JP4363033B2 - Method for producing shape anisotropic ceramic powder - Google Patents

Method for producing shape anisotropic ceramic powder Download PDF

Info

Publication number
JP4363033B2
JP4363033B2 JP2002355704A JP2002355704A JP4363033B2 JP 4363033 B2 JP4363033 B2 JP 4363033B2 JP 2002355704 A JP2002355704 A JP 2002355704A JP 2002355704 A JP2002355704 A JP 2002355704A JP 4363033 B2 JP4363033 B2 JP 4363033B2
Authority
JP
Japan
Prior art keywords
sheet
ceramic
ceramic powder
shape
sintered body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002355704A
Other languages
Japanese (ja)
Other versions
JP2004189506A (en
Inventor
達也 山口
雅彦 木村
弘純 小川
陽 安藤
行雄 坂部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Murata Manufacturing Co Ltd
Original Assignee
Murata Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Murata Manufacturing Co Ltd filed Critical Murata Manufacturing Co Ltd
Priority to JP2002355704A priority Critical patent/JP4363033B2/en
Publication of JP2004189506A publication Critical patent/JP2004189506A/en
Application granted granted Critical
Publication of JP4363033B2 publication Critical patent/JP4363033B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、形状異方性を有するセラミック粉末の製造方法に関する。
【0002】
【従来の技術】
圧電セラミック発振子や圧電セラミックフィルタなどに用いられる圧電セラミックとして、PbTiO3、PbTiXZr1-X3、CaBi4Ti415、Bi4Ti312などが広く知られている。上記のうち、CaBi4Ti415、Bi4Ti312は層状ペロブスカイト型化合物であり、その結晶が強い異方性を有することを特徴とする。しかし、通常の製造方法でこれらの圧電セラミックを得た場合、各々の結晶はランダムに配向した状態で焼結されるため、高い圧電特性を得ることはできない。そこで、この圧電セラミックを構成する結晶を一軸配向させることによって、電気的、磁器的性質に優れた、配向セラミックを得るための様々な手段が開示されている。
【0003】
この配向セラミックを得る方法としては、例えば高い平均アスペクト比(長軸長/短軸長比)を有する形状異方性セラミック粉末を、有機バインダなどと混合してスラリーまたはスリップ状にして、テープ成形して得たセラミックシートを所望の厚さに重ね、圧着した後に焼成することが一般的である。
【0004】
この形状異方性セラミック粉末は、板状、棒状、針状などの形状異方性を有する粒子よりなる粉末であって、結晶異方性を有する化合物から作成することができる。これらの化合物の粒子は、通常のセラミックの作製方法を用いてブロック状の焼結体を作製した場合であっても、強い形状異方性を示す。しかし、このようなブロック状焼結体を粉砕した場合、その際に形状異方性粒子が破壊されてしまうため、高い平均アスペクト比を有する粉末を得ることはできない。
【0005】
そこで、この高い平均アスペクト比を有する形状異方性セラミック粉末の作成方法として、例えば塩化物や硫酸塩などのフラックスを用いる方法が知られている。(例えば、非特許文献1参照。)これは、フラックスと、所望のセラミックの通常仮焼粉または該セラミックを生成可能な原料との混合粉を熱処理し、フラックス融液中で形状異方性セラミック粒子の成長を促すものである。
【0006】
また、フラックスを用いずに、上記形状異方性セラミック粉末を作成する方法としては、例えばBiが5モル%以上過剰であるセラミック原料をBi23の融点以上に加熱してセラミックを得る第一工程と、得られたセラミックを粉砕し、酸処理を行ってセラミック粉末を得る第二工程とからなる、ビスマスを含有する層状ペロブスカイト型結晶構造を有するセラミック粉末の製造方法などがある。(例えば、特許文献1参照。)
【0007】
【特許文献1】
特開平10−158087号公報
【非特許文献1】
CERAMIC INTERNATIONAL, Vol.9, n.1pp.13-17, 1983
【0008】
【発明が解決しようとする課題】
しかしながら、前者においては、塩化物や硫酸塩などを含む廃液が発生し、この廃液を処理するための設備、工程が必要となり、製造コストが増大するという問題点がある。また、後者においては、フラックスを使用しないものの、第二工程で酸処理を行うため、硝酸、塩酸などを含む廃液が発生し、フラックスを用いる場合と同様にコストが増大するという問題点がある。
【0009】
本発明は、上記問題点を解決するものであり、フラックスまたは酸を使用せず、塩化物、硫酸塩、硝酸、塩酸などを含む廃液を発生させずに、結晶異方性を有する化合物を主成分とする形状異方性セラミック粉末を得ることを目的とする。
【0010】
【課題を解決するための手段】
上記目的を達成するために、請求項1の発明である形状異方性セラミック粉末の製造方法は、結晶異方性を有する化合物を主成分とする形状異方性セラミック粉末を得るためのセラミック前駆体を含むスラリーを作成する工程と、前記スラリーをシート状に成形してシート状成形体を得る工程と、前記シート状成形体を焼成して焼結体を得る工程と、前記焼結体を粉砕する工程とを備え、前記シート状成形体の厚みが、前記形状異方性セラミック粉末と組成および焼成温度を同じくする直径12mm、厚さ1mmのバルク状焼結体における結晶粒子の軸のうち最短となる軸長の平均値に対し15倍以下であることを特徴とする。
【0011】
また、請求項2の発明である形状異方性セラミック粉末の製造方法は、請求項1において、前記結晶異方性を有する化合物の主成分が、層状ペロブスカイト構造を示すことを特徴とする。
【0012】
【発明の実施の形態】
以下、本発明における実施の形態を詳しく説明する。
【0013】
本発明における結晶異方性を有する化合物とは、層状ペロブスカイト型構造、パイロクロア構造などの、異方性の強い結晶構造を持つものである。また、上記結晶異方性を有する化合物において、特に圧電材料として有用であると知られているものは、層状ペロブスカイト型構造を有する化合物である。これには、ビスマス層状化合物やルドルスデン・ポッパー型化合物等がある。
【0014】
本発明におけるセラミック前駆体とは、得ようとするセラミック粉末と組成を同じくする仮焼体を粉砕して得られた粉末、または得ようとするセラミック粉末を生成するための原料を指す。セラミック前駆体を含むスラリーをシート状に成形して焼成すると、各々の結晶粒子は、シートの主面に平行な向きに沿って配向する傾向が強くなる。例えば板状粒子であれば、その主面をシートの面内方向に揃える形で配向する。このようにして得られたシートを粉砕することで、形状異方性を有するセラミック粉末を比較的容易に取り出すことが可能である。その原理は明らかになっていないが、上記シートを粉砕する際に、板状粒子が端面同士で接触している粒界で破断が起こる場合が多いからであると推測される。よって、本発明において、粉末を構成する粒子の形状は板状であることが好ましい。
【0015】
ところで、本発明におけるシート状成形体の厚みの有効範囲を数値化するにあたり、シート状成形体の厚みと、シート状成形体から得られた結晶粒子と組成および焼成条件を同じくするバルク状焼結体における結晶粒子の平均最短軸長とを比較することとした。これは、たとえシート状成形体の厚みおよび焼成条件が同じであっても、化合物が異なれば、得られる結晶粒子の平均アスペクト比は異なる値を示すことが判明しており、シート状成形体の厚みのみを基準に本発明の有効範囲を決定することは不適当であるためである。なお、化合物の種類によって、結晶粒子の平均アスペクト比が異なるのは、化合物の種類によって結晶粒子の平均最短軸長がそれぞれ異なっているからであると推測される。よって、組成および焼成条件が同一であればこの結晶粒子と非常に近い平均最短軸長を示すバルク状焼結体における結晶粒子を、シート状成形体との比較対象とする。
【0016】
なお、形状異方性セラミック粉末の平均アスペクト比が3.0未満の場合は、配向セラミックとしての特性が得られない可能性があるため、本発明における形状異方性セラミック粉末の平均アスペクト比は、3.0以上であることを必要とする。
(実施形態1)
まず、バルク状焼結体の製造方法を説明する。原料として、セラミック粉末を生成するための原料と同様のもの、本例においては、CaCO3、Bi23、TiO2を用意した。組成CaBi4Ti415となるように、CaCO3、Bi23、TiO2をモル比1:2:4の割合で秤量し、ボールミルを用いて約16時間湿式混合して混合物を得た。なお、CaBi4Ti415は、圧電材料として有用であることが知られているビスマス層状化合物である。得られた混合物を乾燥した後、800℃〜1000℃で2〜10時間仮焼して、CaBi4Ti415セラミック仮焼粉末を得た。この仮焼粉末を粗粉砕した後、有機バインダを適量加えてボールミルを用いて16時間湿式粉砕し、40メッシュのふるいを通して粒度調整を行った。次にこれを1500Kgf/cm2の圧力で直径12mm、厚さ1mmの円板に成形し、500℃で2時間熱処理して脱バインダを行った後、1000℃〜1350℃で2時間、大気中で焼成することで円板状の焼結体を得た。このようにして得られた焼結体を、本発明においてバルク状焼結体と呼ぶものとする。このバルク状焼結体のSEM写真から、結晶粒子の平均最短軸長を算出したところ、およそ1.0μmであった。
【0017】
次に、シート状成形体の製造方法について説明する。出発原料として、CaCO3、Bi23、TiO2を使用した。組成CaBi4Ti415となるように、CaCO3、Bi23、TiO2をモル比1:2:4の割合で秤量し、ボールミルを用いて約16時間湿式混合して混合物を得た。得られた混合物を乾燥した後、800℃〜1000℃で2〜10時間仮焼して、CaBi4Ti415セラミック仮焼粉末を得た。このセラミック仮焼粉末の走査型電子顕微鏡(SEM)写真を図1に示す。これらの結晶粒子の形状には、異方性は認められないことがわかる。
【0018】
得られたセラミック仮焼粉末に適量の有機バインダ、分散剤、消泡剤、表面活性剤を混合して、セラミックスラリを得た。このセラミックスラリをドクターブレード法で、シートの厚みが3〜20μmの範囲になるようにシート成形して、シート状成形体を得た。また、同様に成形した厚み5μmのシート状成形体を2枚積層したもの、および4枚積層したものをそれぞれシート状成形体として用意した。
【0019】
これらのシート状成形体を、熱処理を簡便にするため約20mm×30mmの大きさに切断した。これらを、350℃で5時間、次いで500℃で2時間熱処理し、脱バインダを行った。その後、1000℃〜1350℃で2時間、焼成を行った。さらに、焼成したシート状成形体を、ボールミルを用いて約16時間湿式粉砕してCaBi4Ti415セラミック粉末を得た。得られたセラミック粉末のSEM写真から、結晶粒子の平均アスペクト比を求めた。
【0020】
以下に示す表1は、それぞれのシート状成形体から得られたセラミック粉末の平均アスペクト比、およびシート状成形体の厚みとバルク状焼結体における結晶粒子の平均最短軸長との関係をまとめたものである。
【0021】
【表1】

Figure 0004363033
【0022】
No.1ないしNo.5の試料は、シート状成形体単層の厚みを、バルク状焼結体における結晶粒子の平均最短軸長に対して3.0〜20.0倍に設定したものである。試料No.1〜4より、シート状成形体の厚みが、バルク状焼結体における結晶粒子の平均最短軸長に対して15.0倍以下のときは、セラミック粉末の平均アスペクト比が3.0以上であり、有効であることがわかった。また、試料No.5より、シート状成形体の厚みが、バルク状焼結体における結晶粒子の平均最短軸長に対して15.0倍より大きいときは、シート状成形体から得られた結晶粒子の平均アスペクト比が3.0より小さくなり、本発明の対象外であることがわかった。
【0023】
また、No.6ないしNo.7の試料は、複数枚のシートを積層して焼成した場合のものである。ここから、シート状成形体を複数枚積層して焼成した場合にも、積層後のシート状成形体の厚みがバルク状焼結体における結晶粒子の平均最短軸長に対して15.0倍以下であれば、本発明が有効であることが判明した。
【0024】
上記試料のうち、試料No.1のSEM写真を図2に、試料No.3のSEM写真を図3にそれぞれ示す。いずれの図においても、結晶粒子は板状を示しており、形状異方性が確認できる。
【0025】
以上の結果から、本発明において形状異方性セラミック粒子を製造するにあたり、シート状成形体の厚みが、得ようとするセラミック粉末と組成を同じくするセラミックのバルク状焼結体における結晶粒子の平均最短軸長に対して15倍以下である必要があることが判明した。
(実施形態2)
バルク状焼結体およびセラミック粉末を、組成がそれぞれBi4Ti312、Sr3Ti27、PbNb26となる原料を用いたこと以外は実施形態1と同様にして作製した。なお、Bi4Ti312はビスマス層状化合物、Sr3Ti27はルドルスデン・ポッパー型化合物、PbNb26はパイロクロア構造を示す化合物である。得られたバルク状焼結体における結晶粒子の平均最短軸長はそれぞれ、1.2μm、1.5μm、1.1μmであった。
【0026】
以下に示す表2は、それぞれのシート状成形体から得られたセラミック粉末の平均アスペクト比、およびシート状成形体の厚みとそれぞれのバルク状焼結体における結晶粒子の平均最短軸長との関係をまとめたものである。
【0027】
【表2】
Figure 0004363033
【0028】
いずれの試料においても、3.0以上の平均アスペクト比が得られており、シート状成形体の厚みがバルク状焼結体における結晶粒子の平均最短軸長に対して15.0倍以下であれば、組成が異なるものであっても本発明は有効であることが判明した。
【0029】
【発明の効果】
本発明によれば、フラックスまたは酸を使用せず、塩化物、硫酸塩、硝酸、塩酸などを含む廃液を発生させずに、結晶異方性を有する化合物を主成分とする形状異方性セラミック粉末を得ることができる。
【図面の簡単な説明】
【図1】本発明におけるCaBi4Ti415仮焼粉末の図面代用写真。
【図2】本発明におけるCaBi4Ti415よりなる形状異方性セラミック粉末の図面代用写真。
【図3】本発明におけるCaBi4Ti415よりなる形状異方性セラミック粉末の図面代用写真。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for producing a ceramic powder having shape anisotropy.
[0002]
[Prior art]
PbTiO 3 , PbTi X Zr 1-X O 3 , CaBi 4 Ti 4 O 15 , Bi 4 Ti 3 O 12 and the like are widely known as piezoelectric ceramics used for piezoelectric ceramic oscillators and piezoelectric ceramic filters. Among the above, CaBi 4 Ti 4 O 15 and Bi 4 Ti 3 O 12 are layered perovskite compounds, and their crystals are characterized by strong anisotropy. However, when these piezoelectric ceramics are obtained by a normal manufacturing method, since each crystal is sintered in a randomly oriented state, high piezoelectric characteristics cannot be obtained. Thus, various means for obtaining an oriented ceramic having excellent electrical and ceramic properties by uniaxially orienting crystals constituting the piezoelectric ceramic have been disclosed.
[0003]
As a method for obtaining this oriented ceramic, for example, a shape anisotropic ceramic powder having a high average aspect ratio (major axis length / minor axis length ratio) is mixed with an organic binder or the like to form a slurry or slip, and then tape-molded. In general, the ceramic sheets obtained in this manner are stacked in a desired thickness, pressed, and fired.
[0004]
This shape-anisotropic ceramic powder is a powder composed of particles having shape anisotropy such as plate-like, rod-like, and needle-like shapes, and can be prepared from a compound having crystal anisotropy. The particles of these compounds exhibit strong shape anisotropy even when a block-like sintered body is produced using a normal ceramic production method. However, when such a block-shaped sintered body is pulverized, the shape anisotropic particles are destroyed at that time, so that a powder having a high average aspect ratio cannot be obtained.
[0005]
Thus, as a method for producing the shape anisotropic ceramic powder having a high average aspect ratio, a method using a flux such as chloride or sulfate is known. (For example, refer nonpatent literature 1.) This is the heat processing of the powder and the mixed powder of the normal calcined powder of the desired ceramic, or the raw material which can produce | generate this ceramic, and a shape anisotropic ceramic in a flux melt Promotes particle growth.
[0006]
Further, as a method of producing the shape anisotropic ceramic powder without using a flux, for example, a ceramic raw material in which Bi is excessive by 5 mol% or more is heated to a melting point of Bi 2 O 3 or more to obtain a ceramic. There is a method for producing a ceramic powder having a layered perovskite crystal structure containing bismuth, which includes one step and a second step of pulverizing the obtained ceramic and performing acid treatment to obtain a ceramic powder. (For example, refer to Patent Document 1.)
[0007]
[Patent Document 1]
Japanese Patent Laid-Open No. 10-158087 [Non-Patent Document 1]
CERAMIC INTERNATIONAL, Vol.9, n.1pp.13-17, 1983
[0008]
[Problems to be solved by the invention]
However, the former has a problem that waste liquid containing chloride, sulfate, etc. is generated, and facilities and processes for treating this waste liquid are required, resulting in an increase in manufacturing cost. In the latter case, although no flux is used, since the acid treatment is performed in the second step, waste liquid containing nitric acid, hydrochloric acid and the like is generated, and there is a problem that the cost increases as in the case of using the flux.
[0009]
The present invention solves the above-described problems, and mainly uses a compound having crystal anisotropy without using a flux or an acid and without generating a waste liquid containing chloride, sulfate, nitric acid, hydrochloric acid and the like. An object is to obtain a shape anisotropic ceramic powder as a component.
[0010]
[Means for Solving the Problems]
In order to achieve the above object, a method for producing a shape-anisotropic ceramic powder according to claim 1 is a ceramic precursor for obtaining a shape-anisotropic ceramic powder mainly composed of a compound having crystal anisotropy. A step of creating a slurry including a body, a step of forming the slurry into a sheet shape to obtain a sheet-like formed body, a step of firing the sheet-like formed body to obtain a sintered body, and the sintered body Of the crystal grains in the bulk sintered body having a diameter of 12 mm and a thickness of 1 mm, the composition of which is the same as the shape anisotropic ceramic powder and the firing temperature. It is characterized by being not more than 15 times the average value of the shortest axial length.
[0011]
The method for producing a shape-anisotropic ceramic powder according to the invention of claim 2 is characterized in that, in claim 1, the main component of the compound having crystal anisotropy exhibits a layered perovskite structure.
[0012]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described in detail.
[0013]
The compound having crystal anisotropy in the present invention has a highly anisotropic crystal structure such as a layered perovskite structure or a pyrochlore structure. Among the compounds having crystal anisotropy, those that are known to be particularly useful as piezoelectric materials are compounds having a layered perovskite structure. These include bismuth layered compounds and Rudolsden-Popper type compounds.
[0014]
The ceramic precursor in the present invention refers to a powder obtained by pulverizing a calcined body having the same composition as the ceramic powder to be obtained, or a raw material for producing the ceramic powder to be obtained. When the slurry containing the ceramic precursor is formed into a sheet and fired, each crystal particle tends to be oriented along a direction parallel to the main surface of the sheet. For example, in the case of plate-like particles, the main surface is oriented so as to align with the in-plane direction of the sheet. By pulverizing the sheet thus obtained, ceramic powder having shape anisotropy can be taken out relatively easily. Although the principle is not clarified, it is presumed that when the sheet is crushed, breakage often occurs at the grain boundary where the plate-like particles are in contact with each other at the end faces. Therefore, in the present invention, the shape of the particles constituting the powder is preferably a plate shape.
[0015]
By the way, in quantifying the effective range of the thickness of the sheet-like molded body in the present invention, bulk-like sintering in which the thickness of the sheet-like molded body is the same as the composition and firing conditions of the crystal particles obtained from the sheet-like molded body. The average shortest axial length of crystal grains in the body was compared. It has been found that even if the thickness and firing conditions of the sheet-like molded body are the same, the average aspect ratio of the obtained crystal particles shows different values if the compounds are different. This is because it is inappropriate to determine the effective range of the present invention based on the thickness alone. In addition, it is estimated that the average aspect ratio of crystal grains varies depending on the type of compound because the average shortest axis length of crystal grains varies depending on the type of compound. Therefore, if the composition and the firing conditions are the same, the crystal particles in the bulk sintered body showing the average shortest axial length very close to the crystal particles are used as a comparison object with the sheet-like molded body.
[0016]
When the average aspect ratio of the shape anisotropic ceramic powder is less than 3.0, there is a possibility that characteristics as an oriented ceramic may not be obtained. Therefore, the average aspect ratio of the shape anisotropic ceramic powder in the present invention is , 3.0 or more.
(Embodiment 1)
First, a method for producing a bulk sintered body will be described. As raw materials, the same raw materials for producing ceramic powder, in this example, CaCO 3 , Bi 2 O 3 and TiO 2 were prepared. CaCO 3 , Bi 2 O 3 and TiO 2 were weighed at a molar ratio of 1: 2: 4 so that the composition CaBi 4 Ti 4 O 15 was obtained, and wet-mixed for about 16 hours using a ball mill to obtain a mixture. It was. CaBi 4 Ti 4 O 15 is a bismuth layered compound known to be useful as a piezoelectric material. The obtained mixture was dried and then calcined at 800 ° C. to 1000 ° C. for 2 to 10 hours to obtain a CaBi 4 Ti 4 O 15 ceramic calcined powder. After roughly pulverizing the calcined powder, an appropriate amount of an organic binder was added and wet pulverized for 16 hours using a ball mill, and the particle size was adjusted through a 40-mesh sieve. Next, this was formed into a disk having a diameter of 12 mm and a thickness of 1 mm at a pressure of 1500 Kgf / cm 2 , heat treated at 500 ° C. for 2 hours, and debindered. The disc-shaped sintered body was obtained by firing at. The sintered body thus obtained is referred to as a bulk sintered body in the present invention. When the average shortest axial length of the crystal grains was calculated from the SEM photograph of this bulk sintered body, it was about 1.0 μm.
[0017]
Next, the manufacturing method of a sheet-like molded object is demonstrated. CaCO 3 , Bi 2 O 3 and TiO 2 were used as starting materials. CaCO 3 , Bi 2 O 3 and TiO 2 were weighed at a molar ratio of 1: 2: 4 so that the composition CaBi 4 Ti 4 O 15 was obtained, and wet-mixed for about 16 hours using a ball mill to obtain a mixture. It was. The obtained mixture was dried and then calcined at 800 ° C. to 1000 ° C. for 2 to 10 hours to obtain a CaBi 4 Ti 4 O 15 ceramic calcined powder. A scanning electron microscope (SEM) photograph of this ceramic calcined powder is shown in FIG. It turns out that anisotropy is not recognized in the shape of these crystal grains.
[0018]
Appropriate amounts of an organic binder, a dispersant, an antifoaming agent and a surfactant were mixed with the obtained ceramic calcined powder to obtain a ceramic slurry. This ceramic slurry was formed by a doctor blade method so that the thickness of the sheet was in the range of 3 to 20 μm to obtain a sheet-like molded body. In addition, two sheets of 5 μm-thick sheet-shaped molded bodies formed in the same manner and four-layered sheets were prepared as sheet-shaped molded bodies, respectively.
[0019]
These sheet-like molded bodies were cut into a size of about 20 mm × 30 mm in order to simplify heat treatment. These were heat-treated at 350 ° C. for 5 hours and then at 500 ° C. for 2 hours to remove the binder. Then, it baked at 1000 to 1350 degreeC for 2 hours. Further, the fired sheet-like molded body was wet pulverized for about 16 hours using a ball mill to obtain a CaBi 4 Ti 4 O 15 ceramic powder. From the SEM photograph of the obtained ceramic powder, the average aspect ratio of the crystal particles was determined.
[0020]
Table 1 shown below summarizes the relationship between the average aspect ratio of the ceramic powder obtained from each sheet-shaped molded body, and the thickness of the sheet-shaped molded body and the average shortest axial length of crystal grains in the bulk sintered body. It is a thing.
[0021]
[Table 1]
Figure 0004363033
[0022]
No. 1 to No. In the sample No. 5, the thickness of the single layer of the sheet-like formed body is set to 3.0 to 20.0 times the average shortest axial length of the crystal particles in the bulk sintered body. Sample No. 1 to 4, when the thickness of the sheet-like molded body is 15.0 times or less with respect to the average shortest axial length of the crystal particles in the bulk sintered body, the average aspect ratio of the ceramic powder is 3.0 or more. Yes, it turned out to be effective. Sample No. 5 shows that when the thickness of the sheet-shaped compact is greater than 15.0 times the average shortest axial length of the crystal grains in the bulk sintered body, the average aspect ratio of the crystal grains obtained from the sheet-shaped compact Was smaller than 3.0, and it was found out of the scope of the present invention.
[0023]
No. 6 to No. Sample 7 is a case where a plurality of sheets are laminated and fired. From here, even when a plurality of sheet-like molded bodies are laminated and fired, the thickness of the laminated sheet-like molded body is 15.0 times or less with respect to the average shortest axial length of the crystal particles in the bulk sintered body. If so, the present invention was found to be effective.
[0024]
Among the above samples, Sample No. The SEM photograph of No. 1 is shown in FIG. 3 SEM photographs are shown in FIG. In any of the figures, the crystal particles are plate-like, and the shape anisotropy can be confirmed.
[0025]
From the above results, when producing shape-anisotropic ceramic particles in the present invention, the thickness of the sheet-like formed body is the average of the crystal particles in the ceramic bulk sintered body having the same composition as the ceramic powder to be obtained. It was found that it was necessary to be 15 times or less with respect to the shortest axial length.
(Embodiment 2)
A bulk sintered body and a ceramic powder were produced in the same manner as in Embodiment 1 except that raw materials having compositions of Bi 4 Ti 3 O 12 , Sr 3 Ti 2 O 7 and PbNb 2 O 6 were used. Bi 4 Ti 3 O 12 is a bismuth layered compound, Sr 3 Ti 2 O 7 is a Rudolsden-Popper type compound, and PbNb 2 O 6 is a compound showing a pyrochlore structure. The average shortest axial lengths of crystal grains in the obtained bulk sintered body were 1.2 μm, 1.5 μm, and 1.1 μm, respectively.
[0026]
Table 2 shown below shows the average aspect ratio of the ceramic powder obtained from each sheet-like molded body, and the relationship between the thickness of the sheet-like molded body and the average shortest axial length of the crystal particles in each bulk sintered body. Is a summary.
[0027]
[Table 2]
Figure 0004363033
[0028]
In any sample, an average aspect ratio of 3.0 or more was obtained, and the thickness of the sheet-like formed body should be 15.0 times or less with respect to the average shortest axial length of crystal grains in the bulk sintered body. For example, the present invention has been found to be effective even when the composition is different.
[0029]
【The invention's effect】
According to the present invention, a shape anisotropic ceramic mainly composed of a compound having crystal anisotropy without using a flux or an acid, without generating a waste liquid containing chloride, sulfate, nitric acid, hydrochloric acid, etc. A powder can be obtained.
[Brief description of the drawings]
FIG. 1 is a drawing-substituting photograph of CaBi 4 Ti 4 O 15 calcined powder in the present invention.
FIG. 2 is a drawing-substituting photograph of a shape anisotropic ceramic powder composed of CaBi 4 Ti 4 O 15 in the present invention.
FIG. 3 is a drawing-substituting photograph of a shape anisotropic ceramic powder made of CaBi 4 Ti 4 O 15 in the present invention.

Claims (2)

結晶異方性を有する化合物を主成分とする形状異方性セラミック粉末を得るためのセラミック前駆体を含むスラリーを作成する工程と、前記スラリーをシート状に成形してシート状成形体を得る工程と、前記シート状成形体を焼成して焼結体を得る工程と、前記焼結体を粉砕する工程とを備え、前記シート状成形体の厚みが、前記形状異方性セラミック粉末と組成および焼成温度を同じくする直径12mm、厚さ1mmのバルク状焼結体における結晶粒子の軸のうち最短となる軸長の平均値に対し15倍以下であることを特徴とする、形状異方性セラミック粉末の製造方法。A step of creating a slurry containing a ceramic precursor for obtaining a shape-anisotropic ceramic powder containing a compound having crystal anisotropy as a main component, and a step of forming the slurry into a sheet to obtain a sheet-like molded body And a step of firing the sheet-like formed body to obtain a sintered body, and a step of pulverizing the sintered body, wherein the thickness of the sheet-like formed body is the composition of the shape anisotropic ceramic powder and Shape anisotropic ceramic, characterized in that it is 15 times or less of the average value of the shortest axis length among the axes of crystal grains in a bulk sintered body having a diameter of 12 mm and a thickness of 1 mm with the same firing temperature Powder manufacturing method. 前記結晶異方性を有する化合物の主成分が、層状ペロブスカイト構造を示すことを特徴とする、請求項1に記載の形状異方性セラミック粉末の製造方法。The method for producing a shape-anisotropic ceramic powder according to claim 1, wherein a main component of the compound having crystal anisotropy exhibits a layered perovskite structure.
JP2002355704A 2002-12-06 2002-12-06 Method for producing shape anisotropic ceramic powder Expired - Fee Related JP4363033B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002355704A JP4363033B2 (en) 2002-12-06 2002-12-06 Method for producing shape anisotropic ceramic powder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002355704A JP4363033B2 (en) 2002-12-06 2002-12-06 Method for producing shape anisotropic ceramic powder

Publications (2)

Publication Number Publication Date
JP2004189506A JP2004189506A (en) 2004-07-08
JP4363033B2 true JP4363033B2 (en) 2009-11-11

Family

ID=32756317

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002355704A Expired - Fee Related JP4363033B2 (en) 2002-12-06 2002-12-06 Method for producing shape anisotropic ceramic powder

Country Status (1)

Country Link
JP (1) JP4363033B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8158255B2 (en) 2007-02-26 2012-04-17 Ngk Insulators, Ltd. Plate-like polycrystalline particle, method for producing plate-like polycrystalline particles, and method for producing crystallographically-oriented ceramic
JP2008227332A (en) * 2007-03-15 2008-09-25 Matsushita Electric Ind Co Ltd Stacked ceramic capacitor and method of manufacturing the same
US7799158B2 (en) 2007-05-28 2010-09-21 Ngk Insulators, Ltd. Method for producing crystallographically-oriented ceramic
FR2921204B1 (en) * 2007-09-14 2009-12-04 Saint Gobain Ct Recherches LONG GRAIN POWDER

Also Published As

Publication number Publication date
JP2004189506A (en) 2004-07-08

Similar Documents

Publication Publication Date Title
JP5716263B2 (en) Ceramic sintered body and piezoelectric element
JP5208696B2 (en) Plate-like polycrystalline particles
JP2008537724A (en) High power piezoelectric ceramic composition
JP2010275184A (en) Piezoelectric material, production method therefor and piezoelectric element
KR20140025521A (en) Sodium niobate powder, method of manufacturing a sodium niobate powder, plate-like particle, method of manufacturing a plate-like particle, and method of manufacturing an oriented ceramics
JP5676910B2 (en) Method for manufacturing ceramics and piezoelectric material
JP2005228865A (en) Manufacturing method of piezoelectric ceramic
JP2004300019A (en) Crystal-oriented ceramic and its manufacturing method
CN100371298C (en) Grain oriented ceramics and production method thereof
JP2010103301A (en) Method of manufacturing piezoelectric element, and piezoelectric element
JP5816371B2 (en) Piezoelectric device and method for manufacturing piezoelectric device
JP3399785B2 (en) Piezoelectric device and method of manufacturing the same
JP2007084408A (en) Piezoelectric ceramic
JP2000169223A (en) Piezoelectric ceramic composition and its production
JP4363033B2 (en) Method for producing shape anisotropic ceramic powder
JP3108724B2 (en) High durability piezoelectric composite ceramics and its manufacturing method
JP4025521B2 (en) Method for producing hexagonal ferrite sintered body
JP2010018510A (en) Crystal-oriented ceramic
JP2010163313A (en) Method of manufacturing crystal-orientated ceramic
JP3650872B2 (en) Crystalline oriented bismuth layered perovskite compound and method for producing the same
JP2014012620A (en) Production method of orientation ceramic, orientation ceramic, and ceramic electronic component
JP2004002051A (en) Piezoelectric ceramic composition, piezoelectric ceramic element, and method of producing the piezoelectric ceramic composition
JP2008260657A (en) Method for production of piezoelectric porcelain
JP2011162438A (en) Anisotropically shaped powder and manufacturing method thereof, and crystal-oriented ceramic and manufacturing method thereof
JP2010275131A (en) Piezoelectric ceramic and piezoelectric element using the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051128

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080430

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080916

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081114

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090324

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090519

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090728

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090810

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120828

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4363033

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120828

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130828

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees