JP4367208B2 - Electromagnetic ultrasonic measuring device - Google Patents

Electromagnetic ultrasonic measuring device Download PDF

Info

Publication number
JP4367208B2
JP4367208B2 JP2004110266A JP2004110266A JP4367208B2 JP 4367208 B2 JP4367208 B2 JP 4367208B2 JP 2004110266 A JP2004110266 A JP 2004110266A JP 2004110266 A JP2004110266 A JP 2004110266A JP 4367208 B2 JP4367208 B2 JP 4367208B2
Authority
JP
Japan
Prior art keywords
electromagnetic ultrasonic
inspection object
sensor
sensor unit
distance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004110266A
Other languages
Japanese (ja)
Other versions
JP2005292044A (en
Inventor
雅彦 黒木
拓未 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Electric Power Co Inc
Original Assignee
Tokyo Electric Power Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Electric Power Co Inc filed Critical Tokyo Electric Power Co Inc
Priority to JP2004110266A priority Critical patent/JP4367208B2/en
Publication of JP2005292044A publication Critical patent/JP2005292044A/en
Application granted granted Critical
Publication of JP4367208B2 publication Critical patent/JP4367208B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Length Measuring Devices Characterised By Use Of Acoustic Means (AREA)
  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)

Description

本発明は、電磁超音波を検査対象物に送信してその反射波を受信し検査対象物の肉厚や欠陥を測定する電磁超音波計測装置に関する。   The present invention relates to an electromagnetic ultrasonic measurement apparatus that transmits electromagnetic ultrasonic waves to an inspection object, receives a reflected wave thereof, and measures a thickness or a defect of the inspection object.

一般に、超音波探触子は圧電素子に電圧を印加して振動を発生させ、その振動を検査対象物に送信し、反射波を受信して肉厚や欠陥を測定するものである。この場合、音波インピーダンスが高い空気の伝搬を避けるために、超音波探触子と検査対象物との間に接触媒質を設けている。 In general, an ultrasonic probe generates a vibration by applying a voltage to a piezoelectric element, transmits the vibration to an inspection object, receives a reflected wave, and measures a thickness and a defect. In this case, a contact medium is provided between the ultrasonic probe and the inspection object in order to avoid the propagation of air having high acoustic impedance.

例えば、発電プラントにおける各種配管の肉厚を超音波探触子により測定する場合には、配管の外部表面に接触媒質を介して超音波探触子を配置し、超音波探触子から超音波を送信し反射エコーを受信することにより配管の肉厚を測定している。この場合、超音波探触子を移動させるたびに接触媒質を配置しなければならないので、通常、配管の肉厚測定は配管の一部分における定点計測で行われている。最近は、配管の全域に亘って減肉状態を把握できるようにするため、配管の一部分だけでなく配管の全域における肉厚を連続測定することが要請されている。 For example, when measuring the wall thickness of various pipes in a power plant with an ultrasonic probe, an ultrasonic probe is placed on the external surface of the pipe via a contact medium, and the ultrasonic probe The wall thickness of the pipe is measured by transmitting the signal and receiving the reflected echo. In this case, since the contact medium must be arranged each time the ultrasonic probe is moved, the thickness measurement of the pipe is usually performed by fixed point measurement in a part of the pipe. Recently, it has been required to continuously measure the thickness of not only a part of the pipe but also the whole area of the pipe so that the thinned state can be grasped over the whole area of the pipe.

一方、非接触で超音波を受発信できる電磁超音波計測装置がある。この電磁超音波計測装置は、圧電素子に代えて電磁的に超音波の送受信を行うものであり、接触媒質が不要であり、塗装除去作業や錆落とし作業が不要などの利点があるため、主として鉄鋼業の上位熱間工程での肉質検査、厚み計測、各種配管類、ガス管、通信用ケーブル管路の減肉状態の調査への応用などを目指して技術開発されている(例えば、非特許文献1参照)。
日立評論 VOL.67 No.9(1985−9) P53、54
On the other hand, there is an electromagnetic ultrasonic measurement device that can receive and transmit ultrasonic waves in a non-contact manner. This electromagnetic ultrasonic measuring device performs transmission / reception of ultrasonic waves electromagnetically instead of a piezoelectric element, does not require a contact medium, and has advantages such as no need for paint removal work and rust removal work. The technology has been developed for applications such as inspection of meat quality in the upper hot processes of the steel industry, thickness measurement, various pipes, gas pipes, and investigation of thinning state of communication cable pipes (for example, non-patented) Reference 1).
Hitachi review VOL. 67 No. 9 (1985-9) P53, 54

しかし、配管などの肉厚測定を連続測定で行う際には、配管の外に足場を組み専用の治具を設置するなどして大がかりな事前準備をした後に、配管に沿って肉厚を測定していくことになるので、配管の肉厚測定のための事前準備に時間やコストがかかることになる。また、配管肉厚の測定作業においても、測定装置を配管に沿って移動させていかなければならないので作業量が多くなる。特に、配管は直管部だけでなく曲管部も有しており、さらに、超音波探触子を用いて行う場合には接触媒質が必要となるので作業量はさらに増大する。   However, when measuring the thickness of pipes, etc., by continuous measurement, measure the thickness along the pipes after extensive preparations such as mounting a scaffold outside the pipes and installing a dedicated jig. Therefore, it takes time and cost to prepare in advance for pipe thickness measurement. Also, in the pipe wall thickness measurement work, the measuring device must be moved along the pipe, which increases the amount of work. In particular, the piping has not only a straight pipe part but also a curved pipe part. Further, when the ultrasonic probe is used, a contact medium is required, and the work amount is further increased.

本発明に目的は、専用の治具を必要とすることなく配管の肉厚や欠陥の測定を簡便に連続測定できる電磁超音波計測装置を提供することである。   An object of the present invention is to provide an electromagnetic ultrasonic measurement apparatus that can easily and continuously measure the thickness and defects of pipes without requiring a dedicated jig.

請求項1の発明に係わる電磁超音波計測装置は、検査対象物に対して電磁超音波を送信するとともに電磁超音波を受信する複数のセンサ部と、複数の各々のセンサ部と検査対象物との間の距離を測定する距離センサと、前記距離センサで検出された前記検査対象物までの距離が最短のセンサ部に対して電磁超音波の送受信を行うとともに受信した電磁超音波に含まれる検査対象物の厚さまたは欠陥を記憶する演算制御装置と、前記センサ部、前記距離センサ及び前記演算制御装置を収納し球体に形成された計測装置本体とを備えたことを特徴とする。 An electromagnetic ultrasonic measurement apparatus according to the invention of claim 1 includes a plurality of sensor units that transmit electromagnetic ultrasonic waves to an inspection object and receive electromagnetic ultrasonic waves, a plurality of sensor units, and an inspection object. A distance sensor for measuring a distance between the sensor and a sensor unit having a shortest distance to the inspection object detected by the distance sensor, and transmitting and receiving electromagnetic ultrasonic waves and an inspection included in the received electromagnetic ultrasonic waves An arithmetic and control device that stores a thickness or a defect of an object, and a measurement device main body that is formed in a sphere and houses the sensor unit, the distance sensor, and the arithmetic and control device .

請求項2の発明に係わる電磁超音波計測装置は、 検査対象物に対して電磁超音波を送信するとともに電磁超音波を受信する複数のセンサ部と、複数の各々のセンサ部と検査対象物との間の距離を測定する距離センサと、前記距離センサで検出された前記検査対象物までの距離が最短のセンサ部に対して電磁超音波の送受信を行うとともに受信した電磁超音波に含まれる検査対象物の厚さまたは欠陥を記憶する演算制御装置と、前記センサ部、前記距離センサ及び前記演算制御装置を収納し球体に形成された計測装置本体とを備えたことを特徴とする。 An electromagnetic ultrasonic measuring apparatus according to a second aspect of the invention includes a plurality of sensor units that transmit electromagnetic ultrasonic waves to an inspection object and receive electromagnetic ultrasonic waves, a plurality of sensor units, and an inspection object. A distance sensor for measuring a distance between the sensor and a sensor unit having a shortest distance to the inspection object detected by the distance sensor, and transmitting and receiving electromagnetic ultrasonic waves and an inspection included in the received electromagnetic ultrasonic waves An arithmetic and control device that stores a thickness or a defect of an object, and a measurement device main body that is formed in a sphere and houses the sensor unit, the distance sensor, and the arithmetic and control device .

本発明によれば、計測装置本体は自ら検査対象物に沿って移動可能な球状に形成されているので、検査対象物である配管内部の上部に電磁超音波計測装置を投げ入れるだけで、重力により配管の上部から配管の下部に移動する。従って、電源を入れて検査対象物である配管内部に電磁超音波計測装置を投げ入れると、センサ部から電磁超音波を送信するとともに電磁超音波を受信しながら、検査対象物である配管内部を移動するので、連続的に配管の長さ方向の肉厚や欠陥を測定できる。また、電磁超音波の特性上、接触媒質や検査面の手入れなどが不要であるので、専用治具の事前準備が不要であり、コストを削減できるとともに検査作業効率が向上する。水平管においては、必要な初速度を与えて電磁超音波計測装置を配管のある地点より投げ入れた後、他のある地点で回収することで、検査対象物である配管の長さ方向の肉厚や欠陥を連続的に測定できる。 According to the present invention, since the measuring device main body is formed in a spherical shape that can move along the object to be inspected, simply by throwing the electromagnetic ultrasonic measuring device into the upper part of the pipe that is the object to be inspected, Move from the top of the pipe to the bottom of the pipe. Therefore, when the electromagnetic ultrasonic measurement device is thrown into the inspection target pipe after the power is turned on, the electromagnetic wave is transmitted from the sensor unit and the electromagnetic ultrasonic wave is received, and the inside of the inspection target pipe is moved. Therefore, the thickness and defects in the length direction of the pipe can be measured continuously. In addition, because of the characteristics of electromagnetic ultrasonic waves, it is not necessary to care for the contact medium or the inspection surface, so that it is not necessary to prepare a dedicated jig in advance, thereby reducing costs and improving inspection work efficiency. For horizontal pipes, throw the electromagnetic ultrasonic measurement device from a certain point on the pipe after giving the required initial velocity, and then collect it at another point, so that the thickness in the length direction of the pipe that is the inspection object And can continuously measure defects.

以下、本発明の電磁超音波計測装置を説明する。図1は本発明の電磁超音波計測装置の基本構成を示す断面図である。計測装置本体11は球体に形成され、自ら検査対象物に沿って移動可能な形状に形成されている。計測装置本体11の内部には、磁石12とコイル13とからなる複数個のセンサ部14が設けられている。図1では、断面図であることから平面的に12個のセンサ部14が配置されているものを図示しているが、計測装置本体11は球体に形成されるので、複数個のセンサ部14は球体内面に立体的に配置される。なお、磁石12は永久磁石であってもよいし電磁石であってもよい。 Hereinafter, the electromagnetic ultrasonic measurement apparatus of the present invention will be described. FIG. 1 is a cross-sectional view showing a basic configuration of an electromagnetic ultrasonic measuring apparatus of the present invention. The measuring device main body 11 is formed in a spherical shape, and is formed in a shape that can move along the inspection object itself. A plurality of sensor units 14 each including a magnet 12 and a coil 13 are provided inside the measurement apparatus main body 11. In FIG. 1, since the cross-sectional view shows that the twelve sensor portions 14 are arranged in a plan view, the measuring device main body 11 is formed in a sphere, so that a plurality of sensor portions 14 are formed. Are three-dimensionally arranged on the inner surface of the sphere. The magnet 12 may be a permanent magnet or an electromagnet.

また、各々のセンサ部14には切替器15が設けられ、この切替器15はセンサ部14の接続をパルサー16またはレシーバー17のいずれかに切り替えるものであり、その切り替えは演算制御装置18により制御される。センサ部14は、切替器15の切り替えにより、パルサー16から検査対象物に対して電磁超音波を送信し、レシーバー17により電磁超音波を受信する。   Each sensor unit 14 is provided with a switch 15, which switches the connection of the sensor unit 14 to either the pulser 16 or the receiver 17, and the switching is controlled by the arithmetic control device 18. Is done. The sensor unit 14 transmits electromagnetic ultrasonic waves from the pulser 16 to the inspection object by switching the switch 15, and receives electromagnetic ultrasonic waves by the receiver 17.

演算制御装置18は、設定器19に予め定められた時間間隔に基づいて、各々のセンサ部14での電磁超音波の送受信タイミングを制御するとともに、受信した電磁超音波に含まれる検査対象物の厚さまたは欠陥の情報を記憶する。電源部20には電池21から電源が供給され、電源部20から、センサ部14、切替器15、パルサー16、レシーバー17及び演算制御装置18等に必要な電源が供給される。磁石12が電磁石である場合には電源部20からの電源で励磁されることになる。   The arithmetic and control unit 18 controls the transmission / reception timing of the electromagnetic ultrasonic waves at each sensor unit 14 based on the time interval predetermined in the setting device 19 and also the inspection object included in the received electromagnetic ultrasonic waves. Stores thickness or defect information. Power is supplied from the battery 21 to the power supply unit 20, and necessary power is supplied from the power supply unit 20 to the sensor unit 14, the switch 15, the pulsar 16, the receiver 17, the arithmetic control device 18, and the like. When the magnet 12 is an electromagnet, it is excited by a power source from the power source unit 20.

センサ部14の磁石12は検査対象物に対して磁界を与えるものであり、肉厚や欠陥の測定時には検査対象物に磁石12により磁界が与えられている。この状態で、演算制御装置18は切替器15によりコイル13をパルサー16に接続する。これにより、パルサー16はコイル13にパルス電流を印加する。そして、演算制御装置18は、パルサー16がコイル13にパルス電流を印加した後に、切替器15によりコイル13をレシーバー17に接続する。   The magnet 12 of the sensor unit 14 applies a magnetic field to the inspection object, and the magnetic field is applied to the inspection object by the magnet 12 when measuring the thickness or the defect. In this state, the arithmetic and control unit 18 connects the coil 13 to the pulser 16 by the switch 15. As a result, the pulser 16 applies a pulse current to the coil 13. The arithmetic and control unit 18 connects the coil 13 to the receiver 17 by the switch 15 after the pulser 16 applies a pulse current to the coil 13.

コイル13にパルス電流が印加されると検査対象物の表面に渦電流が誘起され、磁石12により与えられている磁界とこの渦電流によりローレンツ力が検査対象物に働き、機械的変位が生じて超音波が発生する。この超音波は検査対象物中を伝搬し、裏面あるいは欠陥で反射し、再び検査対象物の表面に戻ってくる。超音波が検査対象物の表面に戻ってくると、磁石12により与えられた磁界中で検査対象物が機械的変位をすることになるので、ファラディーの電磁誘導の法則により起電力が発生し再び渦電流が発生する。この渦電流による磁界変化はコイル13に起電力を発生する。この起電力をレシーバー17で受信し、演算制御装置18に入力する。   When a pulse current is applied to the coil 13, an eddy current is induced on the surface of the inspection object, and the Lorentz force acts on the inspection object due to the magnetic field applied by the magnet 12 and this eddy current, causing mechanical displacement. Ultrasound is generated. The ultrasonic wave propagates through the inspection object, is reflected by the back surface or a defect, and returns to the surface of the inspection object again. When the ultrasonic wave returns to the surface of the object to be inspected, the object to be inspected is mechanically displaced in the magnetic field given by the magnet 12, so that an electromotive force is generated by Faraday's law of electromagnetic induction. An eddy current is generated again. This magnetic field change due to the eddy current generates an electromotive force in the coil 13. This electromotive force is received by the receiver 17 and input to the arithmetic and control unit 18.

図2は本発明の電磁超音波計測装置の基本構成のブロック構成図である。電源部20には電池21から電源が供給され、電源部20から、センサ部14、切替器15、パルサー16、レシーバー17及び演算制御装置18にそれぞれ必要な電源が供給される。設定器19には、各々のセンサ部14での電磁超音波の送受信タイミングを定めるための時間間隔が予め設定されている。例えば、時間間隔としてΔt1が設定された場合には、各々のセンサ部14は順次時間間隔Δt1で超音波の送受信を行う。 FIG. 2 is a block diagram of the basic configuration of the electromagnetic ultrasonic measuring apparatus of the present invention. Power is supplied from the battery 21 to the power supply unit 20, and necessary power is supplied from the power supply unit 20 to the sensor unit 14, the switch 15, the pulsar 16, the receiver 17, and the arithmetic control device 18. In the setting device 19, a time interval for determining the transmission / reception timing of the electromagnetic ultrasonic waves in each sensor unit 14 is set in advance. For example, when Δt1 is set as the time interval, each sensor unit 14 sequentially transmits and receives ultrasonic waves at the time interval Δt1.

演算制御装置18のコントロール回路22は、設定器19に設定された時間間隔Δt1で、順次各々のセンサ部14の切替器15に対してパルサー16からパルス電流を印加して、そのパルス電流の印加後にレシーバー17に切り替える。そして、ゲート回路23を開き、レシーバー17から受信した反射波を演算回路24に入力する。演算回路24は受信した電磁超音波の反射波に含まれる検査対象物の厚さまたは欠陥をメモリ25に記憶する。   The control circuit 22 of the arithmetic control device 18 sequentially applies a pulse current from the pulser 16 to the switch 15 of each sensor unit 14 at the time interval Δt1 set in the setting device 19, and applies the pulse current. Switch to receiver 17 later. Then, the gate circuit 23 is opened, and the reflected wave received from the receiver 17 is input to the arithmetic circuit 24. The arithmetic circuit 24 stores the thickness or defect of the inspection object included in the received reflected electromagnetic ultrasonic wave in the memory 25.

いま、電源部20をオンにして、検査対象物である配管内部の上部に電磁超音波計測装置を投げ入れたとする。計測装置本体11は球体で形成されているので、電磁超音波計測装置は、投げ入れた初速度で重力によりさらに加速されて配管の上部から配管の下部に移動する。   Now, it is assumed that the power supply unit 20 is turned on and an electromagnetic ultrasonic measuring device is thrown into the upper part of the inside of a pipe that is an inspection object. Since the measuring device main body 11 is formed of a sphere, the electromagnetic ultrasonic measuring device is further accelerated by gravity at the initial speed thrown in, and moves from the upper part of the pipe to the lower part of the pipe.

この電磁超音波計測装置の移動中において、センサ部14から電磁超音波を送信するとともに電磁超音波を受信する。この電磁超音波の送受信は電磁超音波計測装置の移動速度に比較して極めて早いので、センサ部14は、事実上、電磁超音波を送信した位置でその反射波を受信することになる。この受信した超音波の反射波を演算回路24により順次メモリ25に記憶する。そして、検査対象物である配管内部の下部で電磁超音波計測装置を回収し、メモリ25に記憶されたデータを読み出す。このメモリ25に記憶されたデータを解析することにより、検査対象物である配管の肉厚や欠陥を評価できる。   During the movement of the electromagnetic ultrasonic measurement device, the electromagnetic ultrasonic wave is transmitted from the sensor unit 14 and the electromagnetic ultrasonic wave is received. Since the transmission / reception of the electromagnetic ultrasonic waves is extremely fast compared to the moving speed of the electromagnetic ultrasonic measurement device, the sensor unit 14 receives the reflected wave at the position where the electromagnetic ultrasonic waves are transmitted. The received ultrasonic reflected waves are sequentially stored in the memory 25 by the arithmetic circuit 24. Then, the electromagnetic ultrasonic measurement device is collected at the lower part inside the pipe, which is the inspection object, and the data stored in the memory 25 is read out. By analyzing the data stored in the memory 25, it is possible to evaluate the thickness and defects of the piping that is the inspection object.

なお、センサ部14が配管の内面に対面している位置にあるときに、送受信した電磁超音波が配管の肉厚や欠陥の測定に寄与する電磁超音波となる。一方、配管の長手方向に向いているセンサ部14からの電磁超音波の送受信は配管の肉厚や欠陥の測定に寄与しないが、複数個のセンサ部14は球体内面に立体的に配置されているので、電磁超音波計測装置がどの方向に向いても必ず配管の内面に対面しているセンサ部14が存在することになる。従って、電磁超音波計測装置の移動に伴って配管内部の肉厚や欠陥を連続的に計測できる。   When the sensor unit 14 is at a position facing the inner surface of the pipe, the transmitted and received electromagnetic ultrasonic waves become electromagnetic ultrasonic waves that contribute to the measurement of the thickness and defects of the pipe. On the other hand, transmission / reception of electromagnetic ultrasonic waves from the sensor section 14 facing the longitudinal direction of the pipe does not contribute to the measurement of the thickness or defects of the pipe, but the plurality of sensor sections 14 are arranged three-dimensionally on the inner surface of the sphere. Therefore, the sensor unit 14 always faces the inner surface of the pipe regardless of the direction of the electromagnetic ultrasonic measurement device. Therefore, it is possible to continuously measure the thickness and defects inside the pipe as the electromagnetic ultrasonic measurement device moves.

以上の説明では、複数個のセンサ部14を設けた場合について説明したが、1個のセンサ部14を設けるようにしてもよい。1個のセンサ部14の場合には、そのセンサ部14が配管の長手方向に向いているタイミングで送受信を行った電磁超音波は配管の肉厚や欠陥の測定に寄与しないが、センサ部14が配管の内面に対面している位置にあるときのタイミングで送受信を行った電磁超音波は配管の肉厚や欠陥の測定に寄与するので、メモリ25に記憶されたデータの解析により、配管の肉厚や欠陥の測定に寄与するデータを識別して配管の肉厚や欠陥を判定することになる。 In the above description, a case where a plurality of sensor units 14 are provided has been described, but a single sensor unit 14 may be provided. In the case of one sensor unit 14, the electromagnetic ultrasonic waves transmitted and received at the timing when the sensor unit 14 is oriented in the longitudinal direction of the pipe do not contribute to the measurement of the thickness and defects of the pipe. Electromagnetic ultrasonic waves transmitted and received at the timing when the pipe is in a position facing the inner surface of the pipe contribute to the measurement of the thickness and defects of the pipe. The data contributing to the measurement of the wall thickness and the defect is identified to determine the wall thickness and the defect of the pipe.

本発明の基本構成によれば、電源を入れて検査対象物である配管内部に電磁超音波計測装置を投げ入れると、電磁超音波計測装置は自走しながら、センサ部から電磁超音波を送信するとともに電磁超音波を受信するので、連続的に配管の長さ方向の肉厚や欠陥を測定できる。 According to the basic configuration of the present invention, when the electromagnetic ultrasonic measurement device is thrown into the pipe that is the inspection object after the power is turned on, the electromagnetic ultrasonic measurement device transmits the electromagnetic ultrasonic waves from the sensor unit while running on its own. In addition, since the electromagnetic ultrasonic waves are received, the thickness and defects in the length direction of the pipe can be measured continuously.

また、電磁超音波計測装置が配管の内面に接触しなくても、電磁超音波は配管内面に向けて伝搬し、さらに配管内部へ伝搬するので、電磁超音波計測装置の移動に伴って配管内部の肉厚や欠陥を連続的に計測できる。さらに、配管が曲管である場合であっても電磁超音波計測装置が移動できる限りは曲管部の肉厚や欠陥を測定できる。   Even if the electromagnetic ultrasonic measurement device does not contact the inner surface of the pipe, the electromagnetic ultrasonic wave propagates toward the inner surface of the pipe and further into the pipe. Thickness and defects can be measured continuously. Furthermore, even if the pipe is a curved pipe, as long as the electromagnetic ultrasonic measurement device can move, the thickness and defects of the curved pipe portion can be measured.

次に、本発明の実施の形態を説明する。図3は本発明の実施の形態に係わる電磁超音波計測装置の構成を示す断面図である。この実施の形態は、図1に示した基本構成に対し、設定器19に代えて、センサ部14と検査対象物との間の距離を測定する距離センサ26を設け、演算制御装置18は、距離センサ26で測定されたセンサ部14と検査対象物との間の距離に基づいて、センサ部14での電磁超音波の送受信タイミングを制御するとともに、受信した電磁超音波に含まれる検査対象物の厚さまたは欠陥を記憶するようにしたものである。図1と同一要素には同一符号を付し重複する説明は省略する。 Next, an embodiment of the present invention will be described. FIG. 3 is a cross-sectional view showing the configuration of the electromagnetic ultrasonic measurement apparatus according to the embodiment of the present invention. In this embodiment, a distance sensor 26 for measuring the distance between the sensor unit 14 and the inspection object is provided in place of the setting unit 19 with respect to the basic configuration shown in FIG. Based on the distance between the sensor unit 14 and the inspection object measured by the distance sensor 26, the transmission / reception timing of the electromagnetic ultrasonic wave at the sensor unit 14 is controlled, and the inspection object included in the received electromagnetic ultrasonic wave The thickness or the defect is memorized. The same elements as those in FIG. 1 are denoted by the same reference numerals, and redundant description is omitted.

センサ部14の近傍には、センサ部14と検査対象物との間の距離を測定する距離センサ26が設けられている。距離センサ26は、例えば、光学系のセンサを採用することで検査対象物までの距離を測定する。   A distance sensor 26 that measures the distance between the sensor unit 14 and the inspection object is provided in the vicinity of the sensor unit 14. The distance sensor 26 measures the distance to the inspection object by employing, for example, an optical sensor.

図4は本発明の実施の形態に係わる電磁超音波計測装置のブロック構成図である。図2に示した基本構成に対し、演算制御装置18のコントロール回路22は、各々の距離センサ26で測定されたセンサ部14と検査対象物との間の距離を入力し、検査対象物までの距離が最短のセンサ部14に対して電磁超音波を送信するとともに電磁超音波を受信する。 FIG. 4 is a block diagram of the electromagnetic ultrasonic measurement apparatus according to the embodiment of the present invention. In contrast to the basic configuration shown in FIG. 2, the control circuit 22 of the arithmetic and control unit 18 inputs the distance between the sensor unit 14 and the inspection object measured by each distance sensor 26, and reaches the inspection object. The electromagnetic ultrasonic wave is transmitted to the sensor unit 14 having the shortest distance and the electromagnetic ultrasonic wave is received.

すなわち、演算制御装置18のコントロール回路22は、各々の距離センサ26で測定されたセンサ部14と検査対象物との間の距離のうち最短のセンサ部14を判定し、そのセンサ部14の切替器15に対してパルサー16からパルス電流を印加して、そのパルス電流の印加後にレシーバー17に切り替える。そして、ゲート回路23を開き、レシーバー17から受信した反射波を演算回路24に入力し、演算回路24がその反射波をメモリ25に記憶した時点で、コントロール回路22は、再度、検査対象物との距離が最短のセンサ部14を判定する。そして、順次、検査対象物との間の距離が最短のセンサ部14に対して、電磁超音波の送受信を行う。   That is, the control circuit 22 of the arithmetic and control unit 18 determines the shortest sensor unit 14 among the distances between the sensor units 14 measured by the respective distance sensors 26 and the inspection object, and switches the sensor unit 14. A pulse current is applied from the pulser 16 to the device 15, and the application is switched to the receiver 17 after the pulse current is applied. Then, the gate circuit 23 is opened, and the reflected wave received from the receiver 17 is input to the arithmetic circuit 24. When the arithmetic circuit 24 stores the reflected wave in the memory 25, the control circuit 22 again determines the inspection object and The sensor unit 14 having the shortest distance is determined. Then, electromagnetic ultrasonic waves are sequentially transmitted to and received from the sensor unit 14 having the shortest distance from the inspection object.

以上の説明では、複数個のセンサ部14を設けた場合について説明したが、1個のセンサ部14を設けるようにしてもよい。なお、1個のセンサ部14の場合には、コントロール回路22は、その1個のセンサ部14の位置が、検査対象物である配管の肉厚や欠陥の測定に寄与できる測定位置にあるか否かを判定することになる。そして、その1個のセンサ14が電磁超音波の送受信を行った場合に、検査対象物である配管の肉厚や欠陥の測定に寄与する範囲内に位置するときは、コントロール回路22は、その1個のセンサ部14に対して電磁超音波の送受信を行うことになる。   In the above description, a case where a plurality of sensor units 14 are provided has been described, but a single sensor unit 14 may be provided. In the case of a single sensor unit 14, the control circuit 22 determines whether the position of the single sensor unit 14 is at a measurement position that can contribute to the measurement of the thickness or defects of the piping that is the inspection object. It will be determined whether or not. When the one sensor 14 transmits / receives electromagnetic ultrasonic waves, if the sensor 14 is located within a range that contributes to the measurement of the thickness or defect of the pipe as the inspection object, the control circuit 22 Electromagnetic ultrasonic waves are transmitted / received to / from one sensor unit 14.

本発明の実施の形態によれば、距離センサ26を設けて、検査対象物までの距離が最短であるセンサ部14を動作させて電磁超音波の送受信を行うので、センサ部14が配管の内面に対面している位置にあるときのタイミングで電磁超音波の送受信を行うことができる。従って、配管の肉厚や欠陥の測定に寄与する電磁超音波のみをメモリ25に記憶することができるので、配管の肉厚や欠陥の解析がし易くなる。 According to the embodiment of the present invention , the distance sensor 26 is provided, and the sensor unit 14 having the shortest distance to the inspection object is operated to transmit and receive electromagnetic ultrasonic waves. Electromagnetic ultrasonic waves can be transmitted and received at the timing when it is at the position facing the. Therefore, since only the electromagnetic ultrasonic waves that contribute to the measurement of the pipe thickness and defects can be stored in the memory 25, the pipe thickness and defects can be easily analyzed.

また、1個のセンサ部14の場合であっても、検査対象物である配管の肉厚や欠陥の測定に寄与する範囲内に位置するときに電磁超音波の送受信を行うので、配管の肉厚や欠陥の測定に寄与する電磁超音波のみをメモリ25に記憶することができる。従って、配管の肉厚や欠陥の解析がし易くなる。   Further, even in the case of one sensor unit 14, electromagnetic ultrasonic waves are transmitted and received when positioned within a range that contributes to the measurement of the thickness and defects of the pipe that is the inspection object. Only electromagnetic ultrasonic waves that contribute to the measurement of thickness and defects can be stored in the memory 25. Therefore, it becomes easy to analyze the thickness and defects of the pipe.

本発明の電磁超音波計測装置の基本構成を示す断面図。Sectional drawing which shows the basic composition of the electromagnetic ultrasonic measurement apparatus of this invention. 本発明の電磁超音波計測装置の基本構成のブロック構成図。The block block diagram of the basic composition of the electromagnetic ultrasonic measurement apparatus of this invention. 本発明の実施の形態に係わる電磁超音波計測装置の構成を示す断面図。Sectional drawing which shows the structure of the electromagnetic ultrasonic measuring device concerning embodiment of this invention. 本発明の実施の形態に係わる電磁超音波計測装置のブロック構成図。The block block diagram of the electromagnetic ultrasonic measuring device concerning embodiment of this invention.

11…計測装置本体、12…磁石、13…コイル、14…センサ部、15…切替器、16…パルサー、17…レシーバー、18…演算制御装置、19…設定器、20…電源部、21…電池、22…コントロール回路、23…ゲート回路、24…演算回路、25…メモリ、26…距離センサ DESCRIPTION OF SYMBOLS 11 ... Measuring device main body, 12 ... Magnet, 13 ... Coil, 14 ... Sensor part, 15 ... Switch, 16 ... Pulser, 17 ... Receiver, 18 ... Arithmetic control device, 19 ... Setting device, 20 ... Power supply part, 21 ... Batteries, 22 ... control circuit, 23 ... gate circuit, 24 ... arithmetic circuit, 25 ... memory, 26 ... distance sensor

Claims (2)

検査対象物に対して電磁超音波を送信するとともに電磁超音波を受信する複数のセンサ部と、複数の各々のセンサ部と検査対象物との間の距離を測定する距離センサと、前記距離センサで検出された前記検査対象物までの距離が最短のセンサ部に対して電磁超音波の送受信を行うとともに受信した電磁超音波に含まれる検査対象物の厚さまたは欠陥を記憶する演算制御装置と、前記センサ部、前記距離センサ及び前記演算制御装置を収納し球体に形成された計測装置本体とを備えたことを特徴とする電磁超音波計測装置。 A plurality of sensor units for transmitting and receiving electromagnetic ultrasonic waves to an inspection object; a distance sensor for measuring a distance between each of the plurality of sensor units and the inspection object; and the distance sensor An arithmetic and control unit for transmitting and receiving electromagnetic ultrasonic waves to and from the sensor unit having the shortest distance to the inspection object detected in step 1 and storing the thickness or defect of the inspection object included in the received electromagnetic ultrasonic waves; An electromagnetic ultrasonic measurement apparatus comprising: a measurement apparatus main body formed in a sphere that houses the sensor unit, the distance sensor, and the calculation control apparatus. 検査対象物に対して電磁超音波を送信するとともに電磁超音波を受信する1個のセンサ部と、前記センサ部と検査対象物との間の距離を測定する距離センサと、前記距離センサで検出された前記検査対象物までの距離に基づいて前記センサ部の位置が検査対象物である配管の肉厚や欠陥の測定に寄与できる測定位置にあるか否かを判定し測定に寄与できる測定位置にあるときは前記センサ部に対して電磁超音波の送受信を行うとともに受信した電磁超音波に含まれる検査対象物の厚さまたは欠陥を記憶する演算制御装置と、前記センサ部、前記距離センサ及び前記演算制御装置を収納し球体に形成された計測装置本体とを備えたことを特徴とする電磁超音波計測装置。 One sensor unit that transmits electromagnetic ultrasonic waves to the inspection object and receives electromagnetic ultrasonic waves, a distance sensor that measures a distance between the sensor unit and the inspection object, and detection by the distance sensor Measurement position that can determine whether the position of the sensor unit is a measurement position that can contribute to the measurement of the thickness or the defect of the piping that is the inspection object based on the distance to the inspection object that has been made, and can contribute to the measurement An arithmetic and control unit that transmits and receives electromagnetic ultrasonic waves to and from the sensor unit and stores the thickness or defect of the inspection object included in the received electromagnetic ultrasonic wave, the sensor unit, the distance sensor, and An electromagnetic ultrasonic measurement device comprising: a measurement device main body that accommodates the arithmetic control device and is formed in a sphere .
JP2004110266A 2004-04-02 2004-04-02 Electromagnetic ultrasonic measuring device Expired - Fee Related JP4367208B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004110266A JP4367208B2 (en) 2004-04-02 2004-04-02 Electromagnetic ultrasonic measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004110266A JP4367208B2 (en) 2004-04-02 2004-04-02 Electromagnetic ultrasonic measuring device

Publications (2)

Publication Number Publication Date
JP2005292044A JP2005292044A (en) 2005-10-20
JP4367208B2 true JP4367208B2 (en) 2009-11-18

Family

ID=35325122

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004110266A Expired - Fee Related JP4367208B2 (en) 2004-04-02 2004-04-02 Electromagnetic ultrasonic measuring device

Country Status (1)

Country Link
JP (1) JP4367208B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2099894B1 (en) * 2007-01-12 2019-04-10 Autobio Diagnostics Co., Ltd. Method and apparatus for locating the surface of solid growth culture media in a plate
JP2009225423A (en) * 2008-02-21 2009-10-01 Seiko Epson Corp Wireless communication system, transmission device, receiving device and information processing device
EP3255424A1 (en) * 2016-06-06 2017-12-13 Georg Fischer Rohrleitungssysteme AG Air-coupled ultrasound examination of plastic tubes
CN106645418B (en) * 2017-01-26 2023-12-05 中国特种设备检测研究院 Crawler-type magnetoacoustic composite detection robot and detection method and device
JP7222365B2 (en) * 2020-01-16 2023-02-15 Jfeスチール株式会社 SUBJECT THICKNESS MEASURING DEVICE AND THICKNESS MEASURING METHOD

Also Published As

Publication number Publication date
JP2005292044A (en) 2005-10-20

Similar Documents

Publication Publication Date Title
US5619423A (en) System, method and apparatus for the ultrasonic inspection of liquid filled tubulars and vessels
US4523468A (en) Phased array inspection of cylindrical objects
WO2018133179A1 (en) Multi-mode electromagnetic ultrasonic and magnetic flux leakage detection method, apparatus and system, and sensor
US6722202B1 (en) Method and apparatus for inspecting a structure utilizing magnetically attracted probes
USRE40515E1 (en) Method and apparatus for inspecting pipelines from an in-line inspection vehicle using magnetostrictive probes
US10473624B2 (en) Shear wave sensors for acoustic emission and hybrid guided wave testing
CN104090034B (en) A kind of electromagnetic acoustic Lamb wave transducer for guided wave tomography
JP6362533B2 (en) Residual stress evaluation method and residual stress evaluation apparatus
KR100561215B1 (en) Magnetostrictive Transducer for Generating and Sensing Elastic Ultrasonic waves, and Apparatus for Structural Diagnosis Using It
CN101398410A (en) Steel rail defect detection method by electromagnetical ultrasonic technology and device thereof
JP2011523070A (en) Ultrasonic nondestructive inspection method and apparatus for performing the method
JP4367208B2 (en) Electromagnetic ultrasonic measuring device
JP4183366B2 (en) Phased array ultrasonic flaw detector
Ihara Ultrasonic sensing: fundamentals and its applications to nondestructive evaluation
Jian et al. Steel billet inspection using laser-EMAT system
US6079273A (en) EMAT inspection of header tube stubs
US20110126628A1 (en) Non-destructive ultrasound inspection with coupling check
KR102203609B1 (en) Electromagnetic acoustic transducer and pipe inspection apparatus comprising the same
JP3249435B2 (en) Electromagnetic ultrasonic probe
JPH1048068A (en) Electromagnetic ultrasonic transducer
JPH11326286A (en) Electromagnetic ultrasonic flaw detection apparatus and method using magnetic strain effect
RU2153163C1 (en) Method of intratube ultrasonic diagnostics of condition of pipe-line
JP4287321B2 (en) Ultrasonic sensor
JPS61133857A (en) Method and apparatus for diagnosing corrosion of underground pipeline
JP3268220B2 (en) Flaw detector

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070208

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090428

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090519

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090619

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090804

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090817

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120904

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees