JP4366383B2 - Outer wall structure with wooden outer insulation - Google Patents

Outer wall structure with wooden outer insulation Download PDF

Info

Publication number
JP4366383B2
JP4366383B2 JP2006218272A JP2006218272A JP4366383B2 JP 4366383 B2 JP4366383 B2 JP 4366383B2 JP 2006218272 A JP2006218272 A JP 2006218272A JP 2006218272 A JP2006218272 A JP 2006218272A JP 4366383 B2 JP4366383 B2 JP 4366383B2
Authority
JP
Japan
Prior art keywords
composite panel
heat insulating
panel
groove
insulating layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2006218272A
Other languages
Japanese (ja)
Other versions
JP2008038564A (en
Inventor
征吉 丹
高光 櫻庭
Original Assignee
株式会社テスク
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社テスク filed Critical 株式会社テスク
Priority to JP2006218272A priority Critical patent/JP4366383B2/en
Priority to CN200710140879A priority patent/CN100587181C/en
Publication of JP2008038564A publication Critical patent/JP2008038564A/en
Application granted granted Critical
Publication of JP4366383B2 publication Critical patent/JP4366383B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Building Environments (AREA)
  • Finishing Walls (AREA)

Description

本発明は、木造建築物を断熱複合パネルで外張りした、外断熱の外壁構造に関するものであって、より詳しくは、通気用縦条溝群を備えた断熱層に、成形薄剛板を層着一体化した密着型の通気性断熱複合パネルを、受金具を採用して木造の躯体外面に外張りした、通気性外壁構造に関するものであり、木造建築の技術分野に属するものである。   The present invention relates to an outer wall structure of an outer heat insulation in which a wooden building is externally attached with a heat insulating composite panel, and more specifically, a formed thin rigid plate is layered on a heat insulating layer having a vertical groove group for ventilation. The present invention relates to a breathable outer wall structure in which a close-contacting and breathable heat-insulating composite panel is externally attached to the outer surface of a wooden frame using a metal fitting, and belongs to the technical field of wooden construction.

木造建築物に断熱材を外張りして外断熱建物とすることは、従来より常用されている。
従来例1として挙げる図8は、外張り木造建物であって、非特許文献1に示すものであり、柱、間柱などの外壁躯体に構造用面材を介して断熱材を張着し、更に、断熱材の外側に、上下方向の通気胴縁を配置し、胴縁上から断熱材を貫通する固定釘によって通気胴縁を躯体に固定し、該通気胴縁上に外装下地材を固定釘で張設して、断熱材によって木造建物を外断熱被覆すると共に、断熱材外面の通気胴縁間に形成した断熱材と外装下地材間の間隔を通気層とし、空気流を外壁下端の腰水切金具から流入上昇させて、外壁上端から軒天井換気口を介して外方に流出させるものである。
It has been conventionally used to externally heat insulating materials on wooden buildings to form external heat insulating buildings.
FIG. 8 cited as a prior art example 1 is an externally stretched wooden building, which is shown in Non-Patent Document 1, in which a heat insulating material is attached to an outer wall frame such as a pillar or a stud via a structural face material, The vertical ventilator rim is placed outside the heat insulating material, and the ventilator rim is fixed to the housing by a fixing nail penetrating the heat insulating material from above the rim, and the exterior base material is fixed on the ventilator rim. In addition to covering the wooden building with a heat insulating material, the space between the heat insulating material formed on the outer surface of the heat insulating material and the exterior base material is used as a ventilation layer, and the air flow is applied to the lower end of the outer wall. It is made to flow in and out from the drainage fitting, and flows out from the upper end of the outer wall to the outside through the eaves ceiling ventilation opening.

また、従来例2として挙げる図9は、特許文献1に開示された木造建物の外張り断熱工法であって、鋼板製の基材とクラフト紙の被覆材とを、中間層の合成樹脂の発泡凝固接着力で一体化層着した断熱パネルを、柱、間柱に固定具で張着する密着型の断熱パネルを採用した外張り外壁構造である。   Further, FIG. 9 cited as the conventional example 2 is an external thermal insulation method for a wooden building disclosed in Patent Document 1, in which a steel plate base material and a kraft paper covering material are foamed from a synthetic resin in an intermediate layer. This is an outer wall structure with an outer wall that employs a heat-insulating panel that is attached to the pillars and inter-columns with a fixture, and that has a heat-insulating panel that is integrally layered with solidified adhesive strength.

また、従来例3として挙げる図10は、特許文献2に開示されたものであり、本願発明者が開発し、本願出願人が鉄筋コンクリートの外断熱建物の構築に実施している密着型の通気性断熱複合パネルであって、図10(A)に示す如く、通気用の条溝群を内面に備えた、板厚25mm の押出成形セメント板を、板厚75mm の板状断熱材と層着一体化したものであり、セメント板幅が490mm で、断熱材幅が500mm で、セメント板は、一側端縁が小段差(10mm)突出し、他側端縁が大段差(20mm)入り込んでおり、条溝は、深さ13mm 、幅30mm のものである。   FIG. 10 cited as Conventional Example 3 is disclosed in Patent Document 2, which was developed by the inventor of the present application and applied to the construction of an external insulation building of reinforced concrete by the applicant of the present application. As shown in FIG. 10 (A), a heat insulating composite panel having a 25 mm thick extruded cement board with a group of grooves for ventilation on the inner surface is integrally formed with a 75 mm thick plate heat insulating material. The cement board has a width of 490 mm, a heat insulation material width of 500 mm, and the cement board has a small step (10 mm) on one edge and a large step (20 mm) on the other edge. The groove has a depth of 13 mm and a width of 30 mm.

また、従来例3の図10(B)は、図10(A)に示した通気性断熱複合パネルの変形例であって、条溝の通気機能を改善したものである。
即ち、断熱材のセメント板と層着する面上にも、セメント板の条溝と同幅で、深さ10mm の断熱材条溝を対向配置しておき、セメント板条溝と断熱材条溝とを整合して、セメント板と断熱材とを層着し、層着一体化した複合パネルの内部の通気用条溝の深さを、セメント板条溝深さ13mm +断熱材条溝深さ10mm の23mm深さとし、図10(A)の複合パネルと同一厚さの複合パネルでありながら、セメント板厚を増大することなく、通気用条溝の深さを増大し、空気の条溝内貫流機能を向上させたものである。
財団法人、建築環境・省エネルギー機構、平成14年6月1日発行「住宅の省エネルギー基準の解説」第1版、199〜206頁、「6.4外張断熱工法」 特開平11−159032号公報 実用新案登録第3084180号公報(平成14年3月8日発行)
FIG. 10B of Conventional Example 3 is a modification of the breathable heat insulating composite panel shown in FIG. 10A and improves the ventilation function of the groove.
That is, on the surface of the heat insulating material to be layered with the cement board, a heat insulating material groove having the same width as the groove of the cement board and a depth of 10 mm is arranged oppositely, and the cement board groove and the heat insulating material groove are arranged. The depth of the groove for ventilation inside the composite panel, in which the cement board and the heat insulating material are layered and integrated with each other, is determined as follows: cement plate groove depth 13 mm + heat insulating material groove depth Although it is a composite panel having the same thickness as the composite panel in FIG. 10 (A), the depth of the ventilation groove is increased without increasing the cement plate thickness, and the depth of the air groove is 10 mm. It improves the flow-through function.
Foundation, Building Environment and Energy Conservation Organization, issued on June 1, 2002, “Explanation of Energy Conservation Standards for Houses”, 1st edition, pages 199-206, “6.4 Outer Thermal Insulation Method” Japanese Patent Laid-Open No. 11-159032 Utility Model Registration No. 3084180 (issued March 8, 2002)

〔従来例1(図8)の課題〕
非特許文献1に開示された外張断熱壁工法にあっては、図8に示す如く、通気層の形成は、通気胴縁を断熱材上に配置して、通気胴縁固定釘により断熱材、及び構造用面材を貫通して柱に固定し、外装下地材(面材)を通気胴縁に、外装下地材固定釘によって固定するため、所望機能を備えた通気構造の構築は、工数が多く、煩雑な作業である。
しかも、長期耐用中に、釘がクリープ変形し、外装下地材が垂れ下りを生じ、外壁仕上材にひび割れ、剥離を生じ、外壁の損傷を生じる。
[Problem of Conventional Example 1 (FIG. 8)]
In the external thermal insulation wall method disclosed in Non-Patent Document 1, as shown in FIG. 8, the ventilation layer is formed by arranging the ventilation drum edge on the heat insulation material and using the ventilation drum edge fixing nail. The construction of the ventilation structure with the desired function is required because the exterior base material (face material) is fixed to the ventilator edge with the exterior base material fixing nails. This is a complicated task.
In addition, during long-term durability, the nail creeps and the exterior base material hangs down, cracks and peels off the outer wall finishing material, and damages the outer wall.

また、タイル等の、自重の大な外装仕上材を外装下地材上に配置する場合は、外装下地材の垂れ下りを防止するために、断熱材と同厚の横桟を適宜間隔で断熱材内に配置するか、或いは、断熱材厚+通気層厚の通気胴縁を採用して、通気胴縁を柱に釘固定する必要があり、断熱材中への、横桟の配置、或いは通気胴縁の配置、及び、固定作業は熟練を要し、工数が多く、外張り断熱壁の施工性が悪い。
しかも、プラスチック系断熱材は、紫外線の影響で表面が劣化剥離するため、断熱材の表面を透湿防水シート等で被覆して、紫外線劣化を抑制することも必要である。
In addition, when a large exterior finish material such as a tile is placed on the exterior base material, in order to prevent the exterior base material from sagging, the horizontal beam of the same thickness as the heat insulation material is appropriately spaced. It is necessary to arrange the inside of the inside, or to adopt a ventilation cylinder edge of the insulation material thickness + the ventilation layer thickness, and to fix the ventilation cylinder edge to the pillar with a nail. The arrangement of the trunk edge and the fixing work require skill, a lot of man-hours, and the workability of the outer heat insulating wall is poor.
In addition, since the surface of the plastic heat insulating material is deteriorated and peeled off due to the influence of ultraviolet rays, it is necessary to cover the surface of the heat insulating material with a moisture permeable waterproof sheet or the like to suppress the ultraviolet ray deterioration.

〔従来例2(図9)の課題〕
従来例2の外張り断熱工法は、図9に示す如く、鋼製の基材とクラフト紙等の被覆材とを、合成樹脂の発泡断熱層の凝固接着力で一体化層着した工場生産品の断熱パネルを、木造躯体に外張りするため、断熱層の外張りのみは合理的に施工出来るが、被覆材の外側には、外装下地材、及び/又は、外装仕上材の張着が必須であり、断熱パネルの外側に通気層を形成する場合は、パネルの外側への外装下地材、及び/又は、外装仕上材の配置は、従来例1同様の、胴縁を介在した施工となり、従来例2も、通気性外張り断熱外壁の施工は、工数が多く、作業性が悪い。
[Problem of Conventional Example 2 (FIG. 9)]
As shown in FIG. 9, the outer insulation method of the conventional example 2 is a factory-produced product in which a steel base material and a covering material such as kraft paper are integrally layered by the solidified adhesive force of a synthetic resin foam heat insulating layer. Because the heat insulation panel is externally attached to the wooden frame, only the heat insulation layer can be reasonably constructed, but the exterior base material and / or the exterior finish material must be attached outside the coating material. In the case of forming a ventilation layer on the outside of the heat insulation panel, the arrangement of the exterior base material and / or the exterior finish material on the outside of the panel is the same as that of the conventional example 1, and the construction is interposed between the trunk edges, Also in the conventional example 2, the construction of the breathable outer heat insulating outer wall has many man-hours and the workability is poor.

〔従来例3(図10)の課題〕
従来例3の通気性複合パネルは、本願発明者が、鉄筋コンクリート外断熱建物の構築に、外壁の捨型枠として採用するために開発したものであって、外装下地材の押出成形セメント板は、セメント、硅酸質原料、繊維系原料を主原料とし、通気用条溝を一面に備えた板状に、押出成形してオートクレーブ養生したものであって、断熱材と一体化層着した複合パネルは、乾式密着型の複合パネルでありながら、パネル内面に条溝群による通気層を備えたものである。
[Problem of Conventional Example 3 (FIG. 10)]
The breathable composite panel of Conventional Example 3 was developed by the inventor of the present invention in order to adopt a reinforced concrete exterior heat insulating building as a discarded frame of an outer wall. A composite panel made of cement, oxalic acid raw material, and fiber-based raw material, extruded into an autoclave-cured plate with a ventilation groove on one side, and layered integrally with a heat insulating material Is a dry contact type composite panel, but has a ventilation layer formed by a groove group on the inner surface of the panel.

従って、従来例3の、図10(A)に示すパネルは、コンクリート外壁の捨型枠としての十分な強度を備えてはいるが、セメント板は、通気機能発揮に必要な深さ13mm の条溝群を備えているため、セメント板厚が25mmとなり、しかも、製造過程で反りが発生し易く、断熱材との一体化層着時のプレス加工時でのひび割れを避けるために、セメント板幅は広幅に形成出来なくて、490mm 幅で実施している。   Therefore, the panel shown in FIG. 10 (A) of Conventional Example 3 has sufficient strength as a discarded frame of the concrete outer wall, but the cement board is a strip having a depth of 13 mm necessary for exhibiting the ventilation function. Because of the groove group, the cement board thickness is 25mm, and moreover, warpage is likely to occur in the manufacturing process, and the width of the cement board is avoided in order to avoid cracking during press working when wearing an integrated layer with a heat insulating material. Can not be formed wide, it is implemented in a width of 490mm.

また、コンクリート捨型枠としての必要剛性を備えたセメント板は、比重が1.8〜2.0であるため、セメント板自体が35kg/mとなって重く、標準サイズの複合パネルは、セメント板が、高さ2840mm 、幅490mm であって、重量約1kgで75mm 厚の平板状断熱材と層着したパネルは、重量が約50kgとなる。
そのため、該パネルは、重くて取扱い難く、その上、小幅であるため、外壁への、パネル相互の接続張着の作業性も悪い。
しかも、通気用条溝がセメント板に存在すること、パネルの上下接続はセメント板の上下端辺間に目地間隔を設けることが必須であること、により、パネル相互の上下接続部での条溝群による通気構造確保は、本願発明者が開発した特別な通気バッカーを採用する必要がある。
Moreover, since the specific gravity of the cement board with the required rigidity as a concrete disposal frame is 1.8 to 2.0, the cement board itself is 35 kg / m 2 and is heavy. A panel having a cement board with a height of 2840 mm and a width of 490 mm, a weight of about 1 kg and a layer of 75 mm thick plate-like heat insulating material has a weight of about 50 kg.
Therefore, since the panel is heavy and difficult to handle, and is small in width, the workability of connecting and fastening the panels to the outer wall is also poor.
In addition, the presence of ventilation grooves in the cement board, and the fact that the vertical connection of the panel must have a joint spacing between the upper and lower edges of the cement board, makes it possible to connect the vertical grooves between the panels. In order to secure the ventilation structure by the group, it is necessary to adopt a special ventilation backer developed by the present inventor.

また、図10(B)に示すパネルは、図10(A)のパネルの変形例として提案したものであって、パネル内の条溝を深くして通気機能の増大を図ったものであり、セメント板厚を25mmのままで、75mmの断熱材に断熱欠損を生ずる10mm 深さの条溝を付設し、条溝深さを、セメント板側13mm+断熱材側10mmの、合計23mmとしたものであるが、セメント板と断熱板との層着時の、型成形のセメント板側条溝と、切欠加工した断熱板側条溝との整合形態での一体化層着作業は、煩雑、且つ心労の伴う精緻な作業となる。
従って、図10(B)に提示したパネルは、図10(A)のパネルの条溝深さ(13mm)より深く(23mm)出来て、通気機能の若干の向上が得られるものの、断熱材(75mm厚)が10mm厚の条溝のための断熱欠損を生じて、外断熱機能が低下すること、及び層着作業性が悪いことより、実施効果が期待出来ないため、従来例3のパネルは、図10(A)のタイプで実施している。
Further, the panel shown in FIG. 10 (B) is proposed as a modified example of the panel of FIG. 10 (A), and is intended to increase the ventilation function by deepening the groove in the panel. With a cement plate thickness of 25 mm, a 75 mm insulation material is provided with a 10 mm deep groove that creates a heat insulation defect. The groove depth is 13 mm on the cement plate side + 10 mm on the insulation material side, for a total of 23 mm. However, when laminating a cement plate and a heat insulating plate, the integrated layering operation in the form of alignment between the mold-formed cement plate side groove and the notched heat insulating plate side groove is complicated and labor-intensive. It becomes an elaborate work with.
Accordingly, the panel shown in FIG. 10B can be deeper (23 mm) than the groove depth (13 mm) of the panel of FIG. 10A, and a slight improvement in ventilation function can be obtained. 75 mm thickness) caused a heat insulation defect due to a 10 mm thick groove, and since the outer heat insulation function was lowered and the laminating workability was poor, the implementation effect could not be expected. This is implemented in the type shown in FIG.

本発明は、これら従来例の問題点を解決、又は改善して木造建物での新規な外張り工法を提供するものであり、木造外張り用に開発した軽量、且つ、広幅の新規な通気性外断熱複合パネルを採用して、従来の木造外張り断熱工法より遥かに構築容易、且つ高機能な外張り外壁構造を提供するものである。   The present invention solves or improves the problems of the conventional examples and provides a new outer construction method for wooden buildings, and is a lightweight and wide new breathability developed for wooden outer coverings. By adopting an outer heat insulating composite panel, the present invention provides an outer wall structure that is far easier to construct than a conventional wooden outer heat insulating method and has a high function.

本発明は、例えば、図1に示す如く、通気性断熱複合パネルを木造建物の外壁に外張りした木造外張り断熱の外壁構造であって、複合パネル1は、発泡プラスチック系断熱材の断熱層1Bの層着面1Sに、通気用条溝Gと、層着用の肉厚部1Cとを、縦方向に、交互に、且つ、両側が肉厚部1Cとなるように配置し、成形薄剛板の外装下地材1Aを断熱層1Bの層着面1Sに一体化層着したものであり、複合パネル1の下端を、図3(A)に示す如く、土台14Cに垂直片7Wを、プラスチック製座板8を介して熱橋阻止構造で固定した断面アングル形態のパネル受金具7の空気孔H7を備えた水平片7Fで支承して、条溝G群への空気流入可能に保持すると共に、複合パネル1を木造躯体WFに外壁として固定し、複合パネル1の下端から条溝G群内を上昇する空気流aを、複合パネル1の上端から軒天換気口21を介して放出可能としたものである。
The present invention, for example, as shown in FIG. 1, is an outer wall structure of a wooden outer heat insulation in which a breathable heat insulating composite panel is externally attached to an outer wall of a wooden building, and the composite panel 1 is a heat insulating layer of a foamed plastic heat insulating material. On the layer attachment surface 1S of 1B, the ventilation groove G and the thick part 1C for layer wearing are arranged in the vertical direction alternately so that both sides become the thick part 1C. is obtained by integrating layers wearing outer base sheet 1A of the plate to the layer deposition surface 1S of the heat insulating layer 1B, the lower end of the composite panel 1, as shown in FIG. 3 (a), a vertical piece 7W the foundation 14C, plastic It is supported by a horizontal piece 7F provided with an air hole H7 of a panel bracket 7 having an angle cross section fixed by a heat bridge blocking structure through a seat plate 8 and is held so that air can flow into the groove G group. The composite panel 1 is fixed to the wooden frame WF as an outer wall, and from the lower end of the composite panel 1 The air flow a rising in the groove G group, in which the releasable via Nokiten vent 21 from the upper end of the composite panel 1.

この場合、発泡プラスチック系断熱材の板状断熱層1Bは、成形薄剛板の外装下地材1Aに一体化層着出来る保形性を備えた板状材で良く、押出法ポリスチレンフォーム、ビーズ法ポリスチレンフォーム、硬質ウレタンフォーム等の、JISA9511の発泡プラスチック系断熱材が良く、典型的には、厚さ75mm の、JISA9511の押出法ポリスチレンフォーム板である。
また、通気用条溝G群は、最低限のドラフト空気流aの貫流を保証し、且つ、断熱欠損を最小限に保つ深さにカッターで切欠すれば良く、典型的には、各条溝は、深さ15mm、幅45mmであり、条溝Gの幅と、肉厚部1Cの幅とは等幅である。
In this case, the plate-like heat insulating layer 1B of the foamed plastic-based heat insulating material may be a plate-like material having a shape-retaining property that can be integrally layered on the exterior base material 1A of a molded thin rigid plate, such as an extruded polystyrene foam or bead method. A foamed plastic-based heat insulating material of JISA9511 such as polystyrene foam and rigid urethane foam is good, and typically, an extruded polystyrene foam plate of JISA9511 having a thickness of 75 mm.
Further, the ventilation groove G group may be cut by a cutter to a depth that guarantees a minimum draft air flow a flow and keeps a heat insulation defect to a minimum. Has a depth of 15 mm and a width of 45 mm, and the width of the groove G and the width of the thick portion 1C are equal.

また、成形薄剛板の外装下地材1Aは、外壁の外装下地材としての強度、耐衝撃性、寸法安定性を備えた最小限の薄剛板(セメント板)であれば良く、板厚15mm以下であって;図7(B)に示す、酸化マグネシウムと硅砂とを主成分とし、両面にガラス繊維不織布(Gc)を埋設した、軽量(10kg/m)、高強度(100kgf/cm)で12mm厚のマグネシウムセメント板1A−1や;図7(C)に示す、硅砂、消石灰、パルプを水に分散させて紙を漉く要領で層状に成形し、オートクレーブ養生によって発生するカルシウムと化合して生ずる硅酸カルシウムの基材にバーミキュライト(Va)を加えた、軽量(13.2kg/m)、高強度(100kgf/cm)で12mm厚のケイ酸カルシウム板1A―2や;図7(D)に示す、火山礫(Ka)とフライアッシュとを原料とし、ガラス繊維を補強材に用いてフェノール樹脂で固めた、軽量(12.4kg/m)、高強度(100kgf/cm)で、13mm厚のフェノール樹脂板1A―3が好ましい。 Further, the exterior base material 1A of the molded thin rigid plate may be a minimum thin rigid plate (cement plate) having strength, impact resistance, and dimensional stability as the exterior base material of the outer wall, and the plate thickness is 15 mm. It is the following: light weight (10 kg / m 2 ), high strength (100 kgf / cm 2 ), mainly composed of magnesium oxide and cinnabar sand and embedded with glass fiber nonwoven fabric (Gc) on both sides, as shown in FIG. ) 12mm-thick magnesium cement plate 1A-1; as shown in FIG. 7 (C), sand and slaked lime, pulp is dispersed in water and formed into layers in the manner of spreading paper, and combined with calcium generated by autoclave curing A calcium silicate plate 1A-2 having a light weight (13.2 kg / m 2 ), a high strength (100 kgf / cm 2 ) and a thickness of 12 mm, which is obtained by adding vermiculite (Va) to the base material of calcium oxalate produced as described above; Volcanic gravel (7) A light weight (12.4 kg / m 2 ), high strength (100 kgf / cm 2 ), 13 mm thick phenolic resin plate using Ka) and fly ash as raw materials and hardened with phenolic resin using glass fiber as a reinforcing material 1A-3 is preferred.

また、複合パネル1の下端での条溝Gへの空気流入は、複合パネル1を支承するパネル受金具7の条溝Gとの対応位置に空気孔H7を配置しても、図3(A)の如く、複合パネル1内に条溝G群と連通する横断条溝G´を形成しておき、条溝G群に対してポート機能を奏する横断条溝G´に、パネル受金具に配置した空気孔H7によって空気流入可能としても良い。
そして、図3に示す如く、断面アングル形態のパネル受金具7は、垂直片7Wが土台14Cに、プラスチック製座板8を介して、熱橋阻止構造で強固に固定されて、空気孔H7を備えた水平片7Fが複合パネル1の下端を支承するため、パネル受金具7は、木造建物躯体WFへの熱橋を生ずることなく、複合パネル1を強固に支承し、複合パネル1の外壁の通気機能を保証する。
従って、内部に条溝G群による通気層を備えた通気性断熱複合パネル1を、下端ではパネル受金具7によって支承し、適所を長ねじ4Aで躯体WFの柱に固定するか、複合パネル1の断熱層1B面を躯体WFに張設した構造用面材13に接着固定するだけで、木造建物の外壁を、熱橋作用を抑制した通気性外断熱に施工出来、従来例1の慣用されている木造外張り断熱工法より、遥かに簡便、且つ、作業性良く、木造外張り通気性断熱の外壁が得られる。
Further, the air inflow into the groove G at the lower end of the composite panel 1 can be achieved even if the air hole H7 is disposed at a position corresponding to the groove G of the panel bracket 7 that supports the composite panel 1 as shown in FIG. ), A transverse groove G ′ communicating with the groove G group is formed in the composite panel 1, and the panel groove is arranged on the transverse groove G ′ having a port function with respect to the groove G group. The air hole H7 may allow air to flow in.
Then, as shown in FIG. 3, in the panel bracket 7 having an angle section, the vertical piece 7W is firmly fixed to the base 14C via the plastic seat plate 8 with a thermal bridge prevention structure, and the air hole H7 is formed. Since the provided horizontal piece 7F supports the lower end of the composite panel 1, the panel bracket 7 firmly supports the composite panel 1 without forming a thermal bridge to the wooden building skeleton WF. Ensures ventilation function.
Therefore, the breathable heat-insulating composite panel 1 provided with a ventilation layer formed by the grooves G in the interior is supported by the panel receiving bracket 7 at the lower end, and is fixed to a column of the housing WF with a long screw 4A, or the composite panel 1 By simply bonding and fixing the heat insulation layer 1B surface to the structural surface material 13 stretched on the housing WF, the outer wall of the wooden building can be constructed to be a breathable external heat insulation that suppresses the thermal bridge action. The outer wall of the breathable heat insulation of the wooden outer layer can be obtained by a much simpler and better workability than the existing wooden outer wall thermal insulation method.

また、複合パネル1は工場生産の均質製品であるため、及び、複合パネル1の木造躯体への張着作業は、製品にバラツキの生じない単純作業であるため、複合パネル1を張着した木造外張り外壁構造は、品質に信頼性のある通気性外張り断熱構造となる。
また、セメント板(外装下地材)1Aは、薄板で軽量化出来たため、従来例3の複合パネルより、単位面積当りが遥かに軽量となり、広幅(標準:900mm)パネルとしても取扱いが容易であり、パネルの張着の枚数の減少と相俟って、施工期間の短縮化も可能となる。
Moreover, since the composite panel 1 is a homogenous product produced at the factory, and the work of attaching the composite panel 1 to the wooden frame is a simple operation that does not cause variations in the product, the wooden structure attached with the composite panel 1 is used. The outer wall structure of the outer layer becomes a breathable outer layer heat insulating structure that is reliable in quality.
In addition, the cement board (exterior base material) 1A is thin and lightweight, so the unit area is much lighter than the composite panel of Conventional Example 3, and it is easy to handle as a wide (standard: 900 mm) panel. Combined with the reduction in the number of panels, the construction period can be shortened.

また、通気用の条溝G群は、断熱層1Bのみに配置したため、複合パネル1の層着前に、カッター自体の寸法調整によって、条溝の幅、深さが自在に設定出来、条溝G群に対する所望のバイパス条溝、横断条溝等の付設も自在となる。
そして、セメント板1Aは、単なる薄剛板の選択だけとなるため、各種の軽量薄剛板の採用が可能となって、機能面、用途面、デザイン面から複合パネルが自在に形成出来る。
しかも、複合パネル1内の通気用の条溝G群は断熱層1B側のみに形成してあるため、図4(B)の如く、上下パネルの接続部にあっては、上下パネル1の断熱層1B相互を衝合当接するだけで、上下の各条溝G群が接続形態となり、また、図1に示す如く、パネル上端でのドラフト上昇空気流aの放出も、セメント板1Aから突出させた断熱層1Bの露出面での条溝G群からの放出となり、ドラフト上昇空気流aの流通経路の確保が容易となる。
Further, since the grooves G for ventilation are arranged only in the heat insulating layer 1B, the width and depth of the grooves can be freely set by adjusting the dimensions of the cutter itself before the composite panel 1 is deposited. A desired bypass groove, a transverse groove, etc. for the G group can be freely attached.
Since the cement plate 1A is simply a thin and rigid plate, various lightweight thin and rigid plates can be used, and a composite panel can be freely formed from a functional aspect, an application aspect, and a design aspect.
In addition, since the groove G for ventilation in the composite panel 1 is formed only on the heat insulating layer 1B side, as shown in FIG. 4B, the heat insulation of the upper and lower panels 1 is provided at the connection portion of the upper and lower panels. By simply abutting the layers 1B against each other, the upper and lower grooves G are connected to each other, and as shown in FIG. 1, the draft rising air flow a is also released from the cement plate 1A at the upper end of the panel. It becomes discharge | release from the groove G group in the exposed surface of the heat insulation layer 1B, and it becomes easy to ensure the distribution path | route of the draft raising airflow a.

また、本発明にあっては、図3に示す如く、パネル受金具7は、アングル形態であって、水平片7Fが空気孔H7を備え、垂直片7Wを土台14Cに、プラスチック製座板8を介在して、熱橋阻止構造で固定することも、要件としている。
この場合、パネル受金具7は、典型的には、7mm厚のJISG3192の不等辺山形鋼であり、水平片7Fの先端下面に水切片7Gを備えたものである。
また、空気孔H7はパネル1の条溝G群への空気流入を保証すれば良い。

Further, in the present invention, as shown in FIG. 3, panel pivot bracket 7 is an angle form, e Bei horizontal plate 7F air holes H7, a vertical piece 7W to the soil block 14C, plastic interposed the seat plate 8, will lock with thermal bridge blocking structure is also a requirement.
In this case, the panel bracket 7 is typically a 7 mm thick JISG 3192 unequal side angle steel, and has a water piece 7G on the lower surface of the front end of the horizontal piece 7F.
Further, the air hole H7 may ensure air inflow into the groove G group of the panel 1.

また、パネル受金具7の水平片7Fは先端上面が雨水流下用の曲面7Rを備え、且つ、外装下地材1Aの表面に付設する外装仕上材2より突出させれば、シーリング12の充填に有利であり、安定感を現出する。
従って、土台14Cに強固に固定されたパネル受金具7は、複合パネル1の強固な支承を保証し、且つ、複合パネル1の下端からの条溝G群へのドラフト上昇空気流aの導入を保証して、外壁の断熱機能、及び通気機能を保証する。
そして、パネル受金具7をプラスチック製座板8を介して土台14Cに固定したことにより、パネル受金具7から躯体WFへの熱橋も抑制出来る。
Further, the horizontal piece 7F of the panel bracket 7 is advantageous in filling the sealing 12 if the tip upper surface has a curved surface 7R for flowing rainwater and protrudes from the exterior finishing material 2 attached to the surface of the exterior base material 1A. And show a sense of stability.
Accordingly, the panel bracket 7 that is firmly fixed to the base 14C guarantees the strong support of the composite panel 1 and introduces the draft rising air flow a from the lower end of the composite panel 1 to the groove G group. Guarantees the heat insulation function and ventilation function of the outer wall.
And by fixing the panel bracket 7 to the base 14C via the plastic seat plate 8, the thermal bridge from the panel bracket 7 to the housing WF can also be suppressed.

また、本発明にあっては、図3に示す如く、パネル受金具7に載置した複合パネル1は、条溝G群の下端を連通する横断条溝G´を備え、パネル受金具7の水平片7Fに配置した空気孔H7が横断条溝G´に連通しているのが好ましい。
この場合、横断条溝G´は、複合パネル1の形成の際の断熱層1Bへのカッター(図示せず)での縦条鋼G群の切欠形成時に、同時にカッターで切欠形成すれば良く、横断条溝G´の深さ及び幅は条溝Gと同一寸法で形成すれば良い。
Further, in the present invention, as shown in FIG. 3, the composite panel 1 placed on the panel bracket 7 is provided with a transverse groove G ′ that communicates with the lower end of the groove G group. It is preferable that an air hole H7 disposed in the horizontal piece 7F communicates with the transverse groove G ′.
In this case, the transverse groove G ′ may be formed with a cutter at the same time when the longitudinal steel group G is notched with a cutter (not shown) in the heat insulating layer 1B when the composite panel 1 is formed. The depth and width of the groove G ′ may be formed with the same dimensions as the groove G.

従って、図3(A)に示す如く、パネル受金具7の水平片7Fによって下端が支承された複合パネル1は、縦方向の条溝G群の下端に、断熱層1Bの全幅を貫通する横断条溝G´が、各条溝Gに対するポート機能を奏するため、横断条溝G´へ空気流aを流入させるための、パネル受金具7の空気孔H7は、横断条溝G´へ適宜位置で、且つ、丸孔、長孔等、自在の孔形態で連通すれば良く、パネル受金具7の水平片7Fへの空気孔H7の穿孔配置は、水平片7Fの強度低下を抑制して配置出来、穿孔作業も容易となる。   Therefore, as shown in FIG. 3A, the composite panel 1 whose lower end is supported by the horizontal piece 7F of the panel bracket 7 crosses the entire width of the heat insulating layer 1B at the lower end of the longitudinal groove G group. Since the groove G ′ has a port function for each groove G, the air hole H7 of the panel bracket 7 for allowing the air flow a to flow into the transverse groove G ′ is appropriately positioned in the transverse groove G ′. In addition, it is only necessary to communicate in the form of a free hole such as a round hole or a long hole, and the perforation arrangement of the air hole H7 to the horizontal piece 7F of the panel bracket 7 is arranged while suppressing the strength reduction of the horizontal piece 7F. And drilling work becomes easy.

また、複合パネル1は、図1に示す如く、木造躯体WFの柱14A,14Bの外面に構造用面材13を張設し、構造用面材13の外面に複合パネル1を一体化張設するのが好ましい。
この場合、構造用面材13の張設は、慣用技法によって、従来例1(図8)同様に実施すれば良い。
そして、本発明の複合パネル1の木造躯体WFへの張設は、従来例1の如き、通気胴縁+横桟の配置が不要となったため、単に構造用面材13に一体化すれば良い。
従って、複合パネル1の木造躯体WFへの張設は、下端でのパネル受金具7での支承と、パネル内側面の断熱層1Bでの構造用面材13への接着一体化で可能となり、柱14Aや間柱14Bの配置位置での制約を受けずに、パネル1の外壁Wへの割付けが出来るため、複合パネル1の張設は、作業性良く実施出来る。
Further, as shown in FIG. 1, the composite panel 1 has a structural face member 13 stretched on the outer surface of the pillars 14 </ b> A and 14 </ b> B of the wooden frame WF, and the composite panel 1 is stretched integrally on the outer surface of the structural face member 13. It is preferable to do this.
In this case, the structural face material 13 may be stretched in the same manner as in Conventional Example 1 (FIG. 8) by a conventional technique.
In addition, the tensioning of the composite panel 1 of the present invention to the wooden frame WF does not require the arrangement of the ventilator edge + the cross rail as in the conventional example 1, and therefore, it may be simply integrated with the structural surface material 13. .
Therefore, it is possible to stretch the composite panel 1 to the wooden frame WF by supporting the panel receiving bracket 7 at the lower end and bonding and integrating the structural heat insulating layer 1B on the inner surface of the panel with the structural face material 13; Since the panel 1 can be assigned to the outer wall W without being restricted by the arrangement positions of the columns 14A and the inter-columns 14B, the composite panel 1 can be stretched with good workability.

また、本発明の外壁構造にあって、複合パネル1の上下接続は、図4(B)に示す如く、下方複合パネル1の上端での、断熱層1Bのセメント板1Aに対する大段差d3突出と、上方複合パネル1の下端での、断熱層1Bのセメント板1Aに対する小段差d2入り込みとで、断熱層1B相互を衝合当接し、下方のセメント板上端辺euと、上方のセメント板下端辺edとの目地間隔d2には、平板状バックアップ材12Bを断熱層1Bの前面に当接延展し、バックアップ材12Bの前面をシーリング12で充填して横目地dxとするのが好ましい。   Further, in the outer wall structure of the present invention, the upper and lower connections of the composite panel 1 are, as shown in FIG. 4B, a large step d3 protrusion with respect to the cement plate 1A of the heat insulating layer 1B at the upper end of the lower composite panel 1. When the lower end of the upper composite panel 1 enters the small step d2 of the heat insulating layer 1B with respect to the cement plate 1A, the heat insulating layer 1B abuts against each other, and the lower cement plate upper end eu and the upper cement plate lower end It is preferable that the flat backup material 12B is abutted and extended on the front surface of the heat insulating layer 1B and the front surface of the backup material 12B is filled with the sealing 12 to form the horizontal joint dx at the joint interval d2 with ed.

この場合、例えば1階パネルと2階パネルとの上下接合にあっては、1階パネルの上端は、図6(A)に示す如く、断熱層1Bをセメント板1Aよりd3(標準:40mm)突出させておき、2階パネルの下端は、図6(B)に示す如く、断熱層1Bをセメント板1Aよりd2(標準:20mm)入り込ませておけば、図4(B)に示す如く、下方パネルのセメント板上端辺euと上方パネルのセメント板下端辺edとに間隔d2(標準:20mm)の横目地dx間隔が形成出来る。   In this case, for example, when the upper and lower panels of the first floor panel and the second floor panel are joined, as shown in FIG. 6 (A), the heat insulation layer 1B is d3 (standard: 40 mm) from the cement board 1A. As shown in FIG. 4 (B), if the lower end of the second floor panel is protruded and the heat insulation layer 1B is inserted d2 (standard: 20 mm) from the cement board 1A as shown in FIG. 6 (B), A horizontal joint dx interval of an interval d2 (standard: 20 mm) can be formed between the upper side eu of the cement plate of the lower panel and the lower end ed of the cement plate of the upper panel.

そして、図4(B)に示す如く、上下パネルの断熱層の水平当接界面hfはセメント板1A内面で保護されて、空気流入による断熱機能低下は抑制出来、且つ、条溝G群が断熱層1B側にのみ配置されているため、上下パネルの断熱層1B相互の衝合当接で、各上下パネルの条溝G群は連通形態となり、断熱層1Bの横目地dx間隔での条溝G群の露出部を閉止するだけで、上下パネルの条溝G群の空気連通が保証出来るものとなる。
従って、上下セメント板の間隔d2(目地間隔)を、慣用の、平板状バックアップ材12Bを介したシーリング12の充填だけで、パネル上下接続部の通気構造確保が可能となり、従来のセメント板に条溝を備えた複合パネル(図10)相互の、目地間隔での上下セメント板間の上下接続より、遥かに簡便、且つ確実に、通気構造確保が可能となる。
As shown in FIG. 4 (B), the horizontal contact interface hf of the heat insulating layers of the upper and lower panels is protected by the inner surface of the cement board 1A, so that a decrease in the heat insulating function due to the inflow of air can be suppressed, and the grooves G are insulated. Since it is arranged only on the layer 1B side, the abutment contact between the heat insulating layers 1B of the upper and lower panels makes the groove groups G of the upper and lower panels communicate with each other, and the grooves at the intervals of the horizontal joints dx of the heat insulating layer 1B. By simply closing the exposed part of the G group, the air communication of the groove group G of the upper and lower panels can be guaranteed.
Thus, the upper and lower cement plate spacing d2 (joint spacing), conventional, only Hama charge of ceiling 12 through the flat backup material 12B, breathable structure securing panel upper and lower connection portion becomes possible, in a conventional cement board Compared with the vertical connection between the upper and lower cement plates at the joint interval between the composite panels (Fig. 10) having the groove, it is possible to secure the ventilation structure much more simply and reliably.

また、本発明にあっては、図2(B)に示す如く、複合パネル1の左右接続は、小段差d1突出した断熱層1Bと、小段差d1入り込んだ断熱層1Bとの衝合当接により、左右複合パネル1相互を相欠け接続するのが好ましい。
この場合、複合パネル1の製作時に、図7(A)の如く、同一幅の断熱層1Bとセメント板1Aとを、小段差d1ずらして層着すれば良く、標準パネル1にあっては、断熱層幅BWは900mm、セメント板幅AWは900mm、小段差d1は10mmである。
In the present invention, as shown in FIG. 2B, the left and right connection of the composite panel 1 is performed by abutting contact between the heat insulating layer 1B protruding from the small step d1 and the heat insulating layer 1B entering the small step d1. Thus, it is preferable to connect the left and right composite panels 1 with each other.
In this case, when the composite panel 1 is manufactured, as shown in FIG. 7A, the heat insulation layer 1B and the cement board 1A having the same width may be layered with a small step difference d1. The heat insulation layer width BW is 900 mm, the cement board width AW is 900 mm, and the small step d1 is 10 mm.

従って、複合パネル1相互の並列接続が相欠け接続であるため、各パネル1相互の衝合当接作業が容易であると共に、断熱層1B相互の衝合垂直当接界面Vfが、セメント板1Aで保護されて、空気流入による断熱機能低下が抑制出来る。
尚、図1の如く、構造用面材13上に複合パネル1を張設する場合には、構造用面材13相互の接続部J13と、複合パネル1相互の垂直当接界面Vfとを、重ならないように配置するのが、外壁の気密性向上に有利である。
Accordingly, since the parallel connection between the composite panels 1 is a phase-missing connection, the abutting contact operation between the panels 1 is easy, and the abutting vertical contact interface Vf between the heat insulating layers 1B is the cement plate 1A. It is protected by, and the heat insulation function decline by the air inflow can be suppressed.
As shown in FIG. 1, when the composite panel 1 is stretched on the structural face material 13, the connection portion J13 between the structural face materials 13 and the vertical contact interface Vf between the composite panel 1 Arranging so as not to overlap is advantageous in improving the airtightness of the outer wall.

また、本発明にあっては、図5に示す如く、窓10の下側の複合パネル1は、断熱層1Bの上端部に、条溝G群を連通する横断条溝G´を配置し、窓10の上側の複合パネル1は、断熱層1Bの下端部に、条溝G群を連通する横断条溝G´を配置し、窓下側の複合パネル1内を上昇する空気流aを、窓堅枠10Cの外方を迂回して窓上側の複合パネル1内の条溝G群に流入させるのが好ましい。
この場合、窓10の上下の各横断条溝G´を、図5(B)に示す如く、窓堅枠10Cの外方の縦条溝Gに連通させておけば良い。
従って、窓10の、下側パネルの横断条溝G´も、上側パネルの横断条溝G´も、各条溝G群へのポート機能を奏するため、窓下枠10B及び窓上枠10Aで断絶された上下の複合パネル内条溝G群は、全て下方からの上昇空気流aが貫流可能となり、外壁の全面が通気性外断熱となる。
Further, in the present invention, as shown in FIG. 5, the composite panel 1 on the lower side of the window 10 has a transverse groove G ′ communicating with the groove G group at the upper end of the heat insulating layer 1B. The composite panel 1 on the upper side of the window 10 has a transverse groove G ′ communicating with the groove G group at the lower end of the heat insulating layer 1B, and an air flow a rising in the composite panel 1 on the lower side of the window is generated. It is preferable to bypass the outside of the window rigid frame 10C and flow into the groove G group in the composite panel 1 on the upper side of the window.
In this case, the upper and lower transverse grooves G ′ of the window 10 may be communicated with the outer vertical grooves G of the window rigid frame 10C as shown in FIG.
Therefore, both the transverse groove G ′ of the lower panel of the window 10 and the transverse groove G ′ of the upper panel perform the port function to each groove G group. Therefore, the window lower frame 10B and the window upper frame 10A In the upper and lower composite panel inner groove G group which has been cut off, the ascending air flow a from all below can flow through, and the entire outer wall becomes air-permeable outer heat insulation.

また、複合パネル1は、断熱層1Bの肉厚部1Cが層着面1S上の面積の50%を占め、外装下地材1Aは、厚さT2が12〜13mm
で、比重が0.8〜1.1で、曲げ強度が100〜120kgf/cmであるのが好ましい。
この場合、厚さT2が12〜13mm で、比重が0.8〜1.1で、曲げ強度が100〜120kgf/cmの外装下地材としては、典型的には、図7(B)に示す、マグネシウムセメント板1A−1、図7(C)に示す、ケイ酸カルシウム板1A−2、図7(D)に示す、フェノール樹脂板1A−3である。
そして、肉厚部1Cが層着面1Sの50%の面積を占めておれば、十分な接着力を保つ一体化層着構造となり、断熱層1Bの両側に肉厚部1Cが存在するため、複合パネルの取扱い過程での層剥離を生ずることもない。
The composite panel 1, the thick portion 1C of the heat insulating layer 1B accounted for 50% of the area on the layer adhesive surface 1S, exterior base sheet 1A, the thickness T2 is 12~13mm
The specific gravity is preferably 0.8 to 1.1 and the bending strength is preferably 100 to 120 kgf / cm 2 .
In this case, an exterior base material having a thickness T2 of 12 to 13 mm, a specific gravity of 0.8 to 1.1, and a bending strength of 100 to 120 kgf / cm 2 is typically shown in FIG. Magnesium cement plate 1A-1 shown in FIG. 7, calcium silicate plate 1A-2 shown in FIG. 7C, and phenol resin plate 1A-3 shown in FIG. 7D.
If the thick part 1C occupies an area of 50% of the layering surface 1S, an integrated layered structure that maintains a sufficient adhesive force is obtained, and the thick part 1C exists on both sides of the heat insulating layer 1B. In addition, delamination does not occur in the handling process of the composite panel.

また、断熱層1Bの層着面1Sの面積の50%を層着用の肉厚部1Cとすることにより、断熱層1Bからの水蒸気(湿気)を放出し、且つ、外装下地材1Aの過加熱を冷却するための通気用条溝Gも、断熱層1Bの層着面1Sの1/2の面積を占めることとなり、条溝G群の配置を、図7(A)の如く、適正分散配置すれば、外壁として張着したパネル面の全面に均斉な通気効果の期待出来る複合パネルとなる。
Further, by the 50% of the area of the layer deposition surface 1S of the heat insulating layer 1B and the thick portion 1C of the layer worn, releasing water vapor (moisture) from the heat insulating layer 1B, and, over the exterior base material 1A The ventilation groove G for cooling the heating also occupies a half of the area 1S of the heat insulating layer 1B, and the arrangement of the grooves G group is appropriately dispersed as shown in FIG. If it arranges, it will become a composite panel which can expect the uniform ventilation effect to the whole panel surface stuck as an outer wall.

従って、外装下地材(セメント板)1Aは、1m当り重量が9〜15kgのものとなって、従来例3(図10)の押出成形セメント板(35.0kg/m)の半分以下の重量となるため、本発明に用いる複合パネル1は、セメント板1Aを、従来の複合パネルのセメント板幅(490mm )より、遥かに広幅(900mm )としても、尚、従来の複合パネルよりも軽いものとなり、複合パネルの、施工現場での取扱いが容易となって、作業性が向上する。
そして、100〜120kgf/cmの強度を備えておれば、パネルの構造材としての強度が十分であり、外装下地材として十分な強度を発揮する。
Thus, the outer base member (cement board) 1A, taken as 1 m 2 per weight of 9~15Kg, Conventional Example 3 extruded cement plate (Figure 10) half of the following (35.0kg / m 2) Because of the weight, the composite panel 1 used in the present invention is lighter than the conventional composite panel even if the cement board 1A is made wider (900 mm) than the cement board width (490 mm) of the conventional composite panel. As a result, handling of the composite panel at the construction site becomes easy and workability is improved.
And if it has the intensity | strength of 100-120 kgf / cm < 2 >, the intensity | strength as a structural material of a panel will be enough, and sufficient intensity | strength will be exhibited as an exterior base material.

また、複合パネル1は、図7(A)に示す如く、断熱層1Bの厚さT3が75mm であり、条溝Gの深さGdが12〜20mm であり、条溝幅a1が45mm であるのが好ましい。
この場合、図7(A)の如く、条溝幅a1が45mmであれば、肉厚部1Cの幅a2も45mmとすることにより、複合パネル1を並列接続した状態では、各45mmの肉厚部1Cと各45mmの条溝Gとの交互配置となり、複合パネル1の外壁面は、全面に亘って、断熱層1Bからの均斉な放湿機能、及び全面に亘って、均斉な通気による外装下地材1Aの均斉な吸熱冷却機能を発揮する。
In the composite panel 1, as shown in FIG. 7A, the thickness T3 of the heat insulating layer 1B is 75 mm, the depth Gd of the groove G is 12 to 20 mm, and the groove width a1 is 45 mm. Is preferred.
In this case, as shown in FIG. 7A, if the groove width a1 is 45 mm, the width a2 of the thick portion 1C is also 45 mm, so that the thickness of 45 mm is obtained when the composite panels 1 are connected in parallel. The outer wall surface of the composite panel 1 has a uniform moisture-releasing function from the heat insulating layer 1B and a uniform ventilation through the entire surface. The uniform endothermic cooling function of the base material 1A is exhibited.

また、断熱層1Bの厚さは、被覆一体化した木造外壁での熱貫流抵抗(Rt)が規定(次世代省エネ基準での壁の熱貫流率の基準)値を満たすように決定すれば良く、日本での基準値の最も厳しいI地区(北海道)の基準は、熱貫流抵抗Rt(mh℃/kcal)は、2.86mh℃/kcal以上(鉄筋コンクリート造等以外の、その他住宅の壁の基準値)であり、内装用面材及び構造用面材を備えた木造外壁に、75mm 厚で、熱伝導率0.024kcal /mh℃以下の断熱層1Bを張着した外壁は、条溝Gを深さ20mm で形成し、75mm厚の断熱層1Bに20mm深さの断熱欠損を発生させても、尚、日本国I地区(北海道)の基準値を満足することになる。 Further, the thickness of the heat insulating layer 1B may be determined so that the heat flow resistance (Rt) of the wooden outer wall integrated with the coating satisfies the specified value (the standard of the heat flow rate of the wall in the next generation energy saving standard). The standard of the I district (Hokkaido), which has the strictest standard values in Japan, has a heat flow resistance Rt (m 2 h ° C / kcal) of 2.86 m 2 h ° C / kcal or more (other than reinforced concrete structures, etc.) The outer wall with a heat insulation layer 1B with a thickness of 75 mm and a thermal conductivity of 0.024 kcal / mh ° C. or less is attached to a wooden outer wall provided with an interior surface material and a structural surface material. Even if the groove G is formed with a depth of 20 mm and a heat insulation defect having a depth of 20 mm is generated in the heat insulation layer 1B having a thickness of 75 mm, the standard value of the I region of Japan (Hokkaido) is still satisfied.

また、条溝Gの深さGdは、ドラフト上昇空気流の最大流速が得られる40mmまで、条溝深さGdが大きくなる程、上昇空気流の流速も大となるものであって、断熱層1Bでの条溝深さGdが大きくなる程、断熱欠損も大となり、断熱層1Bでの条溝Gによる断熱欠損と通気機能とは二律背反関係にあるが、各条溝Gの深さGdが12mm であれば、断熱欠損は無視出来る程度の下で、最小限の有効ドラフト空気流速≒0.026m/sが得られ、Gdが20mmであれば、断熱欠損は許容限界値に近くなるが、高いドラフト空気流速(≒0.034m/s)が得られる。
従って、JISA9511の発泡プラスチック系断熱材を適用した、75mm厚の断熱層1Bに於いて、条溝深さGdを12〜20mmに選定したため、断熱欠損による断熱機能低下を許容範囲内に抑え、且つ、通気層としての必要なドラフト上昇空気流aの有効速度での生起が達成出来る。
Further, the depth Gd of the groove G is up to 40 mm at which the maximum flow velocity of the draft rising air flow is obtained, and the flow velocity of the rising air flow increases as the groove depth Gd increases. The larger the groove depth Gd in 1B, the larger the heat insulation defect, and the heat insulation defect due to the groove G in the heat insulation layer 1B and the ventilation function are in a trade-off relationship, but the depth Gd of each groove G is If it is 12 mm, the adiabatic defect is negligible and a minimum effective draft air flow velocity ≈ 0.026 m / s is obtained. If Gd is 20 mm, the adiabatic defect is close to the allowable limit value. A high draft air flow rate (≈0.034 m / s) is obtained.
Therefore, since the groove depth Gd is selected to be 12 to 20 mm in the 75 mm thick heat insulating layer 1B to which the foamed plastic heat insulating material of JISA9511 is applied, the deterioration of the heat insulating function due to the heat insulating defect is suppressed within an allowable range, and The required draft rising air flow a as an air-permeable layer can be generated at an effective speed.

本発明の外壁構造にあっては、通気性断熱複合パネル1の下端を、土台14Cに熱橋阻止構造で固定したパネル受金具7の水平片7Fで支承して、木造躯体WFの外壁に張設するだけで、木造建物が断熱層1Bによって、熱橋作用を抑制して外断熱被覆出来、且つ、断熱層1Bの外面と外装下地材(セメント板)1Aとの界面には、ドラフト上昇空気流aの貫流する通気層が縦条溝G群によって形成出来るため、従来(図8)の木造外張り断熱工法より、遥かに簡便、且つ、単純な作業で、施工性良く構築出来る。
しかも、複合パネル1は、工場生産品であり、施工作業による品質のバラツキも少ないため、本発明で得られる木造建物の外壁構造は、従来(図8)の工法で得られる外壁構造よりも、断熱機能面、通気機能面で、均斉、且つ高品質で、信頼性に富むものとなる。

In the outer wall structure of the present invention, the lower end of the breathable insulation composite panel 1, and supported by a horizontal piece 7F panel receiving brackets 7 fixed with thermal bridge blocking structure on the base 14C, the outer wall of the tree Zomukurotai WF Just by stretching, the wooden building can be covered with the heat insulation layer 1B to suppress the thermal bridge effect , and the draft rises at the interface between the outer surface of the heat insulation layer 1B and the exterior base material (cement board) 1A. Since the ventilation layer through which the air flow a flows can be formed by the vertical groove G group, it can be constructed with a much simpler and simpler work with better workability than the conventional wooden outer wall insulation method (FIG. 8).
Moreover, since the composite panel 1 is a factory-produced product and there is little variation in quality due to construction work, the outer wall structure of the wooden building obtained by the present invention is more than the outer wall structure obtained by the conventional method (FIG. 8), In terms of heat insulation function and ventilation function, it will be uniform, high quality and reliable.

また、複合パネル1の通気用条溝G群は、パネル製作過程で断熱層1Bのみに配置したため、断熱層1Bの厚さに対する断熱欠損の支障を許容範囲内に抑え、且つ、ドラフト上昇空気流aの好適流速を生起する条件の下に、例えば、断熱欠損を最少に抑えて、同時に通気機能も低いものとするか、断熱欠損を許容限界値として通気機能の優れたものとするか、所望に応じて、カッターで自在に切欠出来、断熱機能と通気機能との両面から適切に複合パネルを選定することにより、施工地域、及び需要者の希望に応じた外張り断熱木造住宅が構築出来る。   Further, since the ventilation groove G group of the composite panel 1 is arranged only in the heat insulating layer 1B in the panel manufacturing process, the trouble of the heat insulating defect with respect to the thickness of the heat insulating layer 1B is suppressed within an allowable range, and the draft rising air flow Under conditions that cause a suitable flow rate of a, for example, it is desirable to minimize heat insulation defects and at the same time lower the ventilation function, or to make the heat insulation function excellent with the heat insulation defect as an allowable limit value. Depending on the situation, it can be cut out freely with a cutter, and by selecting a composite panel appropriately from both sides of the heat insulation function and the ventilation function, it is possible to construct an external heat insulation wooden house according to the construction area and the demand of the customer.

しかも、複合パネル1の通気層としての条溝Gは、断熱層1Bにのみ存在するため、2階建、3階建等、複合パネル1を上下接続する際にも、パネル相互の上下接続での相互衝合当接の必須である断熱層衝合によって、条溝Gの連通構造確保が容易である。
また、複合パネル1の外装下地材(セメント板)1Aは、軽量な薄剛板でさえあれば、選択使用出来るため、需要者の希望に応じることが出来、外装下地材1Aの外面に施工する外装仕上材2も需要者が選択可能となり、外張り外壁構造は、機能面、デザイン面、コスト面から需要者の好みに自在に対応出来る。
Moreover, since the groove G as the ventilation layer of the composite panel 1 exists only in the heat insulating layer 1B, when the composite panel 1 is vertically connected, such as two stories, three stories, etc. It is easy to ensure the communication structure of the groove G by the heat insulation layer abutting which is essential for the mutual abutting contact.
Moreover, since the exterior base material (cement board) 1A of the composite panel 1 can be selectively used as long as it is a light thin rigid plate, it can meet the demands of the customer and is applied to the outer surface of the exterior base material 1A. The exterior finishing material 2 can also be selected by the customer, and the outer wall structure of the outer wall can be freely adapted to the preference of the customer in terms of function, design and cost.

〔複合パネル(図6、図7)〕
複合パネル1は、木造躯体WFに外張りするものであって、図6(A)は1階用のパネルの斜視図、図6(B)は2階用のパネルの斜視図であって、一般壁部に外張りするパネル1は、1階(下階)用と2階(上階)用とは、パネルの上下端で相違するが、横断面構造は同一物である。
即ち、図7(A)に示す如く、複合パネル1は、幅BWが900mmで、厚さT3が75mmの硬質ウレタンフォーム(JISA9511)の断熱層1Bの層着面1Sに、深さGdが15mm、幅a1が45mmの条溝G群を、各条溝G間に、幅a2が45mmの肉厚部1Cが存在するように、且つ、両端には幅a3が22.5mmの肉厚部1Cが存在するように、各条溝Gをカッターで、上下方向(長さ方向)に貫通配置し、断熱層1Bの層着面1Sに、幅AWが900mm、厚さT2が12mmのマグネシウムセメント板1A−1を、左右幅方向にd1(10mm)ずらして層着一体化したものである。
[Composite panel (Fig. 6, Fig. 7)]
The composite panel 1 is externally attached to the wooden frame WF. FIG. 6 (A) is a perspective view of a panel for the first floor, and FIG. 6 (B) is a perspective view of a panel for the second floor. The panel 1 that is externally attached to the general wall portion is different between the first floor (lower floor) and the second floor (upper floor) at the upper and lower ends of the panel, but the cross-sectional structure is the same.
That is, as shown in FIG. 7A, the composite panel 1 has a width GW of 900 mm and a thickness T3 of 75 mm and a rigid urethane foam (JISA9511) heat-insulating layer 1B having a depth Gd of 15 mm. In the groove G group having a width a1 of 45 mm, a thick part 1C having a width a2 of 45 mm exists between the grooves G, and a thick part 1C having a width a3 of 22.5 mm at both ends. Each of the grooves G is penetrated in the vertical direction (length direction) with a cutter so that there is a gap, and a magnesium cement plate having a width AW of 900 mm and a thickness T2 of 12 mm on the surface 1S of the heat insulating layer 1B. 1A-1 is layered and integrated by shifting d1 (10 mm) in the left-right width direction.

そして、標準パネルにあっては、1階用断熱層1Bも2階用断熱層1Bも同幅BW(900mm)、同高Bh(2832mm)であり、外装下地材1Aは、1階用にあっては、図6(A)に示す如く、断熱層1Bに対して、上端が断熱層1Bよりd3(40mm)入り込み、下端がd1(10mm)入り込んだものとし、2階用にあっては、図6(B)に示す如く、セメント板1Aは、断熱層1Bに対して、上端がd3(40mm )入り込み、下端がd2(20mm)突出したものとする。
また、1階用の複合パネル1の断熱層1Bの層着面下端には、図3(A)に示す如く、縦条溝G群を横断貫通する横断条溝G´を、縦条溝Gと同一幅、同一深さで、各条溝Gへのポートとして、条溝Gのカッターでの切欠時に、同時に形成しておく。
In the standard panel, the first-floor heat insulation layer 1B and the second-floor heat insulation layer 1B have the same width BW (900 mm) and the same height Bh (2832 mm), and the exterior base material 1A is suitable for the first floor. As shown in FIG. 6A, the upper end of the heat insulating layer 1B is d3 (40 mm) from the heat insulating layer 1B and the lower end is d1 (10 mm). As shown in FIG. 6B, it is assumed that the cement board 1A has an upper end entering d3 (40 mm) and a lower end protruding d2 (20 mm) with respect to the heat insulating layer 1B.
Further, as shown in FIG. 3 (A), a transverse groove G ′ that transversely penetrates the longitudinal groove group G is provided at the lower end of the layering surface of the heat insulating layer 1B of the composite panel 1 for the first floor. The same width and the same depth as the port to each groove G are formed at the same time when the groove G is notched with a cutter.

〔窓用複合パネル(図5)〕
窓10の上下に配置する複合パネル1は、図6、図7に示す一般壁用の複合パネルを、外壁のパネル割付図に従って、幅、高さを加工形成するが、図5に示す如く、窓10の下側のパネル1にあっては、パネル上端で、断熱層1Bと外装下地材1Aとを面一とし、断熱層1Bの上端部に、条溝G群を連通して各条溝Gへのポート機能を奏するための横断条溝G´を配置し、外装下地材1Aを複合パネル1の厚さ87mm(断熱層厚75mm+外装下地材厚12mm)に切断加工した外装下地材片1A´で、パネル上端面を被覆仕上げしておく。
また、窓10の上側の複合パネル1にあっても、パネル下端を面一とすると共に、断熱層1Bの下端部に、条溝G群を連通して各条溝Gへのポート機能を奏する横断条溝G´を配置し、パネル下端面を外装下地材片1A´で被覆仕上げしておく。
[Composite panel for windows (Figure 5)]
The composite panel 1 arranged above and below the window 10 is formed by processing the general wall composite panel shown in FIG. 6 and FIG. 7 according to the panel layout diagram of the outer wall, and as shown in FIG. In the panel 1 on the lower side of the window 10, the heat insulating layer 1B and the exterior base material 1A are flush with each other at the upper end of the panel, and the groove G group is communicated with the upper end of the heat insulating layer 1B. An exterior base material piece 1A in which a transverse groove G ′ for performing a port function to G is arranged and the exterior base material 1A is cut into a thickness of 87 mm (heat insulation layer thickness 75 mm + exterior base material thickness 12 mm) of the composite panel 1 The top surface of the panel is covered with '.
Further, even in the composite panel 1 on the upper side of the window 10, the lower end of the panel is flush, and the groove G group is communicated with the lower end of the heat insulating layer 1B to provide a port function to each groove G. The transverse groove G ′ is arranged, and the lower end surface of the panel is covered with the exterior base material piece 1A ′.

〔基礎複合パネル(図1、図3)〕
基礎複合パネル1´は、図1に示す如く、パネル受金具7の下方で、コンクリート基礎立上り部5を外断熱被覆するものであって、複合パネル1の断熱層1Bと同質で、50mm厚(T3´)の発泡プラスチック断熱層1B´に、セメント板1Aを層着一体化したものであり、パネル高さは、建物の基礎立上り部5の高さに応じて用意する。
そして、基礎複合パネル1´の上端は、セメント板1A及び断熱層1B´を面一とし、且つ、同一寸法幅のセメント板1Aと断熱層1Bを、一般壁用の複合パネル1同様に、左右接続が相欠け接合可能に、10mm左右方向にずらして層着一体化しておく。
[Basic composite panel (Fig. 1, Fig. 3)]
As shown in FIG. 1, the foundation composite panel 1 ′ is an outer insulation coating for the concrete foundation rising portion 5 below the panel bracket 7, and is the same quality as the insulation layer 1 </ b> B of the composite panel 1 and has a thickness of 50 mm ( The cement board 1A is layered and integrated with the foamed plastic heat insulating layer 1B ′ of T3 ′), and the panel height is prepared according to the height of the foundation rising portion 5 of the building.
The upper end of the base composite panel 1 ′ is flush with the cement board 1A and the heat insulating layer 1B ′, and the cement board 1A and the heat insulating layer 1B having the same width are placed on the left and right sides as in the case of the composite panel 1 for a general wall. The layers are integrated in layers by shifting them 10 mm in the left-right direction so that they can be phase-bonded.

〔パネル受金具(図3)〕
パネル受金具7は、図3(A)に示す如く、外壁の複合パネル1の下端を、長期に亘って安定支承する長尺金物であり、図3(A)はパネル受金具7の使用状態説明図、図3(B)はパネル受金具の斜視図、図3(C)はパネル受金具と併用する座板の斜視図である。
即ち、パネル受金具7は、高さ75mmの垂直片7Wと、幅100mmの水平片7Fとを備えた、肉厚7mmの不等辺山形鋼(JISG3192)の長尺物であり、垂直片7Wの高さ方向中央には、径13.5mmのボルト挿入用孔H7´を1200mm間隔で備え、水平片7F上の、複合パネル1の横断条溝G´当接位置には、径15mmの空気孔H7を適宜間隔(標準:150mm)穿孔し、水平片7Fの、前端上面には、雨水流下用の曲面7Rを、前端下面には、突出長7mmの水切片7Gを配置しておく。
また、座板8は、図3(C)の如く、パネル受金具7の垂直片7Wと重ねて構造用面材13(12mm厚)と同厚として用いるものであり、熱橋抑制のためのプラスチック製板材8Wであり、固定ボルト7Bを挿通するための、幅15mmの長孔H8を備えたものである。
[Panel bracket (Fig. 3)]
As shown in FIG. 3 (A), the panel bracket 7 is a long metal piece that stably supports the lower end of the composite panel 1 on the outer wall for a long period of time. FIG. FIG. 3B is a perspective view of a panel bracket, and FIG. 3C is a perspective view of a seat plate used together with the panel bracket.
That is, the panel bracket 7 is a long piece of unequal side angle iron (JIS G3192) having a thickness of 7 mm, and having a vertical piece 7W having a height of 75 mm and a horizontal piece 7F having a width of 100 mm. At the center in the height direction, bolt insertion holes H7 'with a diameter of 13.5mm are provided at intervals of 1200mm, and air holes with a diameter of 15mm are provided at the abutting position of the transverse groove G' of the composite panel 1 on the horizontal piece 7F. H7 is perforated at an appropriate interval (standard: 150 mm), and a horizontal piece 7F is provided with a curved surface 7R for flowing rain water on the upper surface of the front end and a water slice 7G having a protruding length of 7 mm on the lower surface of the front end.
Further, as shown in FIG. 3 (C), the seat plate 8 is used as the same thickness as the structural face material 13 (12 mm thick) so as to overlap with the vertical piece 7W of the panel bracket 7. It is a plastic plate member 8W, and is provided with a long hole H8 having a width of 15 mm for inserting the fixing bolt 7B.

〔基礎コンクリート躯体の形成(図1、図3)〕
基礎コンクリート打設に際しては、基礎複合パネル1´を、並列相欠け接続してコンクリート外型枠として採用し、合板の内型枠と共に、慣用の型枠組み手法で、厚さT5(120mm)の基礎立上り部5の型枠を構築し、図3(A)に示す如く、基礎複合パネル1´に挿通した固定ボルト4Bの先端の落下防止アンカー4C、及びアンカーボルト7Dを型枠内に埋設配置してコンクリートを打設し、コンクリート固化後に型枠を解体すれば、基礎複合パネル1´が、コンクリート基礎立上り部5内に埋設した落下防止アンカー4Cで位置確保された固定ボルト4B群によって、コンクリート基礎立上り部5の外面に一体化固着する。
[Formation of foundation concrete frame (Figs. 1 and 3)]
When placing foundation concrete, the foundation composite panel 1 'is used as a concrete outer formwork by chipping in parallel phases. Together with the inner formwork of plywood, the foundation of thickness T5 (120mm) is used by the conventional formwork method. As shown in FIG. 3 (A), the form of the rising portion 5 is constructed, and the fall prevention anchor 4C and the anchor bolt 7D at the tip of the fixing bolt 4B inserted through the basic composite panel 1 ′ are embedded in the form. When the concrete is cast and the formwork is disassembled after the concrete is solidified, the foundation composite panel 1 'is secured to the concrete foundation by the fixing bolts 4B secured by the fall-preventing anchor 4C embedded in the concrete foundation rising portion 5. It is integrally fixed to the outer surface of the rising portion 5.

この場合、基礎複合パネル1´相互は、相欠け接続であるため、打設コンクリートの基礎複合パネル1´の外面への流出が抑制出来、基礎パネル外面の汚染が抑制出来る。
次いで、基礎複合パネル1´の断熱層1B´上面に、同質で15mm厚(d4)の断熱材6Aをプラスチック製の釘SPで取付けて前方型枠とし、後方には型枠用合板(図示せず)を基礎立上り部後面に配置し、コンクリート基礎立上り部5の天端に均しモルタル14Dを充填して、基礎立上り部5の天端の不陸調整をする。
In this case, since the foundation composite panels 1 ′ are in a phase-separated connection, the outflow of the cast concrete to the outer surface of the foundation composite panel 1 ′ can be suppressed, and contamination of the outer surface of the foundation panel can be suppressed.
Next, a heat insulating material 6A having the same quality and a thickness of 15 mm (d4) is attached to the upper surface of the heat insulating layer 1B ′ of the basic composite panel 1 ′ with a plastic nail SP to form a front mold frame, and on the rear side, a plywood for mold frame (not shown). Is placed on the rear surface of the foundation rising portion, the top end of the concrete foundation rising portion 5 is filled with the mortar 14D, and the top edge of the foundation rising portion 5 is adjusted to be uneven.

〔木造躯体の構築(図1、図2)〕
コンクリート基礎立上り部5の均しモルタル14D上の幅中央に、断面正方形の木材の土台14Cを配置し、図3(A)に示す如く、座金7C、ナット7Eでのアンカーボルト7Dによる締着により、土台14Cを基礎立上り部5上に固定する。
そして、慣用の手段で、土台14C上に1階の柱14Aを立設し、柱14A上に胴差18Aを配置し、胴差18A上に2階の柱14Aを立設し、2階柱14A上に敷桁18Bを配置し、次いで、土台14Cと胴差18A間、胴差18Aと敷桁18B間に、間柱14Bを配置して木造外壁Wを形成する。
[Construction of wooden frame (Figs. 1 and 2)]
A base 14C made of wood having a square cross section is arranged in the center of the width on the leveling mortar 14D of the concrete foundation rising portion 5, and as shown in FIG. 3 (A), by fastening with a washer 7C and an anchor bolt 7D with a nut 7E. The base 14 </ b> C is fixed on the foundation rising portion 5.
Then, by a conventional means, the first floor pillar 14A is erected on the base 14C, the trunk difference 18A is disposed on the pillar 14A, and the second floor pillar 14A is erected on the trunk difference 18A. A spar 18B is disposed on 14A, and then a wooden outer wall W is formed by disposing a stud 14B between the base 14C and the trunk difference 18A, and between the trunk difference 18A and the spar 18B.

また、図3(A)に示す如く、基礎複合パネル1´の断熱層1B´に載置した断熱材6A、及び均しモルタル14D上に、アングル形態のパネル受金具7の、水平片7F下面を当接配置し、垂直片7Wを土台14Cにプラスチック製座板8を介して、径12mmで90mm長の固定ボルト7Bによって、パネル受金具7を土台14Cに締着する。
この場合、座板8の厚さは、垂直片7Wと重なって構造用面材13の厚さと同一とするものであり、構造用面材13が12mm厚であれば、プラスチック製板材8Wは5mm厚を採用すれば良い。
そして、パネル受金具7の垂直片7Wの上面から屋根下面の野地合板19Bまでの、柱14A及び間柱14Bなどの外壁Wに、12mm厚の構造用面材13を、36mm長のねじで張着し、構造用面材13の接合部、構造用面材13の上端と野地合板19Bとの接合部は、慣用の気密テープ11を貼着して気密性を保持する。
Further, as shown in FIG. 3 (A), the bottom surface of the horizontal piece 7F of the panel bracket 7 in the form of an angle on the heat insulating material 6A and the leveling mortar 14D placed on the heat insulating layer 1B 'of the basic composite panel 1'. And the vertical bracket 7W is fastened to the base 14C with a fixing bolt 7B having a diameter of 12 mm and a length of 90 mm through the plastic seat plate 8 on the base 14C.
In this case, the thickness of the seat plate 8 overlaps with the vertical piece 7W and is the same as the thickness of the structural face material 13. If the structural face material 13 is 12 mm thick, the plastic plate material 8W is 5 mm. Thickness should be adopted.
Then, a 12-mm-thick structural face material 13 is attached to the outer wall W such as the pillar 14A and the inter-column 14B from the upper surface of the vertical piece 7W of the panel bracket 7 to the field plywood 19B on the lower surface of the roof with a 36-mm long screw. And the joining part of the structural face material 13 and the joining part of the upper end of the structural face material 13 and the field plywood 19B adhere the conventional airtight tape 11, and hold | maintain airtightness.

〔複合パネルの張設(図1、図2、図3、図4)〕
図1は、本発明を2階建木造住宅に適用した状態の外壁構造縦断面図である。
下段の複合パネル1の張設は、図3(A)に示す如く、複合パネル1の断熱層1Bの下端部後面に、パネル受金具7の固定ボルト7Bの突出部を受容するための切欠C7を形成して切欠C7に固定ボルト7Bの頭を収納し、該複合パネル1をパネル受金具7の水平片7F上に載置し、パネル断熱層1B後面を構造用面材13の前面及び垂直片7W前面に当接する。
そして、パネル1の肉厚部1Cに穿孔したボルト挿入用孔hbに長ねじ4Aを挿入し、図2(B)の如く、長ねじ4Aを、複合パネル1及び構造用面材13を貫通して、柱14A及び間柱14Bに締着する。
この場合、長ねじ4Aとしては、径5.3mm、長さ130mmの、サンコーテクノ(株)のコーススレッド(商品名)を採用すれば、該長ねじ4Aは、JISA5508の木工事用鉄丸くぎ(許容剪断耐力:70kgf/本)の5倍の強度を有するので、長ねじ4Aの使用間隔が広く出来、柱、間柱を長ねじ4Aが割ることも抑制出来て、作業性も良い。
[Tensioning of composite panel (Figs. 1, 2, 3, 4)]
FIG. 1 is a longitudinal sectional view of an outer wall structure in a state where the present invention is applied to a two-story wooden house.
As shown in FIG. 3A, the lower composite panel 1 is stretched by a notch C7 for receiving the protruding portion of the fixing bolt 7B of the panel bracket 7 on the rear surface of the lower end of the heat insulating layer 1B of the composite panel 1. And the head of the fixing bolt 7B is housed in the notch C7, the composite panel 1 is placed on the horizontal piece 7F of the panel bracket 7, and the rear surface of the panel heat insulating layer 1B is placed on the front surface of the structural surface material 13 and the vertical surface. It contacts the front surface of the piece 7W.
Then, the long screw 4A is inserted into the bolt insertion hole hb drilled in the thick part 1C of the panel 1, and the long screw 4A passes through the composite panel 1 and the structural face material 13 as shown in FIG. Then, it fastens to the column 14A and the intermediate column 14B.
In this case, if the course thread (trade name) of Sanko Techno Co., Ltd. having a diameter of 5.3 mm and a length of 130 mm is adopted as the long screw 4A, the long screw 4A is a steel round nail for woodwork of JIS A5508. Since it has 5 times the strength of (allowable shear strength: 70 kgf / piece), the use interval of the long screw 4A can be widened, and the long screw 4A can be prevented from being split by the long screw 4A, and the workability is also good.

また、複合パネル1相互の左右接続及び上下接続は、各断熱層1B相互の衝合当接による相欠け接続で実施する。
そして、1階用複合パネル1への2階用複合パネル1の上下接合部では、図4(B)に示す如く、下側セメント板上端辺euと上側セメント板下端辺edとの間隔、即ち、横目地dx間隔、が生ずるが、該dx間隔では、慣用の目地用の平板形態のバックアップ材12Bを露見した断熱層1Bの前面に延展配置し、該バックアップ材12B前面を慣用のシーリング12で充填し、下方の複合パネル条溝G群と上方の複合パネル条溝G群とを、密閉空気流路とする。
In addition, the left and right connections and the upper and lower connections between the composite panels 1 are performed by a phase-missing connection by abutting contact between the heat insulating layers 1B.
At the upper and lower joints of the second floor composite panel 1 to the first floor composite panel 1, as shown in FIG. 4 (B), the interval between the lower cement board upper edge eu and the upper cement board lower edge ed, The horizontal joint dx interval is generated. In this dx interval, a flat plate-shaped backup material 12B for conventional joints is extended and disposed on the front surface of the heat insulating layer 1B, and the front surface of the backup material 12B is formed by a conventional sealing 12. The lower composite panel groove group G and the upper composite panel groove group G are used as a sealed air flow path.

また、1階の複合パネル1の下端では、セメント板1Aが断熱層1Bよりd1(10mm)入り込んでいるため、セメント板1A下端辺edとパネル受金具の水平片7F上面との間にd1(10mm)の隙間が出来るが、該隙間は、図3(D)の如く、平行な両側面板cf間に仕切板CPを定間隔で配置した通気バッカー12Cを、図3(A)の如く、横断条溝G´内で水平片7F上に配置し、該通気バッカー12C前面をシーリング12充填する。
この場合、横断条溝G´は、幅、即ち、図3(A)では高さ、は、条溝Gの幅45mmと同一であるため、通気バッカー12Cの上部が縦条溝G群に対するポートとなる。
Further, at the lower end of the composite panel 1 on the first floor, the cement plate 1A enters d1 (10 mm) from the heat insulating layer 1B, so that d1 (between the lower end side ed of the cement plate 1A and the upper surface of the horizontal piece 7F of the panel bracket. 10 mm), the gap crosses the ventilation backer 12C in which the partition plates CP are arranged at regular intervals between the parallel side plates cf as shown in FIG. 3 (D). It arrange | positions on the horizontal piece 7F in the groove G ', and the sealing 12 is filled with the front surface of this ventilation backer 12C.
In this case, the width of the transverse groove G ′, that is, the height in FIG. 3A is the same as the width of 45 mm of the groove G, so that the upper portion of the ventilation backer 12C is a port for the vertical grooves G group. It becomes.

また、複合パネル1の上端にあっては、図4(A)に示す如く、断熱層1Bの上端に、断熱層厚T3(75mm)と同厚の断熱材6Bを配置して、該断熱材6Bと、構造用面材13及び野地合板19B間、及び断熱材6Bとパネル断熱層1B上端間を、慣用の気密テープ11で空密閉止する。
そして、複合パネル1の上端でのセメント板1Aから突出した断熱層1Bの条溝G群から放出される上昇空気流aを、屋根野縁20Bに張設した軒天仕上材20Aに配置した軒天換気口21から放出可能とする。
尚、屋根構造は、慣用の従来例1(図8)の屋根同様に、野地垂木19A上に配置した野地合板19B上に、下地胴縁19Gを介して断熱層19Dを2層配置し、屋根断熱層19Dとルーフィング19E間の通気層ALへは、軒先の鼻隠し20C,20C´から棟へ空気流通可能とすれば良い。
Further, at the upper end of the composite panel 1, as shown in FIG. 4 (A), a heat insulating material 6B having the same thickness as the heat insulating layer thickness T3 (75 mm) is disposed at the upper end of the heat insulating layer 1B. 6B is sealed with a conventional airtight tape 11 between the structural face material 13 and the field plywood 19B, and between the heat insulating material 6B and the upper end of the panel heat insulating layer 1B.
And the elevating airflow a discharge | released from the groove G group of the heat insulation layer 1B protruded from the cement board 1A in the upper end of the composite panel 1 is arranged in the eaves finishing material 20A stretched around the roof edge 20B It can be discharged from the top ventilation port 21.
The roof structure is similar to the roof of the conventional example 1 (FIG. 8), in which two heat insulation layers 19D are arranged on the plywood 19B disposed on the field rafter 19A via the base trunk edge 19G. What is necessary is just to be able to distribute | circulate air to the ventilation layer AL between the heat insulation layer 19D and the roofing 19E from the nose cover 20C, 20C 'of the eaves to the ridge.

また、窓部にあっては、木造外壁の柱14A間に、図5(A)の如く、窓10の、上側には横架材の窓まぐさ18Cを、下側には窓台18Dを配置して窓の補強を施し、窓枠後側では、窓下側パネル1の上端の外装下地材片1A´を、窓下枠の突出片10EにねじSで固定し、窓上側パネル1の下端の外装下地材片1A´を、窓上枠の突出片10EにねじSで固定し、窓枠中央部では、窓上枠10Aの上面中央から起立する突出片10E、及び窓下枠10B下面中央から垂下する突出片10Eと、パネル1の外装下地材1AとをねじSで固定する。
そして、窓枠四周とパネル外装下地材1Aとの隙間に、慣用のバックアップ材12Bを介したシーリング12を充填し、窓枠内側には、内装用面材17C張設用に、付枠10Dを配置する。
Further, in the window portion, as shown in FIG. 5 (A), between the pillars 14A of the wooden outer wall, a window lintel 18C of a horizontal member is provided on the upper side of the window 10, and a window base 18D is provided on the lower side. Arrangement is made to reinforce the window, and on the rear side of the window frame, the exterior base material piece 1A ′ at the upper end of the window lower panel 1 is fixed to the protruding piece 10E of the window lower frame with a screw S, and the window upper panel 1 The exterior base material piece 1A ′ at the lower end is fixed to the protruding piece 10E of the window upper frame with a screw S, and at the center part of the window frame, the protruding piece 10E rising from the center of the upper surface of the window upper frame 10A and the lower surface of the window lower frame 10B The protruding piece 10E hanging from the center and the exterior base material 1A of the panel 1 are fixed with screws S.
The gap between the window frame four-round and the panel exterior base material 1A is filled with the sealing 12 via the conventional backup material 12B, and the frame 10D is provided on the inner side of the window frame for extending the interior surface material 17C. Deploy.

〔その他〕
実施例では、本発明を木造2階建に適用したが、本発明が、木造1階建にも、木造3階建にも適用可能であることは、当業者にとって自明である。
また、パネル受金具7の複合パネル1への空気流入可能手段として、実施例では、複合パネル1の下端の横断条溝G´内に通気バッカー12Cを配置したが、セメント板1A下端辺edとパネル受金具の水平片7Fとの間隔d1(標準:10mm)を、3mm程度とすれば、通気バッカー12Cを配置しないでも慣用のシーリング技法によって、横断条溝G´に干渉しないで、間隔d1のシーリング充填が可能である。
[Others]
In the embodiment, the present invention is applied to a wooden two-story building. However, it is obvious to those skilled in the art that the present invention can be applied to a wooden one-story building and a wooden three-story building.
In addition, in the embodiment, the ventilation backer 12C is disposed in the transverse groove G ′ at the lower end of the composite panel 1 as a means for allowing air to flow into the composite panel 1 of the panel bracket 7. If the distance d1 (standard: 10 mm) with the horizontal piece 7F of the panel bracket is about 3 mm, the distance d1 can be reduced without interfering with the transverse groove G ′ by a conventional sealing technique even without the ventilation backer 12C. Sealing filling is possible.

また、複合パネル1の木造躯体WFへの固定は、実施例では、長ねじ4Aの柱14A、間柱14Bへの固定で実施したが、木造躯体WFの構造用面材13は柱14A、間柱14Bに固定された構造物であるため、そして、複合パネルが軽量であって、パネル受金具によって下端が支承されるため、複合パネル1の断熱層1B面の構造用面材13への接着によって実施することも可能である。   In the embodiment, the composite panel 1 is fixed to the wooden frame WF by fixing the long screws 4A to the pillars 14A and 14B. However, the structural face material 13 of the wooden frame WF is the columns 14A and 14B. Since the composite panel is lightweight and the lower end is supported by the panel bracket, the heat insulation layer 1B surface of the composite panel 1 is adhered to the structural surface material 13 It is also possible to do.

本発明の外壁構造の一部切欠縦断面図である。It is a partial notch longitudinal cross-sectional view of the outer wall structure of this invention. 本発外壁の説明図であって、(A)は切欠斜視図、(B)は横断面図である。It is explanatory drawing of this outer wall, Comprising: (A) is a notch perspective view, (B) is a cross-sectional view. パネル支承説明図であって、(A)は支承状態縦断面図、(B)はパネル受金具の斜視図、(C)は座板斜視図、(D)は通気バッカー斜視図である。It is panel support explanatory drawing, (A) is a support state longitudinal cross-sectional view, (B) is a perspective view of a panel bracket, (C) is a seat plate perspective view, (D) is a ventilation backer perspective view. 外壁の要部縦断面図であって、(A)はパネル上端部を、(B)はパネル上下接合部を示す図である。It is a principal part longitudinal cross-sectional view of an outer wall, Comprising: (A) is a panel upper end part, (B) is a figure which shows a panel up-down junction part. 窓部の説明図であって、(A)は縦断面図、(B)は一部切欠平面図である。It is explanatory drawing of a window part, Comprising: (A) is a longitudinal cross-sectional view, (B) is a partially notched top view. パネルの説明斜視図であって、(A)は1階用パネルを、(B)は2階用パネルを示す図である。It is explanatory drawing perspective view, Comprising: (A) is a figure for 1st floor panels, (B) is a figure which shows the panel for 2nd floors. パネルの説明図であって、(A)は横断面図、(B),(C),(D)はそれぞれ、異なるセメント板を採用した図(A)のB部拡大図であり、(E)は1階用パネルの正面図、(F)は2階用パネルの正面図である。BRIEF DESCRIPTION OF THE DRAWINGS It is explanatory drawing of a panel, (A) is a cross-sectional view, (B), (C), (D) is the B section enlarged view of the figure (A) which each employ | adopted a different cement board, (E ) Is a front view of the first floor panel, and (F) is a front view of the second floor panel. 従来例1の説明図である。It is explanatory drawing of the prior art example 1. FIG. 従来例2の説明図であって、(A)はパネル斜視図、(B)は構築方法説明図、(C)は外壁斜視図、(D)は要部横断面図である。It is explanatory drawing of the prior art example 2, Comprising: (A) is a panel perspective view, (B) is a construction method explanatory drawing, (C) is an outer wall perspective view, (D) is a principal part cross-sectional view. 従来例3の説明図であって、(A)はパネルの横断面図、(B)は変形例の横断面図である。It is explanatory drawing of the prior art example 3, Comprising: (A) is a cross-sectional view of a panel, (B) is a cross-sectional view of a modification.

符号の説明Explanation of symbols

1 複合パネル(パネル)
1´ 基礎複合パネル
1A 外装下地材(セメント板)
1A−1 マグネシウムセメント板(外装下地材、セメント板)
1A−2 ケイ酸カルシウム板(外装下地材、セメント板)
1A−3 フェノール樹脂板(外装下地材、セメント板)
1A´ 外装下地材片(セメント板片)
1B,1B´ 断熱層
1C 肉厚部
1S 層着面
2 外装仕上材
3A ガラスネット
3B,4M 樹脂モルタル
4A 長ねじ
4B,7B 固定ボルト
4C 落下防止アンカー
5 基礎立上り部(コンクリート基礎立上り部)
6A,6B 断熱材
7 パネル受金具
7C 座金
7D アンカーボルト
7E ナット
7F 水平片
7G 水切片
7R 曲面
7W 垂直片
8 座板(プラスチック製座板)
8W 板材(プラスチック製板材)
10 窓
10A 上枠
10B 下枠
10C 堅枠(窓堅枠)
10D 付枠
10E 突出片
1 Composite panel (panel)
1 'basic composite panel 1A exterior base material (cement board)
1A-1 Magnesium cement board (exterior base material, cement board)
1A-2 Calcium silicate board (exterior base material, cement board)
1A-3 Phenolic resin board (exterior base material, cement board)
1A 'exterior base material piece (cement board piece)
1B, 1B 'Heat insulation layer 1C Thick part 1S Layer surface 2 Exterior finishing material 3A Glass net 3B, 4M Resin mortar 4A Long screw 4B, 7B Fixing bolt 4C Fall prevention anchor 5 Foundation rising part (concrete foundation rising part)
6A, 6B Heat insulation material 7 Panel bracket 7C Washer 7D Anchor bolt 7E Nut 7F Horizontal piece 7G Water section 7R Curved piece 7W Vertical piece 8 Seat plate (plastic seat plate)
8W board (plastic board)
10 Window 10A Upper frame 10B Lower frame 10C Hard frame (window rigid frame)
10D Frame 10E Projection piece

11 気密テープ
12 シーリング
12B バックアップ材
12C 通気バッカー
13 構造用面材
14A 柱
14B 間柱(柱)
14C 土台
14D 均しモルタル
17C 内装用面材
18A 胴差
18B 敷桁
18C 窓まぐさ
18D 窓台
19A 野地垂木
19B 野地合板
19C 通気胴縁
19D 断熱層
19E ルーフィング
19G 下地胴縁
20A 軒天仕上材
20B 野縁
20C,20C´ 鼻隠し
21 軒天換気口
AL 通気層
a 空気流(ドラフト上昇空気流)
C7 切欠
cf 面板
CP 仕切板
dx 横目地
ed 下端辺
eu 上端辺
G 条溝(縦条溝)
G´ 横断条溝
Gc ガラス繊維不織布
Gd 条溝深さ
hb ボルト挿入用孔
hf 水平当接界面
J13 接続部
H7 空気孔
H7´ ボルト挿入用孔
S ねじ
SP プラスチック釘(釘)
Vf 垂直当接界面
W 木造外壁(外壁)
WF 木造躯体(躯体)
DESCRIPTION OF SYMBOLS 11 Airtight tape 12 Sealing 12B Backup material 12C Ventilation backer 13 Structural surface material 14A Pillar 14B Space pillar (pillar)
14C foundation 14D leveling mortar 17C interior surface 18A trunk difference 18B span girder 18C window lintel 18D window base 19A field base rafter 19B field plywood 19C ventilation trunk edge 19D insulation layer 19E roofing edge 19G ground trunk edge 20A eaves finishing material 20B field Edge 20C, 20C 'Nasal concealment 21 Eaves ventilating port AL Ventilation layer a Air flow (draft rising air flow)
C7 Notch cf Face plate CP Partition plate dx Horizontal joint ed Lower end side eu Upper end side G Strip (vertical strip)
G 'transverse groove Gc glass fiber nonwoven fabric Gd groove depth hb bolt insertion hole hf horizontal contact interface J13 connection part H7 air hole H7' bolt insertion hole S screw SP plastic nail (nail)
Vf Vertical contact interface W Wooden outer wall (outer wall)
WF Wooden frame (frame)

Claims (8)

通気性断熱複合パネルを木造建物の外壁に外張りした木造外張り断熱の外壁構造であって、複合パネル(1)は、発泡プラスチック系断熱材の断熱層(1B)の層着面(1S)に、通気用条溝(G)と、層着用の肉厚部(1C)とを、縦方向に、交互に、且つ、両側が肉厚部(1C)となるように配置し、成形薄剛板の外装下地材(1A)を断熱層(1B)の層着面(1S)に一体化層着したものであり、複合パネル(1)の下端を、土台(14C)に垂直片(7W)を、プラスチック製座板(8)を介して熱橋阻止構造で固定した断面アングル形態のパネル受金具(7)の空気孔(H7)を備えた水平片(7F)で支承して、条溝(G)群への空気流入可能に保持すると共に、複合パネル(1)を木造躯体(WF)に外壁として固定し、複合パネル(1)の下端から条溝(G)群内を上昇する空気流(a)を、複合パネル(1)の上端から軒天換気口(21)を介して放出可能とした、木造外張り断熱の外壁構造。 It is an outer wall structure of a wooden outer heat insulation in which a breathable heat insulating composite panel is externally attached to the outer wall of a wooden building, and the composite panel (1) is a layered surface (1S) of a heat insulating layer (1B) of a foamed plastic-based heat insulating material In addition, the ventilation groove (G) and the thick part (1C) for layering are arranged in the vertical direction alternately so that both sides become the thick part (1C), The board exterior base material (1A) is integrally layered on the layering surface (1S) of the heat insulating layer (1B), and the lower end of the composite panel (1) is perpendicular to the base (14C) (7W) Is supported by a horizontal piece (7F) provided with an air hole (H7) of a panel bracket (7) having an angle cross section fixed by a thermal bridge prevention structure through a plastic seat plate (8), (G) The composite panel (1) is secured to the wooden frame (WF) as an outer wall while allowing air to flow into the group. A wooden exterior that allows airflow (a) rising in the groove (G) group from the lower end of the panel (1) to be discharged from the upper end of the composite panel (1) through the eaves vent (21) Insulated outer wall structure. パネル受金具(7)に載置した複合パネル(1)は、条溝(G)群の下端を連通する横断条溝(G´)を備え、パネル受金具(7)の水平片(7F)に配置した空気孔(H7)が横断条溝(G´)に連通している請求項1に記載の外壁構造。 The composite panel (1) placed on the panel bracket (7) is provided with a transverse groove (G ') that communicates the lower end of the groove (G) group, and the horizontal piece (7F) of the panel bracket (7). The outer wall structure according to claim 1, wherein the air hole (H7) arranged in the hole communicates with the transverse groove (G '). 木造躯体(WF)の柱(14A,14B)の外面に構造用面材(13)を張設し、構造用面材(13)の外面に複合パネル(1)を一体化張設した、請求項1、又は2に記載の外壁構造。 The structural surface material (13) is stretched on the outer surface of the pillar (14A, 14B) of the wooden frame (WF), and the composite panel (1) is integrally stretched on the outer surface of the structural surface material (13). Item 3. The outer wall structure according to Item 1 or 2 . 複合パネル(1)の上下接続は、下方複合パネル(1)の上端での、断熱層(1B)のセメント板(1A)に対する大段差(d3)突出と、上方複合パネル(1)の下端での、断熱層(1B)のセメント板(1A)に対する小段差(d2)入り込みとで、断熱層(1B)相互を衝合当接し、下方のセメント板上端辺(eu)と、上方のセメント板下端辺(ed)との目地間隔(d2)には、平板状バックアップ材(12B)を断熱層(1B)の前面に当接延展し、バックアップ材(12B)の前面をシーリング(12)で充填して横目地(dx)とした、請求項1乃至のいずれか1項に記載の外壁構造。 The upper and lower connections of the composite panel (1) are at the upper end of the lower composite panel (1) at the upper end of the upper composite panel (1) and the large step (d3) protrusion of the heat insulating layer (1B) with respect to the cement board (1A). Of the heat insulation layer (1B) with respect to the cement plate (1A), the heat insulation layer (1B) abuts against each other, the lower cement plate upper edge (eu), and the upper cement plate In the joint interval (d2) with the lower edge (ed), the flat backup material (12B) is abutted and extended on the front surface of the heat insulating layer (1B), and the front surface of the backup material (12B) is filled with the sealing (12). The outer wall structure according to any one of claims 1 to 3 , wherein a horizontal joint (dx) is obtained. 複合パネル(1)の左右接続は、小段差(d1)突出した断熱層(1B)と、小段差(d1)入り込んだ断熱層(1B)との衝合当接により、左右複合パネル(1)相互を相欠け接続した、請求項1乃至のいずれか1項に記載の外壁構造。 The left and right connection of the composite panel (1) is achieved by the abutting contact between the heat insulating layer (1B) protruding from the small step (d1) and the heat insulating layer (1B) entering the small step (d1). The outer wall structure according to any one of claims 1 to 4 , wherein the phases are connected to each other in a phase-missing manner. 窓(10)の下側の複合パネル(1)は、断熱層(1B)の上端部に、条溝(G)群を連通する横断条溝(G´)を配置し、窓(10)の上側の複合パネル(1)は、断熱層(1B)の下端部に、条溝(G)群を連通する横断条溝(G´)を配置し、窓下側の複合パネル(1)内を上昇する空気流(a)を、窓堅枠(10C)の外方を迂回して窓上側の複合パネル(1)内の条溝(G)群に流入するようにした、請求項1乃至のいずれか1項に記載の外壁構造。 The composite panel (1) on the lower side of the window (10) has a transverse groove (G ′) communicating with the groove (G) group at the upper end of the heat insulating layer (1B). The upper composite panel (1) has a transverse groove (G ′) communicating with the groove (G) group at the lower end of the heat insulating layer (1B), and the inside of the composite panel (1) below the window rising air stream (a), and flows into the grooves (G) a group of the composite panel (1) of the window upper bypasses the outside of Madokenwaku (10C), according to claim 1 to 5 The outer wall structure according to any one of the above. 複合パネル(1)は、断熱層(1B)の肉厚部(1C)が層着面(1S)上の面積の50%を占め、外装下地材(1A)は、厚さ(T2)が12〜13mm
で、比重が0.8〜1.1で、曲げ強度が100〜120kgf/cmである、請求項1乃至のいずれか1項に記載の外壁構造。
In the composite panel (1), the thick part (1C) of the heat insulating layer (1B) occupies 50% of the area on the layer attachment surface (1S), and the exterior base material (1A) has a thickness (T2) of 12 ~ 13mm
In, a specific gravity of 0.8 to 1.1, a bending strength of 100~120kgf / cm 2, the outer wall structure according to any one of claims 1 to 6.
複合パネル(1)は、断熱層(1B)の厚さ(T3)が75mm であり、条溝(G)の深さ(Gd)が12〜20mm
であり、条溝幅(a1)と、肉厚部幅(a2)とが、同一の45mm である、請求項に記載の外壁構造。
In the composite panel (1), the thickness (T3) of the heat insulating layer (1B) is 75 mm, and the depth (Gd) of the groove (G) is 12 to 20 mm.
The outer wall structure according to claim 7 , wherein the groove width (a1) and the thick part width (a2) are the same 45 mm.
JP2006218272A 2006-08-10 2006-08-10 Outer wall structure with wooden outer insulation Expired - Fee Related JP4366383B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2006218272A JP4366383B2 (en) 2006-08-10 2006-08-10 Outer wall structure with wooden outer insulation
CN200710140879A CN100587181C (en) 2006-08-10 2007-08-10 Heat-insulation outerwall structure paved outside wooden building

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006218272A JP4366383B2 (en) 2006-08-10 2006-08-10 Outer wall structure with wooden outer insulation

Publications (2)

Publication Number Publication Date
JP2008038564A JP2008038564A (en) 2008-02-21
JP4366383B2 true JP4366383B2 (en) 2009-11-18

Family

ID=39084647

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006218272A Expired - Fee Related JP4366383B2 (en) 2006-08-10 2006-08-10 Outer wall structure with wooden outer insulation

Country Status (2)

Country Link
JP (1) JP4366383B2 (en)
CN (1) CN100587181C (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4480181B2 (en) * 2007-06-21 2010-06-16 株式会社テスク Outer insulation structure of wooden building
JP4596486B2 (en) * 2007-07-05 2010-12-08 株式会社テスク Outer insulation structure of wooden building
CN101886433B (en) * 2010-07-30 2011-11-23 河南天丰节能板材科技股份有限公司 Rainproof member and rainproof structure for top part of steel-structure building wall hole
CN101949183A (en) * 2010-08-25 2011-01-19 林德方 Novel wall structure
CN104775551B (en) * 2015-03-30 2017-09-29 曹友国 The indoor heat insulating sound insulation partition wall that a kind of portable is installed

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3084180U (en) * 2001-08-21 2002-03-08 株式会社テスク Exterior wall composite panel

Also Published As

Publication number Publication date
JP2008038564A (en) 2008-02-21
CN100587181C (en) 2010-02-03
CN101122166A (en) 2008-02-13

Similar Documents

Publication Publication Date Title
JP4241773B2 (en) Moisture permeable outer wall structure of reinforced concrete exterior heat insulation building, and waist parting bracket used
CN100464043C (en) Bound-type composite heat-insulation wall with support body
JP4366381B2 (en) Dry breathable retrofitted exterior insulation wall
JP2021513622A (en) Prefabricated insulated building panel with at least one hardened cementum layer bonded to the insulation
CN1827937A (en) Binding type thermal-insulation composite wall with support
JP4241767B2 (en) Exterior wall structure of reinforced concrete exterior insulation building with breathable insulation composite panel
US11851877B2 (en) Structural insulated finished cladding assemblies
JP4366383B2 (en) Outer wall structure with wooden outer insulation
JP4480181B2 (en) Outer insulation structure of wooden building
EA020575B1 (en) Method for erecting outer wall of building using multilayer building panels
JP4326572B2 (en) Construction method of composite panel on concrete outer wall of reinforced concrete building
JP3621048B2 (en) Reinforced concrete exterior insulation building
JP4175658B2 (en) Construction method of composite panel on concrete outer wall of reinforced concrete building
JP4596486B2 (en) Outer insulation structure of wooden building
JP4743908B2 (en) Exterior wall structure of breathable exterior insulation of wooden buildings
JP3685496B2 (en) Double-sided insulated concrete wall structure
EP4330484A1 (en) Wall assembly
JP2006328805A (en) Construction method of external heat-insulation prestressed building using precast concrete body
JP4063829B2 (en) Exterior insulation building with prestressed precast concrete body
JP3599240B2 (en) External wall forming method and metal fittings used in external insulation building of reinforced concrete wall type structure
JP3150621U (en) Breathable exterior composite panels for breathable exterior walls of wooden buildings
JP3627927B2 (en) Reinforced concrete exterior insulation building
JP4953482B2 (en) Opening structure in the outer insulation wall of a reinforced concrete building
RU51051U1 (en) WALL PROTECTION (OPTIONS)
JP4257923B2 (en) Exterior wall structure of reinforced concrete exterior heat insulation building and method for constructing exterior wall

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080619

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080707

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080731

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081222

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090105

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090818

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090824

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120828

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4366383

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130828

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees