cold water flowing from the hot water storage tank 27. The hot water heated by the water / refrigerant heat exchanger 30 and boiled up to, for example, 80 ° C. is returned from the hot water storage pipe 26 to the top of the hot water storage tank 27 and stored. So-called layered boiling is performed. The refrigerant cooled by the radiator 22 is decompressed by the decompression means 23 and flows into the heat absorber 24, where it absorbs natural energy such as atmospheric heat, solar heat, and underground heat to evaporate and returns to the compressor 21.

そして、給湯需要のある時、給湯管29を通じて貯湯タンク27内に貯湯される高温の湯がユーザーの使用する給湯端末32などへ供給される。給湯需要の温度レベルに応じて、混合弁31では水道水などとミキシングして所定の温度となり供給する。   When there is a demand for hot water supply, hot water stored in the hot water storage tank 27 is supplied to the hot water supply terminal 32 used by the user through the hot water supply pipe 29. In accordance with the temperature level of the hot water supply demand, the mixing valve 31 mixes with tap water or the like to supply a predetermined temperature.

ところで、貯湯タンク27内の水を高温の湯までに沸き上げする際、貯湯タンク27の頭頂部から降りてくる高温の湯と貯湯タンク27内の未沸き上げの水との界面に存在する比較的温度の高く、例えば30℃〜60℃の混合層が形成される。この混合層を目標の沸き上げ温度例えば80℃まで沸き上げようとすると、図3のケースAに示すように、ヒートポンプサイクルの加熱能力が低下し、成績効率COPが悪くなる。   By the way, when the water in the hot water storage tank 27 is boiled up to high temperature hot water, the comparison exists between the high temperature hot water coming down from the top of the hot water storage tank 27 and the unboiling water in the hot water storage tank 27. A mixed layer having a high target temperature, for example, 30 ° C. to 60 ° C. is formed. If this mixed layer is boiled up to a target boiling temperature, for example, 80 ° C., as shown in case A of FIG. 3, the heating capacity of the heat pump cycle is lowered and the performance efficiency COP is deteriorated.

そこで、本実施例のように、貯湯タンク27の底部に設けた潜熱蓄熱部33においては、混合層の温度の高い温水は流水路35を流れて、蓄熱プレート34に内包される潜熱蓄熱剤の硫酸ナトリウム水和物と熱交換するようになっている。そして、硫酸ナトリウム水和物が混合層の温水から吸熱し、融点付近において潜熱を吸熱した。一方、この混合層の温水は硫酸ナトリウム水和物へ放熱したことによって、さらに温度が低下し、年間平均水温に近い温度レベルよりやや高く例えば20℃程度となる。   Therefore, as in the present embodiment, in the latent heat storage unit 33 provided at the bottom of the hot water storage tank 27, the hot water having a high mixed layer temperature flows through the water flow path 35 and the latent heat storage agent contained in the heat storage plate 34 is stored. Heat exchange with sodium sulfate hydrate. Then, sodium sulfate hydrate absorbed heat from the hot water in the mixed layer and absorbed latent heat in the vicinity of the melting point. On the other hand, the hot water in this mixed layer further dissipates heat to the sodium sulfate hydrate, so that the temperature further decreases, and is slightly higher than the temperature level close to the annual average water temperature, for example, about 20 ° C.

図4にも示すように、一定の蓄熱量例えば200kJ/Lを確保するために、水の場合は65℃までとする必要があるのに対して、硫酸ナトリウム水和物の場合は約32℃で実現できる。また、同温度レベルで比較した場合、温度帯によるが、硫酸ナトリウム水和物は水より倍ぐらいの蓄熱量を有している。このように、潜熱蓄熱剤を用いた場合、低い温度レベルで所定の熱量を貯蔵することができる。   As shown in FIG. 4, in order to secure a constant heat storage amount, for example, 200 kJ / L, it is necessary to keep the temperature up to 65 ° C. in the case of water, whereas it is about 32 ° C. in the case of sodium sulfate hydrate. Can be realized. Further, when compared at the same temperature level, although depending on the temperature zone, sodium sulfate hydrate has a heat storage amount about twice that of water. Thus, when the latent heat storage agent is used, a predetermined amount of heat can be stored at a low temperature level.

そして、図3のケースBに示すように、本実施例でこの混合層の水温上昇を抑える潜熱蓄熱部33を用いたことによって、混合層の比較的温度の高い水は潜熱蓄熱部33の作用で、温度上昇を抑えることができるため、水/冷媒熱交換器30の入口の水温を低く抑え、冷媒回路のCOP低下を防ぐことができる。   Then, as shown in case B of FIG. 3, by using the latent heat storage unit 33 that suppresses the rise in the water temperature of the mixed layer in the present embodiment, the water having a relatively high temperature in the mixed layer is activated by the latent heat storage unit 33. Thus, since the temperature rise can be suppressed, the water temperature at the inlet of the water / refrigerant heat exchanger 30 can be kept low, and the COP reduction of the refrigerant circuit can be prevented.

また、給湯端末32からの出湯要請があった時に、バイパス流量電磁弁37が所定開度で開き、出湯バイパス管36は給水管28から通水されるようになる。このようにして、給水を潜熱蓄熱部33の流水路35を通過させることによって、潜熱蓄熱部33の潜熱蓄熱剤に貯蔵される混合層の一部の熱量を給水予熱するようにする。そして、潜熱蓄熱剤によって予熱された給水は、出湯管29からきた高温湯とまたは給水管28からきた給水とミキシングして、所望の給湯温度となり、給湯端末32へ供給される。   Further, when there is a hot water discharge request from the hot water supply terminal 32, the bypass flow rate electromagnetic valve 37 is opened at a predetermined opening, and the hot water bypass pipe 36 is allowed to pass through the water supply pipe 28. In this way, by passing the water supply through the water flow path 35 of the latent heat storage unit 33, the amount of heat of a part of the mixed layer stored in the latent heat storage agent of the latent heat storage unit 33 is preheated. Then, the water supply preheated by the latent heat storage agent is mixed with the hot water supplied from the hot water outlet pipe 29 or the water supplied from the water supply pipe 28 to obtain a desired hot water supply temperature and supplied to the hot water supply terminal 32.

このように、貯湯タンク27底部の水の温度上昇を抑える蓄熱手段である潜熱蓄熱部33を設けることにより、コストを抑えて簡単な構成で高性能のヒートポンプ給湯装置が提供できる。   In this manner, by providing the latent heat storage unit 33 that is a heat storage unit that suppresses the temperature rise of the water at the bottom of the hot water storage tank 27, a high-performance heat pump hot water supply apparatus can be provided with a simple configuration at a reduced cost.

また、潜熱蓄熱部33で貯蔵される熱量は出湯バイパス管36を通じて、給水を予熱するように有効利用することによって、潜熱蓄熱剤に貯蔵された熱量を無駄なく利用できるので、湯切れすることなく、高効率とコンパクトを両立した高性能ヒートポンプ給湯装置を提供することができる。   Further, the amount of heat stored in the latent heat storage unit 33 can be used without waste by effectively using the amount of heat stored in the latent heat storage agent by preheating the water supply through the hot water bypass pipe 36 so that the hot water does not run out. It is possible to provide a high-performance heat pump hot water supply device that achieves both high efficiency and compactness.

また、潜熱蓄熱剤の融点を年間平均水温付近に設定することによって、混合層の温水は蓄熱プレート34と熱交換する際に、温度差を取りやすくなり、熱交換性能の向上を図ることによって、コンパクト軽量化の蓄熱部を実現できるとともに、混合層は年間平均水温付近まで温度低下でき、沸き上げの時に、ヒートポンプサイクルの水/冷媒熱交換器30の入水温度は低く確保できるため、ヒートポンプサイクルの高効率運転を確実に実現ことができる。   In addition, by setting the melting point of the latent heat storage agent near the annual average water temperature, the hot water in the mixed layer can easily take a temperature difference when exchanging heat with the heat storage plate 34, and by improving the heat exchange performance, A heat storage part that is compact and lightweight can be realized, and the temperature of the mixed layer can be lowered to around the average water temperature annually, and the water / refrigerant heat exchanger 30 of the heat pump cycle can be kept low at the time of boiling. Highly efficient operation can be realized with certainty.

また、ヒートポンプサイクルの冷媒を二酸化炭素とすることによって、地球環境保全を実現するとともに、臨界圧力以上とすることによって、冷媒の二酸化炭素は水により熱を奪われて温度低下しても凝縮することなく、水/冷媒熱交換器全域で冷媒と水とに温度差を形成しやすくなり、必要な高温度レベルまで水を効率的に加熱できるため、貯湯タンクの高密度蓄熱を実現でき貯湯タンクのコンパクト化を図ることができる。さらに、水/冷媒熱交換器の入水温度を低温化とすることで、ヒートポンプサイクルの高効率運転を実現でき、高効率のヒートポンプ給湯装置を提供することができる。   In addition, by using carbon dioxide as the refrigerant in the heat pump cycle, it is possible to conserve the global environment, and by setting the pressure above the critical pressure, the carbon dioxide in the refrigerant will condense even if its temperature drops due to water being deprived of heat. In addition, it becomes easier to form a temperature difference between the refrigerant and water throughout the water / refrigerant heat exchanger, and the water can be efficiently heated to the required high temperature level. Compactness can be achieved. In addition, by reducing the incoming water temperature of the water / refrigerant heat exchanger, a highly efficient operation of the heat pump cycle can be realized, and a highly efficient heat pump water heater can be provided.

(実施の形態2)
図5は本発明の第2の実施形態におけるヒートポンプ給湯装置を示すシステム構成図である。
(Embodiment 2)
FIG. 5 is a system configuration diagram showing a heat pump hot water supply apparatus according to the second embodiment of the present invention.

本実施形態において、第1の実施形態と異なる点は、貯湯タンク27と別設して、水/冷媒熱交換器30の入口と貯湯タンク27の底部の間に、潜熱蓄熱部38を新設したことである。この潜熱蓄熱部38は給湯管29と連通する先行出湯流路39と、潜熱蓄熱剤を内包した蓄熱プレート40と、水/冷媒熱交換器30の入口と連通する低温化流路41とが交互に積層して構成されている。   In this embodiment, the difference from the first embodiment is that a latent heat storage unit 38 is newly provided separately from the hot water storage tank 27 between the inlet of the water / refrigerant heat exchanger 30 and the bottom of the hot water storage tank 27. That is. In this latent heat storage section 38, a preceding hot water discharge passage 39 communicating with the hot water supply pipe 29, a heat storage plate 40 containing a latent heat storage agent, and a low temperature passage 41 communicating with the inlet of the water / refrigerant heat exchanger 30 are alternately arranged. It is configured by laminating.

なお、第1の実施形態と同一符号のものは同一構造を有し、説明は省略する。   In addition, the thing of the same code | symbol as 1st Embodiment has the same structure, and abbreviate | omits description.

貯湯タンク27内の水を高温の湯までに沸き上げする際、貯湯タンク27の頭頂部から降りてくる高温の湯と貯湯タンク27内の未沸き上げの水との界面に存在する比較的温度の高い例えば30℃〜60℃の混合層は形成される。この混合層部分の温水は貯湯タンク27の底部から、潜熱蓄熱部38の低温化流路41を流れて、蓄熱プレート40に内包される潜熱蓄熱剤の硫酸ナトリウム水和物と熱交換してから、水/冷媒熱交換器30の入口へ流れるようになっている。そして、硫酸ナトリウム水和物が混合層の温水から吸熱し、融点付近において潜熱を吸熱した。一方、この混合層の温水は硫酸ナトリウム水和物へ放熱したことによって、温度が低下し、年間平均水温に近い温度レベル例えば20℃程度となる。   When the water in the hot water storage tank 27 is boiled up to the high temperature hot water, the relatively high temperature existing at the interface between the hot water coming down from the top of the hot water storage tank 27 and the unboiling water in the hot water storage tank 27. For example, a mixed layer having a high temperature of 30 ° C. to 60 ° C. is formed. The hot water in the mixed layer portion flows from the bottom of the hot water storage tank 27 through the low-temperature flow path 41 of the latent heat storage unit 38 and exchanges heat with sodium sulfate hydrate of the latent heat storage agent contained in the heat storage plate 40. The water / refrigerant heat exchanger 30 flows to the inlet. Then, sodium sulfate hydrate absorbed heat from the hot water in the mixed layer and absorbed latent heat in the vicinity of the melting point. On the other hand, the temperature of the hot water in the mixed layer is reduced by releasing heat to the sodium sulfate hydrate, and the temperature level is close to the annual average water temperature, for example, about 20 ° C.

このように、この混合層の水温上昇を抑える潜熱蓄熱部38を用いたことによって、混合層の比較的温度の高い水は潜熱蓄熱部38の作用で、温度上昇を抑えることができるため、水/冷媒熱交換器30の入口の水温を低く抑え、冷媒回路のCOP低下を防ぐことができる。   Thus, by using the latent heat storage unit 38 that suppresses the rise in the water temperature of the mixed layer, water having a relatively high temperature in the mixed layer can suppress an increase in temperature by the action of the latent heat storage unit 38. / The water temperature at the inlet of the refrigerant heat exchanger 30 can be kept low, and the COP drop of the refrigerant circuit can be prevented.

また、給湯端末32からの出湯要請があった時に、バイパス流量電磁弁37が所定開度で開き、出湯バイパス管36は給水管28から通水されるようになる。このようにして、給水を潜熱蓄熱部38の先行出湯流路39を通過させることによって、潜熱蓄熱部38の潜熱蓄熱剤に貯蔵される混合層の熱量を給水予熱するようにする。そして、潜熱蓄熱剤によって予熱された給水は、出湯管29からきた高温湯とまたは給水管28からきた給水とミキシングして、所望の給湯温度となり、給湯端末32へ供給される。   Further, when there is a hot water discharge request from the hot water supply terminal 32, the bypass flow rate electromagnetic valve 37 is opened at a predetermined opening, and the hot water bypass pipe 36 is allowed to pass through the water supply pipe 28. In this way, by passing the water supply through the preceding hot water flow path 39 of the latent heat storage unit 38, the amount of heat of the mixed layer stored in the latent heat storage agent of the latent heat storage unit 38 is preheated. Then, the water supply preheated by the latent heat storage agent is mixed with the hot water supplied from the hot water outlet pipe 29 or the water supplied from the water supply pipe 28 to obtain a desired hot water supply temperature and supplied to the hot water supply terminal 32.

このように、貯湯タンク27底部の水の温度上昇を抑える蓄熱手段である潜熱蓄熱部38を設けるだけで、コストを抑えて簡単な構成で高性能のヒートポンプ給湯装置が提供できる。   In this way, a high-performance heat pump hot water supply apparatus can be provided with a simple configuration at a reduced cost simply by providing the latent heat storage section 38, which is a heat storage means for suppressing the temperature rise of the water at the bottom of the hot water storage tank 27.

また、潜熱蓄熱部38で貯蔵される熱量は出湯バイパス管36を通じて、給水を予熱するように有効利用することによって、潜熱蓄熱剤に貯蔵された熱量を無駄なく利用できるので、湯切れすることなく、高効率とコンパクトを両立した高性能ヒートポンプ給湯装置を提供することができる。   In addition, the amount of heat stored in the latent heat storage unit 38 can be used without waste by effectively using the amount of heat stored in the latent heat storage agent by preheating the water supply through the hot water bypass pipe 36, so that the hot water does not run out. It is possible to provide a high-performance heat pump hot water supply device that achieves both high efficiency and compactness.

さらに、このように、潜熱蓄熱部38を貯湯タンク27と別設することによって、潜熱蓄熱部38の容量、大きさ、設置形態などを貯湯タンク能力や使用頻度に合わせて設定できるので、蓄熱量と温度レベルを最適値に設計でき、設計自由度の高い湯切れのしない高効率ヒートポンプ給湯装置を提供することができる。   Furthermore, since the latent heat storage unit 38 is separately provided from the hot water storage tank 27 in this way, the capacity, size, installation mode, etc. of the latent heat storage unit 38 can be set according to the hot water storage tank capacity and usage frequency. Therefore, it is possible to provide a high-efficiency heat pump hot water supply apparatus that can design the temperature level to an optimum value and does not run out of hot water with high design freedom.

また、別設とすることで、ヒートポンプ給湯装置の設置性やメンテ性などをよくすることができ、より信頼性の高い高性能ヒートポンプ給湯装置を提供することができる。   Moreover, by installing separately, the installation property of a heat pump hot-water supply apparatus, maintainability, etc. can be improved, and a more reliable high-performance heat pump hot-water supply apparatus can be provided.

さらに、別設とすることで、貯湯タンク27にバイパス出湯管36の出口を設ける必要がなくなり、貯湯タンク27の製作コストを削減することができる。   Furthermore, by providing it separately, it is not necessary to provide the outlet of the bypass hot water discharge pipe 36 in the hot water storage tank 27, and the manufacturing cost of the hot water storage tank 27 can be reduced.

なお、上記各実施の形態において、第一流体は二酸化炭素冷媒、第二流体は水としたが、その他の流体を用いても同様な効果が得られる。   In each of the above embodiments, the first fluid is a carbon dioxide refrigerant and the second fluid is water. However, the same effect can be obtained by using other fluids.

なお、上記各実施の形態において、水流路で加熱された水は貯湯タンクへ輸送されるとしたが、水流路を流れる水を所定温度まで加熱した後、貯湯タンクへ流れなくて、直接ユーザーの使用する給湯蛇口などへ供給してもよい。   In each of the above embodiments, the water heated in the water flow path is transported to the hot water storage tank. However, after the water flowing through the water flow path is heated to a predetermined temperature, the water does not flow to the hot water storage tank, and the user directly You may supply to the hot-water supply faucet etc. to be used.

また、上記各実施の形態において、蓄熱手段は蓄熱プレートにより構成される潜熱蓄熱部としたが、例えば蓄熱プレートの代わりに潜熱蓄熱材を詰め込んだ球体カプセル状のものにより構成される潜熱蓄熱部としてもよい。   Moreover, in each said embodiment, although the heat storage means was set as the latent heat storage part comprised by the heat storage plate, for example, as a latent heat storage part comprised by the spherical capsule shape packed with the latent heat storage material instead of the heat storage plate Also good.

なお、上記各実施の形態において、混合層は沸き上げした高温の湯と未沸き上げ水との界面に形成されるとしたが、沸き上げ温度の変動、中温水の貯湯タンク戻しや放熱による貯湯タンク内温度低下などによって形成された混合層についても、同様な効果が得られる。   In each of the above embodiments, the mixed layer is formed at the interface between the heated hot water and the non-boiling water. The same effect can be obtained for the mixed layer formed by the temperature drop in the tank.

以上のように、本発明にかかるヒートポンプサイクル給湯装置は、冷媒回路のCOPの低下はなく、簡単な構成で低コストの高性能ヒートポンプ給湯装置を提供することができる。   As described above, the heat pump cycle hot water supply apparatus according to the present invention does not decrease the COP of the refrigerant circuit, and can provide a low-cost, high-performance heat pump hot water supply apparatus with a simple configuration.

その他、幅広く熱交換、熱搬送などの用途にも適用できる。   In addition, it can be widely applied to applications such as heat exchange and heat transfer.

本発明の実施の形態1におけるヒートポンプ給湯装置のシステム構成図The system block diagram of the heat pump hot-water supply apparatus in Embodiment 1 of this invention 本発明の実施の形態1におけるヒートポンプ給湯装置の要部拡大図The principal part enlarged view of the heat pump hot-water supply apparatus in Embodiment 1 of this invention 本発明の実施の形態1におけるヒートポンプ給湯装置の運転経過時間における温度―COP特性図Temperature-COP characteristic diagram in operation elapsed time of heat pump water heater in embodiment 1 of the present invention 本発明の実施の形態1における単位容積あたりの蓄熱量を示す蓄熱密度比較図Heat storage density comparison diagram showing heat storage amount per unit volume in Embodiment 1 of the present invention 本発明の実施の形態2におけるヒートポンプ給湯装置の要部拡大図The principal part enlarged view of the heat pump hot-water supply apparatus in Embodiment 2 of this invention 従来のヒートポンプ給湯装置の構成図Configuration diagram of conventional heat pump water heater 従来のヒートポンプ給湯装置の構成図Configuration diagram of conventional heat pump water heater

符号の説明Explanation of symbols

20 冷媒循環回路
21 圧縮機
22 放熱器
23 減圧手段
24 吸熱器
25 積層ポンプ
27 貯湯タンク
30 水/冷媒熱交換器
33、38 潜熱蓄熱部
36 出湯バイパス管
DESCRIPTION OF SYMBOLS 20 Refrigerant circuit 21 Compressor 22 Radiator 23 Depressurization means 24 Heat absorber 25 Laminated pump 27 Hot water storage tank 30 Water / refrigerant heat exchanger 33, 38 Latent heat heat storage part 36 Hot water bypass pipe

Claims (7)

貯湯タンクと、圧縮機と放熱器とを備える冷媒循環回路と、前記放熱器と熱交換関係にある水/冷媒熱交換器と、前記貯湯タンクの底部から取り出した水を前記水/冷媒熱交換器を介して加熱して前記貯湯タンクの上部へ戻す積層ポンプと、前記貯湯タンクの下部から給水を行う給水管と、前記貯湯タンク底部の水を熱交換して前記水/冷媒熱交換器へ流す第1の流水路と前記給水管から給水される水と熱交換して出湯する第2の流水路とから少なくとも構成される蓄熱手段とを備えるヒートポンプ給湯装置。 A refrigerant circulation circuit comprising a hot water storage tank, a compressor and a radiator, a water / refrigerant heat exchanger in heat exchange relationship with the radiator, and water / refrigerant heat exchange of water taken from the bottom of the hot water storage tank A stacking pump that heats and returns to the upper part of the hot water storage tank, a water supply pipe that supplies water from the lower part of the hot water storage tank, and water at the bottom of the hot water storage tank for heat exchange to the water / refrigerant heat exchanger A heat pump hot water supply apparatus comprising: a heat storage means configured to include at least a first flowing water channel that flows and a second flowing water channel that generates heat by exchanging heat with water supplied from the water supply pipe. 貯湯タンクに貯えられた湯を出湯する出湯管を前記貯湯タンクの上部に設けるとともに、第2の流水路と前記出湯管を接続する出湯バイパス管を備える請求項1記載のヒートポンプ給湯装置。 The heat pump hot water supply apparatus according to claim 1, further comprising: a hot water discharge pipe for discharging hot water stored in the hot water storage tank, provided at an upper portion of the hot water storage tank; and a hot water bypass pipe connecting the second flowing water channel and the hot water discharge pipe. 蓄熱手段は潜熱蓄熱材である平面の蓄熱プレートを積層に重ねることによって第1の流水路と第2の流水路とを形成する請求項2記載のヒートポンプ給湯装置。 The heat pump hot-water supply apparatus according to claim 2, wherein the heat storage means forms a first flow path and a second flow path by stacking flat heat storage plates, which are latent heat storage materials, in a stacked manner. 潜熱蓄熱材の融点を年間平均水温に設定することを特徴とする請求項3記載のヒートポンプ給湯装置。 The heat pump hot-water supply device according to claim 3, wherein the melting point of the latent heat storage material is set to an annual average water temperature. 蓄熱手段は貯湯タンクと別設する構成する請求項1から4のいずれか1項に記載のヒートポンプ給湯装置。 The heat pump hot water supply apparatus according to any one of claims 1 to 4, wherein the heat storage means is provided separately from the hot water storage tank. 蓄熱手段は貯湯タンクの底部に構成する請求項1から4のいずれか1項に記載のヒートポンプ給湯装置。 The heat pump hot water supply apparatus according to any one of claims 1 to 4, wherein the heat storage means is configured at the bottom of the hot water storage tank. 冷媒は二酸化炭素で、圧力は臨界圧力以上とする請求項1から6のいずれか1項記載のヒートポンプ給湯装置。 The heat pump hot water supply apparatus according to any one of claims 1 to 6, wherein the refrigerant is carbon dioxide, and the pressure is equal to or higher than a critical pressure.
JP2005028731A 2005-02-04 2005-02-04 Heat pump hot-water supply device Pending JP2006214658A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005028731A JP2006214658A (en) 2005-02-04 2005-02-04 Heat pump hot-water supply device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005028731A JP2006214658A (en) 2005-02-04 2005-02-04 Heat pump hot-water supply device

Publications (1)

Publication Number Publication Date
JP2006214658A true JP2006214658A (en) 2006-08-17

Family

ID=36978037

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005028731A Pending JP2006214658A (en) 2005-02-04 2005-02-04 Heat pump hot-water supply device

Country Status (1)

Country Link
JP (1) JP2006214658A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011169492A (en) * 2010-02-17 2011-09-01 Panasonic Corp Water heater
JP2012180993A (en) * 2011-03-02 2012-09-20 Yazaki Corp Latent heat storing hot water storage tank and hot water supply device

Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5123816B1 (en) * 1971-03-05 1976-07-20
JPS5227405Y2 (en) * 1971-12-23 1977-06-22
JPS5320761Y2 (en) * 1972-06-09 1978-05-31
JPS5843A (en) * 1981-06-23 1983-01-05 Toshiba Corp Heat accumulator
JPS5960188A (en) * 1982-09-29 1984-04-06 Matsushita Electric Ind Co Ltd Heat regenerative tank
JPS61173084A (en) * 1985-01-23 1986-08-04 Matsushita Electric Works Ltd Heat storage tank
JPH04186057A (en) * 1990-11-20 1992-07-02 Kubota Corp Hot water storing type hot water supply device
JPH10318604A (en) * 1997-05-21 1998-12-04 Matsushita Electric Ind Co Ltd Heat pump type hot water supply system for bath
JPH11311454A (en) * 1998-04-28 1999-11-09 Taikisha Ltd Latent heat storage type heat source system
JP2003222397A (en) * 2001-04-04 2003-08-08 Denso Corp Multi-functional water heater
JP2003232563A (en) * 2002-02-08 2003-08-22 Daikin Ind Ltd Thermal storage hot water supply apparatus
JP2004036964A (en) * 2002-07-02 2004-02-05 Daikin Ind Ltd Thermal storage unit, its assembling method and thermal storage device
JP2004293971A (en) * 2003-03-27 2004-10-21 Corona Corp Hot-water storage type hot-water supply device
JP2006132873A (en) * 2004-11-08 2006-05-25 Denso Corp Hot water supply apparatus

Patent Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5123816B1 (en) * 1971-03-05 1976-07-20
JPS5227405Y2 (en) * 1971-12-23 1977-06-22
JPS5320761Y2 (en) * 1972-06-09 1978-05-31
JPS5843A (en) * 1981-06-23 1983-01-05 Toshiba Corp Heat accumulator
JPS5960188A (en) * 1982-09-29 1984-04-06 Matsushita Electric Ind Co Ltd Heat regenerative tank
JPS61173084A (en) * 1985-01-23 1986-08-04 Matsushita Electric Works Ltd Heat storage tank
JPH04186057A (en) * 1990-11-20 1992-07-02 Kubota Corp Hot water storing type hot water supply device
JPH10318604A (en) * 1997-05-21 1998-12-04 Matsushita Electric Ind Co Ltd Heat pump type hot water supply system for bath
JPH11311454A (en) * 1998-04-28 1999-11-09 Taikisha Ltd Latent heat storage type heat source system
JP2003222397A (en) * 2001-04-04 2003-08-08 Denso Corp Multi-functional water heater
JP2003232563A (en) * 2002-02-08 2003-08-22 Daikin Ind Ltd Thermal storage hot water supply apparatus
JP2004036964A (en) * 2002-07-02 2004-02-05 Daikin Ind Ltd Thermal storage unit, its assembling method and thermal storage device
JP2004293971A (en) * 2003-03-27 2004-10-21 Corona Corp Hot-water storage type hot-water supply device
JP2006132873A (en) * 2004-11-08 2006-05-25 Denso Corp Hot water supply apparatus

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011169492A (en) * 2010-02-17 2011-09-01 Panasonic Corp Water heater
JP2012180993A (en) * 2011-03-02 2012-09-20 Yazaki Corp Latent heat storing hot water storage tank and hot water supply device

Similar Documents

Publication Publication Date Title
JP4029103B2 (en) Containment tank for hot water system
JP2006234254A (en) Heat exchanger and heat pump type hot water supply device using the same
JP4367350B2 (en) Heat pump water heater
CN104968369B (en) Chlorination equipment and sterilization method with energy regenerating
JP2009281650A (en) Heating system
JP2006336988A (en) Heat exchanger apparatus and heat pump water heater using it
JP2006292365A (en) Hot water supply device
JP2006214658A (en) Heat pump hot-water supply device
EP3090213B1 (en) Heat exchanger, heating device, heating system and method for heating water
JP4063237B2 (en) Heat exchange device and heat pump water heater using the same
JP2008057859A (en) Heat exchanger and heat pump hot water supply device using the same
JP2009250462A (en) Heat pump water heater
JP6862961B2 (en) Water heating system
JP4222273B2 (en) Heat pump water heater
JP2008309389A (en) Hot water storage tank and heat pump water heater using the same
JP2005069608A (en) Hot water utilizing system
JP2007278655A (en) Heat storage type hot water supplier
JP2008215717A (en) Heat transfer device
JP2007205618A (en) Hot water supply device
JP2003232595A (en) Thermal storage device
JP3922190B2 (en) Heat exchange device and heat pump water heater using the same
JP2005121331A (en) Hot water supply device
JP2010169283A (en) Heat exchange system
JP2007139284A (en) Heat exchanger and heat pump hot water supply device using the same
JP4882478B2 (en) Regenerative water heater

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071217

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20080115

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081211

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091013

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091119

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20091120

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100202

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100629