JP4367234B2 - Internal combustion engine - Google Patents

Internal combustion engine Download PDF

Info

Publication number
JP4367234B2
JP4367234B2 JP2004157785A JP2004157785A JP4367234B2 JP 4367234 B2 JP4367234 B2 JP 4367234B2 JP 2004157785 A JP2004157785 A JP 2004157785A JP 2004157785 A JP2004157785 A JP 2004157785A JP 4367234 B2 JP4367234 B2 JP 4367234B2
Authority
JP
Japan
Prior art keywords
air
fuel ratio
ratio sensor
valve
injection amount
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004157785A
Other languages
Japanese (ja)
Other versions
JP2005337127A (en
Inventor
晃司 森田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2004157785A priority Critical patent/JP4367234B2/en
Publication of JP2005337127A publication Critical patent/JP2005337127A/en
Application granted granted Critical
Publication of JP4367234B2 publication Critical patent/JP4367234B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/30Controlling fuel injection
    • F02D41/3094Controlling fuel injection the fuel injection being effected by at least two different injectors, e.g. one in the intake manifold and one in the cylinder
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1438Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor
    • F02D41/1444Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases
    • F02D41/1454Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases the characteristics being an oxygen content or concentration or the air-fuel ratio
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D13/00Controlling the engine output power by varying inlet or exhaust valve operating characteristics, e.g. timing
    • F02D13/02Controlling the engine output power by varying inlet or exhaust valve operating characteristics, e.g. timing during engine operation
    • F02D13/0261Controlling the valve overlap
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1438Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor
    • F02D41/1444Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases
    • F02D2041/147Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases the characteristics being a hydrogen content or concentration of the exhaust gases

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)
  • Fuel-Injection Apparatus (AREA)
  • Output Control And Ontrol Of Special Type Engine (AREA)

Description

本発明は内燃機関に関する。特には、燃料を吸気ポート内に噴射するポート噴射弁と、燃料を燃焼室内に噴射する筒内噴射弁とを備えるものに関する。   The present invention relates to an internal combustion engine. In particular, the present invention relates to an apparatus including a port injection valve that injects fuel into an intake port and an in-cylinder injection valve that injects fuel into a combustion chamber.

燃料を吸気ポート内に噴射するポート噴射弁と、燃料を燃焼室内に噴射する筒内噴射弁とを備え、ポート噴射弁と筒内噴射弁とから運転条件に応じて定められた噴射比率で燃料を噴射するような内燃機関、すなわちダブル噴射型内燃機関、が開発されている。例えば、特許文献1に記載のものがある。   A port injection valve that injects fuel into the intake port and an in-cylinder injection valve that injects fuel into the combustion chamber. The fuel is injected from the port injection valve and the in-cylinder injection valve at an injection ratio determined according to operating conditions. Has been developed, that is, a double injection type internal combustion engine. For example, there exists a thing of patent document 1.

ところで内燃機関を車両用にもちいる場合、排気管に空燃比センサを設け、空燃比センサの出力にもとづいて空燃比をフィードバック制御することが多い。そして、この空燃比センサの出力は排気ガス中の水素濃度により出力が変化することがわかった。
そこで、特許文献2では燃焼室内圧力を検出可能な圧力センサを設け、この圧力センサで検出した燃焼室内圧力の変化にもとづき水素濃度を推定し、推定した水素濃度に応じて空燃比センサの出力を補正することを開示している。
When an internal combustion engine is used for a vehicle, an air-fuel ratio sensor is often provided in the exhaust pipe, and the air-fuel ratio is often feedback controlled based on the output of the air-fuel ratio sensor. The output of the air-fuel ratio sensor was found to change depending on the hydrogen concentration in the exhaust gas.
Therefore, in Patent Document 2, a pressure sensor capable of detecting the pressure in the combustion chamber is provided, the hydrogen concentration is estimated based on the change in the pressure in the combustion chamber detected by the pressure sensor, and the output of the air-fuel ratio sensor is output according to the estimated hydrogen concentration. The correction is disclosed.

また、特許文献3では排気ガス中の水素濃度を検出する水素センサを設け水素センサが検出した水素センサの濃度にもとづき空燃比をもとめることを開示している。   Further, Patent Document 3 discloses that a hydrogen sensor for detecting the hydrogen concentration in the exhaust gas is provided to obtain the air-fuel ratio based on the concentration of the hydrogen sensor detected by the hydrogen sensor.

一方、図14は特許文献1のようなポート噴射弁と筒内噴射弁を有するダブル噴射型内燃機関において、ポート噴射した場合の水素濃度と筒内噴射した場合の水素濃度を示した図である。同図から明らかなように、噴射比率が異なると水素濃度が異なり、それに応じて、空燃比センサの出力がずれることになる。   On the other hand, FIG. 14 is a diagram showing the hydrogen concentration in the case of port injection and the hydrogen concentration in the case of in-cylinder injection in a double injection internal combustion engine having a port injection valve and an in-cylinder injection valve as in Patent Document 1. . As is clear from the figure, when the injection ratio is different, the hydrogen concentration is different, and the output of the air-fuel ratio sensor is shifted accordingly.

しかし、特許文献2、3はこのようなポート噴射弁と筒内噴射弁を有するダブル噴射型内燃機関の場合については言及されておらず、ポート噴射弁と筒内噴射弁を有するダブル噴射型内燃機関において空燃比センサを信頼性高く使用できるようにするものはない。   However, Patent Documents 2 and 3 do not mention the case of a double injection type internal combustion engine having such a port injection valve and a cylinder injection valve, and a double injection type internal combustion engine having a port injection valve and a cylinder injection valve. There is nothing in the engine that makes it possible to use the air-fuel ratio sensor with high reliability.

特開2000−364409号公報JP 2000-364409 A 特開平9−268934号公報JP-A-9-268934 特開2000−8920号公報JP 2000-8920 A

本発明は上記問題に鑑み、ポート噴射弁と筒内噴射弁を有する内燃機関において空燃比センサを信頼性高く使用できるようにすることを目的とする。   An object of the present invention is to make it possible to use an air-fuel ratio sensor with high reliability in an internal combustion engine having a port injection valve and a cylinder injection valve.

請求項1の発明によれば、燃料を吸気ポート内に噴射するポート噴射弁と、燃料を燃焼室内に噴射する筒内噴射弁とを備え、ポート噴射弁と筒内噴射弁とから運転条件に応じて定められた比率で燃料を噴射する内燃機関であって、空燃比センサで排気ガスの空燃比を検出し、空燃比センサの出力にもとづいて空燃比を制御するものにおいて、
ポート噴射量と筒内噴射量の比率である噴射量比率を算出する噴射量比率算出手段と、
噴射量比率算出手段が算出した噴射量比率にもとづいて空燃比センサの出力を補正する空燃比センサ出力補正手段であって、筒内噴射量とポート噴射量との和となる全体噴射量に対する筒内噴射量の噴射割合が大きくなるほど、空燃比センサより検出された空燃比を、より大きくなる方向に補正する空燃比センサ出力補正手段と、を具備し、
空燃比センサ出力補正手段で補正された空燃比センサの出力にもとづいて空燃比を制御することを特徴とする内燃機関が提供される。
このように構成される内燃機関では、燃料を吸気ポート内に噴射するポート噴射弁と、燃料を燃焼室内に噴射する筒内噴射弁とを備えているが、噴射量比率算出手段がポート噴射量と筒内噴射量の比率である噴射量比率を算出し、空燃比センサ出力補正手段が噴射量比率算出手段が算出した噴射量比率にもとづいて空燃比センサの出力を補正し、空燃比センサ出力補正手段で補正された空燃比センサの出力にもとづいて空燃比が制御される。
According to the first aspect of the present invention, a port injection valve for injecting fuel into the intake port and a cylinder injection valve for injecting fuel into the combustion chamber are provided, and operating conditions are determined from the port injection valve and the cylinder injection valve. An internal combustion engine that injects fuel at a ratio determined in accordance with it, detecting an air-fuel ratio of exhaust gas with an air-fuel ratio sensor and controlling the air-fuel ratio based on the output of the air-fuel ratio sensor,
An injection amount ratio calculating means for calculating an injection amount ratio that is a ratio of the port injection amount and the in-cylinder injection amount;
Air-fuel ratio sensor output correcting means for correcting the output of the air-fuel ratio sensor based on the injection amount ratio calculated by the injection amount ratio calculating means , wherein the cylinder for the total injection amount that is the sum of the in-cylinder injection amount and the port injection amount Air-fuel ratio sensor output correction means for correcting the air-fuel ratio detected by the air-fuel ratio sensor in a direction of increasing as the injection ratio of the internal injection amount increases ,
An internal combustion engine is provided that controls the air-fuel ratio based on the output of the air-fuel ratio sensor corrected by the air-fuel ratio sensor output correcting means.
The internal combustion engine configured as described above includes a port injection valve that injects fuel into the intake port and an in-cylinder injection valve that injects fuel into the combustion chamber. And the in-cylinder injection amount ratio, and the air-fuel ratio sensor output correction means corrects the output of the air-fuel ratio sensor based on the injection amount ratio calculated by the injection amount ratio calculation means. The air / fuel ratio is controlled based on the output of the air / fuel ratio sensor corrected by the correcting means.

請求項2の発明によれば、請求項1の発明において、空燃比センサ出力補正手段は、噴射量比率にもとづいて排気ガス中の水素濃度を推定し、推定した水素濃度にもとづいて空燃比センサの出力を補正する、ようにされている。   According to the invention of claim 2, in the invention of claim 1, the air-fuel ratio sensor output correcting means estimates the hydrogen concentration in the exhaust gas based on the injection amount ratio, and the air-fuel ratio sensor based on the estimated hydrogen concentration. The output is corrected.

請求項の発明によれば、請求項1の発明において、空燃比センサ出力補正手段は、さらに、冷却水温に応じて空燃比センサの出力を補正する水温補正手段を含む、ようにされている。 According to the invention of claim 3, in the invention of claim 1, the air-fuel ratio sensor output correcting means further includes a water temperature correcting means for correcting the output of the air-fuel ratio sensor in accordance with the cooling water temperature. .

請求項の発明によれば、請求項1の発明において、内燃機関が、吸気弁の開弁期間を調整する吸気弁タイミング調節機構と排気弁の開弁期間を調整する排気弁タイミング調節機構の、一方、または、両方を備えていて、
空燃比センサ出力補正手段は、さらに、吸気弁の開弁期間と排気弁の開弁期間との関係に応じて空燃比センサの出力を補正する吸排気弁タイミング補正手段を有する。
According to the invention of claim 4, in the invention of claim 1, the internal combustion engine includes an intake valve timing adjustment mechanism for adjusting the valve opening period of the intake valve and an exhaust valve timing adjustment mechanism for adjusting the valve opening period of the exhaust valve. Have one or both,
The air-fuel ratio sensor output correction means further includes intake / exhaust valve timing correction means for correcting the output of the air-fuel ratio sensor in accordance with the relationship between the valve opening period of the intake valve and the valve opening period of the exhaust valve.

請求項1の発明によれば、燃料を吸気ポート内に噴射するポート噴射弁と、燃料を燃焼室内に噴射する筒内噴射弁とを備えているが、噴射量比率算出手段がポート噴射量と筒内噴射量の比率である噴射量比率を算出し、空燃比センサ出力補正手段が噴射量比率算出手段が算出した噴射量比率にもとづいて空燃比センサの出力を補正し、空燃比センサ出力補正手段で補正された空燃比センサの出力にもとづいて空燃比が制御され、空燃比センサを信頼性高く使用することができる。
請求項の発明のようにすれば、水温による空燃比センサの出力の補正もおこなわれさらに信頼性が高い。
請求項の発明のようにすれば、吸気弁の開弁期間と排気弁の開弁期間との関係に応じて空燃比センサの出力が補正され、さらに信頼性が高い。
According to the first aspect of the present invention, the fuel injection device includes the port injection valve that injects fuel into the intake port and the in-cylinder injection valve that injects fuel into the combustion chamber. An injection amount ratio that is a ratio of the in-cylinder injection amount is calculated, and the air-fuel ratio sensor output correction means corrects the output of the air-fuel ratio sensor based on the injection amount ratio calculated by the injection amount ratio calculation means, and the air-fuel ratio sensor output correction The air-fuel ratio is controlled based on the output of the air-fuel ratio sensor corrected by the means, and the air-fuel ratio sensor can be used with high reliability.
According to the invention of claim 3 , the output of the air-fuel ratio sensor is also corrected by the water temperature, and the reliability is further high.
According to the invention of claim 4 , the output of the air-fuel ratio sensor is corrected according to the relationship between the valve opening period of the intake valve and the valve opening period of the exhaust valve, and the reliability is high.

以下、添付の図面を参照して本発明の実施の形態を説明する。
図1は本発明のハード構成を説明する図である。
Hereinafter, embodiments of the present invention will be described with reference to the accompanying drawings.
FIG. 1 is a diagram for explaining the hardware configuration of the present invention.

以下、添付の図面を参照して本発明の実施の形態を説明する。図1は本発明の各実施の形態に共通のハード構成を示す図である。
1は火花点火式の内燃機関を示し、内燃機関1はシリンダヘッド1aとシリンダブロック1bとを備えて成る。シリンダヘッド1aは吸気ポート5、排気ポート6、吸気弁7、排気弁8、および、点火栓40を備え、点火栓40には点火コイル41から高圧電流が供給される。
Hereinafter, embodiments of the present invention will be described with reference to the accompanying drawings. FIG. 1 is a diagram showing a hardware configuration common to the embodiments of the present invention.
Reference numeral 1 denotes a spark ignition internal combustion engine. The internal combustion engine 1 includes a cylinder head 1a and a cylinder block 1b. The cylinder head 1 a includes an intake port 5, an exhaust port 6, an intake valve 7, an exhaust valve 8, and an ignition plug 40, and a high voltage current is supplied to the ignition plug 40 from an ignition coil 41.

シリンダブロック1b内をクランク軸3と連結されているピストン2が往復動し、ピストン2とシリンダヘッド1aの間に燃焼室1cが形成される。また、シリンダブロック1bにはクランク角センサ52が取付けられていて、機関回転数はこのクランク角センサ52からの信号に基いて算出される。また、シリンダブロック1bには冷却水温を検出する水温センサ53が取付けられている。   The piston 2 connected to the crankshaft 3 reciprocates in the cylinder block 1b, and a combustion chamber 1c is formed between the piston 2 and the cylinder head 1a. A crank angle sensor 52 is attached to the cylinder block 1b, and the engine speed is calculated based on a signal from the crank angle sensor 52. A water temperature sensor 53 for detecting the cooling water temperature is attached to the cylinder block 1b.

吸気弁7の開弁期間の位相を運転条件にあわせて調整する吸気弁タイミング調整装置70が吸気カム7cに取付けられている。同様に、排気弁8の開弁期間の位相を運転条件にあわせて調整する排気弁タイミング調整装置80が排気カム8cに取り付けられている。   An intake valve timing adjustment device 70 that adjusts the phase of the valve opening period of the intake valve 7 in accordance with operating conditions is attached to the intake cam 7c. Similarly, an exhaust valve timing adjusting device 80 that adjusts the phase of the valve opening period of the exhaust valve 8 in accordance with operating conditions is attached to the exhaust cam 8c.

図2は、吸気弁タイミング調整装置70、排気弁タイミング調整装置80の構造を説明する図である。
吸気弁タイミング調整装置70はハウジング部71とベーン部72を有する。ハウジング部71はチェーン(図示せず)を介してクランク軸3(図1参照)により駆動されるギヤ75に固定されている。ベーン部72は吸気カムシャフト7cに固定されている。
FIG. 2 is a diagram for explaining the structure of the intake valve timing adjustment device 70 and the exhaust valve timing adjustment device 80.
The intake valve timing adjusting device 70 has a housing part 71 and a vane part 72. The housing part 71 is fixed to a gear 75 driven by the crankshaft 3 (see FIG. 1) via a chain (not shown). The vane portion 72 is fixed to the intake camshaft 7c.

ハウジング部71の内部には3つの油圧室73が形成されていて、各油圧室73の中にベーン部72の3つのベーン74が配置されている。油圧室73の角度巾はベーン74の角度巾よりも大きくされていて、油圧室73はベーン74を挟んで進角側油圧室73aと遅角側油圧室73rに分離されている。   Three hydraulic chambers 73 are formed inside the housing portion 71, and three vanes 74 of the vane portion 72 are arranged in each hydraulic chamber 73. The angular width of the hydraulic chamber 73 is larger than the angular width of the vane 74, and the hydraulic chamber 73 is separated into an advance side hydraulic chamber 73a and a retard side hydraulic chamber 73r with the vane 74 interposed therebetween.

エンジン停止時には、図示しない付勢機構により進角側油圧室73aが最小、遅角側油圧室73rが最大になるようにされ、最も遅角側の位相にされる。そして、運転時には運転条件に最適な位相が得られるようにオイルコントロールバルブ(図示せず)を介して進角側油圧室73aと遅角側油圧室73rに作用する油圧を調整する。そこで図示はしないがカムポジションを検出するためのカムポジションセンサが付設されている。   When the engine is stopped, the advance-side hydraulic chamber 73a is minimized and the retard-side hydraulic chamber 73r is maximized by an urging mechanism (not shown), and is set to the most retarded phase. During operation, the hydraulic pressure acting on the advance side hydraulic chamber 73a and the retard side hydraulic chamber 73r is adjusted via an oil control valve (not shown) so that an optimum phase is obtained for the operating conditions. Therefore, although not shown, a cam position sensor for detecting the cam position is attached.

同様に、排気弁タイミング調整装置80はハウジング部81とベーン部82を有する。ハウジング部81はチェーン(図示せず)を介してクランク軸3(図1参照)により駆動されるギヤ85に固定されている。ベーン部82は排気カムシャフト8cに固定されている。   Similarly, the exhaust valve timing adjusting device 80 has a housing part 81 and a vane part 82. The housing part 81 is fixed to a gear 85 driven by the crankshaft 3 (see FIG. 1) via a chain (not shown). The vane portion 82 is fixed to the exhaust camshaft 8c.

ハウジング部81の内部には4つの油圧室83が形成されていて、各油圧室83の中にベーン部82の4つのベーン84が配置されている。油圧室83の角度巾はベーン84の角度巾よりも大きくされていて、油圧室83はベーン84を挟んで進角側油圧室83aと遅角側油圧室83rに分離されている。   Four hydraulic chambers 83 are formed inside the housing portion 81, and four vanes 84 of the vane portion 82 are arranged in each hydraulic chamber 83. The angular width of the hydraulic chamber 83 is larger than the angular width of the vane 84, and the hydraulic chamber 83 is separated into an advance side hydraulic chamber 83a and a retard side hydraulic chamber 83r with the vane 84 interposed therebetween.

機関停止時には、図示しない付勢機構により進角側油圧室83aが最大、遅角側油圧室83rが最小になるようにされる。そして、運転時には運転条件に最適な位相が得られるようにオイルコントロールバルブ(図示せず)を介して進角側油圧室83aと遅角側油圧室83rに作用する油圧を調整する。そこで図示はしないがカムポジションを検出するためのカムポジションセンサが付設されている。   When the engine is stopped, the advance side hydraulic chamber 83a is maximized and the retard angle side hydraulic chamber 83r is minimized by an urging mechanism (not shown). During operation, the hydraulic pressure acting on the advance side hydraulic chamber 83a and the retard side hydraulic chamber 83r is adjusted via an oil control valve (not shown) so that an optimum phase is obtained for the operating conditions. Therefore, although not shown, a cam position sensor for detecting the cam position is attached.

図1において、吸気ポート5内に燃料を噴射するためのポート噴射弁31と燃焼室1c内に燃料を噴射するための筒内噴射弁32がそれぞれシリンダヘッド1aに取付けられている。ポート噴射弁31、筒内噴射弁32には燃料タンク30から燃料ポンプ(図示せず)により燃料パイプ(図示せず)を介して燃料が送給される。   In FIG. 1, a port injection valve 31 for injecting fuel into the intake port 5 and an in-cylinder injection valve 32 for injecting fuel into the combustion chamber 1c are attached to the cylinder head 1a. Fuel is fed from the fuel tank 30 to the port injection valve 31 and the in-cylinder injection valve 32 by a fuel pump (not shown) through a fuel pipe (not shown).

吸気ポート5には吸気管10が接続され、吸気管10の上流端にはエアクリーナ11が取付けられている。エアクリーナ11の直下流には吸入空気量を検出するエアフローメータ51が配置されている。エアフローメータ51の下流にはスロットルバルブ12が配置されている。スロットルバルブ12はスロットルモータ13で駆動される。一方、アクセルペダル14にアクセルペダル14の踏み込み量を検出するアクセルペダルセンサ50が付設されていて、アクセルペダルセンサ50が検出したアクセルペダル14の踏み込み量に対応して、スロットルモータ13によりスロットルバルブ12の開度が変更せしめられる。   An intake pipe 10 is connected to the intake port 5, and an air cleaner 11 is attached to the upstream end of the intake pipe 10. An air flow meter 51 for detecting the intake air amount is disposed immediately downstream of the air cleaner 11. A throttle valve 12 is disposed downstream of the air flow meter 51. The throttle valve 12 is driven by a throttle motor 13. On the other hand, an accelerator pedal sensor 50 for detecting the depression amount of the accelerator pedal 14 is attached to the accelerator pedal 14, and the throttle valve 12 is operated by the throttle motor 13 in accordance with the depression amount of the accelerator pedal 14 detected by the accelerator pedal sensor 50. The degree of opening is changed.

排気ポート6には排気管20が接続され、排気管20には三元触媒21が配設されている。三元触媒21の上流側近傍には第1空燃比センサ22が配設され、三元触媒21の下流側近傍には第2空燃比センサ23が配設されている。燃焼室1aで発生した排気ガスは排気弁8で流路が開閉される排気ポート6を経て、排気管20に導かれ三元触媒21によって浄化されてから排出される。第1空燃比センサ22と第2空燃比センサ23の出力に基いて所定の空燃比が得られるようにポート噴射弁31、筒内噴射弁32から噴射される燃料噴射量がフィードバック制御される。   An exhaust pipe 20 is connected to the exhaust port 6, and a three-way catalyst 21 is disposed in the exhaust pipe 20. A first air-fuel ratio sensor 22 is disposed near the upstream side of the three-way catalyst 21, and a second air-fuel ratio sensor 23 is disposed near the downstream side of the three-way catalyst 21. The exhaust gas generated in the combustion chamber 1a is led to the exhaust pipe 20 through the exhaust port 6 whose flow path is opened and closed by the exhaust valve 8, is purified by the three-way catalyst 21, and is discharged. The fuel injection amounts injected from the port injection valve 31 and the in-cylinder injection valve 32 are feedback-controlled so that a predetermined air-fuel ratio is obtained based on the outputs of the first air-fuel ratio sensor 22 and the second air-fuel ratio sensor 23.

また、参照符号24で示されるのは水素濃度センサであり、この水素濃度センンサ24は第3の実施の形態においてのみ備えられ使用される。水素濃度センサ24は詳細は述べないが、例えば、特許文献3に記載されているように水素と選択的に反応する触媒層と水素と反応しない触媒層を有し、これら2つの層の温度差から水素濃度を検出するものとされる。   Reference numeral 24 indicates a hydrogen concentration sensor, and this hydrogen concentration sensor 24 is provided and used only in the third embodiment. The hydrogen concentration sensor 24 will not be described in detail. For example, as described in Patent Document 3, the hydrogen concentration sensor 24 includes a catalyst layer that selectively reacts with hydrogen and a catalyst layer that does not react with hydrogen, and a temperature difference between these two layers. From this, the hydrogen concentration is detected.

電子制御ユニット(以下、ECUという)100は入力ポート101、出力ポート102、CPU103、ROM104、RAM105等を共通バスで相互に接続してなる。ECU100には各センサの検出した信号が入力され、本発明に関わる制御をおこなう制御信号が各アクチュエータ類に送出される。   An electronic control unit (hereinafter referred to as ECU) 100 is formed by connecting an input port 101, an output port 102, a CPU 103, a ROM 104, a RAM 105, and the like with a common bus. A signal detected by each sensor is input to the ECU 100, and a control signal for performing control related to the present invention is sent to each actuator.

以下、上記のような基本的なハード構成を有する本発明の各実施の形態において、空燃比センサ(第1空燃比センサ22、及び、第2空燃比センサ23)の出力を補正するための制御について説明する。
初めに第1の実施の形態の制御について説明する。この第1の実施の形態では、ポート噴射量と筒内噴射量の噴射比率(数値的には[筒内噴射量]/[ポート噴射量+筒内噴射量]で表わす。)をもとめ、その比率における水素濃度を推定し、推定した水素濃度を、冷却水温と、吸気弁と排気弁のタイミング(実質的にはオーバーラップ量)にもとづいて補正し、補正された水素濃度に対して空燃比センサの補正値をもとめるものである。
Hereinafter, in each embodiment of the present invention having the basic hardware configuration as described above, control for correcting the outputs of the air-fuel ratio sensors (the first air-fuel ratio sensor 22 and the second air-fuel ratio sensor 23). Will be described.
First, the control of the first embodiment will be described. In the first embodiment, the injection ratio between the port injection amount and the in-cylinder injection amount (numerically expressed as [in-cylinder injection amount] / [port injection amount + in-cylinder injection amount]) is obtained. Estimate the hydrogen concentration in the ratio, correct the estimated hydrogen concentration based on the cooling water temperature and the timing of the intake valve and exhaust valve (substantially the overlap amount), and the air-fuel ratio with respect to the corrected hydrogen concentration The correction value of the sensor is obtained.

図3が上述したような第1の実施の形態の制御をおこなうフローチャートである。
ステップS101では各パラメータ(空燃比AF、ポート噴射時間TAUP、筒内噴射時間TAUD、冷却水温THW、吸気弁タイミング調整装置70の最遅角位置からの進角量AINA、排気弁タイミング調整装置80の最進角位置からの遅角量AEXR、等)を読みこむ。
FIG. 3 is a flowchart for performing the control of the first embodiment as described above.
In step S101, parameters (air-fuel ratio AF, port injection time TAUP, in-cylinder injection time TAUD, cooling water temperature THW, advance amount AINA from the most retarded position of intake valve timing adjustment device 70, exhaust valve timing adjustment device 80 The retard amount AEXR from the most advanced position is read.

ステップS102では噴射比率RPDを算出する。これは、筒内噴射弁32の開弁時間TAUDとポート噴射弁31の開弁時間TAUPの和に対する筒内噴射弁32の開弁時間TAUDの比率で表わす。すなわち、RPD=TAUD/(TAUD+TAUP)である。   In step S102, an injection ratio RPD is calculated. This is expressed as a ratio of the valve opening time TAUD of the cylinder injection valve 32 to the sum of the valve opening time TAUD of the cylinder injection valve 32 and the valve opening time TAUP of the port injection valve 31. That is, RPD = TAUD / (TAUD + TAUP).

ステップS103ではステップS102でもとめた噴射比率RPDで運転した場合の排気ガス中の水素濃度Hを図6のマップから推定する。
ステップS104ではステップS103でもとめた水素濃度Hを、冷却水温に応じて補正するための水温補正係数KHWを、ステップS101で読み込んだ水温THWを用いて図7のマップから算出する。
ステップS105ではステップS103でもとめた水素濃度Hを、吸気弁7と排気弁8の開弁タイミングに応じて補正するための吸排気弁タイミング補正係数KHVを、ステップS101で読み込んだ吸気弁タイミング調整装置70の最遅角位置からの進角量AINA、排気弁タイミング調整装置80の最進角位置からの遅角量AEXRを用いて図8のマップから算出する。
In step S103, the hydrogen concentration H in the exhaust gas when operating at the injection ratio RPD stopped in step S102 is estimated from the map of FIG.
In step S104, a water temperature correction coefficient KHW for correcting the hydrogen concentration H stopped in step S103 according to the cooling water temperature is calculated from the map of FIG. 7 using the water temperature THW read in step S101.
In step S105, the intake valve timing adjustment device that has read in step S101 the intake / exhaust valve timing correction coefficient KHV for correcting the hydrogen concentration H stopped in step S103 in accordance with the opening timing of the intake valve 7 and the exhaust valve 8. It is calculated from the map of FIG. 8 using the advance amount AINA from the most retarded position of 70 and the retard amount AEXR from the most advanced position of the exhaust valve timing adjusting device 80.

ステップS106ではステップS103でもとめた水素濃度Hに、ステップS104で算出した水温補正係数KHW、および、ステップS105で算出した吸排気弁タイミング補正係数KHVを乗算して補正水素濃度Hcを算出する。
ステップS107ではステップS106でもとめた補正水素濃度Hcにおける空燃比補正量CAFを図9のマップから算出する。
ステップS108ではステップS101で読み込んだ空燃比AFにステップS108で算出した空燃比補正量CAFを加えて補正空燃比AFcを算出して終了する。
第1の実施の形態は上記のように作用して、第1空燃比センサ22、第2空燃比センサ23の出力を補正する。
In step S106, the hydrogen concentration H stopped in step S103 is multiplied by the water temperature correction coefficient KHW calculated in step S104 and the intake / exhaust valve timing correction coefficient KHV calculated in step S105 to calculate a corrected hydrogen concentration Hc.
In step S107, the air-fuel ratio correction amount CAF at the corrected hydrogen concentration Hc stopped in step S106 is calculated from the map of FIG.
In step S108, the corrected air-fuel ratio AFc is calculated by adding the air-fuel ratio correction amount CAF calculated in step S108 to the air-fuel ratio AF read in step S101.
The first embodiment operates as described above to correct the outputs of the first air-fuel ratio sensor 22 and the second air-fuel ratio sensor 23.

次に第2の実施の形態について説明する。
上記の第1の実施の形態では検出した噴射比率RPDにおける水素濃度Hを推定し、この水素濃度Hを、水素濃度Hに対する水温補正係数KHW及び吸排気弁タイミング補正係数KHVで補正し、補正された水素濃度Hcに対する空燃比補正係数CAFを算出し、空燃比補正係数CAFを空燃比センサの検出した空燃比AFに加算して、空燃比センサの検出した空燃比AFを補正している。
これに対して、第2の実施の形態では、水素濃度Hを推定することなく、空燃比センサの検出した空燃比AFに対する噴射比率補正係数KARPD、水温補正係数KAW、吸排気弁タイミング補正係数KAVをもとめ、それらを乗算して、空燃比センサの検出した空燃比AFを補正するものである。
Next, a second embodiment will be described.
In the first embodiment, the hydrogen concentration H at the detected injection ratio RPD is estimated, and this hydrogen concentration H is corrected by correcting the hydrogen temperature H with the water temperature correction coefficient KHW and the intake / exhaust valve timing correction coefficient KHV. The air-fuel ratio correction coefficient CAF for the hydrogen concentration Hc is calculated, and the air-fuel ratio correction coefficient CAF is added to the air-fuel ratio AF detected by the air-fuel ratio sensor to correct the air-fuel ratio AF detected by the air-fuel ratio sensor.
In contrast, in the second embodiment, without estimating the hydrogen concentration H, the injection ratio correction coefficient KARPD, the water temperature correction coefficient KAW, and the intake / exhaust valve timing correction coefficient KAV for the air-fuel ratio AF detected by the air-fuel ratio sensor. And multiplying them to correct the air-fuel ratio AF detected by the air-fuel ratio sensor.

図4に示すのが、この第2の実施の形態における制御のフローチャートである。
ステップS201、ステップS202は、第1の実施の形態のフローチャートのステップS101、ステップS102同じである。
ステップS203では図10のマップから空燃比AFに対する噴射比率RPDに応じた噴射比率補正係数KARPDを算出する。ステップS204ではステップS201で読み込んだ水温THWを用いて図11のマップから空燃比AFに対する水温補正係数KAWを算出する。ステップS205ではステップS201で読み込んだ吸気弁タイミング調整装置70の最遅角位置からの進角量AINA、排気弁タイミング調整装置80の最進角位置からの遅角量AEXRを用いて、図12のマップから空燃比AFに対する吸排気弁タイミング補正係数KAVを算出する。
FIG. 4 shows a flowchart of control in the second embodiment.
Step S201 and step S202 are the same as step S101 and step S102 in the flowchart of the first embodiment.
In step S203, an injection ratio correction coefficient KARPD corresponding to the injection ratio RPD for the air-fuel ratio AF is calculated from the map of FIG. In step S204, the water temperature correction coefficient KAW for the air-fuel ratio AF is calculated from the map of FIG. 11 using the water temperature THW read in step S201. In step S205, the advance amount AINA from the most retarded position of the intake valve timing adjusting device 70 read in step S201 and the retard amount AEXR from the most advanced position of the exhaust valve timing adjusting device 80 are used as shown in FIG. An intake / exhaust valve timing correction coefficient KAV for the air-fuel ratio AF is calculated from the map.

そして、ステップS206では、空燃比センサの検出した空燃比AFに、ステップS203で算出した噴射比率補正係数KARPD、ステップS203で算出した水温補正係数KAW、ステップS203で算出した弁オーバーラップ補正係数KOLを乗算して、空燃比センサの検出した空燃比AFを補正する。
第2の実施の形態は上記のように作用し、第1の実施の形態に比して、直接に、空燃比センサの検出した空燃比AFを補正する分計算負荷が小さい。
In step S206, the injection ratio correction coefficient KARPD calculated in step S203, the water temperature correction coefficient KAW calculated in step S203, and the valve overlap correction coefficient KOL calculated in step S203 are added to the air-fuel ratio AF detected by the air-fuel ratio sensor. Multiplication is performed to correct the air-fuel ratio AF detected by the air-fuel ratio sensor.
The second embodiment operates as described above, and compared with the first embodiment, the calculation load is reduced by directly correcting the air-fuel ratio AF detected by the air-fuel ratio sensor.

次に、第3の実施の形態について説明する。
この第3の実施の形態は、水素濃度センサ24を備え、水素濃度センサ24の検出した水素濃度Hに対し、第1の実施の形態のフローチャートのステップS107と同様に図9のマップから空燃比補正量CAFを算出し、この空燃比補正量CAFを空燃比センサの検出したAFに加算して補正空燃比AFcを算出するものである。
Next, a third embodiment will be described.
This third embodiment is provided with a hydrogen concentration sensor 24, and for the hydrogen concentration H detected by the hydrogen concentration sensor 24, the air-fuel ratio is calculated from the map of FIG. 9 in the same manner as in step S107 of the flowchart of the first embodiment. The correction amount CAF is calculated, and this air-fuel ratio correction amount CAF is added to the AF detected by the air-fuel ratio sensor to calculate the correction air-fuel ratio AFc.

しかしながら、水素濃度センサ24の故障診断を実行するという特徴を有している。
この故障診断は、回転数と負荷(例えば、吸入空気量)を検出し、その時のポート噴射100%にした場合の水素濃度と筒内噴射100%にした場合の水素濃度の差を予め記憶しているマップからもとめる。他方、実際にポート噴射を100%、筒内噴射を100%として、それぞれの場合の水素濃度を検出し、これら2つの水素濃度の差をもとめる。
そして、マップからもとめた水素濃度の差と、実際もとめた水素濃度の差が所定値を越えた場合には水素濃度センサが故障しているとする。
However, it has a feature that a failure diagnosis of the hydrogen concentration sensor 24 is executed.
In this failure diagnosis, the rotational speed and load (for example, intake air amount) are detected, and the difference between the hydrogen concentration when the port injection is 100% and the hydrogen concentration when the cylinder injection is 100% is stored in advance. Get from the map that is. On the other hand, assuming that port injection is actually 100% and in-cylinder injection is 100%, the hydrogen concentration in each case is detected and the difference between these two hydrogen concentrations is determined.
If the difference between the hydrogen concentration determined from the map and the actual hydrogen concentration difference exceeds a predetermined value, it is assumed that the hydrogen concentration sensor has failed.

図5が上記にもとづく第3の実施の形態の制御のフローチャートである。
ステップS301では各検出されたパラメータ(回転数NE、吸入空気量GA、水素濃度HA)を読み込む。ステップS302ではポート噴射100%の場合と筒内噴射100%の場合の水素濃度の差の理論値DHMを図13に示すマップから算出する。この理論値は開発時に標準の機関を用いて決定されECU100に記憶されている。
ステップS303ではポート噴射100%の運転を実行しその時の水素濃度HApfを検出し読み込む。ステップS304では筒内噴射100%の運転を実行しその時の水素濃度HAdfを検出し読み込む。
FIG. 5 is a flowchart of the control of the third embodiment based on the above.
In step S301, each detected parameter (revolution speed NE, intake air amount GA, hydrogen concentration HA) is read. In step S302, the theoretical value DHM of the difference in hydrogen concentration between the case of 100% port injection and the case of 100% in-cylinder injection is calculated from the map shown in FIG. This theoretical value is determined using a standard engine at the time of development and stored in the ECU 100.
In step S303, the operation of 100% port injection is executed, and the hydrogen concentration HApf at that time is detected and read. In step S304, the operation of in-cylinder injection 100% is executed, and the hydrogen concentration HAdf at that time is detected and read.

ステップS305ではステップS303でもとめた値とステップS304でもとめた値の差からポート噴射100%の場合と筒内噴射100%の場合の水素濃度の差の実際値DHAをもとめる。すなわち、DHA=HAdf−HApfをもとめる。
ステップS306ではステップS302でもとめたDHMと、ステップS305でもとめたDHAの差が予めさだめた所定値以下であるか、否か、を判定する。
In step S305, the actual value DHA of the difference in hydrogen concentration in the case of port injection 100% and in-cylinder injection 100% is obtained from the difference between the value stopped in step S303 and the value stopped in step S304. That is, DHA = HAdf−HApf is obtained.
In step S306, it is determined whether or not the difference between the DHM stopped in step S302 and the DHA stopped in step S305 is equal to or less than a predetermined value.

ステップS306で肯定判定された場合はステップS307に進んで第1の実施の形態のフローチャートのステップS107で使用したのと同じ図9のマップからステップS301でもとめた水素濃度HAに対応する空燃比補正量CAFをもとめ、ステップS308でこれをステップS301で読み込んだ空燃比AFに加算して補正空燃比AFcをもとめて終了する。
一方、ステップS306で否定判定された場合は、ステップS309において水素濃度センサ24が異常であるとの判定をして終了する。
If an affirmative determination is made in step S306, the process proceeds to step S307, and the air-fuel ratio correction corresponding to the hydrogen concentration HA determined in step S301 from the same map of FIG. 9 used in step S107 of the flowchart of the first embodiment. The amount CAF is obtained and added to the air-fuel ratio AF read in step S301 in step S308, and the corrected air-fuel ratio AFc is obtained to end.
On the other hand, if a negative determination is made in step S306, it is determined in step S309 that the hydrogen concentration sensor 24 is abnormal, and the process ends.

第3の実施の形態は上記のように構成され作用し、ポート噴射弁と筒内噴射弁とを備えるという特徴を生かして水素濃度センサ24の異常の診断をおこなうことができる。
なお、上記のフローチャートは異常がある場合に、異常の判定でおわっているが、その後に色々な処置をおこなうことができる。例えば、水素濃度センサ24による補正を中止し、水素濃度センサ24の異常があることを運転者に知らせるようにしてもよい。
The third embodiment is configured and operated as described above, and can diagnose the abnormality of the hydrogen concentration sensor 24 by taking advantage of the feature that the port injection valve and the in-cylinder injection valve are provided.
In the above flowchart, when there is an abnormality, the determination of the abnormality ends. However, various measures can be performed thereafter. For example, the correction by the hydrogen concentration sensor 24 may be stopped and the driver may be informed that there is an abnormality in the hydrogen concentration sensor 24.

本発明は、燃料を吸気ポート内に噴射するポート噴射弁と、燃料を燃焼室内に噴射する筒内噴射弁とを備え、ポート噴射弁と筒内噴射弁とから運転条件に応じて定められた比率で燃料を噴射する内燃機関であって、空燃比センサで排気ガスの空燃比を検出し、空燃比センサの出力にもとづいて空燃比を制御するものに適用することができる。   The present invention includes a port injection valve that injects fuel into an intake port and an in-cylinder injection valve that injects fuel into a combustion chamber. The port injection valve and the in-cylinder injection valve are determined according to operating conditions. The present invention can be applied to an internal combustion engine that injects fuel at a ratio, in which the air-fuel ratio of exhaust gas is detected by an air-fuel ratio sensor and the air-fuel ratio is controlled based on the output of the air-fuel ratio sensor.

本発明の実施の形態のハード構成を示す図である。It is a figure which shows the hardware constitutions of embodiment of this invention. 吸気弁タイミング調整装置と排気弁タイミング調整装置の構造を示す図である。It is a figure which shows the structure of an intake valve timing adjustment apparatus and an exhaust valve timing adjustment apparatus. 第1の実施の形態の制御のフローチャートである。It is a flowchart of control of a 1st embodiment. 第2の実施の形態の制御のフローチャートである。It is a flowchart of control of a 2nd embodiment. 第3の実施の形態の制御のフローチャートである。It is a flowchart of control of a 3rd embodiment. 噴射比率と水素濃度の関係を示す図である。It is a figure which shows the relationship between an injection ratio and hydrogen concentration. 水温補正係数(対水素濃度)を示す図である。It is a figure which shows a water temperature correction coefficient (vs. hydrogen concentration). 吸排気弁タイミング補正係数(対水素濃度)を示す図である。It is a figure which shows an intake / exhaust valve timing correction coefficient (vs. hydrogen concentration). 水素濃度と空燃比補正値の関係を示す図である。It is a figure which shows the relationship between hydrogen concentration and an air fuel ratio correction value. 噴射比率補正係数(対空燃比)を示す図である。It is a figure which shows an injection ratio correction coefficient (to air-fuel ratio). 水温補正係数(対空燃比)を示す図である。It is a figure which shows a water temperature correction coefficient (an air fuel ratio). 吸排気弁タイミング補正係数(対空燃比)を示す図である。It is a figure which shows an intake / exhaust valve timing correction coefficient (to air-fuel ratio). ポート噴射100%の場合と筒内噴射100の場合の水素濃度差を示す図である。It is a figure which shows the hydrogen concentration difference in the case of 100% of port injection, and the case of in-cylinder injection 100. FIG. ポート噴射と筒内噴射の場合の水素濃度の差を示す図である。It is a figure which shows the difference of the hydrogen concentration in the case of port injection and in-cylinder injection.

符号の説明Explanation of symbols

5…吸気ポート
6…排気ポート
7…吸気弁
8…排気弁
22…第1空燃比センサ
23…第2空燃比センサ
24…水素濃度センサ(第3の実施の形態)
31…ポート噴射弁
32…筒内噴射弁
33…燃料パイプ
40…点火栓
51…クランク角センサ
52…エアフローメータ
53…水温センサ
70…吸気弁タイミング調整装置
80…排気弁タイミング調整装置
100…ECU(電子制御ユニット)
5 ... Intake port 6 ... Exhaust port 7 ... Intake valve 8 ... Exhaust valve 22 ... First air-fuel ratio sensor 23 ... Second air-fuel ratio sensor 24 ... Hydrogen concentration sensor (third embodiment)
31 ... Port injection valve 32 ... In-cylinder injection valve 33 ... Fuel pipe 40 ... Spark plug 51 ... Crank angle sensor 52 ... Air flow meter 53 ... Water temperature sensor 70 ... Intake valve timing adjustment device 80 ... Exhaust valve timing adjustment device 100 ... ECU ( Electronic control unit)

Claims (4)

燃料を吸気ポート内に噴射するポート噴射弁と、燃料を燃焼室内に噴射する筒内噴射弁とを備え、ポート噴射弁と筒内噴射弁とから運転条件に応じて定められた比率で燃料を噴射する内燃機関であって、空燃比センサで排気ガスの空燃比を検出し、空燃比センサの出力にもとづいて空燃比を制御するものにおいて、
ポート噴射量と筒内噴射量の比率である噴射量比率を算出する噴射量比率算出手段と、
噴射量比率算出手段が算出した噴射量比率にもとづいて空燃比センサの出力を補正する空燃比センサ出力補正手段であって、筒内噴射量とポート噴射量との和となる全体噴射量に対する筒内噴射量の噴射割合が大きくなるほど、空燃比センサより検出された空燃比を、より大きくなる方向に補正する空燃比センサ出力補正手段と、を具備し、
空燃比センサ出力補正手段で補正された空燃比センサの出力にもとづいて空燃比を制御することを特徴とする内燃機関。
A port injection valve that injects fuel into the intake port and an in-cylinder injection valve that injects fuel into the combustion chamber. The fuel is injected from the port injection valve and the in-cylinder injection valve at a ratio determined according to operating conditions. An internal combustion engine that injects, detects an air-fuel ratio of exhaust gas with an air-fuel ratio sensor, and controls the air-fuel ratio based on the output of the air-fuel ratio sensor.
An injection amount ratio calculating means for calculating an injection amount ratio that is a ratio of the port injection amount and the in-cylinder injection amount;
Air-fuel ratio sensor output correcting means for correcting the output of the air-fuel ratio sensor based on the injection amount ratio calculated by the injection amount ratio calculating means , wherein the cylinder for the total injection amount that is the sum of the in-cylinder injection amount and the port injection amount Air-fuel ratio sensor output correction means for correcting the air-fuel ratio detected by the air-fuel ratio sensor in a direction of increasing as the injection ratio of the internal injection amount increases ,
An internal combustion engine for controlling an air-fuel ratio based on an output of an air-fuel ratio sensor corrected by an air-fuel ratio sensor output correcting means.
空燃比センサ出力補正手段は、噴射量比率にもとづいて排気ガス中の水素濃度を推定し、推定した水素濃度にもとづいて空燃比センサの出力を補正する、ことを特徴とする請求項1に記載の内燃機関。   The air-fuel ratio sensor output correction means estimates the hydrogen concentration in the exhaust gas based on the injection amount ratio, and corrects the output of the air-fuel ratio sensor based on the estimated hydrogen concentration. Internal combustion engine. 空燃比センサ出力補正手段は、さらに、冷却水温に応じて空燃比センサの出力を補正する水温補正手段を含む、ことを特徴とする請求項1に記載の内燃機関。The internal combustion engine according to claim 1, wherein the air-fuel ratio sensor output correcting means further includes water temperature correcting means for correcting the output of the air-fuel ratio sensor in accordance with the cooling water temperature. 内燃機関が、吸気弁の開弁期間を調整する吸気弁タイミング調節機構と排気弁の開弁期間を調整する排気弁タイミング調節機構の、一方、または、両方を備えていて、The internal combustion engine includes one or both of an intake valve timing adjustment mechanism that adjusts the valve opening period of the intake valve and an exhaust valve timing adjustment mechanism that adjusts the valve opening period of the exhaust valve,
空燃比センサ出力補正手段は、さらに、吸気弁の開弁期間と排気弁の開弁期間との関係に応じて空燃比センサの出力を補正する吸排気弁タイミング補正手段を有する、ことを特徴とする請求項1に記載の内燃機関。The air-fuel ratio sensor output correction means further includes intake / exhaust valve timing correction means for correcting the output of the air-fuel ratio sensor in accordance with the relationship between the valve opening period of the intake valve and the valve opening period of the exhaust valve. The internal combustion engine according to claim 1.
JP2004157785A 2004-05-27 2004-05-27 Internal combustion engine Expired - Fee Related JP4367234B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004157785A JP4367234B2 (en) 2004-05-27 2004-05-27 Internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004157785A JP4367234B2 (en) 2004-05-27 2004-05-27 Internal combustion engine

Publications (2)

Publication Number Publication Date
JP2005337127A JP2005337127A (en) 2005-12-08
JP4367234B2 true JP4367234B2 (en) 2009-11-18

Family

ID=35490971

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004157785A Expired - Fee Related JP4367234B2 (en) 2004-05-27 2004-05-27 Internal combustion engine

Country Status (1)

Country Link
JP (1) JP4367234B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007170327A (en) * 2005-12-26 2007-07-05 Hitachi Ltd Fuel supply system for internal combustion engine
JP4371114B2 (en) * 2006-02-28 2009-11-25 トヨタ自動車株式会社 Exhaust gas purification device for internal combustion engine
EP2458167A4 (en) * 2009-10-22 2014-10-01 Toyota Motor Co Ltd Exhaust gas temperature measuring device and exhaust gas temperature measuring method
WO2013153611A1 (en) * 2012-04-09 2013-10-17 トヨタ自動車株式会社 Internal combustion engine control device
DE102013017799A1 (en) * 2013-10-25 2015-04-30 GM Global Technology Operations LLC (n. d. Gesetzen des Staates Delaware) Determining the effective air-fuel ratio of a supercharged internal combustion engine with purge air

Also Published As

Publication number Publication date
JP2005337127A (en) 2005-12-08

Similar Documents

Publication Publication Date Title
JP2006138300A (en) Torque control device for internal combustion engine
JP2007205194A (en) Control device for vehicle
EP1900929B1 (en) Engine control system
WO2012173177A1 (en) Engine control device
US20080135002A1 (en) Controller for internal combustion engine and method for variable valve timing control for the same
JP4501834B2 (en) Engine fuel control device
JP2005188293A (en) Fuel injection control device of internal combustion engine
KR102039564B1 (en) Control unit for variable valve timing mechanism and control method for variable valve timing mechanism
JP4367234B2 (en) Internal combustion engine
US8798893B2 (en) Fuel injection control apparatus for internal combustion engine and fuel injection control method for internal combustion engine
US7209825B2 (en) Control apparatus for internal combustion engine
JP4267540B2 (en) Internal combustion engine
JP4501107B2 (en) Fuel injection control method for internal combustion engine
JP4301323B2 (en) Control device for internal combustion engine
JP4404024B2 (en) Control device for direct start engine
JP4989377B2 (en) Engine control device
JP4542000B2 (en) Control device and control method for variable valve of internal combustion engine
JP2004124743A (en) Control device for internal combustion engine
JP5151875B2 (en) Control method and control device for spark ignition engine
JP5304162B2 (en) Internal combustion engine control device
JP4133288B2 (en) Variable valve timing control method for internal combustion engine
JP4883000B2 (en) Air-fuel ratio control device for internal combustion engine
JP2007278133A (en) Engine shaft torque estimation device
JP2007170198A (en) Torque control device of internal combustion engine
JP4019741B2 (en) Engine combustion control device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070427

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090227

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090303

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090501

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090804

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090817

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120904

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130904

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees